1
|
Jilani S, Saco JD, Mugarza E, Pujol-Morcillo A, Chokry J, Ng C, Abril-Rodriguez G, Berger-Manerio D, Pant A, Hu J, Gupta R, Vega-Crespo A, Baselga-Carretero I, Chen JM, Shin DS, Scumpia P, Radu RA, Chen Y, Ribas A, Puig-Saus C. CAR-T cell therapy targeting surface expression of TYRP1 to treat cutaneous and rare melanoma subtypes. Nat Commun 2024; 15:1244. [PMID: 38336975 PMCID: PMC10858182 DOI: 10.1038/s41467-024-45221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
A major limitation to developing chimeric antigen receptor (CAR)-T cell therapies for solid tumors is identifying surface proteins highly expressed in tumors but not in normal tissues. Here, we identify Tyrosinase Related Protein 1 (TYRP1) as a CAR-T cell therapy target to treat patients with cutaneous and rare melanoma subtypes unresponsive to immune checkpoint blockade. TYRP1 is primarily located intracellularly in the melanosomes, with a small fraction being trafficked to the cell surface via vesicular transport. We develop a highly sensitive CAR-T cell therapy that detects surface TYRP1 in tumor cells with high TYRP1 overexpression and presents antitumor activity in vitro and in vivo in murine and patient-derived cutaneous, acral and uveal melanoma models. Furthermore, no systemic or off-tumor severe toxicities are observed in an immunocompetent murine model. The efficacy and safety profile of the TYRP1 CAR-T cell therapy supports the ongoing preparation of a phase I clinical trial.
Collapse
Affiliation(s)
- Sameeha Jilani
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Justin D Saco
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Edurne Mugarza
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Aleida Pujol-Morcillo
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jeffrey Chokry
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Clement Ng
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gabriel Abril-Rodriguez
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - David Berger-Manerio
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ami Pant
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jane Hu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rubi Gupta
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Agustin Vega-Crespo
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ignacio Baselga-Carretero
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jia M Chen
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Daniel Sanghoon Shin
- Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA
| | - Philip Scumpia
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA, USA
- Department of Dermatology, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, USA
| | - Roxana A Radu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yvonne Chen
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics at UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center-UCLA, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center-UCLA, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Hematology-Oncology, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center-UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center-UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Chang CT, Chen YH, Shyur LF. Phytocompounds from essential oil of Mentha aquatica L. cv. Lime prevent vemurafenib-promoted skin carcinogenesis via inhibiting HRAS Q61L keratinocytes and reprogramming macrophage activities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155161. [PMID: 37939409 DOI: 10.1016/j.phymed.2023.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Twenty to thirty percent of patients taking BRAF inhibitors such as vemurafenib (PLX4032) for melanoma develop cutaneous squamous cell carcinomas. PURPOSE This study aimed to elucidate the chemopreventive effect of essential oil from Mentha aquatica L. cv. Lime (EO) and its major constituents, limonene and carvone (L + C) that made up 45.68% of the EO, against PLX4032-induced cutaneous side effects. METHODS PLX4032 accelerated skin papilloma formation and keratinocyte HRAS mutation in 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced two-stage skin carcinogenesis mouse model was used to evaluate the in vivo bioefficacy of EO and L + C. The effects and molecular mechanisms of EO and L + C on deregulating mouse PDVHRASQ61L keratinocyte activities were demonstrated using a spectrum of bioactivity assays, western blotting, immunochemistry, and keratinocyte-macrophage co-culture assay. RESULTS Treatment with EO suppressed colony formation ability, cell migration, invasion, and induced G2/M cell-cycle arrest and apoptosis in PDVHRASQ61L keratinocytes, and L + C treatment inhibited colony formation, cell migration and invasion of PDV cells. In mouse skin irritated with DMBA/TPA (DT group) or DMBA/TPA with PLX4032 (DTP group), topical application of EO and L + C significantly delayed papilloma appearance and reduced papilloma incidence compared to DT or DTP controls. Histopathology results showed that EO and L + C treatment attenuated K14+ keratinocyte proliferation and paradoxical MAPK activation, and shifted the macrophage population from M2 (CD163+) to M1 (iNOS+) in the mouse skin microenvironment. The conditioned medium of EO or L + C pre-treated PDV keratinocytes promoted M0 macrophages to differentiate from THP-1 cells into M1-like macrophages. CONCLUSION This study demonstrates that EO and L + C in combination prevent PLX4032-induced cutaneous side-effects and skin carcinogenesis in mice through reprogramming the macrophage cell population and inhibiting keratinocyte activity. Both mint EO and the natural products L + C can be considered to be effective chemopreventive agents that might be useful in reducing cutaneous lesions in human patients administrated with BRAF inhibitors.
Collapse
Affiliation(s)
- Chih-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsin Chen
- Taichung District Research and Extension Station, Council of Agriculture, Executive Yuan, Changhua 515, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung 401, Taiwan.
| |
Collapse
|
3
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 239] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
4
|
Carvalho NS, Lemes JBP, Pagliusi M, Machado ACDS, Malange KF, Pral LP, Fachi JL, Nishijima CM, Dos Santos GG, Tambeli CH, Sartori CR, Vinolo MAR, Parada CA. Neutrophil-Derived COX-2 has a Key Role during Inflammatory Hyperalgesia. Inflammation 2022; 45:2280-2293. [PMID: 35840810 DOI: 10.1007/s10753-022-01690-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Inflammation is a vital process for the injured tissue restoration and one of its hallmarks is inflammatory hyperalgesia. The cyclooxygenase (COX) pathway is strongly related to the inflammatory and painful process. Usually, the COX-1 isoform is described as homeostatic, while COX-2 is characterized as inducible in inflammatory conditions. Although it is well known that neutrophil cells are the first to arrive at the inflamed site and the major source of COX-2 is still unknown, the specific role of neutrophil-derived COX-2 in the pain process is. Thus, in the present study, we demonstrate for the first time that neutrophil-derived COX-2 plays a key role in peripheral inflammatory hyperalgesia. Conditional knockout mice for COX-2 in neutrophils (COX-2 fl/fl: Mrp8cre±) exhibited higher pain sensitivity after carrageenan (CG) injection and long-lasting IL-1β-induced hyperalgesia compared with the control group (COX-2 fl/fl). Also, CG-induced inflammation in COX-2 fl/fl: Mrp8cre± mice showed COX-1 overexpression, and increased neutrophil migration and pro-inflammatory cytokines (e.g., IL-1β and CXCL1). These findings revealed that neutrophil COX-2 has an important role in the regulation of inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Nathalia Santos Carvalho
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Julia Borges Paes Lemes
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.,Department of Anesthesiology, University of California, San Diego, LA Jolla, CA, USA
| | - Marco Pagliusi
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.,Department of Pharmacology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Dos Santos Machado
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Kauê Franco Malange
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.,Department of Anesthesiology, University of California, San Diego, LA Jolla, CA, USA
| | - Laís Passariello Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José Luís Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catarine Massucato Nishijima
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | | | - Claudia Herrera Tambeli
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Cesar Renato Sartori
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.
