1
|
Kardal CJ, Dmytruk SR, Qureshi A, Wu CW. High-content cell imaging for chemical toxicity screening in the model organism Caenorhabditis elegans. J Pharmacol Toxicol Methods 2025; 134:107756. [PMID: 40389083 DOI: 10.1016/j.vascn.2025.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
The use of animal models for screening environmental chemicals for toxicity is an important step towards determining potential hazards to humans. Due to the large number of environmental chemicals with unknown biological activity, high-throughput screening has served as the primary method in toxicity testing for the past decades. However, with the emergence of diverse cellular targets that have been shown to be adversely affected by chemicals, a transition towards high-throughput screening that incorporates high-content analysis provides an array of cutting-edge experimental advantages. Here, we utilized the genetic model organism Caenorhabditis elegans to demonstrate how high-content screening can be utilized to identify new chemical modifiers of RNA splicing with the U.S. ToxCast chemical library. Through this semi-automated workflow, we highlight areas where modern high-content screening platforms provide advantages that improves on traditional methodology in high-throughput screening assays to maximize quantitative and qualitative data types collected.
Collapse
Affiliation(s)
- Camiryn J Kardal
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Spencer R Dmytruk
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Abdullah Qureshi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
2
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. Toxicol Sci 2025; 205:205-219. [PMID: 39985174 PMCID: PMC12038255 DOI: 10.1093/toxsci/kfaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are in 99% of humans and are associated with a range of adverse health outcomes. It is impossible to test the >14,500 structurally diverse "forever chemicals" for safety, therefore improved assays to quantify structure-activity relationships are needed. Here, we determined the toxicity of a structurally distinct set of PFAS in 12 genetically diverse strains of the genetic model system Caenorhabditis elegans. Dose-response curves for perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), perfluoroalkyl sulfonic acids (PFOS and PFBS), perfluoroalkyl sulfonamides (PFOSA and PFBSA), fluoroether carboxylic acids (GenX and PFMOAA), fluoroether sulfonic acid (PFEESA), and fluorotelomers (6:2 FTCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and 11 genetically diverse wild strains. Body length was quantified after 48 h of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). PFAS toxicity ranged by 3 orders of magnitude. Long-chain PFAS had greater toxicity than short-chain. Fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation resulted in variation in susceptibility among 12 strains to almost all chemicals. Different C. elegans strains varied in susceptibility to different PFAS, which suggests distinct molecular responses to specific structural attributes. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful approach that can be used to investigate mechanisms of toxicity which may identify potentially susceptible individuals or populations and predict toxicity of untested PFAS to inform regulatory policies and improve human and environmental health.
Collapse
Affiliation(s)
- Tess C Leuthner
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, United States
| |
Collapse
|
3
|
Shin N, Lascarez-Lagunas LI, Henderson AL, Martínez-García M, Karthikraj R, Barrera V, Sui SH, Kannan K, Colaiácovo MP. Altered gene expression linked to germline dysfunction following exposure of Caenorhabditis elegans to DEET. iScience 2024; 27:108699. [PMID: 38299026 PMCID: PMC10829882 DOI: 10.1016/j.isci.2023.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024] Open
Abstract
N,N-diethyl-meta-toluamide (DEET) is a commonly used synthetic insect repellent. Although the neurological effects of DEET have been widely investigated, its effects on the germline are less understood. Here, we show that exposure of the nematode Caenorhabditis elegans, which is highly predictive of mammalian reprotoxicity, resulting in internal DEET levels within the range detected in human biological samples, causes activation of p53/CEP-1-dependent germ cell apoptosis, altered meiotic recombination, chromosome abnormalities, and missegregation. RNA-sequencing analysis links DEET-induced alterations in the expression of genes related to redox processes and chromatin structure to reduced mitochondrial function, impaired DNA double-strand break repair progression, and defects during early embryogenesis. We propose that Caenorhabditis elegans exposure to DEET interferes with gene expression, leading to increased oxidative stress and altered chromatin structure, resulting in germline effects that pose a risk to reproductive health.
