1
|
Qian D, Li T, Zheng C, Wang M, Chen S, Li C, An J, Yang Y, Niu Y, An L, Xiang Y. Heat-stable protein PGSL1 enhances pollen germination and tube growth at high temperature. Nat Commun 2025; 16:3642. [PMID: 40240780 PMCID: PMC12003775 DOI: 10.1038/s41467-025-58869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Global warming intensifies extreme heat events, threatening crop reproduction by impairing pollen development, germination, and tube growth. However, the mechanisms underlying pollen heat responses remain elusive. The actin cytoskeleton and actin-binding proteins (ABPs) are crucial in these processes, yet their roles under heat stress are poorly understood. Here, we identify a mutant, pollen germination sensitive to LatB (pgsl1), via forward genetic screening. PGSL1 encodes a heat-stable, plant-specific ABP that binds and stabilizes actin filaments (F-actin), preventing heat-induced denaturation. High temperatures reduce F-actin content but promote bundling in pollen tubes. Notably, pgsl1 mutants exhibit decreased F-actin abundance and bundling under heat stress compared to wild-type plants. These findings highlight PGSL1 as a key regulator of actin dynamics, essential for pollen heat tolerance, offering potential strategies to enhance crop resilience in a warming climate.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengying Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Yang H, Wei X, Wang L, Zheng P, Li J, Zou Y, Wang L, Feng X, Xu J, Qin Y, Zhuang Y. Functional Characterization of PeVLN4 Involved in Regulating Pollen Tube Growth from Passion Fruit. Int J Mol Sci 2025; 26:2348. [PMID: 40076967 PMCID: PMC11899883 DOI: 10.3390/ijms26052348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Passion fruit (Passiflora edulis), mainly distributed in tropical and subtropical regions, is popular for its unique flavor and health benefits. The actin cytoskeleton plays a crucial role in plant growth and development, and villin is a key regulator of actin dynamics. However, the mechanism underlying the actin filament regulation of reproductive development in passion fruit remains poorly understood. Here, we characterized a villin isovariant in passion fruit, Passiflora edulis VLN4 (PeVLN4), highly and preferentially expressed in pollen. Subcellular localization analysis showed that PeVLN4 decorated distinct filamentous structures in pollen tubes. We next introduced PeVLN4 into Arabidopsis villin mutants to explore its functions on the growing pollen tubes. PeVLN4 rescued defects in the elongation of villin mutant pollen tubes. Pollen tubes expressing PeVLN4 were revealed to be less sensitive to latrunculin B, and PeVLN4 partially rescued defects in the actin filament organization of villin mutant pollen tubes. Additionally, biochemical assays revealed that PeVLN4 bundles actin filaments in vitro. Thus, PeVLN4 is an important regulator of F-actin stability and is required for normal pollen tube growth in passion fruit. This study provides a new insight into the function of the actin regulator villin involved in the reproduction development of passion fruit.
Collapse
Affiliation(s)
- Hanbing Yang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (X.W.); (J.X.)
| | - Lifeng Wang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Ping Zheng
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Junzhang Li
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Yutong Zou
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Lulu Wang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Xinyuan Feng
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (X.W.); (J.X.)
| | - Yuan Qin
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| | - Yuhui Zhuang
- College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (L.W.); (P.Z.); (J.L.); (Y.Z.); (L.W.); (X.F.)
| |
Collapse
|
3
|
Tangpranomkorn S, Kimura Y, Igarashi M, Ishizuna F, Kato Y, Suzuki T, Nagae T, Fujii S, Takayama S. A land plant-specific VPS13 mediates polarized vesicle trafficking in germinating pollen. THE NEW PHYTOLOGIST 2025; 245:1072-1089. [PMID: 39617642 PMCID: PMC11712023 DOI: 10.1111/nph.20277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Pollen has an extraordinary ability to convert from a dry state to an extremely rapidly growing state. During pollination, pollen receives water and Ca2+ from the contacting pistil, which will be a directional cue for pollen tube germination. The subsequent rapid activation of directional vesicular transport must support the pollen tube growth, but the molecular mechanism leading to this process is largely unknown. We established a luciferase-based pollination assay to screen genetic mutants defective in the early stage after pollination. We identified a plant-specific VPS13, Arabidopsis thaliana VPS13a as important for pollen germination, and studied its molecular function. AtVPS13a mutation severely affected pollen germination and lipid droplet discharge from the rough endoplasmic reticulum. Cellular accumulation patterns of AtVPS13a and a secretory vesicle marker were synchronized at the polarized site, with a slight delay to the local Ca2+ elevation. We found a brief Ca2+ spike after initiation of pollen hydration, which may be related to the directional cues for pollen tube emergence. Although this Ca2+ dynamics after pollination was unaffected by the absence of AtVPS13a, the mutant suffered reduced cell wall deposition during pollen germination. AtVPS13a mediates pollen polarization, by regulating proper directional vesicular transport following Ca2+ signaling for directional tube outgrowth.
Collapse
Grants
- JP15K14626 Ministry of Education, Culture, Sports, Science and Technology
- JP16H01467 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06380 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06464 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06467 Ministry of Education, Culture, Sports, Science and Technology
- JP18H02456 Ministry of Education, Culture, Sports, Science and Technology
- JP18H04776 Ministry of Education, Culture, Sports, Science and Technology
- JP18J13423 Ministry of Education, Culture, Sports, Science and Technology
- JP19J01563 Ministry of Education, Culture, Sports, Science and Technology
- JP21H05030 Ministry of Education, Culture, Sports, Science and Technology
- JP22H05172 Ministry of Education, Culture, Sports, Science and Technology
- JP22H05174 Ministry of Education, Culture, Sports, Science and Technology
- JP23K17987 Ministry of Education, Culture, Sports, Science and Technology
- JP24K01692 Ministry of Education, Culture, Sports, Science and Technology
- Suntory Foundation for Life Sciences
- JPMJPR16Q8 Japan Science and Technology Agency (JST)
- Ministry of Education, Culture, Sports, Science and Technology
- Suntory Foundation for Life Sciences
Collapse
Affiliation(s)
| | - Yuka Kimura
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| | - Motoko Igarashi
- Graduate School of Biological SciencesNara Institute of Science and TechnologyNara630‐0192Japan
| | - Fumiko Ishizuna
- Department of Human Life Science and Design, Faculty of Contemporary Human Life ScienceTokyo Kasei Gakuin University2600 Aihara‐machi, Machida‐shiTokyo194‐0292Japan
| | - Yoshinobu Kato
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologySaitama332‐0012Japan
| | - Takamasa Suzuki
- Graduate School of Bioscience and BiotechnologyChubu UniversityAichi487‐8501Japan
| | - Takuya Nagae
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE)Kyoto619‐0284Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| |
Collapse
|
4
|
Li X, Yu Q, Hua X, He J, Liu J, Peng L, Wang J, Li X, Yang Y. Phosphorylation of ADF7-Mediated by AGC1.7 Regulates Pollen Germination in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1149-1161. [PMID: 39412187 DOI: 10.1111/pce.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Actin depolymerizing factors (ADFs), like other actin-binding proteins (ABPs), are modified by phosphorylation to regulate the dynamics of the actin filaments, thereby functioning in various processes throughout the plant lifecycle. In this study, we found that the Arabidopsis thaliana cytoplasmic kinase AGC1.7 interacts with ADF7 in vitro and in vivo. AGC1.7 phosphorylates ADF7 at its Ser-6, Ser-103 and Ser-104 residues in vitro, while replacing these residues with alanine promotes ADF7-mediated actin depolymerization in vitro. Expression of the phosphorylation-mimetic mutant protein ADF7S6/103/104D driven by the pollen-specific LAT52 promoter fully rescues the defects in germination rate, silique length and seeds per silique in both adf7-2 and agc1.5 agc1.7 (agcdm) mutants. Our data establish a model whereby AGC1.7-mediated ADF7 phosphorylation plays an important role in pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Biswas R, Chaudhuri S. AtHMGB15 regulates tapetal apoptosis in pollen development and actin dynamics during pollen germination in arabidopsis. PLANT REPRODUCTION 2024; 37:469-478. [PMID: 38904831 DOI: 10.1007/s00497-024-00505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
KEY MESSAGE ARID-HMG DNA binding protein, AtHMGB15, regulates pollen development and pollen germination in Arabidopsis. Previous studies have shown that ARID-HMG DNA binding protein, AtHMGB15 regulate pollen development and pollen germination in Arabidopsis. Here, we performed transcriptome and cytological studies to understand the role of AtHMGB15 in regulating pollen wall morphology and the pollen tube germination rate. Our result showed abnormal vacuolization in the tapetal cells during anther maturation and prolonged PCD in AtHMGB15 loss-of-function mutant. The tapetum has the ability to perform both secretory and biosynthetic activities critical for pollen maturation and pollen viability. Interestingly, expression of PCD executer genes CEP1, MC9 and RNS3 were significant down-regulation of in athmgb15-4. The growth of pollen tubes is regulated by the actin cytoskeleton dynamics. To address the defect in pollen tube growth of athmgb15, we monitored the actin network in growing pollen tubes of wildtype and athmgb15-4 using Rhodamine-phalloidin fluorescence. Our results indicate a highly fragmented actin distribution in athmgb15-4 pollen tubes with a lesser number of long actin fibers and significantly low f-actin concentration at the apex. q-RTPCR further indicates significant downy-regulation of actin regulatory proteins VLN2 and PRF4. Collectively, our results suggest that AtHMGB15 being a nuclear architectural protein orchestrates high-order chromatin organization to promote the transcription of genes responsible for pollen development and pollen germination.
