1
|
Al‐Kelani M, Buthelezi N. Advancements in medical research: Exploring Fourier Transform Infrared (FTIR) spectroscopy for tissue, cell, and hair sample analysis. Skin Res Technol 2024; 30:e13733. [PMID: 38887131 PMCID: PMC11182784 DOI: 10.1111/srt.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Fourier Transform Infrared (FTIR) spectroscopy has emerged as a powerful analytical tool in medical research, offering non-invasive and precise examination of the molecular composition of biological samples. The primary objective of this review is to underscore the benefits of FTIR spectroscopy in medicinal research, emphasizing its ability to delineate molecular fingerprints and assist in the identification of biochemical structures and key peaks in biological samples. METHODS This review comprehensively explores the diverse applications of FTIR spectroscopy in medical investigations, with a specific focus on its utility in analyzing tissue, cells, and hair samples. Various sources, including Google Scholar, PubMed, WorledCat and Scopus, were utilized to conduct this comprehensive literature review. RESULTS Recent advancements showcase the versatility of FTIR spectroscopy in elucidating cellular and molecular processes, facilitating disease diagnostics, and enabling treatment monitoring. Notably, FTIR spectroscopy has found significant utility in clinical assessment, particularly in screening counterfeit medicines, owing to its user-friendly operation and minimal sample preparation requirements. Furthermore, customs officials can leverage this technique for preliminary analysis of suspicious samples. CONCLUSION This review aims to bridge a gap in the literature and serve as a valuable resource for future research endeavors in FTIR spectroscopy within the medical domain. Additionally, it presents fundamental concepts of FTIR spectroscopy and spectral data interpretation, highlighting its utility as a tool for molecular analysis using Mid-Infrared (MIR) radiation.
Collapse
Affiliation(s)
- Madeha Al‐Kelani
- Hair and Skin Research LaboratoryDivision of DermatologyGroote Schuur HospitalCape TownSouth Africa
- Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Ntandoyenkosi Buthelezi
- Hair and Skin Research LaboratoryDivision of DermatologyGroote Schuur HospitalCape TownSouth Africa
- Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
2
|
Synchrotron Infrared Microspectroscopy for Stem Cell Research. Int J Mol Sci 2022; 23:ijms23179878. [PMID: 36077277 PMCID: PMC9456088 DOI: 10.3390/ijms23179878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Stem cells have shown great potential functions for tissue regeneration and repair because of their unlimited self-renewal and differentiation. Stem cells reside in their niches, making them a hotspot for the development and diagnosis of diseases. Complex interactions between niches and stem cells create the balance between differentiation, self-renewal, maturation, and proliferation. However, the multi-facet applications of stem cells have been challenged since the complicated responses of stem cells to biological processes were explored along with the limitations of current systems or methods. Emerging evidence highlights that synchrotron infrared microspectroscopy, known as synchrotron radiation-based Fourier transform infrared microspectroscopy, has been investigated as a potentially attractive technology with its non-invasive and non-biological probes in stem cell research. With their unique vibration bands, the quantitative mapping of the content and distribution of biomolecules can be detected and characterized in cells or tissues. In this review, we focus on the potential applications of synchrotron infrared microspectroscopy for investigating the differentiation and fate determination of stem cells.
Collapse
|
3
|
Kołodziej M, Kaznowska E, Paszek S, Cebulski J, Barnaś E, Cholewa M, Vongsvivut J, Zawlik I. Characterisation of breast cancer molecular signature and treatment assessment with vibrational spectroscopy and chemometric approach. PLoS One 2022; 17:e0264347. [PMID: 35263369 PMCID: PMC8906614 DOI: 10.1371/journal.pone.0264347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Triple negative breast cancer (TNBC) is regarded as the most aggressive breast cancer subtype with poor overall survival and lack of targeted therapies, resulting in many patients with recurrent. The insight into the detailed biochemical composition of TNBC would help develop dedicated treatments. Thus, in this study Fourier Transform Infrared microspectroscopy combined with chemometrics and absorbance ratios investigation was employed to compare healthy controls with TNBC tissue before and after chemotherapy within the same patient. The primary spectral differences between control and cancer tissues were found in proteins, polysaccharides, and nucleic acids. Amide I/Amide II ratio decrease before and increase after chemotherapy, whereas DNA, RNA, and glycogen contents increase before and decrease after the treatment. The chemometric results revealed discriminatory features reflecting a clinical response scheme and proved the chemotherapy efficacy assessment with infrared spectroscopy is possible.
Collapse
Affiliation(s)
| | - Ewa Kaznowska
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Pathology, Medical College of Rzeszow University, Rzeszow, Poland
| | - Sylwia Paszek
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Genetics, Institution of Experimental and Clinical Medicine, University of Rzeszow, Poland
| | - Józef Cebulski
- Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland
| | - Edyta Barnaś
- Institute of Obstetrics and Emergency Medicine, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marian Cholewa
- Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland
| | | | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Genetics, Institution of Experimental and Clinical Medicine, University of Rzeszow, Poland
| |
Collapse
|
4
|
Vibrational Spectroscopy for In Vitro Monitoring Stem Cell Differentiation. Molecules 2020; 25:molecules25235554. [PMID: 33256146 PMCID: PMC7729886 DOI: 10.3390/molecules25235554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cell technology has attracted considerable attention over recent decades due to its enormous potential in regenerative medicine and disease therapeutics. Studying the underlying mechanisms of stem cell differentiation and tissue generation is critical, and robust methodologies and different technologies are required. Towards establishing improved understanding and optimised triggering and control of differentiation processes, analytical techniques such as flow cytometry, immunohistochemistry, reverse transcription polymerase chain reaction, RNA in situ hybridisation analysis, and fluorescence-activated cell sorting have contributed much. However, progress in the field remains limited because such techniques provide only limited information, as they are only able to address specific, selected aspects of the process, and/or cannot visualise the process at the subcellular level. Additionally, many current analytical techniques involve the disruption of the investigation process (tissue sectioning, immunostaining) and cannot monitor the cellular differentiation process in situ, in real-time. Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, appears to be a promising candidate to potentially overcome many of these limitations as it can provide detailed biochemical fingerprint information for analysis of cells, tissues, and body fluids. The technique has been widely used in disease diagnosis and increasingly in stem cell technology. In this work, the efforts regarding the use of vibrational spectroscopy to identify mechanisms of stem cell differentiation at a single cell and tissue level are summarised. Both infrared absorption and Raman spectroscopic investigations are explored, and the relative merits, and future perspectives of the techniques are discussed.
