1
|
Sobańska AW, Banerjee A, Roy K. Organic Sunscreens and Their Products of Degradation in Biotic and Abiotic Conditions-In Silico Studies of Drug-Likeness and Human Placental Transport. Int J Mol Sci 2024; 25:12373. [PMID: 39596438 PMCID: PMC11595199 DOI: 10.3390/ijms252212373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract and cross the human placenta were predicted in silico using the SwissADME software (for drug-likeness and oral absorption) and multiple linear regression and "ARKA" models (for placenta permeability expressed as fetus-to-mother blood concentration in the state of equilibrium), with the latter outperforming the MLR models. It was established that most of the studied compounds can be absorbed from the gastrointestinal tract. The drug-likeness of the studied compounds (expressed as a binary descriptor, Lipinski) is closely related to their ability to cross the placenta (most likely by a passive diffusion mechanism). The organic sunscreens and their degradation products are likely to cross the placenta, except for very bulky and highly lipophilic 1,3,5-triazine derivatives; an avobenzone degradation product, 1,2-bis(4-tert-butylphenyl)ethane-1,2-dione; diethylamino hydroxybenzoyl hexyl benzoate; and dimerization products of sunscreens from the 4-methoxycinnamate group.
Collapse
Affiliation(s)
- Anna W. Sobańska
- Department of Analytical Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Arkaprava Banerjee
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| |
Collapse
|
2
|
Fuenzalida B, Basler V, Koechli N, Yi N, Staud F, Albrecht C. Modelling the maternal-fetal interface: An in vitro approach to investigate nutrient and drug transport across the human placenta. J Cell Mol Med 2024; 28:e70151. [PMID: 39422159 PMCID: PMC11487339 DOI: 10.1111/jcmm.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The placenta plays a critical role in maternal-fetal nutrient transport and fetal protection against drugs. Creating physiological in vitro models to study these processes is crucial, but technically challenging. This study introduces an efficient cell model that mimics the human placental barrier using co-cultures of primary trophoblasts and primary human umbilical vein endothelial cells (HUVEC) on a Transwell®-based system. Monolayer formation was examined over 7 days by determining transepithelial electrical resistance (TEER), permeability of Lucifer yellow (LY) and inulin, localization of transport proteins at the trophoblast membrane (immunofluorescence), and syncytialization markers (RT-qPCR/ELISA). We analysed diffusion-based (caffeine/antipyrine) and transport-based (leucine/Rhodamine-123) processes to study the transfer of physiologically relevant compounds. The latter relies on the adequate localization and function of the amino-acid transporter LAT1 and the drug transporter P-glycoprotein (P-gp) which were studied by immunofluorescence microscopy and application of respective inhibitors (2-Amino-2-norbornanecarboxylic acid (BCH) for LAT1; cyclosporine-A for P-gp). The formation of functional monolayer(s) was confirmed by increasing TEER values, low LY transfer rates, minimal inulin leakage, and appropriate expression/release of syncytialization markers. These results were supported by microscopic monitoring of monolayer formation. LAT1 was identified on the apical and basal sides of the trophoblast monolayer, while P-gp was apically localized. Transport assays confirmed the inhibition of LAT1 by BCH, reducing both intracellular leucine levels and leucine transport to the basal compartment. Inhibiting P-gp with cyclosporine-A increased intracellular Rhodamine-123 concentrations. Our in vitro model mimics key aspects of the human placental barrier. It represents a powerful tool to study nutrient and drug transport mechanisms across the placenta, assisting in evaluating safer pregnancy therapies.