Collapse
Affiliation(s)
- Ruby Biswas
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Shubho Chaudhuri
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
6
|
Qiu T, Su Y, Guo N, Zhang X, Jia P, Mao T, Wang X. MYB52 negatively regulates ADF9-meditated actin filament bundling in Arabidopsis pavement cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2379-2394. [PMID: 39136601 PMCID: PMC11583842 DOI: 10.1111/jipb.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 11/24/2024]
Abstract
It has been proposed that cortical fine actin filaments are needed for the morphogenesis of pavement cells (PCs). However, the precise role and regulation mechanisms of actin filaments in PC morphogenesis are not well understood. Here, we found that Arabidopsis thaliana ACTIN DEPOLYMERIZING FACTOR9 (ADF9) is required for the morphogenesis of PC, which is negatively regulated by the R2R3 MYELOBLASTOSIS (MYB) transcription factor MYB52. In adf9 mutants, the lobe number of cotyledon PCs was significantly reduced, while the average lobe length did not differ significantly compared to that of wild type (Col-0), except for the variations in cell area and circularity, whereas the PC shapes in ADF9 overexpression seedlings showed different results. ADF9 decorated actin filaments, and colocalized with plasma membrane. The extent of filament bundling and actin filament bundling activity in adf9 mutant decreased. In addition, MYB52 directly targeted the promoter of ADF9 and negatively regulated its expression. The myb52-2 mutant showed increased lobe number and cell area, reduced cell circularity of PCs, and the PC phenotypes were suppressed when ADF9 was knocked out. Taken together, our data demonstrate that actin filaments play an important role in the morphogenesis of PC and reveal a transcriptional mechanism underlying MYB52 regulation of ADF9-mediated actin filament bundling in PC morphogenesis.
Collapse
Affiliation(s)
- Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuanyuan Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinyuan Zhang
- College of Biological Science, China Agricultural University, Beijing, 100091, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tonglin Mao
- College of Biological Science, China Agricultural University, Beijing, 100091, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
7
|
Hao GJ, Ying J, Li LS, Yu F, Dun SS, Su LY, Zhao XY, Li S, Zhang Y. Two functionally interchangeable Vps9 isoforms mediate pollen tube penetration of style. THE NEW PHYTOLOGIST 2024; 244:840-854. [PMID: 39262026 DOI: 10.1111/nph.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Style penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a. Vps9b is functionally interchangeable with Vps9a, whose functional distinction results from distinct expression profiles. Functional loss of Vps9a and Vps9b results in the mis-targeting of Rab5-dependent tonoplast proteins, defective vacuolar biogenesis, disturbed distribution of post-Golgi vesicles, increased cellular turgor, cytosolic acidification, and disrupted organization of actin microfilaments (MF) in pollen tubes, which collectively lead to the failure of pollen tubes to grow through style.
Collapse
Affiliation(s)
- Guang-Jiu Hao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Jun Ying
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu-Shen Li
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Fei Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Le-Yan Su
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin-Ying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| |
Collapse
|
8
|
Zhuang Y, Wang Y, Jiao C, Shang Z, Huang S. Arabidopsis VILLIN5 bundles actin filaments using a novel mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2854-2866. [PMID: 39093617 DOI: 10.1111/tpj.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Being a bona fide actin bundler, Arabidopsis villin5 (VLN5) plays a crucial role in regulating actin stability and organization within pollen tubes. Despite its significance, the precise mechanism through which VLN5 bundles actin filaments has remained elusive. Through meticulous deletion analysis, we have unveiled that the link between gelsolin repeat 6 (G6) and the headpiece domain (VHP), rather than VHP itself, is indispensable for VLN5-mediated actin bundling. Further refinement of this region has pinpointed a critical sequence spanning from Val763 to Ser823, essential for VLN5's actin-bundling activity. Notably, the absence of Val763-Ser823 in VLN5 results in decreased filamentous decoration within pollen tubes and a diminished ability to rescue actin bundling defects in vln2vln5 mutant pollen tubes compared to intact VLN5. Moreover, our findings highlight that the Val763-Ser823 sequence harbors a binding site for F-actin, suggesting that this linker-based F-actin binding site, in conjunction with the F-actin binding site localized in G1-G6, enables a single VLN5 to concurrently bind to two adjacent actin filaments. Therefore, our study unveils a novel mechanism by which VLN5 bundles actin filaments.
Collapse
Affiliation(s)
- Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cuixia Jiao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Lv Y, Liu S, Zhang J, Cheng J, Wang J, Wang L, Li M, Wang L, Bi S, Liu W, Zhang L, Liu S, Yan D, Diao C, Zhang S, He M, Gao Y, Wang C. Genome-wide identification of actin-depolymerizing factor family genes in melon ( Cucumis melo L.) and CmADF1 plays an important role in low temperature tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1419719. [PMID: 39239192 PMCID: PMC11374638 DOI: 10.3389/fpls.2024.1419719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Actin depolymerizing factors (ADFs), as the important actin-binding proteins (ABPs) with depolymerizing/severing actin filaments, play a critical role in plant growth and development, and in response to biotic and abiotic stresses. However, the information and function of the ADF family in melon remains unclear. In this study, 9 melon ADF genes (CmADFs) were identified, distributed in 4 subfamilies, and located on 6 chromosomes respectively. Promoter analysis revealed that the CmADFs contained a large number of cis-acting elements related to hormones and stresses. The similarity of CmADFs with their Arabidopsis homologue AtADFs in sequence, structure, important sites and tissue expression confirmed that ADFs were conserved. Gene expression analysis showed that CmADFs responded to low and high temperature stresses, as well as ABA and SA signals. In particular, CmADF1 was significantly up-regulated under above all stress and hormone treatments, indicating that CmADF1 plays a key role in stress and hormone signaling responses, so CmADF1 was selected to further study the mechanism in plant tolerance low temperature. Under low temperature, virus-induced gene silencing (VIGS) of CmADF1 in oriental melon plants showed increased sensitivity to low temperature stress. Consistently, the stable genetic overexpression of CmADF1 in Arabidopsis improved their low temperature tolerance, possibly due to the role of CmADF1 in the depolymerization of actin filaments. Overall, our findings indicated that CmADF genes, especially CmADF1, function in response to abiotic stresses in melon.