Collapse
|
5
|
Lorthongpanich C, Thumanu K, Tangkiettrakul K, Jiamvoraphong N, Laowtammathron C, Damkham N, U-Pratya Y, Issaragrisil S. YAP as a key regulator of adipo-osteogenic differentiation in human MSCs. Stem Cell Res Ther 2019; 10:402. [PMID: 31852542 PMCID: PMC6921580 DOI: 10.1186/s13287-019-1494-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into several cell types, including cartilage, fat, and bone. As a common progenitor, MSC differentiation has to be tightly regulated to maintain the balance of their differentiation commitment. It has been reported that the decision process of MSCs into fat and bone cells is competing and reciprocal. Several factors have been suggested as critical factors that affect adipo-osteogenic decision, including melatonin and smad4. Yes-associated protein (YAP) is an important effector protein in the Hippo signaling pathway that acts as a transcriptional regulator by activating the transcription of the genes involved in cell proliferation and anti-apoptosis. The non-canonical role of YAP in regulating bone homeostasis by promoting osteogenesis and suppressing adipogenesis was recently demonstrated in a mouse model. However, it is unclear whether YAP is also crucial for modulating human MSC differentiation to fat and bone. METHODS The expression level of YAP during MSC differentiation was modulated using pharmaceutical molecule and genetic experiments through gain- and loss-of-function approaches. RESULTS We demonstrated for the first time that YAP has a non-canonical role in regulating the balance of adipo-osteogenic differentiation of human MSCs. The result from synchrotron radiation-based Fourier transform infrared (FTIR) microspectroscopy showed unique metabolic fingerprints generated from YAP-targeted differentiated cells that were clearly distinguished from non-manipulated control. CONCLUSIONS These results, thus, identify YAP as an important effector protein that regulates human MSC differentiation to fat and bone and suggests the use of FTIR microspectroscopy as a promising technique in stem cell research.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Kantpitchar Tangkiettrakul
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Nittaya Jiamvoraphong
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Nattaya Damkham
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowalak U-Pratya
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
6
|
Classification of aggressive and classic mantle cell lymphomas using synchrotron Fourier Transform Infrared microspectroscopy. Sci Rep 2019; 9:12857. [PMID: 31492883 PMCID: PMC6731317 DOI: 10.1038/s41598-019-49326-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
Mantle cell lymphoma (MCL) is regarded as an incurable neoplasm, even to the novel drug strategies. It is known MCL has two morphological variants- classic and aggressive. Aggressive MCL is characterized by a higher mitotic index and proliferation rate, and poor overall survival in comparison to classic subtype. The insight into the detailed biochemical composition of MCL is crucial in the further development of diagnostic and treatment guidelines for MCL patients; therefore Synchrotron radiation Fourier Transform Infrared (S-FTIR) microspectroscopy combined with Principal Component Analysis (PCA) was used. The major spectral differences were observed in proteins and nucleic acids content, revealing a classification scheme of classic and aggressive MCLs. The results obtained suggest that FTIR microspectroscopy has reflected the histopathological discrimination of both MCL subtypes.
Collapse
|
7
|
Ozdil B, Güler G, Acikgoz E, Kocaturk DC, Aktug H. The effect of extracellular matrix on the differentiation of mouse embryonic stem cells. J Cell Biochem 2019; 121:269-283. [PMID: 31168838 DOI: 10.1002/jcb.29159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) are promising research materials to investigate cell fate determination since they have the capability to differentiate. Stem cell differentiation has been extensively studied with various microenvironment mimicking structures to modify cellular dynamics associated with the cell-extracellular matrix (ECM) interactions and cell-cell communications. In the current study, our aim was to determine the effect of microenvironmental proteins with different concentrations on the capacity and differentiation capability of mouse ESCs (mESCs), combining the biochemical assays, imaging techniques, Fourier transform infrared (FTIR) spectroscopy, and unsupervised multivariate analysis. Based on our data, coating the surface of mESCs with Matrigel, used as an acellular matrix substrate, resulted in morphological and biochemical changes. mESCs exhibited alterations in their phenotype after growing on the Matrigel-coated surfaces, including their differentiation capacity, cell cycle phase pattern, membrane fluidity, and metabolic activities. In conclusion, mESCs can be stimulated physiologically, chemically, or mechanically to convert them a new phenotype. Thus, identification of ESCs' behavior in the acellular microenvironment could be vital to elucidate the mechanism of diseases. It might also be promising to control the cell fate in the field of tissue engineering.