Collapse
Affiliation(s)
- Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Virginia Basler
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Nadja Koechli
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Nan Yi
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KraloveCharles UniversityHradec KraloveCzech Republic
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
3
|
Vukomanović P, Stefanović M, Stevanović JM, Petrić A, Trenkić M, Andrejević L, Lazarević M, Sokolović D, Veselinović AM. Monte Carlo Optimization Method Based QSAR Modeling of Placental Barrier Permeability. Pharm Res 2024; 41:493-500. [PMID: 38337105 DOI: 10.1007/s11095-024-03675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE In order to ensure that drug administration is safe during pregnancy, it is crucial to have the possibility to predict the placental permeability of drugs in humans. The experimental method which is most widely used for the said purpose is in vitro human placental perfusion, though the approach is highly expensive and time consuming. Quantitative structure-activity relationship (QSAR) modeling represents a powerful tool for the assessment of the drug placental transfer, and can be successfully employed to be an alternative in in vitro experiments. METHODS The conformation-independent QSAR models covered in the present study were developed through the use of the SMILES notation descriptors and local molecular graph invariants. What is more, the Monte Carlo optimization method, was used in the test sets and the training sets as the model developer with three independent molecular splits. RESULTS A range of different statistical parameters was used to validate the developed QSAR model, including the standard error of estimation, mean absolute error, root-mean-square error (RMSE), correlation coefficient, cross-validated correlation coefficient, Fisher ratio, MAE-based metrics and the correlation ideality index. Once the mentioned statistical methods were employed, an excellent predictive potential and robustness of the developed QSAR model was demonstrated. In addition, the molecular fragments, which are derived from the SMILES notation descriptors accounting for the decrease or increase in the investigated activity, were revealed. CONCLUSION The presented QSAR modeling can be an invaluable tool for the high-throughput screening of the placental permeability of drugs.
Collapse
Affiliation(s)
- Predrag Vukomanović
- Faculty of Medicine, University of Niš, Niš, Serbia
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Niš, Niš, Serbia
| | - Milan Stefanović
- Faculty of Medicine, University of Niš, Niš, Serbia
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Niš, Niš, Serbia
| | - Jelena Milošević Stevanović
- Faculty of Medicine, University of Niš, Niš, Serbia
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Niš, Niš, Serbia
| | - Aleksandra Petrić
- Faculty of Medicine, University of Niš, Niš, Serbia
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Niš, Niš, Serbia
| | - Milan Trenkić
- Faculty of Medicine, University of Niš, Niš, Serbia
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Niš, Niš, Serbia
| | - Lazar Andrejević
- COVID Hospital, University Clinical Centre of Niš, Kruševac, Serbia
| | - Milan Lazarević
- Faculty of Medicine, University of Niš, Niš, Serbia
- Clinic for Cardiovascular and Transplant Surgery, University Clinical Centre of Niš, Niš, Serbia
| | | | - Aleksandar M Veselinović
- Faculty of Medicine, Department of Chemistry, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia.
| |
Collapse
|
4
|
Spiess D, Abegg VF, Chauveau A, Rath J, Treyer A, Reinehr M, Kuoni S, Oufir M, Potterat O, Hamburger M, Simões-Wüst AP. Transplacental passage of hyperforin, hypericin, and valerenic acid. Front Pharmacol 2023; 14:1123194. [PMID: 37063288 PMCID: PMC10103840 DOI: 10.3389/fphar.2023.1123194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Safe medications for mild mental diseases in pregnancy are needed. Phytomedicines from St. John’s wort and valerian are valid candidates, but safety data in pregnancy are lacking. The transplacental transport of hyperforin and hypericin (from St. John’s wort), and valerenic acid (from valerian) was evaluated using the ex vivo cotyledon perfusion model (4 h perfusions, term placentae) and, in part, the in vitro Transwell assay with BeWo b30 cells. Antipyrine was used for comparison in both models. U(H)PLC-MS/MS bioanalytical methods were developed to quantify the compounds. Perfusion data obtained with term placentae showed that only minor amounts of hyperforin passed into the fetal circuit, while hypericin did not cross the placental barrier and valerenic acid equilibrated between the maternal and fetal compartments. None of the investigated compounds affected metabolic, functional, and histopathological parameters of the placenta during the perfusion experiments. Data from the Transwell model suggested that valerenic acid does not cross the placental cell layer. Taken together, our data suggest that throughout the pregnancy the potential fetal exposure to hypericin and hyperforin – but not to valerenic acid – is likely to be minimal.