Collapse
Affiliation(s)
- Yanling Lv
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shihang Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jiawang Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jinshu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mingyang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lili Zhang
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shilei Liu
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Dabo Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chengxuan Diao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaobin Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Ming He
- Institute of Vegetable, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Lv G, Li Y, Wu Z, Zhang Y, Li X, Wang T, Ren W, Liu L, Chen J, Zhang Y. Maize actin depolymerizing factor 1 (ZmADF1) negatively regulates pollen development. Biochem Biophys Res Commun 2024; 703:149637. [PMID: 38354464 DOI: 10.1016/j.bbrc.2024.149637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The normal development of pollen grains and the completion of double fertilization in embryos are crucial for both the sexual reproduction of angiosperms and grain production. Actin depolymerizing factor (ADF) regulates growth, development, and responses to biotic and abiotic stress by binding to actin in plants. In this study, the function of the ZmADF1 gene was validated through bioinformatic analysis, subcellular localization, overexpression in maize and Arabidopsis, and knockout via CRISPR/Cas9. The amino acid sequence of ZmADF1 exhibited high conservation and a similar tertiary structure to that of ADF homologs. Subcellular localization analysis revealed that ZmADF1 is localized mainly to the nucleus and cytoplasm. The ZmADF1 gene was specifically expressed in maize pollen, and overexpression of the ZmADF1 gene decreased the number of pollen grains in the anthers of transgenic Arabidopsis plants. The germination rate of pollen and the empty seed shell rate in the fruit pods of the overexpressing plants were significantly greater than those in the wild-type (WT) plants. In maize, the pollen viability of the knockout lines was significantly greater than that of both the WT and the overexpressing lines. Our results confirmed that the ZmADF1 gene was specifically expressed in pollen and negatively regulated pollen quantity, vigor, germination rate, and seed setting rate. This study provides insights into ADF gene function and possible pathways for improving high-yield maize breeding.
Collapse
Affiliation(s)
- Guihua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Yunfeng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengxin Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Yahui Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangnan Li
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Tingzheng Wang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China
| | - Wenchuang Ren
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Liu
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, 621000, China
| | - Jianjian Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, China.
| | - Yuanyuan Zhang
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, 621000, China.
| |
Collapse
|
12
|
Qian D, Li T, Chen S, Wan D, He Y, Zheng C, Li J, Sun Z, Li J, Sun J, Niu Y, Li H, Wang M, Niu Y, Yang Y, An L, Xiang Y. Evolution of the thermostability of actin-depolymerizing factors enhances the adaptation of pollen germination to high temperature. THE PLANT CELL 2024; 36:881-898. [PMID: 37941457 PMCID: PMC10980419 DOI: 10.1093/plcell/koad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Double fertilization in many flowering plants (angiosperms) often occurs during the hot summer season, but the mechanisms that enable angiosperms to adapt specifically to high temperatures are largely unknown. The actin cytoskeleton is essential for pollen germination and the polarized growth of pollen tubes, yet how this process responds to high temperatures remains unclear. Here, we reveal that the high thermal stability of 11 Arabidopsis (Arabidopsis thaliana) actin-depolymerizing factors (ADFs) is significantly different: ADFs that specifically accumulate in tip-growing cells (pollen and root hairs) exhibit high thermal stability. Through ancestral protein reconstruction, we found that subclass II ADFs (expressed specifically in pollen) have undergone a dynamic wave-like evolution of the retention, loss, and regeneration of thermostable sites. Additionally, the sites of AtADF7 with high thermal stability are conserved in ADFs specific to angiosperm pollen. Moreover, the high thermal stability of ADFs is required to regulate actin dynamics and turnover at high temperatures to promote pollen germination. Collectively, these findings suggest strategies for the adaptation of sexual reproduction to high temperature in angiosperms at the cell biology level.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongxing He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiajing Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Junxia Sun
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongxia Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Qian D, Li T, Zheng C, Niu Y, Niu Y, Li C, Wang M, Yang Y, An L, Xiang Y. Actin-depolymerizing factors 8 and 11 promote root hair elongation at high pH. PLANT COMMUNICATIONS 2024; 5:100787. [PMID: 38158655 PMCID: PMC10943588 DOI: 10.1016/j.xplc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
A root hair is a polarly elongated single-celled structure that derives from a root epidermal cell and functions in uptake of water and nutrients from the surrounding environment. Previous reports have demonstrated that short periods of high pH inhibit root hair extension; but the effects of long-term high-pH treatment on root hair growth are still unclear. Here, we report that the duration of root hair elongation is significantly prolonged with increasing external pH, which counteracts the effect of decreasing root hair elongation rate and ultimately produces longer root hairs, whereas loss of actin-depolymerizing factor 8 and 11 (ADF8/11) function causes shortening of root hair length at high pH (pH 7.4). Accumulation of ADF8/11 at the tips of root hairs is inhibited by high pH, and increasing environmental pH affects the actin filament (F-actin) meshwork at the root hair tip. At high pH, the tip-focused F-actin meshwork is absent in root hairs of the adf8/11 mutant, actin filaments are disordered at the adf8/11 root hair tips, and actin turnover is attenuated. Secretory and recycling vesicles do not aggregate in the apical region of adf8/11 root hairs at high pH. Together, our results suggest that, under long-term exposure to high extracellular pH, ADF8/11 may establish and maintain the tip-focused F-actin meshwork to regulate polar trafficking of secretory/recycling vesicles at the root hair tips, thereby promoting root hair elongation.
Collapse
Affiliation(s)
- Dong Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Liu B, Wang N, Yang R, Wang X, Luo P, Chen Y, Wang F, Li M, Weng J, Zhang D, Yong H, Han J, Zhou Z, Zhang X, Hao Z, Li X. ZmADF5, a Maize Actin-Depolymerizing Factor Conferring Enhanced Drought Tolerance in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:619. [PMID: 38475468 DOI: 10.3390/plants13050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Drought stress is seriously affecting the growth and production of crops, especially when agricultural irrigation still remains quantitatively restricted in some arid and semi-arid areas. The identification of drought-tolerant genes is important for improving the adaptability of maize under stress. Here, we found that a new member of the actin-depolymerizing factor (ADF) family; the ZmADF5 gene was tightly linked with a consensus drought-tolerant quantitative trait locus, and the significantly associated signals were detected through genome wide association analysis. ZmADF5 expression could be induced by osmotic stress and the application of exogenous abscisic acid. Its overexpression in Arabidopsis and maize helped plants to keep a higher survival rate after water-deficit stress, which reduced the stomatal aperture and the water-loss rate, as well as improved clearance of reactive oxygen species. Moreover, seventeen differentially expressed genes were identified as regulated by both drought stress and ZmADF5, four of which were involved in the ABA-dependent drought stress response. ZmADF5-overexpressing plants were also identified as sensitive to ABA during the seed germination and seedling stages. These results suggested that ZmADF5 played an important role in the response to drought stress.
Collapse
Affiliation(s)
- Bojuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Ruisi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaonan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Texcoco 06600, Mexico
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Liu F, Qu PY, Li JP, Yang LN, Geng YJ, Lu JY, Zhang Y, Li S. Arabidopsis protein S-acyl transferases positively mediate BR signaling through S-acylation of BSK1. Proc Natl Acad Sci U S A 2024; 121:e2322375121. [PMID: 38315835 PMCID: PMC10873554 DOI: 10.1073/pnas.2322375121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.
Collapse
Affiliation(s)
- Fei Liu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Peng-Yu Qu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Ji-Peng Li
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Li-Na Yang
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yuan-Jun Geng
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Jin-Yu Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| |
Collapse
|
16
|
Cao H, Yang Q, Wang T, Du T, Song Z, Dong B, Chen T, Wei Y, Xue J, Meng D, Fu Y. Melatonin-mediated CcARP1 alters F-actin dynamics by phosphorylation of CcADF9 to balance root growth and salt tolerance in pigeon pea. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:98-115. [PMID: 37688588 PMCID: PMC10754007 DOI: 10.1111/pbi.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.