Collapse
Affiliation(s)
- Nara Shin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Ayana L. Henderson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Martínez-García
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, USA
| | - Victor Barrera
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12237, USA
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells. Toxicology 2021; 461:152924. [PMID: 34474090 DOI: 10.1016/j.tox.2021.152924] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023]
Abstract
Bisphenol A (BPA) is a chemical compound commonly used in the production of plastics for daily lives and industry. As BPA is well known for its adverse health effects, several alternative materials have been developed. This study comprehensively analyzed the toxicity of BPA and its three substitutes including bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF) on aging, healthspan, and mitochondria using an in vivo Caenorhabditis elegans (C. elegans) model animal and cultured mammalian fibroblast cells. C. elegans treated with 1 mM BPA exhibited abnormalities in the four tested parameters related to development and growth, including delayed development, decreased body growth, reduced reproduction, and abnormal tissue morphology. Exposure to the same concentration of each alternative including TMBPF, which has been proposed as a relatively safe BPA alternative, detrimentally affected at least three of these events. Moreover, all bisphenols (except BPS) remarkably shortened the organismal lifespan and increased age-related changes in neurons. Exposure to BPA and BPF resulted in mitochondrial abnormalities, such as reduced oxygen consumption and mitochondrial membrane potential. In contrast, the ATP levels were noticeably higher after treatment with all bisphenols. In mammalian fibroblast cells, exposure to increasing concentrations of all bisphenols (ranging from 50 μM to 500 μM) caused a severe decrease in cell viability in a dose-dependent manner. BPA increased ATP levels and decreased ROS but did not affect mitochondrial permeability transition pores (mPTP). Notably, TMBPF was the only bisphenol that caused a significant increase in mitochondrial ROS and mPTP opening. These results suggest that the potentially harmful physiological effects of BPA alternatives should be considered.
Collapse
|
5
|
Counteracting Environmental Chemicals with Coenzyme Q10: An Educational Primer for Use with "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline". Genetics 2021; 216:879-890. [PMID: 33268390 DOI: 10.1534/genetics.120.303577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023] Open
Abstract
Environmental toxicants are chemicals that negatively affect human health. Although there are numerous ways to limit exposure, the ubiquitous nature of certain environmental toxicants makes it impossible to avoid them entirely. Consequently, scientists are continuously working toward developing strategies for combating their harmful effects. Using the nematode Caenorhabditis elegans, a model with many genetic and physiological similarities to humans, researchers in the Colaiácovo laboratory have identified several molecular mechanisms by which the toxic agent bisphenol A (BPA) interferes with reproduction. Here, we address their recent discovery that a widely available compound, Coenzyme Q10 (CoQ10), can rescue BPA-induced damage. This work is significant in that it poses a low-cost method for improving reproductive success in humans. The goal of this primer is to assist educators and students with navigating the paper entitled "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline." It is ideally suited for integration into an upper-level undergraduate course such as Genetics, Cell and Molecular Biology, Developmental Biology, or Toxicology. The primer provides background information on the history of BPA, the utility of the C. elegans germ line as a model for studying reproductive toxicity, and research methods including assessment of programmed cell death, fluorescent microscopy applications, and assays to quantify gene expression. Questions for deeper exploration in-class or online are provided.Related article in GENETICS: Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F Jr, Kannan K, Colaiácovo MP. Antioxidant CoQ10 restores fertility by rescuing bisphenol A-induced oxidative DNA damage in the Caenorhabditis elegans Germline. Genetics 214:381-395.
Collapse
|
6
|
Rashtchian S, Youssef K, Rezai P, Tabatabaei N. High-speed label-free confocal microscopy of Caenorhabditis elegans with near infrared spectrally encoded confocal microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:3607-3618. [PMID: 34221682 PMCID: PMC8221957 DOI: 10.1364/boe.427685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 05/25/2023]
Abstract
Caenorhabditis elegans (C. elegans) is an optically transparent nematode that shares many gene orthologs and homologs with humans. C. elegans are widely used in large populations for genetic studies relevant to human biology and disease. Success of such studies frequently relies on the ability to image C. elegans structure at high-resolution and high-speed. In this manuscript, we report on the feasibility and suitability of a high-speed variant of reflectance confocal microscopy, known as spectrally encoded confocal microscopy (SECM), for label-free imaging of C. elegans. The developed system utilizes near-infrared illumination in conjunction with refractive and diffractive optics to instantaneously image a confocal image line at a speed of up to 147 kHz with lateral and axial resolutions of 2µm and 10µm, respectively. Our imaging results from wild-type C. elegans and four mutant strains (MT2124, MT1082, CB61, and CB648) demonstrate the ability of SECM in revealing the overall geometry, key internal organs, and mutation-induced structural variations, opening the door for downstream integration of SECM in microfluidic platforms for high throughput structural imaging of C. elegans.