Collapse
Affiliation(s)
- Deborah Spiess
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antoine Chauveau
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Joshua Rath
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Treyer
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sabrina Kuoni
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mouhssin Oufir
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- *Correspondence: Matthias Hamburger, ; Ana Paula Simões-Wüst,
| | - Ana Paula Simões-Wüst
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- *Correspondence: Matthias Hamburger, ; Ana Paula Simões-Wüst,
| |
Collapse
|
5
|
Dusza HM, van Boxel J, van Duursen MBM, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160403. [PMID: 36417947 DOI: 10.1016/j.scitotenv.2022.160403] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kirsi H Vähäkangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Spiess D, Abegg VF, Chauveau A, Treyer A, Reinehr M, Oufir M, Duong E, Potterat O, Hamburger M, Simões-Wüst AP. Placental Passage of Protopine in an Ex Vivo Human Perfusion System. PLANTA MEDICA 2023; 89:194-207. [PMID: 35445384 PMCID: PMC9868778 DOI: 10.1055/a-1829-9546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The placental passage of protopine was investigated with a human ex vivo placental perfusion model. The model was first validated with diazepam and citalopram, 2 compounds known to cross the placental barrier, and antipyrine as a positive control. All compounds were quantified by partially validated U(H)PLC-MS/MS bioanalytical methods. Protopine was transferred from the maternal to the fetal circuit, with a steady-state reached after 90 min. The study compound did not affect placental viability or functionality, as glucose consumption, lactate production, and beta-human chorionic gonadotropin, and leptin release remained constant. Histopathological evaluation of all placental specimens showed unremarkable, age-appropriate parenchymal maturation with no pathologic findings.
Collapse
Affiliation(s)
- Deborah Spiess
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antoine Chauveau
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Mouhssin Oufir
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elisa Duong
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ana Paula Simões-Wüst
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Huovinen M, Ietta F, Repo J, Paulesu L, Vähäkangas K. The effect of ethanol and nicotine on ER stress in human placental villous explants. Curr Res Toxicol 2022; 3:100081. [PMID: 35814289 PMCID: PMC9256831 DOI: 10.1016/j.crtox.2022.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Nicotine increased the GRP78/BiP protein in first trimester and term placental villous explants. Nicotine can cause endoplasmic reticulum stress in human placenta. Placental villous explants can be isolated from first trimester and term placenta to compare responses to toxic compounds.
Pregnant mothers continue smoking and drinking during pregnancy. To clarify the mechanisms of nicotine and ethanol toxicity during development, we have examined their effects on endoplasmic reticulum (ER) stress in human first trimester and term placental explants. First trimester and term human placental explants were treated with ethanol (2 ‰) or nicotine (15 µM), or their combination. The ER stress markers glucose regulated protein 78 (GRP78/BiP) and inositol requiring enzyme 1 α (IRE1α) were analyzed by immunoblotting. A statistically significant increase (p < 0.05) of GRP78/BiP by nicotine was noted in first trimester placental explants at 48 h, and in term placental explants at 24 h. Ethanol did not change protein expression of GRP78/BiP in either first trimester or term placental explants. IRE1α increased, although not statistically significantly, by all treatments in both first trimester and term placental explants. Thus, regardless of the known structural and functional differences in early and late placenta, both responded very similarly to the toxic compounds studied. These data support our earlier results in BeWo cells (Repo et al., 2014) implicating that nicotine induces ER stress in human placenta and may interfere with placental functions potentially disrupting fetal growth and development.
Collapse
|
8
|
Spiess D, Abegg VF, Chauveau A, Treyer A, Reinehr M, Oufir M, Duong E, Potterat O, Hamburger M, Simões-Wüst AP. Placental Passage of Humulone and Protopine in an Ex Vivo Human Perfusion System. PLANTA MEDICA 2021; 87:1192-1205. [PMID: 34530480 PMCID: PMC8585570 DOI: 10.1055/a-1578-3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
The placental passage of humulone and protopine was investigated with a human ex vivo placental perfusion model. The model was first validated with diazepam and citalopram, 2 compounds known to cross the placental barrier, and antipyrine as a positive control. All compounds were quantified by partially validated U(H)PLC-MS/MS bioanalytical methods. Only a small portion of humulone initially present in the maternal circuit reached the fetal circuit. The humulone concentration in the maternal circuit rapidly decreased, likely due to metabolization in the placenta. Protopine was transferred from the maternal to the fetal circuit, with a steady-state reached after 90 min. None of the study compounds affected placental viability or functionality, as glucose consumption, lactate production, beta-human chorionic gonadotropin, and leptin release remained constant. Histopathological evaluation of all placental specimens showed unremarkable, age-appropriate parenchymal maturation with no pathologic findings.