| |
Collapse
|
5
|
Lacouture ME, Wainberg ZA, Patel AB, Anadkat MJ, Stemmer SM, Shacham-Shmueli E, Medina E, Zelinger G, Shelach N, Ribas A. Reducing Skin Toxicities from EGFR Inhibitors with Topical BRAF Inhibitor Therapy. Cancer Discov 2021; 11:2158-2167. [PMID: 33910927 PMCID: PMC8418997 DOI: 10.1158/2159-8290.cd-20-1847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Treatment of cancer with EGFR inhibitors is limited by on-target skin toxicities induced by inhibition of the MAPK pathway. BRAF inhibitors are known to paradoxically activate the MAPK downstream of EGFR, which we confirmed using human skin keratinocytes. We then conducted a phase I clinical trial testing the hypothesis that topical therapy with the BRAF inhibitor LUT014 could improve skin toxicities induced by EGFR inhibitors. Ten patients with metastatic colorectal cancer who had developed acneiform rash while being treated with cetuximab or panitumumab were enrolled in three cohorts. LUT014 was well tolerated, and there were no dose-limiting toxicities. The acneiform rash improved in the 6 patients who started with grade 2 rash in the low and intermediate cohorts. We conclude that topical LUT014 is safe and efficacious in improving rash from EGFR inhibitors, consistent with the mechanism of action inducting paradoxical MAPK activation. SIGNIFICANCE: BRAF inhibitor topical therapy could avoid dose reductions of EGFR inhibitors, locally treating the main dose-limiting skin toxicity of this class of agents.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
| | - Zev A Wainberg
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Anisha B Patel
- The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Milan J Anadkat
- Washington University School of Medicine, St. Louis, Missouri
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Egmidio Medina
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | | | - Antoni Ribas
- University of California, Los Angeles (UCLA) and Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
6
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|
7
|
Tudor DV, Bâldea I, Olteanu DE, Fischer-Fodor E, Piroska V, Lupu M, Călinici T, Decea RM, Filip GA. Celecoxib as a Valuable Adjuvant in Cutaneous Melanoma Treated with Trametinib. Int J Mol Sci 2021; 22:4387. [PMID: 33922284 PMCID: PMC8122835 DOI: 10.3390/ijms22094387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Melanoma patients stop responding to targeted therapies mainly due to mitogen activated protein kinase (MAPK) pathway re-activation, phosphoinositide 3 kinase/the mechanistic target of rapamycin (PI3K/mTOR) pathway activation or stromal cell influence. The future of melanoma treatment lies in combinational approaches. To address this, our in vitro study evaluated if lower concentrations of Celecoxib (IC50 in nM range) could still preserve the chemopreventive effect on melanoma cells treated with trametinib. MATERIALS AND METHODS All experiments were conducted on SK-MEL-28 human melanoma cells and BJ human fibroblasts, used as co-culture. Co-culture cells were subjected to a celecoxib and trametinib drug combination for 72 h. We focused on the evaluation of cell death mechanisms, melanogenesis, angiogenesis, inflammation and resistance pathways. RESULTS Low-dose celecoxib significantly enhanced the melanoma response to trametinib. The therapeutic combination reduced nuclear transcription factor (NF)-kB (p < 0.0001) and caspase-8/caspase-3 activation (p < 0.0001), inhibited microphthalmia transcription factor (MITF) and tyrosinase (p < 0.05) expression and strongly down-regulated the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway more significantly than the control or trametinib group (p < 0.0001). CONCLUSION Low concentrations of celecoxib (IC50 in nM range) sufficed to exert antineoplastic capabilities and enhanced the therapeutic response of metastatic melanoma treated with trametinib.
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Diana Elena Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Eva Fischer-Fodor
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Virag Piroska
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 400015 Cluj-Napoca, Romania; (E.F.-F.); (V.P.)
| | - Mihai Lupu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Tudor Călinici
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Roxana Maria Decea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.V.T.); (I.B.); (M.L.); (R.M.D.); (G.A.F.)
| |
Collapse
|
8
|
Vergani E, Dugo M, Cossa M, Frigerio S, Di Guardo L, Gallino G, Mattavelli I, Vergani B, Lalli L, Tamborini E, Valeri B, Gargiuli C, Shahaj E, Ferrarini M, Ferrero E, Gomez Lira M, Huber V, Vecchio MD, Sensi M, Leone BE, Santinami M, Rivoltini L, Rodolfo M, Vallacchi V. miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators. Cell Commun Signal 2020; 18:156. [PMID: 32967672 PMCID: PMC7510138 DOI: 10.1186/s12964-020-00601-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background Targeted therapy with BRAF and MEK inhibitors has improved the survival of patients with BRAF-mutated metastatic melanoma, but most patients relapse upon the onset of drug resistance induced by mechanisms including genetic and epigenetic events. Among the epigenetic alterations, microRNA perturbation is associated with the development of kinase inhibitor resistance. Here, we identified and studied the role of miR-146a-5p dysregulation in melanoma drug resistance. Methods The miR-146a-5p-regulated NFkB signaling network was identified in drug-resistant cell lines and melanoma tumor samples by expression profiling and knock-in and knock-out studies. A bioinformatic data analysis identified COX2 as a central gene regulated by miR-146a-5p and NFkB. The effects of miR-146a-5p/COX2 manipulation were studied in vitro in cell lines and with 3D cultures of treatment-resistant tumor explants from patients progressing during therapy. Results miR-146a-5p expression was inversely correlated with drug sensitivity and COX2 expression and was reduced in BRAF and MEK inhibitor-resistant melanoma cells and tissues. Forced miR-146a-5p expression reduced COX2 activity and significantly increased drug sensitivity by hampering prosurvival NFkB signaling, leading to reduced proliferation and enhanced apoptosis. Similar effects were obtained by inhibiting COX2 by celecoxib, a clinically approved COX2 inhibitor. Conclusions Deregulation of the miR-146a-5p/COX2 axis occurs in the development of melanoma resistance to targeted drugs in melanoma patients. This finding reveals novel targets for more effective combination treatment. Video Abstract
Graphical Abstract ![]()
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori AmadeoLab, Milan, Italy
| | - Mara Cossa
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simona Frigerio
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Lorenza Di Guardo
- Unit of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianfrancesco Gallino
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Mattavelli
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Vergani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Elena Tamborini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Valeri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Gargiuli
- Platform of Integrated Biology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori AmadeoLab, Milan, Italy
| | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Marina Ferrarini
- Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Macarena Gomez Lira
- Biology and Genetics, Department of Neurosciences Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Michele Del Vecchio
- Unit of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Platform of Integrated Biology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori AmadeoLab, Milan, Italy
| | | | - Mario Santinami
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
9
|
Torrejon DY, Abril-Rodriguez G, Champhekar AS, Tsoi J, Campbell KM, Kalbasi A, Parisi G, Zaretsky JM, Garcia-Diaz A, Puig-Saus C, Cheung-Lau G, Wohlwender T, Krystofinski P, Vega-Crespo A, Lee CM, Mascaro P, Grasso CS, Berent-Maoz B, Comin-Anduix B, Hu-Lieskovan S, Ribas A. Overcoming Genetically Based Resistance Mechanisms to PD-1 Blockade. Cancer Discov 2020; 10:1140-1157. [PMID: 32467343 DOI: 10.1158/2159-8290.cd-19-1409] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
Mechanism-based strategies to overcome resistance to PD-1 blockade therapy are urgently needed. We developed genetic acquired resistant models of JAK1, JAK2, and B2M loss-of-function mutations by gene knockout in human and murine cell lines. Human melanoma cell lines with JAK1/2 knockout became insensitive to IFN-induced antitumor effects, while B2M knockout was no longer recognized by antigen-specific T cells and hence was resistant to cytotoxicity. All of these mutations led to resistance to anti-PD-1 therapy in vivo. JAK1/2-knockout resistance could be overcome with the activation of innate and adaptive immunity by intratumoral Toll-like receptor 9 agonist administration together with anti-PD-1, mediated by natural killer (NK) and CD8 T cells. B2M-knockout resistance could be overcome by NK-cell and CD4 T-cell activation using the CD122 preferential IL2 agonist bempegaldesleukin. Therefore, mechanistically designed combination therapies can overcome genetic resistance to PD-1 blockade therapy. SIGNIFICANCE: The activation of IFN signaling through pattern recognition receptors and the stimulation of NK cells overcome genetic mechanisms of resistance to PD-1 blockade therapy mediated through deficient IFN receptor and antigen presentation pathways. These approaches are being tested in the clinic to improve the antitumor activity of PD-1 blockade therapy.This article is highlighted in the In This Issue feature, p. 1079.