Collapse
Affiliation(s)
- Hongyan Cao
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Qing Yang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Tianyi Wang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Tingting Du
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Zhihua Song
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Biying Dong
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Ting Chen
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Yifan Wei
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Jingyi Xue
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Dong Meng
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Yujie Fu
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| |
Collapse
|
17
|
Li H, Yang Y, Zhang H, Li C, Du P, Bi M, Chen T, Qian D, Niu Y, Ren H, An L, Xiang Y. The Arabidopsis GPI-anchored protein COBL11 is necessary for regulating pollen tube integrity. Cell Rep 2023; 42:113353. [PMID: 38007687 DOI: 10.1016/j.celrep.2023.113353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023] Open
Abstract
Pollen tube integrity is required for achieving double fertilization in angiosperms. The rapid alkalinization factor4/19-ANXUR1/2-Buddha's paper seal 1/2 (RALF4/19-ANX1/2-BUPS1/2)-complex-mediated signaling pathway is critical to maintain pollen tube integrity, but the underlying mechanisms regulating the polar localization and distribution of these complex members at the pollen tube tip remain unclear. Here, we find that COBRA-like protein 11 (COBL11) loss-of-function mutants display a low pollen germination ratio, premature pollen tube burst, and seed abortion in Arabidopsis. COBL11 could interact with RALF4/19, ANX1/2, and BUPS1/2, and COBL11 functional deficiency could result in the disrupted distribution of RALF4 and ANX1, altered cell wall composition, and decreased levels of reactive oxygen species in pollen tubes. In conclusion, COBL11 is a regulator of pollen tube integrity during polar growth, which is conducted by a direct interaction that ensures the correct localization and polar distribution of RALF4 and ANX1 at the pollen tube tip.
Collapse
Affiliation(s)
- Hongxia Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongkai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pingzhou Du
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| | - Mengmeng Bi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiyun Ren
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
18
|
Wang J, Shen J, Xu Y, Jiang Y, Qu X, Zhao W, Wang Y, Huang S. Differential sensitivity of ADF isovariants to a pH gradient promotes pollen tube growth. J Cell Biol 2023; 222:e202206074. [PMID: 37610419 PMCID: PMC10445753 DOI: 10.1083/jcb.202206074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
The actin cytoskeleton is one of the targets of the pH gradient in tip-growing cells, but how cytosolic pH regulates the actin cytoskeleton remains largely unknown. We here demonstrate that Arabidopsis ADF7 and ADF10 function optimally at different pH levels when disassembling actin filaments. This differential pH sensitivity allows ADF7 and ADF10 to respond to the cytosolic pH gradient to regulate actin dynamics in pollen tubes. ADF7 is an unusual actin-depolymerizing factor with a low optimum pH in in vitro actin depolymerization assays. ADF7 plays a dominant role in promoting actin turnover at the pollen tube apex. ADF10 has a typically high optimum pH in in vitro assays and plays a dominant role in regulating the turnover and organization of subapical actin filaments. Thus, functional specification and cooperation of ADF isovariants with different pH sensitivities enable the coordination of the actin cytoskeleton with the cytosolic pH gradient to support pollen tube growth.
Collapse
Affiliation(s)
- Juan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Yuan G, Gao H, Yang T. Exploring the Role of the Plant Actin Cytoskeleton: From Signaling to Cellular Functions. Int J Mol Sci 2023; 24:15480. [PMID: 37895158 PMCID: PMC10607326 DOI: 10.3390/ijms242015480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The plant actin cytoskeleton is characterized by the basic properties of dynamic array, which plays a central role in numerous conserved processes that are required for diverse cellular functions. Here, we focus on how actins and actin-related proteins (ARPs), which represent two classical branches of a greatly diverse superfamily of ATPases, are involved in fundamental functions underlying signal regulation of plant growth and development. Moreover, we review the structure, assembly dynamics, and biological functions of filamentous actin (F-actin) from a molecular perspective. The various accessory proteins known as actin-binding proteins (ABPs) partner with F-actin to finely tune actin dynamics, often in response to various cell signaling pathways. Our understanding of the significance of the actin cytoskeleton in vital cellular activities has been furthered by comparison of conserved functions of actin filaments across different species combined with advanced microscopic techniques and experimental methods. We discuss the current model of the plant actin cytoskeleton, followed by examples of the signaling mechanisms under the supervision of F-actin related to cell morphogenesis, polar growth, and cytoplasmic streaming. Determination of the theoretical basis of how the cytoskeleton works is important in itself and is beneficial to future applications aimed at improving crop biomass and production efficiency.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (G.Y.); (H.G.)
| |
Collapse
|
20
|
Xiang X, Zhang S, Li E, Shi XL, Zhi JY, Liang X, Yin GM, Qin Z, Li S, Zhang Y. RHO OF PLANT proteins are essential for pollen germination in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:140-155. [PMID: 36974907 DOI: 10.1093/plphys/kiad196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Pollen germination is a process of polarity establishment, through which a single and unique growth axis is established. Although most of the intracellular activities associated with pollen germination are controlled by RHO OF PLANTs (ROPs) and increased ROP activation accompanies pollen germination, a critical role of ROPs in this process has not yet been demonstrated. Here, by genomic editing of all 4 Arabidopsis (Arabidopsis thaliana) ROPs that are preferentially expressed in pollen, we showed that ROPs are essential for polarity establishment during pollen germination. We further identified and characterized 2 ROP effectors in pollen germination (REGs) through genome-wide interactor screening, boundary of ROP domain (BDR) members BDR8 and BDR9, whose functional loss also resulted in no pollen germination. BDR8 and BDR9 were distributed in the cytosol and the vegetative nucleus of mature pollen grains but redistributed to the plasma membrane (PM) of the germination site and to the apical PM of growing pollen tubes. We demonstrated that the PM redistribution of BDR8 and BDR9 during pollen germination relies on ROPs but not vice versa. Furthermore, enhanced expression of BDR8 partially restored germination of rop1 pollen but had no effects on that of the quadruple rop pollen, supporting their genetic epistasis. Results presented here demonstrate an ROP signaling route essential for pollen germination, which supports evolutionarily conserved roles of Rho GTPases in polarity establishment.
Collapse
Affiliation(s)
- Xiaojiao Xiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xue-Lian Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jing-Yu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Gui-Min Yin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| |
Collapse
|
21
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Xu J, Dai S, Wang X, Gentile A, Zhang Z, Xie Q, Su Y, Li D, Wang B. Actin-Depolymerizing Factor Gene Family Analysis Revealed That CsADF4 Increased the Sensitivity of Sweet Orange to Bacterial Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:3054. [PMID: 37687300 PMCID: PMC10490069 DOI: 10.3390/plants12173054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The actin-depolymerizing factor (ADF) gene family regulates changes in actin. However, the entire ADF family in the sweet orange Citrus sinensis has not been systematically identified, and their expressions in different organs and biotic stress have not been determined. In this study, through phylogenetic analysis of the sweet orange ADF gene family, seven CsADFs were found to be highly conserved and sparsely distributed across the four chromosomes. Analysis of the cis-regulatory elements in the promoter region showed that the CsADF gene had the potential to impact the development of sweet oranges under biotic or abiotic stress. Quantitative fluorescence analysis was then performed. Seven CsADFs were differentially expressed against the invasion of Xcc and CLas pathogens. It is worth noting that the expression of CsADF4 was significantly up-regulated at 4 days post-infection. Subcellular localization results showed that CsADF4 was localized in both the nucleus and the cytoplasm. Overexpression of CsADF4 enhanced the sensitivity of sweet orange leaves to Xcc. These results suggest that CsADFs may regulate the interaction of C. sinensis and bacterial pathogens, providing a way to further explore the function and mechanisms of ADF in the sweet orange.