Collapse
Affiliation(s)
- Deborah Spiess
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antoine Chauveau
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Mouhssin Oufir
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elisa Duong
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ana Paula Simões-Wüst
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Eke AC, Olagunju A, Best BM, Mirochnick M, Momper JD, Abrams E, Penazzato M, Cressey TR, Colbers A. Innovative Approaches for Pharmacology Studies in Pregnant and Lactating Women: A Viewpoint and Lessons from HIV. Clin Pharmacokinet 2020; 59:1185-1194. [PMID: 32757103 PMCID: PMC7550310 DOI: 10.1007/s40262-020-00915-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medication use during pregnancy in the absence of pharmacokinetic and safety data is common, particularly for antiretrovirals, as pregnant women are not usually included in clinical trials leading to drug licensure. To date, data are typically generated through opportunistic pregnancy studies performed in the postmarketing setting, leading to a substantial time-lag between initial regulatory approval of a drug and availability of essential pregnancy-specific pharmacokinetic and safety data. During this period, health care providers lack key information on human placental transfer, fetal exposure, optimal maternal dosing in pregnancy, and maternal and fetal drug toxicity, including teratogenicity risk. We discuss new approaches that could facilitate the acquisition of these critical data earlier in the drug development process, aiding clinicians and patients in making informed decisions on drug selection and dosing during pregnancy. An integrated approach utilizing multiple novel methodologies (in vitro, ex vivo, in silico and in vivo) is needed to accelerate the availability of pharmacology data in pregnancy and lactation.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600N Wolfe Street, Phipps 215, Baltimore, MD, 21287, USA
| | - Adeniyi Olagunju
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Brookie M Best
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
- Pediatrics Department, University of California San Diego School of Medicine-Rady Children's Hospital San Diego, San Diego, CA, USA
| | | | - Jeremiah D Momper
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Elaine Abrams
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martina Penazzato
- HIV, Hepatitis and STI Department, World Health Organization, Geneva, Switzerland
| | - Tim R Cressey
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- PHPT/IRD 174, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Immunology and Infectious Diseases, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Wang CC, Lin P, Chou CY, Wang SS, Tung CW. Prediction of human fetal-maternal blood concentration ratio of chemicals. PeerJ 2020; 8:e9562. [PMID: 32742813 PMCID: PMC7380269 DOI: 10.7717/peerj.9562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background The measurement of human fetal-maternal blood concentration ratio (logFM) of chemicals is critical for the risk assessment of chemical-induced developmental toxicity. While a few in vitro and ex vivo experimental methods were developed for predicting logFM of chemicals, the obtained experimental results are not able to directly predict in vivo outcomes. Methods A total of 55 chemicals with logFM values representing in vivo fetal-maternal blood ratio were divided into training and test datasets. An interpretable linear regression model was developed along with feature selection methods. Cross-validation on training dataset and prediction on independent test dataset were conducted to validate the prediction model. Results This study presents the first valid quantitative structure-activity relationship model following the Organisation for Economic Co-operation and Development (OECD) guidelines based on multiple linear regression for predicting in vivo logFM values. The autocorrelation descriptor AATSC1c and information content descriptor ZMIC1 were identified as informative features for predicting logFM. After the adjustment of the applicability domain, the developed model performs well with correlation coefficients of 0.875, 0.850 and 0.847 for model fitting, leave-one-out cross-validation and independent test, respectively. The model is expected to be useful for assessing human transplacental exposure.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Che-Yu Chou
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Shan-Shan Wang
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Chun-Wei Tung
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.,Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Bremer S, Brittebo E, Dencker L, Knudsen LE, Mathisien L, Olovsson M, Pazos P, Pellizzer C, Paulesu LR, Schaefer W, Schwarz M, Staud F, Stavreus-Evers A, Vähänkangas K. In Vitro Tests for Detecting Chemicals Affecting the Embryo Implantation Process. Altern Lab Anim 2019; 35:421-39. [PMID: 17850188 DOI: 10.1177/026119290703500407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susanne Bremer
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Transplacental transport of paracetamol and its phase II metabolites using the ex vivo placenta perfusion model. Toxicol Appl Pharmacol 2019; 370:14-23. [PMID: 30849458 DOI: 10.1016/j.taap.2019.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
In Europe, 50-60% of pregnant women uses paracetamol (PCM), also known as acetaminophen. While it was considered to be safe, recent studies have shown an association between prenatal exposure to PCM and increased incidences of autism, cryptorchidism, asthma and ADHD. In this study the transplacental transfer of PCM and its metabolites was investigated using an ex vivo human placenta perfusion model (closed circuit; n = 38). Maternal-to-foetal (M-F) and foetal-to-maternal (F-M) transplacental transfer was determined at a concentration correlating with the maximum and steady state concentration in normal clinical use. Antipyrine (AP) was added as reference compound. Samples of the foetal and maternal perfusion medium were taken until 210 (PCM) or 360 min (paracetamol sulphate (PCM-S) and paracetamol glucuronide (PCM-G). PCM and AP concentrations reached an equilibrium between foetal and maternal compartments within the duration of the perfusion experiment and irrespective of the transfer direction. The percentage placental transfer of PCM was 45% (M-F and F-M). For PCM-S, transfer was 39% (M-F) and 28% (F-M), while the PCM-G transfer was 34% (M-F) and 25% (F-M). During placenta perfusions with the metabolites slight conversion (3.5-4.1%) to PCM was observed. In conclusion, PCM crosses the placental barrier rapidly via passive diffusion. Differences in flow rate and villous placental structure explain the significantly faster M-F transfer than F-M transfer of PCM. The larger and more hydrophilic molecules PCM-S and PCM-G cross the placenta at a significantly lower rate. Moreover, their F-M transport is about 40% slower than M-F transport, suggesting involvement of a transporter.