Collapse
Affiliation(s)
- Davis Y Torrejon
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gabriel Abril-Rodriguez
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Ameya S Champhekar
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jennifer Tsoi
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katie M Campbell
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Anusha Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jesse M Zaretsky
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Angel Garcia-Diaz
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gardenia Cheung-Lau
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Thomas Wohlwender
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Paige Krystofinski
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Agustin Vega-Crespo
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christopher M Lee
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Pau Mascaro
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Catherine S Grasso
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Beata Berent-Maoz
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Begoña Comin-Anduix
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Siwen Hu-Lieskovan
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California. .,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
10
|
Berlow NE, Grasso CS, Quist MJ, Cheng M, Gandour-Edwards R, Hernandez BS, Michalek JE, Ryan C, Spellman P, Pal R, Million LS, Renneker M, Keller C. Deep Functional and Molecular Characterization of a High-Risk Undifferentiated Pleomorphic Sarcoma. Sarcoma 2020; 2020:6312480. [PMID: 32565715 PMCID: PMC7285280 DOI: 10.1155/2020/6312480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022] Open
Abstract
Nonrhabdomyosarcoma soft-tissue sarcomas (STSs) are a class of 50+ cancers arising in muscle and soft tissues of children, adolescents, and adults. Rarity of each subtype often precludes subtype-specific preclinical research, leaving many STS patients with limited treatment options should frontline therapy be insufficient. When clinical options are exhausted, personalized therapy assignment approaches may help direct patient care. Here, we report the results of an adult female STS patient with relapsed undifferentiated pleomorphic sarcoma (UPS) who self-drove exploration of a wide array of personalized Clinical Laboratory Improvement Amendments (CLIAs) level and research-level diagnostics, including state of the art genomic, proteomic, ex vivo live cell chemosensitivity testing, a patient-derived xenograft model, and immunoscoring. Her therapeutic choices were also diverse, including neoadjuvant chemotherapy, radiation therapy, and surgeries. Adjuvant and recurrence strategies included off-label and natural medicines, several immunotherapies, and N-of-1 approaches. Identified treatment options, especially those validated during the in vivo study, were not introduced into the course of clinical treatment but did provide plausible treatment regimens based on FDA-approved clinical agents.
Collapse
Affiliation(s)
- Noah E. Berlow
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005, USA
- Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
- Division of Hematology-Oncology, University of California, Los Angeles, CA 90095, USA
| | - Catherine S. Grasso
- Division of Hematology-Oncology, University of California, Los Angeles, CA 90095, USA
| | - Michael J. Quist
- Division of Hematology-Oncology, University of California, Los Angeles, CA 90095, USA
| | | | - Regina Gandour-Edwards
- Department of Pathology & Laboratory Medicine, UC Davis Health System, Sacramento, CA 95817, USA
| | - Brian S. Hernandez
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Joel E. Michalek
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Christopher Ryan
- School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Paul Spellman
- School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ranadip Pal
- Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Lynn S. Million
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Mark Renneker
- Patient-Directed Consultations, San Francisco, CA 94116, USA
- Department of Family Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005, USA
- Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
11
|
Corchado-Cobos R, García-Sancha N, González-Sarmiento R, Pérez-Losada J, Cañueto J. Cutaneous Squamous Cell Carcinoma: From Biology to Therapy. Int J Mol Sci 2020; 21:ijms21082956. [PMID: 32331425 PMCID: PMC7216042 DOI: 10.3390/ijms21082956] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and its incidence continues to rise. Although CSCC usually display a benign clinical behavior, it can be both locally invasive and metastatic. The signaling pathways involved in CSCC development have given rise to targetable molecules in recent decades. In addition, the high mutational burden and increased risk of CSCC in patients under immunosuppression were part of the rationale for developing the immunotherapy for CSCC that has changed the therapeutic landscape. This review focuses on the molecular basis of CSCC and the current biology-based approaches of targeted therapies and immune checkpoint inhibitors. Another purpose of this review is to explore the landscape of drugs that may induce or contribute to the development of CSCC. Beginning with the pathogenetic basis of these drug-induced CSCCs, we move on to consider potential therapeutic opportunities for overcoming this adverse effect.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
| | - Rogelio González-Sarmiento
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Centro de Investigación del cáncer (CIC)-CSIC, Laboratory 7, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (J.P.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Hospital Virgen de la Vega, 37007 Salamanca, Spain;
- Department of Dermatology, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-291-100 (ext. 55574)
| |
Collapse
|
12
|
Quiñones OG, Pierre MBR. Cutaneous Application of Celecoxib for Inflammatory and Cancer Diseases. Curr Cancer Drug Targets 2020; 19:5-16. [PMID: 29714143 DOI: 10.2174/1568009618666180430125201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) and particularly selective cyclooxygenase-2 (COX-2) inhibitors such as celecoxib (Cxb) are considered promising cancer chemopreventive for colon, breast, prostate, lung, and skin cancers. However, the clinical application to the prevention is limited by concerns about safety, potential to serious toxicity (mainly for healthy individuals), efficacy and optimal treatment regimen. Cxb exhibits advantages as potent antiinflammatory and gastrointestinal tolerance compared with conventional NSAID's. Recent researches suggest that dermatological formulations of Cxb are more suitable than oral administration in the treatment of cutaneous disease, including skin cancer. To date, optimism has been growing regarding the exploration of the topical application of Cxb (in the prevention of skin cancers and treatment of cutaneous inflammation) or transdermal route reducing risks of systemic side effects. OBJECTIVE This paper briefly summarizes our current knowledge of the development of the cutaneous formulations or delivery systems for Cxb as anti-inflammatory drug (for topical or transdermal application) as well its chemopreventive properties focused on skin cancer. CONCLUSION New perspectives emerge from the growing knowledge, bringing innovative techniques combining the action of Cxb with other substances or agents which act in a different way, but complementary, increasing the efficacy and minimizing toxicity.