Collapse
|
7
|
Gonzalez-Hunt CP, Luz AL, Ryde IT, Turner EA, Ilkayeva OR, Bhatt DP, Hirschey MD, Meyer JN. Multiple metabolic changes mediate the response of Caenorhabditis elegans to the complex I inhibitor rotenone. Toxicology 2021; 447:152630. [PMID: 33188857 PMCID: PMC7750303 DOI: 10.1016/j.tox.2020.152630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Rotenone, a mitochondrial complex I inhibitor, has been widely used to study the effects of mitochondrial dysfunction on dopaminergic neurons in the context of Parkinson's disease. Although the deleterious effects of rotenone are well documented, we found that young adult Caenorhabditis elegans showed resistance to 24 and 48 h rotenone exposures. To better understand the response to rotenone in C. elegans, we evaluated mitochondrial bioenergetic parameters after 24 and 48 h exposures to 1 μM or 5 μM rotenone. Results suggested upregulation of mitochondrial complexes II and V following rotenone exposure, without major changes in oxygen consumption or steady-state ATP levels after rotenone treatment at the tested concentrations. We found evidence that the glyoxylate pathway (an alternate pathway not present in higher metazoans) was induced by rotenone exposure; gene expression measurements showed increases in mRNA levels for two complex II subunits and for isocitrate lyase, the key glyoxylate pathway enzyme. Targeted metabolomics analyses showed alterations in the levels of organic acids, amino acids, and acylcarnitines, consistent with the metabolic restructuring of cellular bioenergetic pathways including activation of complex II, the glyoxylate pathway, glycolysis, and fatty acid oxidation. This expanded understanding of how C. elegans responds metabolically to complex I inhibition via multiple bioenergetic adaptations, including the glyoxylate pathway, will be useful in interrogating the effects of mitochondrial and bioenergetic stressors and toxicants.
Collapse
Affiliation(s)
- Claudia P Gonzalez-Hunt
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Anthony L Luz
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Ian T Ryde
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Elena A Turner
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC, 27710, United States; Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, 27710, United States
| | - Dhaval P Bhatt
- Duke Molecular Physiology Institute, Durham, NC, 27710, United States
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, Durham, NC, 27710, United States; Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, 27710, United States; Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, United States
| | - Joel N Meyer
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
8
|
Heaton A, Faulconer E, Milligan E, Kroetz MB, Weir SM, Glaberman S. Interspecific Variation in Nematode Responses to Metals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1006-1016. [PMID: 32072668 DOI: 10.1002/etc.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Performing toxicity testing on multiple species with differing degrees of evolutionary relatedness can provide important information on how chemical sensitivity varies among species and can help pinpoint the biological drivers of species sensitivity. Such knowledge could ultimately be used to design better multispecies predictive ecological risk assessment models and identify particularly sensitive species. However, laboratory toxicity tests involving multiple species can also be resource intensive, especially when each species has unique husbandry conditions. We performed lethality tests with 2 metals, copper chloride and zinc chloride, on 5 different nematode species, which are nested in their degree of evolutionary relatedness: Caenorhabditis briggsae, Caenorhabditis elegans, Oscheius myriophila, Oscheius tipulae, and Pristionchus pacificus. All species were successfully cultured and tested concurrently with limited resources, demonstrating that inexpensive, multispecies nematode toxicity testing systems are achievable. The results indicate that P. pacificus is the most sensitive to both metals. Conversely, C. elegans is the least sensitive species to copper, but the second most sensitive to zinc, indicating that species relationships do not necessarily predict species sensitivity. Toxicity testing with additional nematode species and types of chemicals is feasible and will help form more generalizable conclusions about relative species sensitivity. Environ Toxicol Chem 2020;39:1006-1016. © 2020 SETAC.