Collapse
Affiliation(s)
- Jing Xu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
| | - Suming Dai
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xue Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
| | - Alessandra Gentile
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- Department of Agriculture and Food Science, University of Catania, 95123 Catania, Italy
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410128, China
| | - Qingxiang Xie
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
| | - Yajun Su
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Dazhi Li
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
23
|
Wei X, Shu J, Fahad S, Tao K, Zhang J, Chen G, Liang Y, Wang M, Chen S, Liao J. Polyphenol oxidases regulate pollen development through modulating flavonoids homeostasis in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107702. [PMID: 37099880 DOI: 10.1016/j.plaphy.2023.107702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
Pollen development is critical in plant reproduction. Polyphenol oxidases (PPOs) genes encode defense-related enzymes, but the role of PPOs in pollen development remains largely unexplored. Here, we characterized NtPPO genes, and then investigated their function in pollen via creating NtPPO9/10 double knockout mutant (cas-1), overexpression 35S::NtPPO10 (cosp) line and RNAi lines against all NtPPOs in Nicotiana tabacum. NtPPOs were abundantly expressed in the anther and pollen (especially NtPPO9/10). The pollen germination, polarity ratio and fruit weights were significantly reduced in the NtPPO-RNAi and cosp lines, while they were normal in cas-1 likely due to compensation by other NtPPO isoforms. Comparisons of metabolites and transcripts between the pollen of WT and NtPPO-RNAi, or cosp showed that decreased enzymatic activity of NtPPOs led to hyper-accumulation of flavonoids. This accumulation might reduce the content of ROS. Ca2+ and actin levels also decreased in pollen of the transgenic lines.Thus, the NtPPOs regulate pollen germination through the flavonoid homeostasis and ROS signal pathway. This finding provides novel insights into the native physiological functions of PPOs in pollen during reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China; School of Engineering, Dali University, Dali, Yunnan Province, China
| | - Jie Shu
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Jingwen Zhang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Yingchong Liang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | | | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| | - Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| |
Collapse
|
24
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
25
|
Wang Q, Xu Y, Zhao S, Jiang Y, Yi R, Guo Y, Huang S. Activation of actin-depolymerizing factor by CDPK16-mediated phosphorylation promotes actin turnover in Arabidopsis pollen tubes. PLoS Biol 2023; 21:e3002073. [PMID: 37011088 PMCID: PMC10101649 DOI: 10.1371/journal.pbio.3002073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/13/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.
Collapse
Affiliation(s)
- Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuangshuang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Liu C, Li Z, Tian D, Xu M, Pan J, Wu H, Wang C, Otegui MS. AP1/2β-mediated exocytosis of tapetum-specific transporters is required for pollen development in Arabidopsis thaliana. THE PLANT CELL 2022; 34:3961-3982. [PMID: 35766888 PMCID: PMC9516047 DOI: 10.1093/plcell/koac192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
AP-1 and AP-2 adaptor protein (AP) complexes mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 is required for trafficking to plasma membrane and vacuoles, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (β1 and γ for AP-1 and β2 and α for AP-2), a medium subunit μ, and a small subunit σ. In general, adaptins are unique to each AP complex, with the exception of β subunits that are shared by AP-1 and AP-2 in some invertebrates. Here, we show that the two putative Arabidopsis thaliana AP1/2β adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization at the TGN and plasma membrane. Deletion of both β adaptins is lethal in plants. We identified a critical role of β adaptins in pollen wall formation and reproduction, involving the regulation of membrane trafficking in the tapetum and pollen germination. In tapetal cells, β adaptins localize almost exclusively to the TGN and mediate exocytosis of the plasma membrane transporters such as ATP-binding cassette (ABC)G9 and ABCG16. This study highlights the essential role of AP1/2β adaptins in plants and their specialized roles in specific cell types.
Collapse
Affiliation(s)
- Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhimin Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haijun Wu
- Authors for correspondence: (M.S.O.); (C.W.); (H.W.)
| | - Chao Wang
- Authors for correspondence: (M.S.O.); (C.W.); (H.W.)
| | | |
Collapse
|
27
|
Li Z, Luo D, Tang M, Cao S, Pan J, Zhang W, Hu Y, Yue J, Huang Z, Li R, Chen P. Integrated Methylome and Transcriptome Analysis Provides Insights into the DNA Methylation Underlying the Mechanism of Cytoplasmic Male Sterility in Kenaf ( Hibiscus cannabinus L.). Int J Mol Sci 2022; 23:ijms23126864. [PMID: 35743303 PMCID: PMC9224340 DOI: 10.3390/ijms23126864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is widely exploited in hybrid seed production. Kenaf is an important fiber crop with high heterosis. The molecular mechanism of kenaf CMS remains unclear, particularly in terms of DNA methylation. Here, using the anthers of a kenaf CMS line (P3A) and its maintainer line (P3B), comparative physiological, DNA methylation, and transcriptome analyses were performed. The results showed that P3A had considerably lower levels of IAA, ABA, photosynthetic products and ATP contents than P3B. DNA methylome analysis revealed 650 differentially methylated genes (DMGs) with 313 up- and 337 down methylated, and transcriptome analysis revealed 1788 differentially expressed genes (DEGs) with 558 up- and 1230 downregulated genes in P3A compared with P3B. Moreover, 45 genes were characterized as both DEGs and DMGs, including AUX,CYP, BGL3B, SUS6, AGL30 and MYB21. Many DEGs may be regulated by related DMGs based on methylome and transcriptome studies. These DEGs were involved in carbon metabolism, plant hormone signal transduction, the TCA cycle and the MAPK signaling pathway and were shown to be important for CMS in kenaf. These results provide new insights into the epigenetic mechanism of CMS in kenaf and other crops.
Collapse
Affiliation(s)
- Zengqiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dengjie Luo
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Meiqiong Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Shan Cao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Jiao Pan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Wenxian Zhang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Yali Hu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Jiao Yue
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Zhen Huang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning 530004, China;
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.L.); (D.L.); (M.T.); (S.C.); (J.P.); (W.Z.); (Y.H.); (J.Y.); (Z.H.)
- Correspondence: ; Tel.: +86-155-7894-7886
| |
Collapse
|
28
|
Jiang Y, Lu Q, Huang S. Functional non-equivalence of pollen ADF isovariants in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1068-1081. [PMID: 35233873 DOI: 10.1111/tpj.15723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
ADF/cofilin is a central regulator of actin dynamics. We previously demonstrated that two closely related Arabidopsis class IIa ADF isovariants, ADF7 and ADF10, are involved in the enhancement of actin turnover in pollen, but whether they have distinct functions remains unknown. Here, we further demonstrate that they exhibit distinct functions in regulating actin turnover both in vitro and in vivo. We found that ADF7 binds to ADP-G-actin with lower affinity, and severs and depolymerizes actin filaments less efficiently in vitro than ADF10. Accordingly, in pollen grains, ADF7 more extensively decorates actin filaments and is less freely distributed in the cytoplasm compared to ADF10. We further demonstrate that ADF7 and ADF10 show distinct intracellular localizations during pollen germination, and they have non-equivalent functions in promoting actin turnover in pollen. We thus propose that cooperation and labor division of ADF7 and ADF10 enable pollen cells to achieve exquisite control of the turnover of different actin structures to meet different cellular needs.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaonan Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Wang L, Qiu T, Yue J, Guo N, He Y, Han X, Wang Q, Jia P, Wang H, Li M, Wang C, Wang X. Arabidopsis ADF1 is Regulated by MYB73 and is Involved in Response to Salt Stress Affecting Actin Filament Organization. PLANT & CELL PHYSIOLOGY 2021; 62:1387-1395. [PMID: 34086948 DOI: 10.1093/pcp/pcab081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Actin cytoskeleton and transcription factors play key roles in plant response to salt stress; however, little is known about the link between the two regulators in response to salt stress. Actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes. Here, we revealed that the expression level of ADF1 was induced by salt stress. The adf1 mutants showed significantly reduced survival rate, increased percentage of actin cable and reduced density of actin filaments, while ADF1 overexpression seedlings displayed the opposite results when compared with WT under the same condition. Furthermore, biochemical assays revealed that MYB73, a R2R3 MYB transcription factor, binds to the promoter of ADF1 and represses its expression via the MYB-binding site core motif ACCTAC. Taken together, our results indicate that ADF1 participates in salt stress by regulating actin organization and may also serve as a potential downstream target of MYB73, which is a negative regulator of salt stress.