Collapse
Affiliation(s)
- Oliesia Gonzalez Quiñones
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| | - Maria Bernadete Riemma Pierre
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. JOURNAL OF ONCOLOGY 2020; 2020:1079827. [PMID: 32411231 PMCID: PMC7199609 DOI: 10.1155/2020/1079827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-mutated cancers and discusses novel preclinical approaches to overcoming resistance.
Collapse
|
14
|
Abril-Rodriguez G, Torrejon DY, Liu W, Zaretsky JM, Nowicki TS, Tsoi J, Puig-Saus C, Baselga-Carretero I, Medina E, Quist MJ, Garcia AJ, Senapedis W, Baloglu E, Kalbasi A, Cheung-Lau G, Berent-Maoz B, Comin-Anduix B, Hu-Lieskovan S, Wang CY, Grasso CS, Ribas A. PAK4 inhibition improves PD-1 blockade immunotherapy. NATURE CANCER 2019; 1:46-58. [PMID: 34368780 PMCID: PMC8340852 DOI: 10.1038/s43018-019-0003-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Lack of tumor infiltration by immune cells is the main mechanism of primary resistance to programmed cell death protein 1 (PD-1) blockade therapies for cancer. It has been postulated that cancer cell-intrinsic mechanisms may actively exclude T cells from tumors, suggesting that the finding of actionable molecules that could be inhibited to increase T cell infiltration may synergize with checkpoint inhibitor immunotherapy. Here, we show that p21-activated kinase 4 (PAK4) is enriched in non-responding tumor biopsies with low T cell and dendritic cell infiltration. In mouse models, genetic deletion of PAK4 increased T cell infiltration and reversed resistance to PD-1 blockade in a CD8 T cell-dependent manner. Furthermore, combination of anti-PD-1 with the PAK4 inhibitor KPT-9274 improved anti-tumor response compared with anti-PD-1 alone. Therefore, high PAK4 expression is correlated with low T cell and dendritic cell infiltration and a lack of response to PD-1 blockade, which could be reversed with PAK4 inhibition.
Collapse
Affiliation(s)
- Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Davis Y Torrejon
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Liu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse M Zaretsky
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theodore S Nowicki
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of California, Los Angeles, Los Angeles, USA
| | - Jennifer Tsoi
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ignacio Baselga-Carretero
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Egmidio Medina
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J Quist
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alejandro J Garcia
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Anusha Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Gardenia Cheung-Lau
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beata Berent-Maoz
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Begoña Comin-Anduix
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catherine S Grasso
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
15
|
Chang CT, Soo WN, Chen YH, Shyur LF. Essential Oil of Mentha aquatica var. Kenting Water Mint Suppresses Two-Stage Skin Carcinogenesis Accelerated by BRAF Inhibitor Vemurafenib. Molecules 2019; 24:molecules24122344. [PMID: 31242703 PMCID: PMC6630265 DOI: 10.3390/molecules24122344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/29/2022] Open
Abstract
The v-raf murine sarcoma viral homolog B1 (BRAF) inhibitor drug vemurafenib (PLX4032) is used to treat melanoma; however, epidemiological evidence reveals that it could cause cutaneous keratoacanthomas and squamous cell carcinoma in cancer patients with the most prevalent HRASQ61L mutation. In a two-stage skin carcinogenesis mouse model, the skin papillomas induced by 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) (DT) resemble the lesions in BRAF inhibitor-treated patients. In this study, we investigated the bioactivity of Mentha aquatica var. Kenting Water Mint essential oil (KWM-EO) against PDV cells, mouse keratinocytes bearing HRASQ61L mutation, and its effect on inhibiting papilloma formation in a two-stage skin carcinogenesis mouse model with or without PLX4032 co-treatment. Our results revealed that KWM-EO effectively attenuated cell viability, colony formation, and the invasive and migratory abilities of PDV cells. Induction of G2/M cell-cycle arrest and apoptosis in PDV cells was also observed. KWM-EO treatment significantly decreased the formation of cutaneous papilloma further induced by PLX4032 in DT mice (DTP). Immunohistochemistry analyses showed overexpression of keratin14 and COX-2 in DT and DTP skin were profoundly suppressed by KWM-EO treatment. This study demonstrates that KWM-EO has chemopreventive effects against PLX4032-induced cutaneous side-effects in a DMBA/TPA-induced two-stage carcinogenesis model and will be worth further exploration for possible application in melanoma patients.
Collapse
Affiliation(s)
- Chih-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biological Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ni Soo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsin Chen
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taichung 515, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
- Department of Biological Science and Technology, National Taiwan University, Taipei 106, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
16
|
Regan-Fendt KE, Xu J, DiVincenzo M, Duggan MC, Shakya R, Na R, Carson WE, Payne PRO, Li F. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes. NPJ Syst Biol Appl 2019; 5:6. [PMID: 30820351 PMCID: PMC6391384 DOI: 10.1038/s41540-019-0085-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Systems biology perspectives are crucial for understanding the pathophysiology of complex diseases, and therefore hold great promise for the discovery of novel treatment strategies. Drug combinations have been shown to improve durability and reduce resistance to available first-line therapies in a variety of cancers; however, traditional drug discovery approaches are prohibitively cost and labor-intensive to evaluate large-scale matrices of potential drug combinations. Computational methods are needed to efficiently model complex interactions of drug target pathways and identify mechanisms underlying drug combination synergy. In this study, we employ a computational approach, SynGeNet (Synergy from Gene expression and Network mining), which integrates transcriptomics-based connectivity mapping and network centrality analysis to analyze disease networks and predict drug combinations. As an exemplar of a disease in which combination therapies demonstrate efficacy in genomic-specific contexts, we investigate malignant melanoma. We employed SynGeNet to generate drug combination predictions for each of the four major genomic subtypes of melanoma (BRAF, NRAS, NF1, and triple wild type) using publicly available gene expression and mutation data. We validated synergistic drug combinations predicted by our method across all genomic subtypes using results from a high-throughput drug screening study across. Finally, we prospectively validated the drug combination for BRAF-mutant melanoma that was top ranked by our approach, vemurafenib (BRAF inhibitor) + tretinoin (retinoic acid receptor agonist), using both in vitro and in vivo models of BRAF-mutant melanoma and RNA-sequencing analysis of drug-treated melanoma cells to validate the predicted mechanisms. Our approach is applicable to a wide range of disease domains, and, importantly, can model disease-relevant protein subnetworks in precision medicine contexts.