Collapse
Affiliation(s)
- Andrew Heaton
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | | | - Emma Milligan
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mary B Kroetz
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | - Scott Glaberman
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Environmental Science & Policy, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
9
|
Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F, Kannan K, Colaiácovo MP. Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline. Genetics 2020; 214:381-395. [PMID: 31852725 PMCID: PMC7017011 DOI: 10.1534/genetics.119.302939] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals are ubiquitously present in our environment, but the mechanisms by which they adversely affect human reproductive health and strategies to circumvent their effects remain largely unknown. Here, we show in Caenorhabditis elegans that supplementation with the antioxidant Coenzyme Q10 (CoQ10) rescues the reprotoxicity induced by the widely used plasticizer and endocrine disruptor bisphenol A (BPA), in part by neutralizing DNA damage resulting from oxidative stress. CoQ10 significantly reduces BPA-induced elevated levels of germ cell apoptosis, phosphorylated checkpoint kinase 1 (CHK-1), double-strand breaks (DSBs), and chromosome defects in diakinesis oocytes. BPA-induced oxidative stress, mitochondrial dysfunction, and increased gene expression of antioxidant enzymes in the germline are counteracted by CoQ10. Finally, CoQ10 treatment also reduced the levels of aneuploid embryos and BPA-induced defects observed in early embryonic divisions. We propose that CoQ10 may counteract BPA-induced reprotoxicity through the scavenging of reactive oxygen species and free radicals, and that this natural antioxidant could constitute a low-risk and low-cost strategy to attenuate the impact on fertility by BPA.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- School of Pharmaceutical Sciences of Ribeirao Preto, Universidade de Sao Paulo, 14040-903, Brazil
| | - Nara Shin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirao Preto, Universidade de Sao Paulo, 14040-903, Brazil
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, New York 12201
| | | |
Collapse
|
10
|
Cuenca L, Shin N, Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Karthikraj R, Kannan K, Colaiácovo MP. Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008529. [PMID: 31917788 PMCID: PMC6952080 DOI: 10.1371/journal.pgen.1008529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability. Faithful chromosome segregation during meiosis, the specialized cell division program that produces haploid gametes (i.e. eggs and sperm) from a diploid organism, is key for successful sexual reproduction. Diethylhexyl phthalate (DEHP), a commonly used plasticizer found in personal care and household products, has emerged as an endocrine disruptor that exerts reprotoxicity in mammals. In this study, we provide mechanistic insight into the modes of action by which environmentally-relevant levels of DEHP and its metabolites impair female meiosis in the C. elegans germline. Exposure to DEHP leads to defects in late prophase I chromosome remodeling, altered chromosome morphology in oocytes at diakinesis, errors in chromosome segregation, and impaired embryogenesis. Underlying these defects are higher levels of DSBs, altered DSB repair, defects in crossover (CO) designation/formation, germline-specific change in prmt-5 gene expression and altered chromosome structure. We propose that DEHP exposure induces an excess number of DSBs by interfering with mechanisms set in place to turn off DSBs once CO designation is accomplished and by altering chromosome structure resulting in increased chromatin accessibility to the DSB machinery.
Collapse
Affiliation(s)
- Luciann Cuenca
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
- Department of Pediatrics, New York University School of Medicine, New York City, New York, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Maria A, Malbert-Colas A, Boulogne I, Braman V, Boitard C, Dacher M, Chertemps T, Maibeche M, Blais C, Siaussat D. Effects of bisphenol A on post-embryonic development of the cotton pest Spodoptera littoralis. CHEMOSPHERE 2019; 235:616-625. [PMID: 31276874 DOI: 10.1016/j.chemosphere.2019.06.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Endocrine-disrupting chemicals encompass a variety of chemicals that may interfere with the endocrine system and produce negative effects on organisms. Among them, bisphenol A is considered a major pollutant in numerous countries. The harmful effects of BPA on environmental and human health are intensely studied. However, the effects of BPA on terrestrial insects are still poorly investigated, despite that several plants can accumulate BPA in their tissues, leading to potential contamination of herbivorous insects. Here, we used the leafworm Spodoptera littoralis, a polyphagous species, to study BPA effects on post-embryonic development. We studied the effects of BPA ingestion at environmental doses (e.g., 0.01, 0.1, and 1 μg/g of BPA) and high doses (e.g., 25 μg/g) on larval weight and stage duration, pupal length and sex ratio. BPA effects were investigated in more detail during the last larval instar, a crucial period for preparing pupation and metamorphosis, which are under endocrine control. We monitored the haemolymph concentration of ecdysteroids, hormones controlling moult and metamorphosis, as well as the expression levels of several nuclear receptors involved in the ecdysteroid signalling pathway. Our integrative study showed that, upon exposure doses, BPA can induce various effects on the viability, developmental time, growth and sex ratio. These effects were correlated with a delay of the ecdysteroid peak during the last larval instar and a modification of expression of EcR, USP, E75AB, E75D and Br-c. We provide new evidence about the events that occur after BPA exposure in insect contaminated by food ingestion.