Collapse
|
13
|
Vähäkangas K, Loikkanen J, Sahlman H, Karttunen V, Repo J, Sieppi E, Kummu M, Huuskonen P, Myöhänen K, Storvik M, Pasanen M, Myllynen P, Pelkonen O. Biomarkers of Toxicity in Human Placenta. BIOMARKERS IN TOXICOLOGY 2019:303-339. [DOI: 10.1016/b978-0-12-814655-2.00018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Müller EK, Gräfe C, Wiekhorst F, Bergemann C, Weidner A, Dutz S, Clement JH. Magnetic Nanoparticles Interact and Pass an In Vitro Co-Culture Blood-Placenta Barrier Model. NANOMATERIALS 2018; 8:nano8020108. [PMID: 29443880 PMCID: PMC5853739 DOI: 10.3390/nano8020108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
Abstract
Magnetic nanoparticles are interesting tools for biomedicine. Before application, critical prerequisites have to be fulfilled. An important issue is the contact and interaction with biological barriers such as the blood-placenta barrier. In order to study these processes in detail, suitable in vitro models are needed. For that purpose a blood-placenta barrier model based on the trophoblast-like cell line BeWo and primary placenta-derived pericytes was established. This model was characterized by molecular permeability, transepithelial electrical resistance and cell-cell-contact markers. Superparamagnetic iron oxide nanoparticles (SPIONs) with cationic, anionic or neutral surface charge were applied. The localization of the nanoparticles within the cells was illustrated by histochemistry. The time-dependent passage of the nanoparticles through the BeWo/pericyte barrier was measured by magnetic particle spectroscopy and atomic absorption spectroscopy. Cationically coated SPIONs exhibited the most extensive interaction with the BeWo cells and remained primarily in the BeWo/pericyte cell layer. In contrast, SPIONs with neutral and anionic surface charge were able to pass the cell layer to a higher extent and could be detected beyond the barrier after 24 h. This study showed that the mode of SPION interaction with and passage through the in vitro blood-placenta barrier model depends on the surface charge and the duration of treatment.
Collapse
Affiliation(s)
- Elena K Müller
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Christine Gräfe
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2-12, D-10587 Berlin, Germany.
| | | | - Andreas Weidner
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 2, D-98693 Ilmenau, Germany.
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 2, D-98693 Ilmenau, Germany.