Collapse
Affiliation(s)
- Kelly E Regan-Fendt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Jielin Xu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Mallory DiVincenzo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Megan C Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Reena Shakya
- Target Validation Shared Resource, The Ohio State University, Columbus, OH, USA
| | - Ryejung Na
- Target Validation Shared Resource, The Ohio State University, Columbus, OH, USA
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Philip R O Payne
- Institute for Informatics, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
17
|
Quiñones OG, Hossy BH, Padua TA, Miguel NCDO, Rosas EC, Ramos MFDS, Pierre MBR. Copaiba oil enhances in vitro/in vivo cutaneous permeability and in vivo anti-inflammatory effect of celecoxib. J Pharm Pharmacol 2018; 70:964-975. [PMID: 29600536 DOI: 10.1111/jphp.12906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this article was to use copaiba oil (C.O) to improve skin permeability and topical anti-inflammatory activity of celecoxib (Cxb). METHODS Formulations containing C.O (1-50%) were associated with Cxb (2%). In vitro skin permeability studies were conducted using porcine ear skin. Histological analysis of the hairless mice skin samples after application of formulations was achieved with the routine haematoxylin/eosin technique. The anti-inflammatory activity was assessed using the AA-induced ear oedema mice model. KEY FINDINGS The formulation containing 25% C.O promoted the highest levels of in vitro Cxb permeation through pig ear skin, retention in the stratum corneum (SC) and epidermis/dermis of pig ear skin in vitro (~5-fold) and hairless mice skin in vivo (~2.0-fold), as compared with the control formulation. At 25%, C.O caused SC disorganization and increased cell infiltration and induced angiogenesis without clear signs of skin irritation. The formulation added to 25% C.O as adjuvant inhibited ear oedema and protein extravasation by 77.51 and 89.7%, respectively, and that it was, respectively, 2.0- and 3.4-fold more efficient than the commercial diethylammonium diclofenac cream gel to suppress these inflammatory parameters. CONCLUSIONS 25% C.O is a potential penetration enhancer for lipophilic drugs like Cxb that can improve cutaneous drug penetration and its anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Bryan Hudson Hossy
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
18
|
Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation. Sci Rep 2018; 8:5050. [PMID: 29568008 PMCID: PMC5864729 DOI: 10.1038/s41598-018-23439-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
Voriconazole (VRCZ) induces the development of UV-associated skin cancers. The mechanism underlying the VRCZ-induced carcinogenesis has been largely unknown. Here, we showed that VRCZ metabolites plus UVA generated reactive oxygen species and resultant DNA damage of the epidermis, but did not induce substantial apoptosis in human keratinocytes (KCs). Furthermore, VRCZ per se stimulates aryl hydrocarbon receptor (AhR) and upregulates COX-2, which is a pivotal enzyme for the promotion of UV-associated tumors, in an AhR-ARNT dependent manner of the classical (genomic) pathway. Our findings suggest that the phototoxic moieties of VRCZ metabolites may participate in the initiation phase of VRCZ skin cancer, while VRCZ per se promotes the tumor development. Therefore, during VRCZ therapy, sun exposure protection is essential to prevent photocarcinogenesis caused by VRCZ metabolites plus UV. Chemoprevention with selective COX-2 inhibitors may be helpful to repress the development of skin cancers derived from DNA-damaged KCs.
Collapse
|
19
|
The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein. Oncotarget 2018; 7:45597-45607. [PMID: 27323809 PMCID: PMC5216745 DOI: 10.18632/oncotarget.10056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022] Open
Abstract
cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein.
Collapse
|
20
|
Tsukayama I, Toda K, Takeda Y, Mega T, Tanaka M, Kawakami Y, Takahashi Y, Kimoto M, Yamamoto K, Miki Y, Murakami M, Suzuki-Yamamoto T. Preventive effect of Dioscorea japonica on squamous cell carcinoma of mouse skin involving down-regulation of prostaglandin E 2 synthetic pathway. J Clin Biochem Nutr 2018; 62:139-147. [PMID: 29610553 PMCID: PMC5874233 DOI: 10.3164/jcbn.17-54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/08/2017] [Indexed: 01/12/2023] Open
Abstract
Hyperproduced prostaglandin E2 by cyclooxygenase-2 and microsomal prostaglandin E synthase-1 evokes several pathophysiological responses such as inflammation and carcinogenesis. Our recent study demonstrated that Dioscorea japonica extract suppressed the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 and induced apoptosis in lung carcinoma A549 cells. In the present study, we investigated the effects of Dioscorea japonica on squamous cell carcinoma of mouse skin. Dioscorea japonica feeding and Dioscorea japonica extract topical application suppressed the expression of cyclooxygenase-2, microsomal prostaglandin E synthase-1, interleukin-1β and interleukin-6 and inhibited tumor formation, hyperplasia and inflammatory cell infiltration. Immunohistochemical analyses showed the immunoreactivities of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in tumor keratinocytes and stronger immunoreactivities of cyclooxygenase-2 and hematopoietic prostaglandin D synthase in epidermal dendritic cells (Langerhans cells). Treatment with Dioscorea japonica decreased the immunoreactivity of cyclooxygenase-2 and microsomal prostaglandin E synthase-1. These results indicate that Dioscorea japonica may have inhibitory effects on inflammation and carcinogenesis via suppression of the prostaglandin E2 synthetic pathway.