Collapse
Affiliation(s)
- Annick Maria
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Aude Malbert-Colas
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Isabelle Boulogne
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France; Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche, Normandie Végétal, FED 4277, 76000, Rouen, France
| | - Virginie Braman
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Constance Boitard
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Matthieu Dacher
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Martine Maibeche
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - Catherine Blais
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France
| | - David Siaussat
- Sorbonne Université, INRA, CNRS, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005, Paris, France.
| |
Collapse
|
12
|
Leung MCK, Meyer JN. Mitochondria as a target of organophosphate and carbamate pesticides: Revisiting common mechanisms of action with new approach methodologies. Reprod Toxicol 2019; 89:83-92. [PMID: 31315019 PMCID: PMC6766410 DOI: 10.1016/j.reprotox.2019.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023]
Abstract
Mitochondrial toxicity has been proposed as a potential cause of developmental defects in humans. We evaluated 51 organophosphate and carbamate pesticides using the U.S. EPA ToxCast and Tox21 databases. Only a small number of them bind directly to cholinesterases in the parent form. The hydrophobicity of organophosphate pesticides is correlated significantly to TSPO binding affinity, mitochondrial membrane potential reduction in HepG2 cells, and developmental toxicity in Caenorhabditis elegans and Danio rerio (p < 0.05). Structural analysis suggests that in some cases the Krebs cycle is a potential target of organophosphate and carbamate exposure at early life stages. The results support the hypothesis that mitochondrial effects of some organophosphate pesticides-particularly those that require enzymatic activation to the oxon form-may augment the documented effects of disruption of acetylcholine signaling. This study provides a proof of concept for applying new approach methodologies to interrogate mechanisms of action for cumulative risk assessment.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Department of Environmental Toxicology, University of California, Davis, CA, United States; Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Chen H, Wang C, Li H, Ma R, Yu Z, Li L, Xiang M, Chen X, Hua X, Yu Y. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:519-525. [PMID: 30825784 DOI: 10.1016/j.jenvman.2019.02.102] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/09/2019] [Accepted: 02/21/2019] [Indexed: 05/19/2023]
Abstract
Persistent organic pollutants (POPs) and endocrine disrupting compounds (EDCs) are almost ubiquitous in synthetic and natural sources; however these contaminants adversely impact ecosystems and humans. Owing to their potential toxicity, concerns have been raised about the effects of POPs and EDCs on ecological and human health. Therefore, toxicity evaluation and mechanisms actions of these contaminants are of great interest. The nematode Caenorhabditis elegans (C. elegans), an excellent model animal for environmental toxicology research, has been used widely for toxicity studies of POPs or EDCs from the whole-animal level to the single-cell level. In this review, we have discussed the toxicity of specific POPs or EDCs after acute, chronic, and multigenerational exposure in C. elegans. We have also introduced a discussion of the toxicological mechanisms of these compounds in C. elegans, with respect to oxidative stress, cell apoptosis, and the insulin/IGF-1 signaling pathway. Finally, we raised considered the perspectives and challenges of the toxicity assessments, multigenerational toxicity, and toxicological mechanisms.