Collapse
Affiliation(s)
- Berrin Ozdil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Günnur Güler
- Department of Biomedical Engineering, Izmir University of Economics, Izmir, Turkey.,Center for Drug Research & Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Duygu Calik Kocaturk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
|
9
|
Güler G, Guven U, Oktem G. Characterization of CD133 +/CD44 + human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 2019; 144:2138-2149. [PMID: 30742170 DOI: 10.1039/c9an00093c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current cancer treatments destroy the tumor mass but cannot prevent the recurrence of cancer. The heterogeneous structure of the tumor mass includes cancer stem cells that are responsible for tumor relapse, treatment resistance, invasion and metastasis. The biology of these cells is still not fully understood; therefore, effective treatments cannot be developed sufficiently. Herein, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, combined with unsupervised multivariate analysis, was applied to prostate cancer stem cells (CSCs), non-stem cancer cells (non-CSCs) and normal prostate epithelial cells to elucidate the molecular mechanisms and features of CSCs, which are crucial to improving the target specific therapies. This work revealed the spectral differences in the cellular mechanisms and biochemical structures among three different cell types. Particularly, prostate CSCs exhibit differences in the lipid composition and dynamics when compared to other cell types. CSCs also harbor pronounced differences in their major cellular macromolecules, including differences in the protein amount and content (mainly α-helices), the abundance of nucleic acids (DNA/RNA), altered nucleic acid conformation and carbohydrate composition. Interestingly, macromolecules containing the C[double bond, length as m-dash]O groups and negatively charged molecules having the COO- groups are abundant in prostate CSCs in comparison to prostate non-CSCs and normal prostate cells. Overall, this study demonstrates the potential use of ATR-FTIR spectroscopy as a powerful tool to obtain new insights into the understanding of the CSC features, which may provide new strategies for cancer treatment by selectively targeting the CSCs.
Collapse
Affiliation(s)
- Günnur Güler
- Center for Drug Research & Development and Pharmacokinetic Applications (ARGEFAR), Ege University, 35100, Izmir, Turkey. and Department of Physics, Science Faculty, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Ummu Guven
- Department of Stem Cell, Ege University Health Science Institute, Izmir, 35100, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Ege University Health Science Institute, Izmir, 35100, Turkey. and Department of Embryology and Histology, School of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
10
|
Pahlow S, Weber K, Popp J, Wood BR, Kochan K, Rüther A, Perez-Guaita D, Heraud P, Stone N, Dudgeon A, Gardner B, Reddy R, Mayerich D, Bhargava R. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. APPLIED SPECTROSCOPY 2018; 72:52-84. [PMID: 30265133 PMCID: PMC6524782 DOI: 10.1177/0003702818791939] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Susanne Pahlow
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
| | - Karina Weber
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Anja Rüther
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nick Stone
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Alex Dudgeon
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Ben Gardner
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Rohith Reddy
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - David Mayerich
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Departments of Mechanical Engineering, Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
11
|
Doncel-Pérez E, Ellis G, Sandt C, Shuttleworth PS, Bastida A, Revuelta J, García-Junceda E, Fernández-Mayoralas A, Garrido L. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy. Anal Bioanal Chem 2018; 410:3649-3660. [PMID: 29671028 PMCID: PMC5956007 DOI: 10.1007/s00216-018-1049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/02/2018] [Accepted: 03/28/2018] [Indexed: 01/10/2023]
Abstract
Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I–II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds ![]()
Collapse
Affiliation(s)
- Ernesto Doncel-Pérez
- Grupo de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), 45071, Toledo, Spain
| | - Gary Ellis
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | - Peter S Shuttleworth
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Julia Revuelta
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Eduardo García-Junceda
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Alfonso Fernández-Mayoralas
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Leoncio Garrido
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
12
|
Güler G, Acikgoz E, Karabay Yavasoglu NÜ, Bakan B, Goormaghtigh E, Aktug H. Deciphering the biochemical similarities and differences among mouse embryonic stem cells, somatic and cancer cells using ATR-FTIR spectroscopy. Analyst 2018; 143:1624-1634. [DOI: 10.1039/c8an00017d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular macromolecules play important roles in cellular behaviors and biological processes.
Collapse
Affiliation(s)
- Günnur Güler
- Center for Drug Research & Development and Pharmacokinetic Applications (ARGEFAR)
- Ege University
- Izmir
- Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology
- Faculty of Medicine
- Ege University
- Izmir
- Turkey
| | | | - Buket Bakan
- Department of Biology
- Faculty of Science
- Ege University
- Izmir
- Turkey
| | - Erik Goormaghtigh
- Laboratory of Structure and Function of Biological Membranes
- Center of Structural Biology and Bioinformatics
- Université Libre de Bruxelles
- Brussels
- Belgium
| | - Huseyin Aktug
- Department of Histology and Embryology
- Faculty of Medicine
- Ege University
- Izmir
- Turkey
| |
Collapse
|
13
|
Reversal of Experimental Liver Damage after Transplantation of Stem-Derived Cells Detected by FTIR Spectroscopy. Stem Cells Int 2017; 2017:4585169. [PMID: 29445403 PMCID: PMC5763141 DOI: 10.1155/2017/4585169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 01/09/2023] Open
Abstract
The transplantation of autologous BM-MSCs holds great potential for treating end-stage liver diseases. The aim of this study was to compare the efficiency of transplanted rBM-MSCs and rBM-MSC-derived differentiated stem cells (rBM-MSC-DSCs) for suppression of dimethylnitrosamine-injured liver damage in rat model. Synchrotron radiation Fourier-transform infrared (SR-FTIR) microspectroscopy was applied to investigate changes in the macromolecular composition. Transplantation of rBM-MSC-DSCs into liver-injured rats restored their serum albumin level and significantly suppressed transaminase activity as well as the morphological manifestations of liver disease. The regenerative effects of rBM-MSC-DSCs were corroborated unequivocally by the phenotypic difference analysis between liver tissues revealed by infrared spectroscopy. Spectroscopic changes in the spectral region from 1190–970 cm−1 (bands with absorbance maxima at 1150 cm−1, 1081 cm−1, and 1026 cm−1) indicated decreased levels of carbohydrates, in rBM-MSC-DSC-transplanted livers, compared with untreated and rBM-MSC--transplanted animals. Principal component analysis (PCA) of spectra acquired from liver tissue could readily discriminate rBM-MSC-DSC-transplanted animals from the untreated and rBM-MSC-transplanted animals. We conclude that the transplantation of rBM-MSC-DSCs effectively treats liver disease in rats and SR-FTIR microspectroscopy provides important insights into the fundamental biochemical alterations induced by the stem-derived cell transplantation, including an objective “signature” of the regenerative effects of stem cell therapy upon liver injury.