| | - Joachim H Clement
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
15
|
Balan A, Szaingurten-Solodkin I, Swissa SS, Feinshtein V, Huleihel M, Holcberg G, Dukler D, Beharier O. The effects of pravastatin on the normal human placenta: Lessons from ex-vivo models. PLoS One 2017; 12:e0172174. [PMID: 28199380 PMCID: PMC5310776 DOI: 10.1371/journal.pone.0172174] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 01/23/2023] Open
Abstract
Introduction Research in animal models and preliminary clinical studies in humans support the use of pravastatin for the prevention of preeclampsia. However, its use during pregnancy is still controversial due to limited data about its effect on the human placenta and fetus. Methods In the present study, human placental cotyledons were perfused in the absence or presence of pravastatin in the maternal reservoir (PraM). In addition, placental explants were treated with pravastatin for 5, 24 and 72 h under normoxia and hypoxia. We monitored the secretion of placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin (sEng), endothelial nitric oxide synthase (eNOS) expression and activation and the fetal vasoconstriction response to angiotensin-II. Results The concentrations of PlGF, sFlt-1 and sEng were not significantly altered by pravastatin in PraM cotyledons and in placental explants compared to control. Under hypoxic conditions, pravastatin decreased sFlt-1 concentrations. eNOS expression was significantly increased in PraM cotyledons but not in pravastatin-treated placental explants cultured under normoxia or hypoxia. eNOS phosphorylation was not significantly affected by pravastatin. The feto-placental vascular tone and the fetal vasoconstriction response to angiotensin-II, did not change following exposure of the maternal circulation to pravastatin. Conclusion We found that pravastatin does not alter the essential physiological functions of the placenta investigated in the study. The relevance of the study lays in the fact that it expands the current knowledge obtained thus far regarding the effect of the drug on the normal human placenta. This data is reassuring and important for clinicians that consider the treatment of high-risk patients with pravastatin, a treatment that exposes some normal pregnancies to the drug.
Collapse
Affiliation(s)
- Adelina Balan
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Irit Szaingurten-Solodkin
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shani S. Swissa
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gershon Holcberg
- Department of Obstetrics and Gynecology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Doron Dukler
- Department of Obstetrics and Gynecology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Beharier
- Department of Obstetrics and Gynecology, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
16
|
Dodd-Butera T, Quintana PJE, Ramirez-Zetina M, Batista-Castro AC, Sierra MM, Shaputnic C, Garcia-Castillo M, Ingmanson S, Hull S. Placental biomarkers of PAH exposure and glutathione-S-transferase biotransformation enzymes in an obstetric population from Tijuana, Baja California, Mexico. ENVIRONMENTAL RESEARCH 2017; 152:360-368. [PMID: 27567517 DOI: 10.1016/j.envres.2016.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 03/19/2016] [Accepted: 04/16/2016] [Indexed: 06/06/2023]
Abstract
Environmental exposures along the US-Mexico border have the potential to adversely affect the maternal-fetal environment. The purpose of this study was to assess placental biomarkers of environmental exposures in an obstetric population at the California-Baja California border in relation to detoxifying enzymes in the placenta and nutritional status. This study was conducted on consenting, full-term, obstetric patients (n=54), delivering in a hospital in Tijuana, Baja California (BC), Mexico. Placental polyaromatic hydrocarbon (PAH)-DNA adducts were measured in addition to placental glutathione-S-transferase (GST) activity and genotype, maternal serum folate, and maternal and umbilical cord blood lead and cadmium levels. A questionnaire was administered to the mothers to determine maternal occupation in a maquiladora, other exposures, and obstetric indicators. In univariate analysis, maternal serum folate levels were inversely correlated with total PAH-DNA adducts (rho=-0.375, p=0.007); adduct #1 (rho=-0.388, p=0.005); and adduct #3 (rho =-0.430, p=0.002). Maternal lead levels were significantly positively correlated with cord blood lead levels (rho=0.512, p<0.001). Cadmium levels were generally very low but significantly higher in mothers exposed to environmental tobacco smoke (ETS) (either at work or at home, n=10). In multivariate analysis, only maternal serum folate levels remained as a significant negative predictor of total DNA-PAH adducts levels in placenta. These findings affirm that placental tissue is a valuable and readily available source of human tissue for biomonitoring; and indicate that further study of the role of nutrition in detoxification and mitigation of environmental exposures in pregnant women is warranted.
Collapse
Affiliation(s)
- Teresa Dodd-Butera
- California State University San Bernardino, Department of Nursing, 5500 University Parkway, San Bernardino, CA 92407, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; Union Institute & University, Cincinnati, OH, USA.
| | | | | | - Ana C Batista-Castro
- Instituto Mexicano del Seguro Social Tijuana, BC, Mexico; Hospital General de Tijuana, Tijuana, Mexico.
| | - Maria M Sierra
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA.
| | - Carolyn Shaputnic
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Western FASD Practice and Implementation Center, Department of Pediatrics, Division of Dysmorphology-Teratology, San Diego, CA, USA.