Collapse
Affiliation(s)
- Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Jianru Yue
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Yunjian He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Qiuyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Hongdan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Muzi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| |
Collapse
|
30
|
Jia Q, Zhang S, Lin Y, Zhang J, Li L, Chen H, Zhang Q. Phospholipase Dδ regulates pollen tube growth by modulating actin cytoskeleton organization in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1915610. [PMID: 33853512 PMCID: PMC8205101 DOI: 10.1080/15592324.2021.1915610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton plays pivotal roles in pollen tube growth by regulating organelle movement, cytoplasmic streaming, and vesicle trafficking. Previous studies have reported that plasma membrane-localized phospholipase Dδ (PLDδ) binds to cortical microtubules and negatively regulates plant stress tolerance. However, it remains unknown whether or how PLDδ regulates microfilament organization. In this study, we found that loss of PLDδ function led to a significant increase in pollen tube growth, whereas PLDδ overexpression resulted in pollen tube growth inhibition. We also found that wild-type PLDδ, rather than Arg 622-mutated PLDδ, complemented the pldδ phenotype in pollen tubes. In vitro biochemical assays demonstrated that PLDδ binds directly to F-actin, and immunofluorescence assays revealed that PLDδ in pollen tubes influences actin organization. Together, these results suggest that PLDδ participates in the development of pollen tube growth by organizing actin filaments.
Collapse
Affiliation(s)
- Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Shujuan Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Yaoxi Lin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Jixiu Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
| | - Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, P.R.China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R.China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, P.R.China
- CONTACT Qun Zhang College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing Weigang Road 1, College of Life Sciences #48, 210095, Nanjing, Jiangsu Province, P.R.China.
| |
Collapse
|
31
|
Dong B, Yang Q, Song Z, Niu L, Cao H, Liu T, Du T, Yang W, Qi M, Chen T, Wang M, Jin H, Meng D, Fu Y. Hyperoside promotes pollen tube growth by regulating the depolymerization effect of actin-depolymerizing factor 1 on microfilaments in okra. HORTICULTURE RESEARCH 2021; 8:145. [PMID: 34193835 PMCID: PMC8245483 DOI: 10.1038/s41438-021-00578-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Mature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2-3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.
Collapse
Affiliation(s)
- Biying Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Qing Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Zhihua Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Lili Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Hongyan Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Tengyue Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Tingting Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Wanlong Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Meng Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Ting Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Mengying Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Haojie Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China.
| | - Yujie Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150000, China.
| |
Collapse
|
32
|
Liu C, Zhang Y, Ren H. Profilin promotes formin-mediated actin filament assembly and vesicle transport during polarity formation in pollen. THE PLANT CELL 2021; 33:1252-1267. [PMID: 33638636 DOI: 10.1093/plcell/koab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Pollen germination is critical for the reproduction of flowering plants. Formin-dependent actin polymerization plays vital roles in vesicle trafficking and polarity establishment during this process. However, how formin-mediated actin assembly is regulated in vivo remains poorly understood. Here, we investigated the function of reproductive profilin 4 and 5 (PRF4 and PRF5) in polarity establishment during pollen germination in Arabidopsis thaliana. Our data showed that the actin filament content was reduced in the prf4 prf5 double mutant and substantially increased in both PRF4- and PRF5-overexpressing pollen grains. By contrast, the positive effect of profilin in promoting actin polymerization was abolished in a formin mutant, atfh5. In addition, the interaction between Arabidopsis formin homology 5 (AtFH5) and actin filaments was attenuated and the trafficking of AtFH5-labeled vesicles was slowed in prf4 prf5 pollen grains. Formation of the collar-like structure at the germination pore was also defective in prf4 prf5 pollen grains as the fast assembly of actin filaments was impaired. Together, our results suggest that PRF4 and PRF5 regulate vesicle trafficking and polarity establishment during pollen germination by promoting AtFH5-mediated actin polymerization and enhancing the interaction between AtFH5 and actin filaments.
Collapse
Affiliation(s)
- Chang Liu
- Center for Biological Science and Technology, Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- Center for Biological Science and Technology, Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
34
|
Zhou PM, Liang Y, Mei J, Liao HZ, Wang P, Hu K, Chen LQ, Zhang XQ, Ye D. The Arabidopsis AGC kinases NDR2/4/5 interact with MOB1A/1B and play important roles in pollen development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1035-1052. [PMID: 33215783 DOI: 10.1111/tpj.15085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Pollen formation and pollen tube growth are essential for the delivery of male gametes into the female embryo sac for double fertilization. Little is known about the mechanisms that regulate the late developmental process of pollen formation and pollen germination. In this study, we characterized a group of Arabidopsis AGC kinase proteins, NDR2/4/5, involved in pollen development and pollen germination. The NDR2/4/5 genes are mainly expressed in pollen grains at the late developmental stages and in pollen tubes. They function redundantly in pollen formation and pollen germination. At the tricellular stages, the ndr2 ndr4 ndr5 mutant pollen grains exhibit an abnormal accumulation of callose, precocious germination and burst in anthers, leading to a drastic reduction in fertilization and a reduced seed set. NDR2/4/5 proteins can interact with another group of proteins (MOB1A/1B) homologous to the MOB proteins from the Hippo signaling pathway in yeast and animals. The Arabidopsis mob1a mob1b mutant pollen grains also have a phenotype similar to that of ndr2 ndr4 ndr5 pollen grains. These results provide new evidence demonstrating that the Hippo signaling components are conserved in plants and play important roles in sexual plant reproduction.
Collapse
Affiliation(s)
- Peng-Min Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Juan Mei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Ze Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ke Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Ruan H, Li J, Wang T, Ren H. Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth. Front Cell Dev Biol 2021; 8:615447. [PMID: 33553150 PMCID: PMC7859277 DOI: 10.3389/fcell.2020.615447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pollen germination and pollen tube growth are important biological events in the sexual reproduction of higher plants, during which a large number of vesicle trafficking and membrane fusion events occur. When secretory vesicles are transported via the F-actin network in proximity to the apex of the pollen tube, the secretory vesicles are tethered and fused to the plasma membrane by tethering factors and SNARE proteins, respectively. The coupling and uncoupling between the vesicle membrane and plasma membrane are also regulated by dynamic cytoskeleton, proteins, and signaling molecules, including small G proteins, calcium, and PIP2. In this review, we focus on the current knowledge regarding secretory vesicle delivery, tethering, and fusion during pollen germination and tube growth and summarize the progress in research on how regulators and signaling molecules participate in the above processes.
Collapse
Affiliation(s)
- Huaqiang Ruan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Jiang Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| |
Collapse
|
37
|
Cao H, Amin R, Niu L, Song Z, Dong B, Li H, Wang L, Meng D, Yang Q, Fu Y. Multidimensional analysis of actin depolymerising factor family in pigeon pea under different environmental stress revealed specific response genes in each subgroup. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:180-194. [PMID: 32970987 DOI: 10.1071/fp20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Actin depolymerising factor (ADF) is an actin binding protein that is ubiquitous in animal and plant cells. It plays an important role in plant growth and development, as well as resistance to biotic and abiotic stress. The research of plant ADF family has been restricted to Arabidopsis thaliana (L.) Heynh. and some herb crops, but no woody cash crops have been reported to date. All members of the Cajanus cajan (L.) Millsp. ADF (CcADF) family were identified from the pigeon pea genome, and distributed among the four subfamilies by phylogenetic analysis. CcADFs were relatively conservative in gene structure evolution, protein structure and functional expression, and different CcADFs showed specific expression patterns under different treatments. The expression characteristics of several key CcADFs were revealed by analysing the stress response pattern of CcADFs and the time series RNA-seq of aluminium stress. Among them, CcADF9 in the first subgroup specifically responded to aluminium stress in the roots; CcADF3 in the second subgroup intensively responded to fungal infection in the leaves; and CcADF2 in the fourth subgroup positively responded to various stress treatments in different tissues. This study extended the relationship between plant ADF family and aluminium tolerance, as well as adding to the understanding of CcADF family in woody crops.