Collapse
|
14
|
Zafari J, Jouni FJ, Ahmadvand A, Abdolmaleki P, Soodi M, Zendehdel R. Investigation of gene expressions in differentiated cell derived bone marrow stem cells during bone morphogenetic protein-4 treatments with Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:695-703. [PMID: 27780130 DOI: 10.1016/j.saa.2016.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/17/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
A model was set up to predict the differentiation patterns based on the data extracted from FTIR spectroscopy. For this reason, bone marrow stem cells (BMSCs) were differentiated to primordial germ cells (PGCs). Changes in cellular macromolecules in the time of 0, 24, 48, 72, and 96h of differentiation, as different steps of the differentiation procedure were investigated by using FTIR spectroscopy. Also, the expression of pluripotency (Oct-4, Nanog and c-Myc) and specific genes (Mvh, Stella and Fragilis) were investigated by real-time PCR. However, the expression of genes in five steps of differentiation was predicted by FTIR spectroscopy. FTIR spectra showed changes in the template of band intensities at different differentiation steps. There are increasing changes in the stepwise differentiation procedure for the ratio area of CH2, which is symmetric to CH2 asymmetric stretching. An ensemble of expert methods, including regression tree (RT), boosting algorithm (BA), and generalized regression neural network (GRNN), was the best method to predict the gene expression by FTIR spectroscopy. In conclusion, the model was able to distinguish the pattern of different steps from cell differentiation by using some useful features extracted from FTIR spectra.
Collapse
Affiliation(s)
- Jaber Zafari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fatemeh Javani Jouni
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Ali Ahmadvand
- Computer Science and Informatics Department, EMORY University School of Medicine, Atlanta, GA, USA.
| | - Parviz Abdolmaleki
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Malihe Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Occupational Hygiene, School of Public Health, Shahid Beheshti University, Tehran, Iran..
| |
Collapse
|
15
|
Sales KC, Rosa F, Cunha BR, Sampaio PN, Lopes MB, Calado CRC. Metabolic profiling of recombinant Escherichia coli cultivations based on high-throughput FT-MIR spectroscopic analysis. Biotechnol Prog 2016; 33:285-298. [PMID: 27696721 DOI: 10.1002/btpr.2378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/19/2016] [Indexed: 01/30/2023]
Abstract
Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX-lacZ plasmid model was analyzed by rapid, economic and high-throughput Fourier Transform Mid-Infrared (FT-MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C-sources consumption phases, direct FT-MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:285-298, 2017.
Collapse
Affiliation(s)
- Kevin C Sales
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Filipa Rosa
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Bernardo R Cunha
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal
| | - Pedro N Sampaio
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal.,Faculty of Engineering, Lusophone University of Humanities and Technology, Campo Grande 376, Lisbon, 1749-019, Portugal
| | - Marta B Lopes
- Faculty of Engineering, Catholic University of Portugal, Rio de Mouro, 2635-631, Portugal.,Institute of Telecommunications, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, Lisboa, 1049-001, Portugal.,ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, Lisboa, 1959-007, Portugal
| | - Cecília R C Calado
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, Lisboa, 1959-007, Portugal
| |
Collapse
|
16
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Rosa F, Sales KC, Cunha BR, Couto A, Lopes MB, Calado CRC. A comprehensive high-throughput FTIR spectroscopy-based method for evaluating the transfection event: estimating the transfection efficiency and extracting associated metabolic responses. Anal Bioanal Chem 2015; 407:8097-108. [PMID: 26329279 DOI: 10.1007/s00216-015-8983-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/29/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Abstract
Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R (2) ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R (2) = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.
Collapse
Affiliation(s)
- Filipa Rosa
- Faculdade de Engenharia, Universidade Católica Portuguesa, Estrada Otávio Pato, 2635-631, Rio de Mouro, Portugal
| | - Kevin C Sales
- Faculdade de Engenharia, Universidade Católica Portuguesa, Estrada Otávio Pato, 2635-631, Rio de Mouro, Portugal
| | - Bernardo R Cunha
- Faculdade de Engenharia, Universidade Católica Portuguesa, Estrada Otávio Pato, 2635-631, Rio de Mouro, Portugal
| | - Andreia Couto
- Faculdade de Engenharia, Universidade Católica Portuguesa, Estrada Otávio Pato, 2635-631, Rio de Mouro, Portugal
| | - Marta B Lopes
- Faculdade de Engenharia, Universidade Católica Portuguesa, Estrada Otávio Pato, 2635-631, Rio de Mouro, Portugal.,Instituto de Telecomunicações, Instituto Superior Técnico, 1049-001, Lisbon, Portugal
| | - Cecília R C Calado
- Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal.