Collapse
Affiliation(s)
- Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yasunori Takeda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Takuto Mega
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Mitsuki Tanaka
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Masumi Kimoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Technology, Industrial and Social Science, Tokushima University, Minami-jyosanjima, Tokushima 770-8513, Japan.,PRIME, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| |
Collapse
|
21
|
Zhou P, Qin J, Li Y, Li G, Wang Y, Zhang N, Chen P, Li C. Combination therapy of PKCζ and COX-2 inhibitors synergistically suppress melanoma metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:115. [PMID: 28865485 PMCID: PMC5581453 DOI: 10.1186/s13046-017-0585-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023]
Abstract
Background Metastatic malignant melanoma is one of the most aggressive malignancies and its treatment remains challenging. Recent studies demonstrate that the melanoma metastasis has correlations with the heightened activations of protein kinase C ζ (PKCζ) and cyclooxygenase-2 (COX-2) signaling pathways. Targeted inhibitions for PKCζ and COX-2 have been considered as the promising strategies for the treatment of melanoma metastasis. Thus, the PKCζ inhibitor J-4 and COX-2 inhibitor Celecoxib were combined to treat melanoma metastasis in this study. Methods The Transwell assay, Wound-healing assay and Adhesion assay were used to evaluate the inhibition of combined therapy of J-4 and Celecoxib on melanoma cells invasion, migration and adhesion in vitro, respectively. The impaired actin polymerization was observed by confocal microscope and inactivated signal pathways about PKCζ and COX-2 were confirmed by the Western blotting assay. The B16-F10/C57BL mouse melanoma model was used to test the inhibition of combined therapy of J-4 and Celecoxib on melanoma metastasis in vivo. Results The in vitro results showed that the combination of J-4 and Celecoxib exerted synergistic inhibitory effects on the migration, invasion and adhesion of melanoma B16-F10 and A375 cells with combination index less than 1. The actin polymerization and phosphorylation of Cofilin required in cell migration were severely impaired, which is due to the inactivation of PKCζ related signal pathways and the decrease of COX-2. The combined inhibition of PKCζ and COX-2 induced Mesenchymal-Epithelial Transition (MET) in melanoma cells with the expression of E-Cadherin increasing and Vimentin decreasing. The secretion of MMP-2/MMP-9 also significantly decreased after the combination treatment. In C57BL/6 mice intravenously injected with B16-F10 cells (5 × 104 cells/mouse), co-treatment of J-4 and Celecoxib also severely suppressed melanoma lung metastasis. The body weight monitoring and HE staining results indicated the low toxicity of the combination therapy. Conclusions This study demonstrates that the combination therapy of PKCζ and COX-2 inhibitors can significantly inhibit melanoma metastasis in vitro and in vivo, which will be an efficient strategy for treatment of melanoma metastasis in clinics.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Jiaqi Qin
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yuan Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Guoxia Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yinsong Wang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Ning Zhang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Peng Chen
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
| | - Chunyu Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
22
|
Chen ZG, Zheng CY, Cai WQ, Li DW, Ye FY, Zhou J, Wu R, Yang K. miR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression. Oncol Res 2017; 27:147-155. [PMID: 28800785 PMCID: PMC7848412 DOI: 10.3727/096504017x15021536183517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA-26b (miR-26b)/cyclooxygenase-2 (COX-2) axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of the miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased levels of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting a miR-26b mimic into U-373 cells. The invasive cell number and wound closing rate were reduced in U-373 cells transfected with miR-26b mimic. In addition, COX-2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume, and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for the treatment of glioma.
Collapse
Affiliation(s)
- Zheng-Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Chuan-Yi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Wang-Qing Cai
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Da-Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Fu-Yue Ye
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Jian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Ran Wu
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Kun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| |
Collapse
|
23
|
Abstract
PD-L1 and PD-L2 are ligands for the PD-1 immune inhibiting checkpoint that can be induced in tumors by interferon exposure, leading to immune evasion. This process is important for immunotherapy based on PD-1 blockade. We examined the specific molecules involved in interferon-induced signaling that regulates PD-L1 and PD-L2 expression in melanoma cells. These studies revealed that the interferon-gamma-JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis primarily regulates PD-L1 expression, with IRF1 binding to its promoter. PD-L2 responded equally to interferon beta and gamma and is regulated through both IRF1 and STAT3, which bind to the PD-L2 promoter. Analysis of biopsy specimens from patients with melanoma confirmed interferon signature enrichment and upregulation of gene targets for STAT1/STAT2/STAT3 and IRF1 in anti-PD-1-responding tumors. Therefore, these studies map the signaling pathway of interferon-gamma-inducible PD-1 ligand expression.
Collapse
|
24
|
Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, Parisi G, Saus CP, Torrejon DY, Graeber TG, Comin-Anduix B, Hu-Lieskovan S, Damoiseaux R, Lo RS, Ribas A. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep 2017; 19:1189-1201. [PMID: 28494868 PMCID: PMC6420824 DOI: 10.1016/j.celrep.2017.04.031] [Citation(s) in RCA: 1289] [Impact Index Per Article: 161.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/23/2016] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
PD-L1 and PD-L2 are ligands for the PD-1 immune inhibiting checkpoint that can be induced in tumors by interferon exposure, leading to immune evasion. This process is important for immunotherapy based on PD-1 blockade. We examined the specific molecules involved in interferon-induced signaling that regulates PD-L1 and PD-L2 expression in melanoma cells. These studies revealed that the interferon-gamma-JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis primarily regulates PD-L1 expression, with IRF1 binding to its promoter. PD-L2 responded equally to interferon beta and gamma and is regulated through both IRF1 and STAT3, which bind to the PD-L2 promoter. Analysis of biopsy specimens from patients with melanoma confirmed interferon signature enrichment and upregulation of gene targets for STAT1/STAT2/STAT3 and IRF1 in anti-PD-1-responding tumors. Therefore, these studies map the signaling pathway of interferon-gamma-inducible PD-1 ligand expression.
Collapse
Affiliation(s)
- Angel Garcia-Diaz
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Daniel Sanghoon Shin
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Blanca Homet Moreno
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Division of Translational Oncology, Carlos III Health Institute, 28029 Madrid, Spain
| | - Justin Saco
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Helena Escuin-Ordinas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Gabriel Abril Rodriguez
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jesse M Zaretsky
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Lu Sun
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Statistics Core, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Cristina Puig Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Davis Y Torrejon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Begonya Comin-Anduix
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
| | - Siwen Hu-Lieskovan
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le DT, Pardoll DM, Diaz LA, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix B, Ribas A. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov 2017; 7:188-201. [PMID: 27903500 PMCID: PMC5296316 DOI: 10.1158/2159-8290.cd-16-1223] [Citation(s) in RCA: 985] [Impact Index Per Article: 123.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023]
Abstract
Loss-of-function mutations in JAK1/2 can lead to acquired resistance to anti-programmed death protein 1 (PD-1) therapy. We reasoned that they may also be involved in primary resistance to anti-PD-1 therapy. JAK1/2-inactivating mutations were noted in tumor biopsies of 1 of 23 patients with melanoma and in 1 of 16 patients with mismatch repair-deficient colon cancer treated with PD-1 blockade. Both cases had a high mutational load but did not respond to anti-PD-1 therapy. Two out of 48 human melanoma cell lines had JAK1/2 mutations, which led to a lack of PD-L1 expression upon interferon gamma exposure mediated by an inability to signal through the interferon gamma receptor pathway. JAK1/2 loss-of-function alterations in The Cancer Genome Atlas confer adverse outcomes in patients. We propose that JAK1/2 loss-of-function mutations are a genetic mechanism of lack of reactive PD-L1 expression and response to interferon gamma, leading to primary resistance to PD-1 blockade therapy. SIGNIFICANCE A key functional result from somatic JAK1/2 mutations in a cancer cell is the inability to respond to interferon gamma by expressing PD-L1 and many other interferon-stimulated genes. These mutations result in a genetic mechanism for the absence of reactive PD-L1 expression, and patients harboring such tumors would be unlikely to respond to PD-1 blockade therapy. Cancer Discov; 7(2); 188-201. ©2016 AACR.See related commentary by Marabelle et al., p. 128This article is highlighted in the In This Issue feature, p. 115.