Collapse
Affiliation(s)
- Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| |
Collapse
|
14
|
Shin N, Cuenca L, Karthikraj R, Kannan K, Colaiácovo MP. Assessing effects of germline exposure to environmental toxicants by high-throughput screening in C. elegans. PLoS Genet 2019; 15:e1007975. [PMID: 30763314 PMCID: PMC6375566 DOI: 10.1371/journal.pgen.1007975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chemicals that are highly prevalent in our environment, such as phthalates and pesticides, have been linked to problems associated with reproductive health. However, rapid assessment of their impact on reproductive health and understanding how they cause such deleterious effects, remain challenging due to their fast-growing numbers and the limitations of various current toxicity assessment model systems. Here, we performed a high-throughput screen in C. elegans to identify chemicals inducing aneuploidy as a result of impaired germline function. We screened 46 chemicals that are widely present in our environment, but for which effects in the germline remain poorly understood. These included pesticides, phthalates, and chemicals used in hydraulic fracturing and crude oil processing. Of the 46 chemicals tested, 41% exhibited levels of aneuploidy higher than those detected for bisphenol A (BPA), an endocrine disruptor shown to affect meiosis, at concentrations correlating well with mammalian reproductive endpoints. We further examined three candidates eliciting aneuploidy: dibutyl phthalate (DBP), a likely endocrine disruptor and frequently used plasticizer, and the pesticides 2-(thiocyanomethylthio) benzothiazole (TCMTB) and permethrin. Exposure to these chemicals resulted in increased embryonic lethality, elevated DNA double-strand break (DSB) formation, activation of p53/CEP-1-dependent germ cell apoptosis, chromosomal abnormalities in oocytes at diakinesis, impaired chromosome segregation during early embryogenesis, and germline-specific alterations in gene expression. This study indicates that this high-throughput screening system is highly reliable for the identification of environmental chemicals inducing aneuploidy, and provides new insights into the impact of exposure to three widely used chemicals on meiosis and germline function. The ever-increasing number of new chemicals introduced into our environment poses a significant problem for risk assessment. In addition, assessing the direct impact of toxicants on human meiosis remains challenging. We successfully utilized a high-throughput platform in the nematode C. elegans, a genetically tractable model organism which shares a high degree of gene conservation with humans, to identify chemicals that affect the germline leading to aneuploidy. We assessed chemicals that are highly prevalent in the environment in worms carrying a fluorescent reporter construct allowing for the identification of X chromosome nondisjunction combined with a mutation increasing cuticle permeability for analysis of low doses of exposure. Follow up analysis of three chemicals: DBP, permethrin and TCMTB, further validated the use of this strategy. Exposure to these chemicals resulted in elevated levels of DNA double-strand breaks, activation of a DNA damage checkpoint, chromosome morphology defects in late meiotic prophase I as well as impaired early embryogenesis and germline-specific changes in gene expression. Our results support the use of this high-throughput screening system to identify environmental chemicals inducing aneuploidy, and provide new insights into the effects of exposure to DBP, permethrin, and TCMTB on meiosis and germline function.
Collapse
Affiliation(s)
- Nara Shin
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Luciann Cuenca
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Alfhili MA, Yoon DS, Faten TA, Francis JA, Cha DS, Zhang B, Pan X, Lee MH. Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans. Mol Cells 2018; 41:1052-1060. [PMID: 30453732 PMCID: PMC6315314 DOI: 10.14348/molcells.2018.0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment (LC50: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.
Collapse
Affiliation(s)
- Mohammad A. Alfhili
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433,
Saudi Arabia
| | - Dong Suk Yoon
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
| | - Taki A. Faten
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Jocelyn A. Francis
- Department of Chemistry, East Carolina University, Greenville, NC 27858,
USA
| | - Dong Seok Cha
- Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk 565-701,
Korea
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858,
USA
| | - Myon-Hee Lee
- Department of Medicine (Hematology/Oncology Division), Brody School of Medicine at East Carolina University, Greenville, NC 27834,
USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599,
USA
| |
Collapse
|
16
|
Yang Z, Xue KS, Sun X, Williams PL, Wang JS, Tang L. Toxicogenomic responses to zearalenone in Caenorhabditis elegans reveal possible molecular mechanisms of reproductive toxicity. Food Chem Toxicol 2018; 122:49-58. [DOI: 10.1016/j.fct.2018.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
|
17
|