| |
Collapse
|
18
|
Chonanant C, Bambery KR, Jearanaikoon N, Chio-Srichan S, Limpaiboon T, Tobin MJ, Heraud P, Jearanaikoon P. Discrimination of micromass-induced chondrocytes from human mesenchymal stem cells by focal plane array-Fourier transform infrared microspectroscopy. Talanta 2014; 130:39-48. [DOI: 10.1016/j.talanta.2014.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/20/2022]
|
19
|
Cao J, Ng ES, McNaughton D, Stanley EG, Elefanty AG, Tobin MJ, Heraud P. Fourier transform infrared microspectroscopy reveals unique phenotypes for human embryonic and induced pluripotent stem cell lines and their progeny. JOURNAL OF BIOPHOTONICS 2014; 7:767-781. [PMID: 23616434 DOI: 10.1002/jbio.201200217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Fourier transform infrared (FTIR) microspectroscopy was employed to elucidate the macromolecular phenotype of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) and their differentiated progeny. Undifferentiated hESCs and hiPSC lines were found to be not clearly distinguishable from each other. However, although both hESC and hiPSC variants appeared to undergo similar changes during differentiation in terms of cell surface antigens, the derived cell types from all cell lines could be discriminated using FTIR spectroscopy. We foresee a possible future role for FTIR microspectroscopy as a powerful and objective investigative and quality control tool in regenerative medicine.
Collapse
Affiliation(s)
- Julie Cao
- Monash Immunology and Stem Cell Laboratories, Monash University, Building 75, STRIP 1, West Ring Road, Clayton, Victoria 3800, Australia; Centre for Biospectroscopy and the School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Sulé-Suso J, Forsyth N, Untereiner V, Sockalingum G. Vibrational spectroscopy in stem cell characterisation: is there a niche? Trends Biotechnol 2014; 32:254-62. [DOI: 10.1016/j.tibtech.2014.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|
21
|
Wiecheć A, Opiela J, Lipiec E, Kwiatek W. Utility of FT-IR imaging spectroscopy in estimating differences between the quality of bovine blastocysts. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Cao J, Ng ES, McNaughton D, Stanley EG, Elefanty AG, Tobin MJ, Heraud P. The characterisation of pluripotent and multipotent stem cells using Fourier transform infrared microspectroscopy. Int J Mol Sci 2013; 14:17453-76. [PMID: 24065090 PMCID: PMC3794735 DOI: 10.3390/ijms140917453] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023] Open
Abstract
Fourier transform infrared (FTIR) microspectroscopy shows potential as a benign, objective and rapid tool to screen pluripotent and multipotent stem cells for clinical use. It offers a new experimental approach that provides a holistic measurement of macromolecular composition such that a signature representing the internal cellular phenotype is obtained. The use of this technique therefore contributes information that is complementary to that acquired by conventional genetic and immunohistochemical methods.
Collapse
Affiliation(s)
- Julie Cao
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia; E-Mails: (J.C.); (E.S.N.); (E.G.S.); (A.G.E.)
- Centre for Biospectroscopy and the School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; E-Mail:
| | - Elizabeth S. Ng
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia; E-Mails: (J.C.); (E.S.N.); (E.G.S.); (A.G.E.)
- Murdoch Childrens Research Institute, the Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Donald McNaughton
- Centre for Biospectroscopy and the School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; E-Mail:
| | - Edouard G. Stanley
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia; E-Mails: (J.C.); (E.S.N.); (E.G.S.); (A.G.E.)
- Murdoch Childrens Research Institute, the Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Andrew G. Elefanty
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia; E-Mails: (J.C.); (E.S.N.); (E.G.S.); (A.G.E.)
- Murdoch Childrens Research Institute, the Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Mark J. Tobin
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia; E-Mail:
| | - Philip Heraud
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia; E-Mails: (J.C.); (E.S.N.); (E.G.S.); (A.G.E.)
- Centre for Biospectroscopy and the School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-3-9905-0765; Fax: +61-3-9905-5613
| |
Collapse
|
23
|
Clemens G, Flower KR, Henderson AP, Whiting A, Przyborski SA, Jimenez-Hernandez M, Ball F, Bassan P, Cinque G, Gardner P. The action of all-trans-retinoic acid (ATRA) and synthetic retinoid analogues (EC19 and EC23) on human pluripotent stem cells differentiation investigated using single cell infrared microspectroscopy. MOLECULAR BIOSYSTEMS 2013; 9:677-92. [PMID: 23364809 DOI: 10.1039/c3mb25505k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We have previously generated synthetic analogues of retinoic acid (EC23 and EC19) which also induce the differentiation of EC cells. Even though EC23 and EC19 have similar chemical structures, they have differing biochemical effects in terms of EC cell differentiation. EC23 induces neuronal differentiation in a manner similar to ATRA, whereas EC19 directs the cells to form epithelial-like derivatives. Previous MALDI-TOF MS analysis examined the response of TERA2.cl.SP12 cells after exposure to ATRA, EC23 and EC19 and further demonstrated the similarly in the effect of ATRA and EC23 activity whilst responses to EC19 were very different. In this study, we show that Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with appropriate scatter correction and multivariate analysis can be used as an effective tool to further investigate the differentiation of human pluripotent stem cells and monitor the alternative affects different retinoid compounds have on the induction of differentiation. FT-IRMS detected differences between cell populations as early as 3 days of compound treatment. Populations of cells treated with different retinoid compounds could easily be distinguished from one another during the early stages of cell differentiation. These data demonstrate that FT-IRMS technology can be used as a sensitive screening technique to monitor the status of the stem cell phenotype and progression of differentiation along alternative pathways in response to different compounds.