Collapse
Affiliation(s)
- Hongyan Cao
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Rohul Amin
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Lili Niu
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Zhihua Song
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Biying Dong
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Hanghang Li
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Litao Wang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China
| | - Dong Meng
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China
| | - Qing Yang
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Corresponding authors. ;
| | - Yujie Fu
- State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, PR China; and Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing 100083, PR China; and Key Laboratory of Forestry Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; and Corresponding authors. ;
| |
Collapse
|
38
|
Xu Y, Huang S. Control of the Actin Cytoskeleton Within Apical and Subapical Regions of Pollen Tubes. Front Cell Dev Biol 2020; 8:614821. [PMID: 33344460 PMCID: PMC7744591 DOI: 10.3389/fcell.2020.614821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
In flowering plants, sexual reproduction involves a double fertilization event, which is facilitated by the delivery of two non-motile sperm cells to the ovule by the pollen tube. Pollen tube growth occurs exclusively at the tip and is extremely rapid. It strictly depends on an intact actin cytoskeleton, and is therefore an excellent model for uncovering the molecular mechanisms underlying dynamic actin cytoskeleton remodeling. There has been a long-term debate about the organization and dynamics of actin filaments within the apical and subapical regions of pollen tube tips. By combining state-of-the-art live-cell imaging with the usage of mutants which lack different actin-binding proteins, our understanding of the origin, spatial organization, dynamics and regulation of actin filaments within the pollen tube tip has greatly improved. In this review article, we will summarize the progress made in this area.
Collapse
Affiliation(s)
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
39
|
Genome-Wide Identification and Characterization of Actin-Depolymerizing Factor ( ADF) Family Genes and Expression Analysis of Responses to Various Stresses in Zea Mays L. Int J Mol Sci 2020; 21:ijms21051751. [PMID: 32143437 PMCID: PMC7084653 DOI: 10.3390/ijms21051751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Actin-depolymerizing factor (ADF) is a small class of actin-binding proteins that regulates the dynamics of actin in cells. Moreover, it is well known that the plant ADF family plays key roles in growth, development and defense-related functions. Results: Thirteen maize (Zea mays L., ZmADFs) ADF genes were identified using Hidden Markov Model. Phylogenetic analysis indicated that the 36 identified ADF genes in Physcomitrella patens, Arabidopsis thaliana, Oryza sativa japonica, and Zea mays were clustered into five groups. Four pairs of segmental genes were found in the maize ADF gene family. The tissue-specific expression of ZmADFs and OsADFs was analyzed using microarray data obtained from the Maize and Rice eFP Browsers. Five ZmADFs (ZmADF1/2/7/12/13) from group V exhibited specifically high expression in tassel, pollen, and anther. The expression patterns of 13 ZmADFs in seedlings under five abiotic stresses were analyzed using qRT-PCR, and we found that the ADFs mainly responded to heat, salt, drought, and ABA. Conclusions: In our study, we identified ADF genes in maize and analyzed the gene structure and phylogenetic relationships. The results of expression analysis demonstrated that the expression level of ADF genes was diverse in various tissues and different stimuli, including abiotic and phytohormone stresses, indicating their different roles in plant growth, development, and response to external stimulus. This report extends our knowledge to understand the function of ADF genes in maize.
Collapse
|
40
|
Qu X, Wang Q, Wang H, Huang S. Visualization of Actin Organization and Quantification in Fixed Arabidopsis Pollen Grains and Tubes. Bio Protoc 2020; 10:e3509. [PMID: 33654717 DOI: 10.21769/bioprotoc.3509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 11/02/2022] Open
Abstract
Although it is widely accepted that actin plays an important role in regulating pollen germination and pollen tube growth, how actin exactly performs functions remains incompletely understood. As the function of actin is dictated by its spatial organization, it is the key to reveal how exactly actin distributes in space in pollen cells. Here we describe the protocol of revealing and quantifying the spatial organization of actin using fluorescent phalloidin-staining in fixed Arabidopsis pollen grains and pollen tubes. We also introduce the method of assessing the stability and/or turnover rate of actin filaments in pollen cells using the treatment of latrunculin B.
Collapse
Affiliation(s)
- Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiyan Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Kim YJ, Zhang D, Jung KH. Molecular Basis of Pollen Germination in Cereals. TRENDS IN PLANT SCIENCE 2019; 24:1126-1136. [PMID: 31610991 DOI: 10.1016/j.tplants.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Understanding the molecular basis of pollen germination in cereals holds great potential to improve yield. Pollen, a highly specialized haploid male gametophyte, transports sperm cells through a pollen tube to the female ovule for fertilization, directly determining grain yield in cereal crops. Although insights into the regulation of pollen germination and gamete interaction have advanced rapidly in the model Arabidopsis thaliana (arabidopsis), the molecular mechanisms in monocot cereals remain largely unknown. Recently, pollen-specific genome-wide and mutant analyses in rice and maize have extended our understanding of monocot regulatory components. We highlight conserved and diverse mechanisms underlying pollen hydration, germination, and tube growth in cereals that provide ideas for translating this research from arabidopsis. Recent developments in gene-editing systems may facilitate further functional genetic research.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Dabing Zhang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
42
|
Wang X, Mao T. Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:86-96. [PMID: 31542697 DOI: 10.1016/j.pbi.2019.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Plants perceive multiple physiological and environmental signals in order to fine-tune their growth and development. The highly dynamic plant cytoskeleton, including actin and microtubule networks, can rapidly alter their organization, stability and dynamics in response to internal and external stimuli, which is considered vital for plant growth and adaptation to the environment. The cytoskeleton-associated proteins have been shown to be key regulatory molecules in mediating cytoskeleton reorganization in response to multiple environmental signals, such as light, salt, drought and biotic stimuli. Recent findings, including our studies, have expanded knowledge about the functions and underlying mechanisms of the plant cytoskeleton in environmental adaptation.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Diao M, Li X, Huang S. Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes. SCIENCE CHINA-LIFE SCIENCES 2019; 63:239-250. [PMID: 31240522 DOI: 10.1007/s11427-019-9532-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
Abstract
Apical actin filaments are highly dynamic structures that are crucial for rapid pollen tube growth, but the mechanisms regulating their dynamics and spatial organization remain incompletely understood. We here identify that AtAIP1-1 is important for regulating the turnover and organization of apical actin filaments in pollen tubes. AtAIP1-1 is distributed uniformly in the pollen tube and loss of function of AtAIP1-1 affects the organization of the actin cytoskeleton in the pollen tube. Specifically, actin filaments became disorganized within the apical region of aip1-1 pollen tubes. Consistent with the role of apical actin filaments in spatially restricting vesicles in pollen tubes, the apical region occupied by vesicles becomes enlarged in aip1-1 pollen tubes compared to WT. Using ADF1 as a representative actin-depolymerizing factor, we demonstrate that AtAIP1-1 enhances ADF1-mediated actin depolymerization and filament severing in vitro, although AtAIP1-1 alone does not have an obvious effect on actin assembly and disassembly. The dynamics of apical actin filaments are reduced in aip1-1 pollen tubes compared to WT. Our study suggests that AtAIP1-1 works together with ADF to act as a module in regulating the dynamics of apical actin filaments to facilitate the construction of the unique "apical actin structure" in the pollen tube.