Yoon DS, Choi Y, Cha DS, Zhang P, Choi SM, Alfhili MA, Polli JR, Pendergrass D, Taki FA, Kapalavavi B, Pan X, Zhang B, Blackwell TK, Lee JW, Lee MH. Triclosan Disrupts SKN-1/Nrf2-Mediated Oxidative Stress Response in C. elegans and Human Mesenchymal Stem Cells. Sci Rep 2017; 7:12592. [PMID: 28974696 PMCID: PMC5626723 DOI: 10.1038/s41598-017-12719-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Triclosan (TCS), an antimicrobial chemical with potential endocrine-disrupting properties, may pose a risk to early embryonic development and cellular homeostasis during adulthood. Here, we show that TCS induces toxicity in both the nematode C. elegans and human mesenchymal stem cells (hMSCs) by disrupting the SKN-1/Nrf2-mediated oxidative stress response. Specifically, TCS exposure affected C. elegans survival and hMSC proliferation in a dose-dependent manner. Cellular analysis showed that TCS inhibited the nuclear localization of SKN-1/Nrf2 and the expression of its target genes, which were associated with oxidative stress response. Notably, TCS-induced toxicity was significantly reduced by either antioxidant treatment or constitutive SKN-1/Nrf2 activation. As Nrf2 is strongly associated with aging and chemoresistance, these findings will provide a novel approach to the identification of therapeutic targets and disease treatment.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Dong Seok Cha
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk, 565-701, Republic of Korea
| | - Peng Zhang
- Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.,Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seong Mi Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Mohammad Abdulmohsen Alfhili
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Joseph Ryan Polli
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - DeQwon Pendergrass
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Faten A Taki
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Brahmam Kapalavavi
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - T Keith Blackwell
- Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.,Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Myon-Hee Lee
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Rudgalvyte M, Peltonen J, Lakso M, Wong G. Chronic MeHg exposure modifies the histone H3K4me3 epigenetic landscape in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:109-116. [PMID: 27717699 DOI: 10.1016/j.cbpc.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 01/05/2023]
Abstract
Methylmercury (MeHg) is a persistent environmental pollutant that occurs in the food chain, at occupational sites, and via medical procedures. Exposure in humans and animal models results in renal, neuro, and reproductive toxicities. In this study, we demonstrate that chronic exposure to MeHg (10μM) causes epigenetic landscape modifications of histone H3K4 trimethylation (H3K4me3) marks in Caenorhabditis elegans using chromatin immuno-precipitation sequencing (ChIP-seq). The modifications correspond to the locations of 1467 genes with enhanced and 508 genes with reduced signals. Among enhanced genes are those encoding glutathione-S-transferases, lipocalin-related protein and a cuticular collagen. ChIP-seq enhancement of these genes was confirmed with increased mRNA expression levels revealed by qRT-PCR. Furthermore, we observed enhancement of H3K4me3 marks in these genes in animals exposed to MeHg in utero and assayed at L4 stage. In utero exposure enhanced marks without alterations in mRNA expression except for the lpr-5 gene. Finally, knockdown of lipocalin-related protein gene lpr-5, which is involved in intercellular signaling, and cuticular collagen gene dpy-7, structural component of the cuticle, by RNA interference (RNAi) resulted in increased lethality of animals after MeHg exposure. Our results provide new data on the epigenetic landscape changes elicited by MeHg exposure, as well as describe a unique model for studying in utero effects of heavy metals. Together, these findings may help to understand the toxicological effects of MeHg at the molecular level.
Collapse
Affiliation(s)
- Martina Rudgalvyte
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland; Faculty of Health Sciences, University of Macau, Macau, S.A.R., China
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Merja Lakso
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Macau, S.A.R., China.
| |
Collapse
|
19
|
Luz AL, Meyer JN. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans. Mitochondrion 2016; 30:255-64. [PMID: 27566481 PMCID: PMC5023498 DOI: 10.1016/j.mito.2016.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023]
Abstract
The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.
Collapse
Affiliation(s)
- Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
20
|
Luz AL, Godebo TR, Bhatt DP, Ilkayeva OR, Maurer LL, Hirschey MD, Meyer JN. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans. Toxicol Sci 2016; 152:349-62. [PMID: 27208080 PMCID: PMC4960910 DOI: 10.1093/toxsci/kfw093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.
Collapse
Affiliation(s)
- Anthony L Luz
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Tewodros R Godebo
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | | | - Olga R Ilkayeva
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center
| | - Laura L Maurer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Joel N Meyer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
21
|
Chen Y, Shu L, Qiu Z, Lee DY, Settle SJ, Que Hee S, Telesca D, Yang X, Allard P. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function. PLoS Genet 2016; 12:e1006223. [PMID: 27472198 PMCID: PMC4966967 DOI: 10.1371/journal.pgen.1006223] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.