Collapse
Affiliation(s)
- Graeme Clemens
- Manchester Institute of Biotechnology, Manchester University, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ye D, Tanthanuch W, Thumanu K, Sangmalee A, Parnpai R, Heraud P. Discrimination of functional hepatocytes derived from mesenchymal stem cells using FTIR microspectroscopy. Analyst 2013; 137:4774-84. [PMID: 22946081 DOI: 10.1039/c2an35329f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functional hepatocytes differentiated in vitro from mesenchymal stem cells (MSCs) need to be fully characterized before they could be applied as a therapy to treat liver disease. Here, we employed Fourier Transform Infrared (FTIR) microspectroscopy to investigate the characteristics of hepatocyte-like cells derived from rat bone marrow mesenchymal stem cells (rBM-MSCs) by detecting changes in macromolecular composition occurring during the hepatogenesis process. Partial Least Squares Discriminant Analysis (PLS-DA) enabled us to discriminate undifferentiated rBM-MSCs, and early, mid-stage and late stage rBM-MSCs derived hepatocytes by their characteristic FTIR "spectroscopic signatures". The predominant spectroscopic changes responsible for this discrimination were changes in FTIR absorbance bands at: 3012 cm(-1) (cis C[double bond, length as m-dash]C stretch from unsaturated lipids), 2952 cm(-1) (ν(as)CH(3) from lipids), 2854 cm(-1) (ν(s)CH(2) from lipids) and 1722 cm(-1) (C[double bond, length as m-dash]O stretching from lipids), which were associated with triglyceride and unsaturated fatty acid accumulation in the hepatocyte-like cells occurring during differentiation. Based on these findings, rBM-MSCs derived hepatocytes are characterized by high lipid content which facilitates a means of identifying hepatocytes from their stem cells progenitors by using FTIR microspectroscopy. Other complex changes in spectral bands assigned to proteins and nucleic acids were observed during hepatocyte differentiation indicating that mRNA translation was taking place producing proteins related to the formation of the new hepatocyte-like phenotype, which was corroborated by immunohistochemistry. The results show FTIR microspectroscopy combined with bioinformatic modeling constitutes a powerful new phenotypic-based methodology for monitoring and characterization of the process of stem cell differentiation leading to the formation of hepatocytes, providing complementary information to existing methodologies such as immunohistochemistry and gene analysis, but having advantages of being reagent-free and non-destructive of the sample.
Collapse
Affiliation(s)
- Danna Ye
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | | | | | | |
Collapse
|
25
|
Fogarty SW, Patel II, Trevisan J, Nakamura T, Hirschmugl CJ, Fullwood NJ, Martin FL. Sub-cellular spectrochemical imaging of isolated human corneal cells employing synchrotron radiation-based Fourier-transform infrared microspectroscopy. Analyst 2013; 138:240-8. [DOI: 10.1039/c2an36197c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Quercetin protects against cadmium-induced biochemical and structural changes in rat liver revealed by FT-IR spectroscopy. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2012.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Machana S, Weerapreeyakul N, Barusrux S, Thumanu K, Tanthanuch W. FTIR microspectroscopy discriminates anticancer action on human leukemic cells by extracts of Pinus kesiya; Cratoxylum formosum ssp. pruniflorum and melphalan. Talanta 2012; 93:371-82. [PMID: 22483925 DOI: 10.1016/j.talanta.2012.02.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 11/27/2022]
Abstract
Apoptosis is the principal molecular goal of chemotherapeutics for effective anticancer action. We studied the effect of 50% ethanolic-water extracts of Pinus kesiya, Cratoxylum formosum ssp. pruniflorum and melphalan on cytotoxicity and apoptosis induction for human leukemic U937 cells, and explored the mode of action using FTIR microspectroscopy. The number of viable U937 cells in vitro was decreased in a concentration-dependent manner by all tested compounds, although potency differed between the U937 and Vero cells. Melphalan and the extract of C. formosum exhibited relatively lower IC(50) values (15.0 ± 1.0 and 82.7 ± 3.2 μg/mL respectively) and higher selectivity (selective index>3) than the extract of P. kesiya (299.0 ± 5.2 μg/mL; selective index<3) on the U937 cells. All three compounds significantly induced apoptosis through the late stage - seen by the indicative DNA ladder - with the most effective being melphalan, then the P. kesiya and C. formosum extracts. FTIR microspectroscopy revealed that all three compounds raised the intensity of the β-pleated sheet - higher than that of the untreated U937 cells - corresponding to a shift in the α-helix band associated with an alteration in the secondary structure of the protein band, confirming induction of apoptosis via pro-apoptotic proteins. The differences in intensity of the FTIR bands associated with lipids, proteins and nucleic acids were responsible for discrimination of the anticancer mode of action of each of the three compounds. The FTIR data suggest that the two plant extracts possessed anticancer activity with a different mode of action than melphalan.
Collapse
Affiliation(s)
- Sasipawan Machana
- Graduate school, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | | | | | | |
Collapse
|
28
|
Aksoy C, Guliyev A, Kilic E, Uckan D, Severcan F. Bone marrow mesenchymal stem cells in patients with beta thalassemia major: molecular analysis with attenuated total reflection-Fourier transform infrared spectroscopy study as a novel method. Stem Cells Dev 2012; 21:2000-11. [PMID: 22214206 DOI: 10.1089/scd.2011.0444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are the main cellular components of the bone marrow, providing a supportive cellular microenvironment to maintain healthy hematopoiesis. β-thalassemia major (β-TM) is characterized by anemia that is caused by a genetic defect in hemoglobin synthesis and results in ineffective erythropoiesis (IE). The alterations in the microenvironment in thalassemic bone marrow during IE can cause changes in BM-MSCs. This study aimed to investigate global structural and compositional changes in BM-MSCs in β-TM that may provide a basis in understanding interactions of hematopoietic stem cells (HSCs)-MSCs in such a pathological bone marrow microenvironment. Following characterization of morphological, immunophenotypical, and differentiation properties, the changes in healthy and thalassemic BM-MSCs before and after bone marrow transplantation (BMT) were examined by attenuated total reflection-Fourier transform infrared (ATR-FTIR). The significant increase in lipid, protein, glycogen, and nucleic acid contents in thalassemic BM-MSCs with respect to healthy BM-MSCs was attributed to enhanced cell proliferation and BM activity during IE. The significant decreases in the content of mentioned macromolecules in post-transplant group BM-MSCs versus pre-transplant BM-MSCs was interpreted as restoring effect of BMT therapy on IE and defective BM microenvironment. These alterations were also supported by ELISA results of erythropoietin (EPO) and growth differentiation factor (GDF15) in bone marrow plasma samples as a reflection of IE and by MTT proliferation assay on BM-MSCs. Based on these changes, sampling groups were discriminated by cluster analysis. These results provide information for the studies that concentrate on interactions between HSCs-MSCs in bone marrow.