Collapse
Affiliation(s)
- Min Diao
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- iHuman Institute, Shanghai Tech University, Shanghai, 201210, China
| | - Xin Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
44
|
Wang Y, Clevenger JP, Illa-Berenguer E, Meulia T, van der Knaap E, Sun L. A Comparison of sun, ovate, fs8.1 and Auxin Application on Tomato Fruit Shape and Gene Expression. PLANT & CELL PHYSIOLOGY 2019; 60:1067-1081. [PMID: 30753610 DOI: 10.1093/pcp/pcz024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/07/2019] [Indexed: 05/04/2023]
Abstract
Elongated tomato fruit shape is the result of the action of the fruit shape genes possibly in coordination with the phytohormone auxin. To investigate the possible link between auxin and the fruit shape genes, a series of auxin (2,4-D) treatments were performed on the wild-type and the fruit shape near-isogenic lines (NILs) in Solanum pimpinellifolium accession LA1589 background. Morphological and histological analyses indicated that auxin application approximately 3 weeks before anthesis led to elongated pear-shaped ovaries and fruits, which was mainly attributed to the increase of ovary/fruit proximal end caused by the increase of both cell number and cell size. Fruit shape changes caused by SUN, OVATE and fs8.1 were primarily due to the alterations of cell number along different growth axes. Particularly, SUN caused elongation by extending cell number along the entire proximal-distal axis, whereas OVATE caused fruit elongation in the proximal area, which was most similar to the effect of auxin on ovary shape. Expression analysis of flower buds at different stages in fruit shape NILs indicated that SUN had a stronger impact on the transcriptome than OVATE and fs8.1. The sun NIL differentially expressed genes were enriched in several biological processes, such as lipid metabolism, ion transmembrane and actin cytoskeleton organization. Additionally, SUN also shifted the expression of the auxin-related genes, including those involved in auxin biosynthesis, homeostasis, signal transduction and polar transport, indicating that SUN may regulate ovary/fruit shape through modifying the expression of auxin-related genes very early during the formation of the ovary in the developing flower.
Collapse
Affiliation(s)
- Yanping Wang
- College of Horticulture, China Agricultural University, Beijing, P.R. China
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Josh P Clevenger
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, USA
- Center for Applied Genetic Technologies, Mars Wrigley Confectionery, Athens, GA, USA
| | | | - Tea Meulia
- Department of Plant Pathology, Molecular and Cellular Imaging Center, The Ohio State University/OARDC, Wooster, OH, USA
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, P.R. China
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
45
|
Qian D, Zhang Z, He J, Zhang P, Ou X, Li T, Niu L, Nan Q, Niu Y, He W, An L, Jiang K, Xiang Y. Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:435-446. [PMID: 30476276 PMCID: PMC6322581 DOI: 10.1093/jxb/ery385] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
Stomatal movement plays an essential role in plant responses to drought stress, and the actin cytoskeleton and abscisic acid (ABA) are two important components of this process. Little is known about the mechanism underlying actin cytoskeleton remodeling and the dynamic changes occurring during stomatal movement in response to drought stress/ABA signaling. Actin-depolymerizing factors (ADFs) are conserved actin severing/depolymerizing proteins in eukaryotes, and in angiosperms ADFs have evolved actin-bundling activity. Here, we reveal that the transcriptional expression of neofunctionalized Arabidopsis ADF5 was induced by drought stress and ABA treatment. Furthermore, we demonstrated that ADF5 loss-of-function mutations increased water loss from detached leaves, reduced plant survival rates after drought stress, and delayed stomatal closure by regulating actin cytoskeleton remodeling via its F-actin-bundling activity. Biochemical assays revealed that an ABF/AREB transcription factor, DPBF3, could bind to the ADF5 promoter and activate its transcription via the ABA-responsive element core motif ACGT/C. Taken together, our findings indicate that ADF5 participates in drought stress by regulating stomatal closure, and may also serve as a potential downstream target of the drought stress/ABA signaling pathway via members of the ABF/AREB transcription factors family.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lipan Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenliang He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Correspondence:
| |
Collapse
|
46
|
Zhang S, Wang C, Xie M, Liu J, Kong Z, Su H. Actin Bundles in The Pollen Tube. Int J Mol Sci 2018; 19:ijms19123710. [PMID: 30469514 PMCID: PMC6321563 DOI: 10.3390/ijms19123710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zhe Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
47
|
Zheng YY, Lin XJ, Liang HM, Wang FF, Chen LY. The Long Journey of Pollen Tube in the Pistil. Int J Mol Sci 2018; 19:E3529. [PMID: 30423936 PMCID: PMC6275014 DOI: 10.3390/ijms19113529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
In non-cleistogamous plants, the male gametophyte, the pollen grain is immotile and exploits various agents, such as pollinators, wind, and even water, to arrive to a receptive stigma. The complex process of pollination involves a tubular structure, i.e., the pollen tube, which delivers the two sperm cells to the female gametophyte to enable double fertilization. The pollen tube has to penetrate the stigma, grow in the style tissues, pass through the septum, grow along the funiculus, and navigate to the micropyle of the ovule. It is a long journey for the pollen tube and its two sperm cells before they meet the female gametophyte, and it requires very accurate regulation to perform successful fertilization. In this review, we update the knowledge of molecular dialogues of pollen-pistil interaction, especially the progress of pollen tube activation and guidance, and give perspectives for future research.
Collapse
Affiliation(s)
- Yang-Yang Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xian-Ju Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hui-Min Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fang-Fei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
48
|
Liu C, Zhang Y, Ren H. Actin Polymerization Mediated by AtFH5 Directs the Polarity Establishment and Vesicle Trafficking for Pollen Germination in Arabidopsis. MOLECULAR PLANT 2018; 11:1389-1399. [PMID: 30296598 DOI: 10.1016/j.molp.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 05/13/2023]
Abstract
The process of pollen germination is crucial for flowering plant reproduction, but the mechanisms through which pollen grains establish polarity and select germination sites are not well understood. In this study, we report that a formin family protein, AtFH5, is localized to the vesicles and rotates ahead of Lifeact-mEGFP-labeled actin filaments during pollen germination. The translocation of AtFH5 to the plasma membrane initiates the assembly of a collar-like actin structure at the prospective germination site prior to germination. Genetic and pharmacological evidence further revealed an interdependent relationship between the mobility of AtFH5-labeled vesicles and the polymerization of actin filaments: vesicle-localized AtFH5 promotes actin assembly, and the polymerization and elongation of actin filaments, in turn, is essential for the mobility of AtFH5-labeled vesicles in pollen grains. Taken together, our work revealed a molecular mechanism underlying the polarity establishment and vesicle mobility during pollen germination.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
49
|
Sengupta S, Rajasekaran K, Baisakh N. Natural and targeted isovariants of the rice actin depolymerizing factor 2 can alter its functional and regulatory binding properties. Biochem Biophys Res Commun 2018; 503:1516-1523. [PMID: 30031604 DOI: 10.1016/j.bbrc.2018.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Actin depolymerizing factors (ADFs) are ubiquitous actin-binding proteins that play essential roles in maintaining cellular actin dynamics by depolymerizing/severing F-actin. Plant ADF isoforms show functional divergence via differential biochemical and cellular properties. We have shown previously that ADF2 of rice (OsADF2) and smooth cordgrass (SaADF2) displayed contrasting biochemical properties and stress response in planta. As a proof-of-concept that amino acid variances contribute to such functional difference, single amino acid mutants of OsADF2 were generated based on its sequence differences with SaADF2. Biochemical studies showed that the single-site amino acid mutations altered actin binding, depolymerizing, and severing properties of OsADF2. Phosphosensitive mutations, such as serine-6>threonine, changed the regulatory phosphorylation efficiency of ADF2 variants. The N-terminal mutations had greater effect on the phosphorylation pattern of OsADF2, whereas C-terminal mutations affected actin binding and severing. The presence of introduced mutations in isovariants of monocot ADF suggests that these residues are significant control points regulating their functional divergence, including abiotic stress response.
Collapse
Affiliation(s)
- Sonali Sengupta
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | | | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
50
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|