Collapse
Affiliation(s)
- Yichang Chen
- Molecular Toxicology Inter-departmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Zhiqun Qiu
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dong Yeon Lee
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sara J. Settle
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shane Que Hee
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Patrick Allard
- Molecular Toxicology Inter-departmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
22
|
Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans. Toxicol Lett 2015; 235:75-83. [DOI: 10.1016/j.toxlet.2015.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
|
23
|
Allard P, Kleinstreuer NC, Knudsen TB, Colaiácovo MP. A C. elegans screening platform for the rapid assessment of chemical disruption of germline function. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:717-24. [PMID: 23603051 PMCID: PMC3672921 DOI: 10.1289/ehp.1206301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/18/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Despite the developmental impact of chromosome segregation errors, we lack the tools to assess environmental effects on the integrity of the germline in animals. OBJECTIVES We developed an assay in Caenorhabditis elegans that fluorescently marks aneuploid embryos after chemical exposure. METHODS We qualified the predictive value of the assay against chemotherapeutic agents as well as environmental compounds from the ToxCast Phase I library by comparing results from the C. elegans assay with the comprehensive mammalian in vivo end point data from the ToxRef database. RESULTS The assay was highly predictive of mammalian reproductive toxicities, with a 69% maximum balanced accuracy. We confirmed the effect of select compounds on germline integrity by monitoring germline apoptosis and meiotic progression. CONCLUSIONS This C. elegans assay provides a comprehensive strategy for assessing environmental effects on germline function.
Collapse
Affiliation(s)
- Patrick Allard
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 , USA
| | | | | | | |
Collapse
|
24
|
Allard P, Colaiácovo MP. Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci U S A 2010; 107:20405-10. [PMID: 21059909 PMCID: PMC2996676 DOI: 10.1073/pnas.1010386107] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bisphenol A (BPA) is a highly prevalent constituent of plastics that has been associated with diabetes, cardiovascular disease, and an increased risk of miscarriages in humans. In mice, BPA exposure disrupts the process of meiosis; however, analysis of the affected molecular pathways is lagging and has been particularly challenging. Here we show that exposure of the nematode Caenorhabditis elegans to BPA, at internal concentrations consistent with mammalian models, causes increased sterility and embryonic lethality. BPA exposure results in impaired chromosome synapsis and disruption of meiotic double-strand break repair (DSBR) progression. BPA carries an anti-estrogenic activity in the germline and results in germline-specific down-regulation of DSBR genes, thereby impairing maintenance of genomic integrity during meiosis. C. elegans therefore constitutes a model of remarkable relevance to mammals with which to assess how our chemical landscape affects germ cells and meiosis.
Collapse
Affiliation(s)
- Patrick Allard
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
25
|
Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 2010; 245:153-9. [PMID: 20206647 PMCID: PMC2871981 DOI: 10.1016/j.taap.2010.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 02/06/2023]
Abstract
The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle
Collapse
Affiliation(s)
- Windy A. Boyd
- Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, NC, 27709
| | | | - Julie R. Rice
- Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, NC, 27709
| | - Daniel W. Snyder
- Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, NC, 27709
| | - Jonathan H. Freedman
- Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, NC, 27709
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| |
Collapse
|
26
|
Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 2008; 106:5-28. [PMID: 18566021 PMCID: PMC2563142 DOI: 10.1093/toxsci/kfn121] [Citation(s) in RCA: 706] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/10/2008] [Indexed: 12/21/2022] Open
Abstract
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research.
Collapse
Affiliation(s)
- Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| | - Phillip L. Williams
- Department of Environmental Health Science, College of Public University of Georgia, Athens, Georgia 30602
| | - Alexandre Benedetto
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Catherine Au
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Kirsten J. Helmcke
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37240
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27750
| |
Collapse
|
27
|
Höss S, Weltje L. Endocrine disruption in nematodes: effects and mechanisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2007; 16:15-28. [PMID: 17219088 DOI: 10.1007/s10646-006-0108-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper reviews the current knowledge on endocrine disruption in nematodes. These organisms have received little attention in the field of ecotoxicology, in spite of their important role in aquatic ecosystems. Research on endocrine regulation and disruption in nematodes, especially the more recent studies, concentrate mainly on one species, Caenorhabditis elegans. Although an endocrine system is not known in nematodes, there is evidence that many processes are regulated via hormonal pathways. As vertebrate hormones, such as steroids, may have endocrine functions in nematodes as well, endocrine disrupting chemicals (EDCs) defined for vertebrates may also be able to influence nematodes. The studies that are reviewed here, and own data showed that potential EDCs can affect nematodes on all organizational levels, from molecules to communities. It is concluded that nematodes, notably its prominent species C. elegans, are a promising organism group for the development of biomonitoring tools, provided that more mechanistic evidence is gathered on hormonal processes within these animals.
Collapse
|