Collapse
Affiliation(s)
| | - Jesse M Zaretsky
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Angel Garcia-Diaz
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Anusha Kalbasi
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Willy Hugo
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Salemiz Sandoval
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Davis Y Torrejon
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Nicolaos Palaskas
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Giulia Parisi
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Ariel Azhdam
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Bartosz Chmielowski
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Grace Cherry
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Elizabeth Seja
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Beata Berent-Maoz
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - I Peter Shintaku
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Dung T Le
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Drew M Pardoll
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Luis A Diaz
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Paul C Tumeh
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Thomas G Graeber
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Roger S Lo
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Begoña Comin-Anduix
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Antoni Ribas
- University of California, Los Angeles (UCLA), Los Angeles, California.
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
26
|
Abstract
Loss-of-function mutations in JAK1/2 can lead to acquired resistance to anti-programmed death protein 1 (PD-1) therapy. We reasoned that they may also be involved in primary resistance to anti-PD-1 therapy. JAK1/2-inactivating mutations were noted in tumor biopsies of 1 of 23 patients with melanoma and in 1 of 16 patients with mismatch repair-deficient colon cancer treated with PD-1 blockade. Both cases had a high mutational load but did not respond to anti-PD-1 therapy. Two out of 48 human melanoma cell lines had JAK1/2 mutations, which led to a lack of PD-L1 expression upon interferon gamma exposure mediated by an inability to signal through the interferon gamma receptor pathway. JAK1/2 loss-of-function alterations in The Cancer Genome Atlas confer adverse outcomes in patients. We propose that JAK1/2 loss-of-function mutations are a genetic mechanism of lack of reactive PD-L1 expression and response to interferon gamma, leading to primary resistance to PD-1 blockade therapy. SIGNIFICANCE A key functional result from somatic JAK1/2 mutations in a cancer cell is the inability to respond to interferon gamma by expressing PD-L1 and many other interferon-stimulated genes. These mutations result in a genetic mechanism for the absence of reactive PD-L1 expression, and patients harboring such tumors would be unlikely to respond to PD-1 blockade therapy. Cancer Discov; 7(2); 188-201. ©2016 AACR.See related commentary by Marabelle et al., p. 128This article is highlighted in the In This Issue feature, p. 115.
Collapse
|
27
|
Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nat Commun 2016; 7:12348. [PMID: 27476449 PMCID: PMC4974650 DOI: 10.1038/ncomms12348] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/23/2016] [Indexed: 01/07/2023] Open
Abstract
BRAF inhibitors are highly effective therapies for the treatment of BRAFV600-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. BRAF inhibitors often show skin-hyperproliferative side effects in melanoma patients. Here, the authors demonstrate that BRAF inhibitors can be used to enhance skin wound healing through the MAPK- ERK pathway activation that positively regulates the proliferation of keratinocytes.
Collapse
|
28
|
Dotto GP, Rustgi AK. Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell 2016; 29:622-637. [PMID: 27165741 PMCID: PMC4870309 DOI: 10.1016/j.ccell.2016.04.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinomas (SCCs) represent the most frequent human solid tumors and are a major cause of cancer mortality. These highly heterogeneous tumors arise from closely interconnected epithelial cell populations with intrinsic self-renewal potential inversely related to the stratified differentiation program. SCCs can also originate from simple or pseudo-stratified epithelia through activation of quiescent cells and/or a switch in cell-fate determination. Here, we focus on specific determinants implicated in the development of SCCs by recent large-scale genomic, genetic, and epigenetic studies, and complementary functional analysis. The evidence indicates that SCCs from various body sites, while clinically treated as separate entities, have common determinants, pointing to a unified perspective of the disease and potential new avenues for prevention and treatment.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Kiraly AJ, Soliman E, Jenkins A, Van Dross RT. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukot Essent Fatty Acids 2016; 104:44-53. [PMID: 26802941 DOI: 10.1016/j.plefa.2015.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/24/2015] [Accepted: 11/28/2015] [Indexed: 12/12/2022]
Abstract
Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the United States. NMSC overexpresses cyclooxygenase-2 (COX-2). COX-2 synthesizes prostaglandins such as PGE2 which promote proliferation and tumorigenesis by engaging G-protein-coupled prostaglandin E receptors (EP). Apigenin is a bioflavonoid that blocks mouse skin tumorigenesis induced by the chemical carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the effect of apigenin on the COX-2 pathway has not been examined in the DMBA/TPA skin tumor model. In the present study, apigenin decreased tumor multiplicity and incidence in DMBA/TPA-treated SKH-1 mice. Analysis of the non-tumor epidermis revealed that apigenin reduced COX-2, PGE2, EP1, and EP2 synthesis and also increased terminal differentiation. In contrast, apigenin did not inhibit the COX-2 pathway or promote terminal differentiation in the tumors. Since fewer tumors developed in apigenin-treated animals which contained reduced epidermal COX-2 levels, our data suggest that apigenin may avert skin tumor development by blocking COX-2.
Collapse
Affiliation(s)
- Alex J Kiraly
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Eman Soliman
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Audrey Jenkins
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rukiyah T Van Dross
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
30
|
Vemurafenib-induced progression of breast cancer: a case report and review of the literature. Target Oncol 2015; 11:235-8. [DOI: 10.1007/s11523-015-0384-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Fujishita T, Kajino-Sakamoto R, Kojima Y, Taketo MM, Aoki M. Antitumor activity of the MEK inhibitor trametinib on intestinal polyp formation in Apc(Δ716) mice involves stromal COX-2. Cancer Sci 2015; 106:692-699. [PMID: 25855137 PMCID: PMC4471789 DOI: 10.1111/cas.12670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/23/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
Extracellular signal-regulated kinase is an MAPK that is most closely associated with cell proliferation, and the MEK/ERK signaling pathway is implicated in various human cancers. Although epidermal growth factor receptor, KRAS, and BRAF are considered major targets for colon cancer treatment, the precise roles of the MEK/ERK pathway, one of their major downstream effectors, during colon cancer development remain to be determined. Using ApcΔ716 mice, a mouse model of familial adenomatous polyposis and early-stage sporadic colon cancer formation, we show that MEK/ERK signaling is activated not only in adenoma epithelial cells, but also in tumor stromal cells including fibroblasts and vascular endothelial cells. Eight-week treatment of ApcΔ716 mice with trametinib, a small-molecule MEK inhibitor, significantly reduced the number of polyps in the large size class, accompanied by reduced angiogenesis and tumor cell proliferation. Trametinib treatment reduced the COX-2 level in ApcΔ716 tumors in vivo and in primary culture of intestinal fibroblasts in vitro. Antibody array analysis revealed that trametinib and the COX-2 inhibitor rofecoxib both reduced the level of CCL2, a chemokine known to be essential for the growth of Apc mutant polyps, in intestinal fibroblasts in vitro. Consistently, trametinib treatment reduced the Ccl2 mRNA level in ApcΔ716 tumors in vivo. These results suggest that MEK/ERK signaling plays key roles in intestinal adenoma formation in ApcΔ716 mice, at least in part, through COX-2 induction in tumor stromal cells.