Collapse
Affiliation(s)
- Ceren Aksoy
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
29
|
Abstract
Recent researches have mainly displayed the significant role of stem cells in tissue renewal and homeostasis with their unique capacity to develop different cell types. These findings have clarified the importance of stem cells to improve the effectiveness of any cell therapy for regenerative medicine. Identification of purity and differentiation stages of stem cells are the greatest challenges of stem cell biology and regenerative medicine. The existing methods to carefully monitor and characterize the stem cells have some unwanted effects on the properties of stem cells, and these methods also do not provide real-time information about cellular conditions. These challenges enforce the usage of nondestructive, rapid, sensitive, high quality, label-free, cheep, and innovative chemical monitoring methods. In this context, vibrational spectroscopy provides promissing alternative to get new information into the field of stem cell biology for chemical analysis, quantification, and imaging of stem cells. Raman and infrared spectroscopy and imaging can be used as a new complimentary spectroscopic approaches to gain new insight into stem cell reseaches for future therapeutic and regenerative medicines. In this paper, recent developments in applications of vibrational spectroscopy techniques for stem cell characterization and identification are presented.
Collapse
|
30
|
Ami D, Natalello A, Doglia SM. Fourier transform infrared microspectroscopy of complex biological systems: from intact cells to whole organisms. Methods Mol Biol 2012; 895:85-100. [PMID: 22760314 DOI: 10.1007/978-1-61779-927-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) microspectroscopy is a powerful tool for the study of complex biological systems. Indeed, it is employed to characterize intact cells, tissues, and whole model organisms such as nematodes, since it allows to obtain a chemical fingerprint of the sample under investigation, giving information on the molecular composition and structures. The successful application of this technique for the in situ study of biological processes requires specific sample preparations, in order to obtain reliable and reproducible results. In the present work, we illustrate the optimized procedures to prepare biological samples for IR measurements and the method to collect and analyze their FTIR spectra. In particular, we describe here the investigations on bacterial cells, intact eukaryotic cells, and whole intact nematode specimens.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
31
|
Grimaldi P, Di Giambattista L, Giordani S, Udroiu I, Pozzi D, Gaudenzi S, Bedini A, Giliberti C, Palomba R, Castellano AC. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: a contribution to the optimization of gene and drug delivery. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 84:74-85. [PMID: 21975044 DOI: 10.1016/j.saa.2011.08.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/08/2011] [Accepted: 08/21/2011] [Indexed: 05/31/2023]
Abstract
Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.
Collapse
Affiliation(s)
- Paola Grimaldi
- Università di Roma Sapienza, Dipartimento di Fisica, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Thumanu K, Tanthanuch W, Ye D, Sangmalee A, Lorthongpanich C, Parnpai R, Heraud P. Spectroscopic signature of mouse embryonic stem cell-derived hepatocytes using synchrotron Fourier transform infrared microspectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:057005. [PMID: 21639583 DOI: 10.1117/1.3580253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Stem cell-based therapy for liver regeneration has been proposed to overcome the persistent shortage in the supply of suitable donor organs. A requirement for this to succeed is to find a rapid method to detect functional hepatocytes, differentiated from embryonic stem cells. We propose Fourier transform infrared (FTIR) microspectroscopy as a versatile method to identify the early and last stages of the differentiation process leading to the formation of hepatocytes. Using synchrotron-FTIR microspectroscopy, the means of identifying hepatocytes at the single-cell level is possible and explored. Principal component analysis and subsequent partial least-squares (PLS) discriminant analysis is applied to distinguish endoderm induction from hepatic progenitor cells and matured hepatocyte-like cells. The data are well modeled by PLS with endoderm induction, hepatic progenitor cells, and mature hepatocyte-like cells able to be discriminated with very high sensitivity and specificity. This method provides a practical tool to monitor endoderm induction and has the potential to be applied for quality control of cell differentiation leading to hepatocyte formation.
Collapse
Affiliation(s)
- Kanjana Thumanu
- Synchrotron Light Research Institute, Muang, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | | | | | |
Collapse
|
33
|
Ami D, Mereghetti P, Natalello A, Doglia SM, Zanoni M, Redi CA, Monti M. FTIR spectral signatures of mouse antral oocytes: molecular markers of oocyte maturation and developmental competence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1220-9. [PMID: 21435359 DOI: 10.1016/j.bbamcr.2011.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Mammalian antral oocytes with a Hoescht-positive DNA ring around the nucleolus (SN) are able to resume meiosis and to fully support the embryonic development, while oocytes with a non-surrounded nucleolus (NSN) cannot. Here, we applied FTIR microspectroscopy to characterize single SN and NSN mouse oocytes in order to try to elucidate some aspects of the mechanisms behind the different chromatin organization that impairs the full development of NSN oocyte-derived embryos. To this aim, oocytes were measured at three different stages of their maturation: just after isolation and classification as SN and NSN oocytes (time 0); after 10h of in vitro maturation, i.e. at the completion of the metaphase I (time 1); and after 20h of in vitro maturation, i.e. at the completion of the metaphase II (time 2). Significant spectral differences in the lipid (3050-2800cm(-1)) and protein (1700-1600cm(-1)) absorption regions were found between the two types of oocytes and among the different stages of maturation within the same oocyte type. Moreover, dramatic changes in nucleic acid content, concerning mainly the extent of transcription and polyadenylation, were detected in particular between 1000 and 800cm(-1). The use of the multivariate principal component-linear discriminant analysis (PCA-LDA) enabled us to identify the maturation stage in which the separation between the two types of oocytes took place, finding as the most discriminating wavenumbers those associated to transcriptional activity and polyadenylation, in agreement with the visual analysis of the spectral data.