| | - Maura Garcia-Castillo
- Xochicalco Universidad Escuela de Medicina, BC, Mexico; Institute for Public Health, San Diego State University, San Diego, CA, USA.
| | - Sonja Ingmanson
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA.
| | - Stacy Hull
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA.
| |
Collapse
|
17
|
Correia Carreira S, Walker L, Paul K, Saunders M. In vitro models of the human placental barrier--In regione caecorum rex est luscus. Nanotoxicology 2016; 9 Suppl 1:135-6. [PMID: 25923350 DOI: 10.3109/17435390.2013.869628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Maternal-Fetal Cancer Risk Assessment of Ochratoxin A during Pregnancy. Toxins (Basel) 2016; 8:87. [PMID: 27023600 PMCID: PMC4848614 DOI: 10.3390/toxins8040087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has demonstrated that in utero exposure to environmental chemicals may interfere with fetal development and increase the risk of disease and cancer development later in life. Ochratoxin A (OTA) has been proven to induce diverse toxic effects including teratogenicity, carcinogenicity, immunotoxicity and potential endocrine disruption. Due to the continuous and widespread occurrence of OTA as a potential contaminant of staple foods, there is increasing concern of in utero exposure of fetus to this mycotoxin. In this study, maternal-fetal risk assessment of OTA during pregnancy was conducted using the benchmark dose approach for genotoxic carcinogens. The daily intake of OTA for Egyptian pregnant women was estimated based on their serum OTA level using the refined Klaassen equation for pregnancy. Fetal exposure level was also estimated based on the maternal data. Comparison between the estimated daily exposure and the negligible cancer risk intake (NCRI), and the calculation of margin of exposure (MOE) implicated that OTA exposure from dietary intake would be of low health concern for this general subpopulation of Egyptian women. This subpopulation of pregnant women was generally estimated not to be in high-risk for toxicity induced by OTA.
Collapse
|
19
|
Takaku T, Nagahori H, Sogame Y, Takagi T. Quantitative structure-activity relationship model for the fetal-maternal blood concentration ratio of chemicals in humans. Biol Pharm Bull 2016; 38:930-4. [PMID: 26027836 DOI: 10.1248/bpb.b14-00883] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A quantitative structure-activity relationship (QSAR) model of the fetal-maternal blood concentration ratio (F/M ratio) of chemicals was developed to predict the placental transfer in humans. Data on F/M ratio of 55 compounds found in the literature were separated into training (75%, 41 compounds) and testing sets (25%, 14 compounds). The training sets were then subjected to multiple linear regression analysis using the descriptors of molecular weight (MW), topological polar surface area (TopoPSA), and maximum E-state of hydrogen atom (Hmax). Multiple linear regression analysis and a cross-validation showed a relatively high adjusted coefficient of determination (Ra(2)) (0.73) and cross-validated coefficient of determination (Q(2)) (0.71), after removing three outliers. In the external validation, R(2) for external validation (R(2)pred) was calculated to be 0.51. These results suggested that the QSAR model developed in this study can be considered reliable in terms of its robustness and predictive performance. Since it is difficult to examine the F/M ratio in humans experimentally, this QSAR model for prediction of the placental transfer of chemicals in humans could be useful in risk assessment of chemicals in humans.
Collapse
Affiliation(s)
- Tomoyuki Takaku
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| | | | | | | |
Collapse
|
20
|
Wu PH, Chen XM, Liu XQ, He JL, Feng Q, Lan X, Zhang X, Geng YQ, Wang YX, Ding YB. Activation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor gene expression following DNA demethylation in placental choriocarcinoma and transformed cell lines. Reprod Fertil Dev 2015; 28:RD14408. [PMID: 26014898 DOI: 10.1071/rd14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
We characterised DNA methylation and gene expression of four tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4, DR5, DcR1 and DcR2 in three choriocarcinoma (JAR, JEG-3, BeWo) and two transformed (HTR-8/SVneo and HPT-8) cell lines. DR4 mRNA was detected in JAR, JEG-3, BeWo and HTR-8/SVneo cells, whereas DR5 was present in all detected cells. DcR1 transcripts were expressed only in JAR, JEG-3 and BeWo cells, whereas DcR2 transcripts were detected only in HTR-8/SVneo and HPT-8 cells. Hypermethylated DR4 promoter was observed in JAR, JEG-3, BeWo and HTR-8/SVneo cells, hypermethylated DcR1 promoter in HTR-8/SVneo and HPT-8 cells and hypermethylated DcR2 promoter in JAR, JEG-3 and BeWo cells. Restoration of DR4, DcR1 and DcR2 expression with decreased DNA methylation of these genes was induced by the DNA demethylation agent 5-aza-2'-deoxycytidine (5-aza-CdR) in trophoblast cells, whereas DR5 expression did not exhibit any change. Significant negative correlation between the expression and DNA methylation of these genes was also observed. In all tested cell lines, only HPT-8 demonstrated sensitivity to TRAIL-induced apoptosis. Combined treatment with 5-aza-CdR and TRAIL resulted in apoptosis in JAR, JEG-3, BeWo and HTR-8/SVneo cells but not in HPT-8 cells. The results indicate that DNA methylation is associated with TRAIL receptor expression and might be involved in trophoblast apoptosis.