Collapse
Affiliation(s)
- Teruaki Fujishita
- Division of Molecular Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rie Kajino-Sakamoto
- Division of Molecular Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yasushi Kojima
- Division of Molecular Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Makoto Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Aoki
- Division of Molecular Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
32
|
Noakes R. The aryl hydrocarbon receptor: a review of its role in the physiology and pathology of the integument and its relationship to the tryptophan metabolism. Int J Tryptophan Res 2015; 8:7-18. [PMID: 25733915 PMCID: PMC4327407 DOI: 10.4137/ijtr.s19985] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules, of which the most widely recognized ligand is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the most widely recognized effect, chloracne. Adverse effects of manipulation were most recently and graphically demonstrated by the poisoning of Viktor Yushchenko during the Ukrainian presidential elections of 2004. However, recent research has revealed a receptor with wide-ranging, and at times, paradoxical actions. It was arguably among the first biological receptors to be utilized by dermatologists, dating from the time of topical tar preparations as a therapeutic agent. I provide a review outlining the role AHR plays in the development, cellular oxidation/antioxidation, responses to ultraviolet light, melanogenesis, epidermal barrier function, and immune regulation and its relationship to tryptophan metabolism. Finally, I will review the role of AHR in diseases of the integument.
Collapse
Affiliation(s)
- Rowland Noakes
- Queensland Institute of Dermatology, Holland Park, Queensland, Australia
| |
Collapse
|
33
|
Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol 2015; 93:290-304. [DOI: 10.1016/j.bcp.2014.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022]
|
34
|
Fukuoka T, Yashiro M, Kinoshita H, Morisaki T, Hasegawa T, Hirakawa T, Aomatsu N, Takeda H, Maruyama T, Hirakawa K. Prostaglandindsynthase is a potential novel therapeutic agent for the treatment of gastric carcinomas expressing PPARγ. Int J Cancer 2015; 137:1235-44. [DOI: 10.1002/ijc.29392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Tatsunari Fukuoka
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
- Department of Oncology Institute of Geriatrics and Medical Science; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| | - Tamami Morisaki
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| | - Toshiki Hirakawa
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| | - Naoki Aomatsu
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| | - Hiroshi Takeda
- Department of Discovery Research Planning Research Headquarters, Ono Pharmaceutical Co.; Ltd; 3-1-1 Sakurai Shimamoto-Cho Mishima-Gun Japan
| | - Takayuki Maruyama
- Department of Discovery Research Planning Research Headquarters, Ono Pharmaceutical Co.; Ltd; 3-1-1 Sakurai Shimamoto-Cho Mishima-Gun Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology; Osaka City University Graduate School of Medicine; 1-4-3 Asahi-Machi Abeno-Ku Osaka Japan
| |
Collapse
|
35
|
Escuin-Ordinas H, Atefi M, Fu Y, Cass A, Ng C, Huang RR, Yashar S, Comin-Anduix B, Avramis E, Cochran AJ, Marais R, Lo RS, Graeber TG, Herschman HR, Ribas A. COX-2 inhibition prevents the appearance of cutaneous squamous cell carcinomas accelerated by BRAF inhibitors. Mol Oncol 2014; 8:250-60. [PMID: 24345644 PMCID: PMC3943738 DOI: 10.1016/j.molonc.2013.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022] Open
Abstract
Keratoacanthomas (KAs) and cutaneous squamous cell carcinomas (cuSCCs) develop in 15-30% of patients with BRAF(V600E) metastatic melanoma treated with BRAF inhibitors (BRAFi). These lesions resemble mouse skin tumors induced by the two-stage DMBA/TPA skin carcinogenesis protocol; in this protocol BRAFi accelerates tumor induction. Since prior studies demonstrated cyclooxygenase 2 (COX-2) is necessary for DMBA/TPA tumor induction, we hypothesized that COX-2 inhibition might prevent BRAFi-accelerated skin tumors. Celecoxib, a COX-2 inhibitor, significantly delayed tumor acceleration by the BRAFi inhibitor PLX7420 and decreased tumor number by 90%. Tumor gene expression profiling demonstrated that celecoxib partially reversed the PLX4720-induced gene signature. In PDV cuSCC cells, vemurafenib (a clinically approved BRAFi) increased ERK phosphorylation and soft agar colony formation; both responses were greatly decreased by celecoxib. In clinical trials trametinib, a MEK inhibitor (MEKi) increases BRAFi therapy efficacy in BRAF(V600E) melanomas and reduces BRAFi-induced KA and cuSCC frequency. Trametinib also reduced vemurafenib-induced PDV soft agar colonies, but less efficiently than celecoxib. The trametinb/celecoxib combination was more effective than either inhibitor alone. In conclusion, celecoxib suppressed both BRAFi-accelerated skin tumors and soft-agar colonies, warranting its testing as a chemopreventive agent for non-melanoma skin lesions in patients treated with BRAFi alone or in combination with MEKi.
Collapse
Affiliation(s)
- Helena Escuin-Ordinas
- Department of Medicine (Division of Hematology-Oncology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mohammad Atefi
- Department of Medicine (Division of Hematology-Oncology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yong Fu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ashley Cass
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Charles Ng
- Department of Medicine (Division of Hematology-Oncology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rong Rong Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sharona Yashar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Begonya Comin-Anduix
- Department of Surgery (Division of Surgical-Oncology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Earl Avramis
- Department of Surgery (Division of Surgical-Oncology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alistair J Cochran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Roger S Lo
- Department of Medicine (Division of Dermatology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Harvey R Herschman
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Antoni Ribas
- Department of Medicine (Division of Hematology-Oncology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Surgery (Division of Surgical-Oncology), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Abstract
The clinical benefits of BRAF inhibition in patients with advanced-stage BRAF-mutant melanoma are now well established. Although the emergence of cutaneous squamous-cell carcinomas (SCCs) and secondary melanomas in patients on BRAF-inhibitor therapy have been well described, reports are emerging of additional secondary premalignant and malignant events, including RAS-mutant leukaemia, the metastatic recurrence of RAS-mutant colorectal cancer and the development of gastric and colonic polyps. In most cases, paradoxical MAPK activation--resulting from the BRAF-inhibitor-mediated homodimerization and heterodimerization of nonmutant RAF isoforms--seems to underlie the development of these secondary tumours. Although evidence supports that therapy with the simultaneous administration of BRAF and MEK inhibitors abrogates the onset of treatment-induced SCCs, whether combination treatment will limit the emergence of all BRAF-inhibitor-driven pathologies is unclear. In this Review, we describe the clinical and mechanistic manifestations of secondary cancers that have thus far been observed to arise as a consequence of BRAF inhibition. We discuss the concept of pre-existing populations of partly transformed cells with malignant potential that might be present in various organ systems, and the rationale for novel therapeutic strategies for the management of BRAF-inhibitor-induced neoplasia.
Collapse
|