Collapse
Affiliation(s)
- Diletta Ami
- Fondazione IRCCS Policlinico San Matteo, V.le C. Golgi 19, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Imsoonthornruksa S, Noisa P, Parnpai R, Ketudat-Cairns M. A simple method for production and purification of soluble and biologically active recombinant human leukemia inhibitory factor (hLIF) fusion protein in Escherichia coli. J Biotechnol 2011; 151:295-302. [DOI: 10.1016/j.jbiotec.2010.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/27/2010] [Accepted: 12/20/2010] [Indexed: 11/24/2022]
|
35
|
Chonanant C, Jearanaikoon N, Leelayuwat C, Limpaiboon T, Tobin MJ, Jearanaikoon P, Heraud P. Characterisation of chondrogenic differentiation of human mesenchymal stem cells using synchrotron FTIR microspectroscopy. Analyst 2011; 136:2542-51. [DOI: 10.1039/c1an15182g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Pijanka JK, Kumar D, Dale T, Yousef I, Parkes G, Untereiner V, Yang Y, Dumas P, Collins D, Manfait M, Sockalingum GD, Forsyth NR, Sulé-Suso J. Vibrational spectroscopy differentiates between multipotent and pluripotent stem cells. Analyst 2010; 135:3126-32. [PMID: 20953512 DOI: 10.1039/c0an00525h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last few years, there has been an increased interest in the study of stem cells in biomedicine for therapeutic use and as a source for healing diseased or injured organs/tissues. More recently, vibrational spectroscopy has been applied to study stem cell differentiation. In this study, we have used both synchrotron based FTIR and Raman microspectroscopies to assess possible differences between human pluripotent (embryonic) and multipotent (adult mesenchymal) stem cells, and how O(2) concentration in cell culture could affect the spectral signatures of these cells. Our work shows that infrared spectroscopy of embryonic (pluripotent) and adult mesenchymal (multipotent) stem cells have different spectral signatures based on the amount of lipids in their cytoplasm (confirmed with cytological staining). Furthermore, O(2) concentration in cell culture causes changes in both the FTIR and Raman spectra of embryonic stem cells. These results show that embryonic stem cells might be more sensitive to O(2) concentration when compared to mesenchymal stem cells. While vibrational spectroscopy could therefore be of potential use in identifying different populations of stem cells further work is required to better understand these differences.
Collapse
Affiliation(s)
- Jacek Klaudiusz Pijanka
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke on Trent, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miller LM, Dumas P. From structure to cellular mechanism with infrared microspectroscopy. Curr Opin Struct Biol 2010; 20:649-56. [PMID: 20739176 DOI: 10.1016/j.sbi.2010.07.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Current efforts in structural biology aim to integrate structural information within the context of cellular organization and function. X-rays and infrared radiation stand at opposite ends of the electromagnetic spectrum and act as complementary probes for achieving this goal. Intense and bright beams are produced by synchrotron radiation, and are efficiently used in the wavelength domain extending from hard X-rays to the far-infrared (or THz) regime. While X-ray crystallography provides exquisite details on atomic structure, Fourier transform infrared microspectroscopy (FTIRM) is emerging as a spectroscopic probe and imaging tool for correlating molecular structure to biochemical dynamics and function. In this manuscript, the role of synchrotron FTIRM in bridging the gap towards 'functional biology' is discussed based upon recent achievements, with a critical assessment of the contributions to biological and biomedical research.
Collapse
Affiliation(s)
- Lisa M Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, USA.
| | | |
Collapse
|
38
|
Bassan P, Kohler A, Martens H, Lee J, Jackson E, Lockyer N, Dumas P, Brown M, Clarke N, Gardner P. RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing. JOURNAL OF BIOPHOTONICS 2010; 3:609-620. [PMID: 20414907 DOI: 10.1002/jbio.201000036] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the field of biomedical infrared spectroscopy it is often desirable to obtain spectra at the cellular level. Samples consisting of isolated single biological cells are particularly unsuited to such analysis since cells are strong scatterers of infrared radiation. Thus measured spectra consist of an absorption component often highly distorted by scattering effects. It is now known that the predominant contribution to the scattering is Resonant Mie Scattering (RMieS) and recently we have shown that this can be corrected for, using an iterative algorithm based on Extended Multiplicative Signal Correction (EMSC) and a Mie approximation formula. Here we present an iterative algorithm that applies full Mie scattering theory. In order to avoid noise accumulation in the iterative algorithm a curve-fitting step is implemented on the new reference spectrum. The new algorithm increases the computational time when run on an equivalent processor. Therefore parallel processing by a Graphics Processing Unit (GPU) was employed to reduce computation time. The optimised RMieS-EMSC algorithm is applied to an IR spectroscopy data set of cultured single isolated prostate cancer (PC-3) cells, where it is shown that spectral distortions from RMieS are removed.
Collapse
Affiliation(s)
- Paul Bassan
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|