Collapse
|
21
|
Prediction of placental barrier permeability: a model based on partial least squares variable selection procedure. Molecules 2015; 20:8270-86. [PMID: 25961165 PMCID: PMC6272791 DOI: 10.3390/molecules20058270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/20/2015] [Accepted: 04/30/2015] [Indexed: 11/27/2022] Open
Abstract
Assessing the human placental barrier permeability of drugs is very important to guarantee drug safety during pregnancy. Quantitative structure–activity relationship (QSAR) method was used as an effective assessing tool for the placental transfer study of drugs, while in vitro human placental perfusion is the most widely used method. In this study, the partial least squares (PLS) variable selection and modeling procedure was used to pick out optimal descriptors from a pool of 620 descriptors of 65 compounds and to simultaneously develop a QSAR model between the descriptors and the placental barrier permeability expressed by the clearance indices (CI). The model was subjected to internal validation by cross-validation and y-randomization and to external validation by predicting CI values of 19 compounds. It was shown that the model developed is robust and has a good predictive potential (r2 = 0.9064, RMSE = 0.09, q2 = 0.7323, rp2 = 0.7656, RMSP = 0.14). The mechanistic interpretation of the final model was given by the high variable importance in projection values of descriptors. Using PLS procedure, we can rapidly and effectively select optimal descriptors and thus construct a model with good stability and predictability. This analysis can provide an effective tool for the high-throughput screening of the placental barrier permeability of drugs.
Collapse
|
22
|
Keelan J, Pugazhenthi K. Trans-placental passage and anti-inflammatory effects of solithromycin in the human placenta. Placenta 2014; 35:1043-8. [DOI: 10.1016/j.placenta.2014.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 11/26/2022]
|
23
|
Etwel F, Hutson JR, Madadi P, Gareri J, Koren G. Fetal and Perinatal Exposure to Drugs and Chemicals: Novel Biomarkers of Risk. Annu Rev Pharmacol Toxicol 2014; 54:295-315. [DOI: 10.1146/annurev-pharmtox-011613-135930] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fatma Etwel
- The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8;
| | - Janine R. Hutson
- The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8;
| | - Parvaz Madadi
- The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8;
| | - Joey Gareri
- The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8;
| | - Gideon Koren
- The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8;
| |
Collapse
|
24
|
Chiapella G, Flores-Martín J, Ridano M, Reyna L, Magnarelli de Potas G, Panzetta-Dutari G, Genti-Raimondi S. The organophosphate chlorpyrifos disturbs redox balance and triggers antioxidant defense mechanisms in JEG-3 cells. Placenta 2013; 34:792-8. [DOI: 10.1016/j.placenta.2013.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/05/2013] [Accepted: 06/08/2013] [Indexed: 01/07/2023]
|
25
|
Pelkonen O, Turpeinen M, Hakkola J, Abass K, Pasanen M, Raunio H, Vähäkangas K. Preservation, induction or incorporation of metabolism into the in vitro cellular system − Views to current opportunities and limitations. Toxicol In Vitro 2013; 27:1578-83. [DOI: 10.1016/j.tiv.2012.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/25/2012] [Accepted: 06/08/2012] [Indexed: 12/15/2022]
|
26
|
Placental transfer of maraviroc in an ex vivo human cotyledon perfusion model and influence of ABC transporter expression. Antimicrob Agents Chemother 2013; 57:1415-20. [PMID: 23295922 DOI: 10.1128/aac.01821-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nowadays, antiretroviral therapy is recommended during pregnancy to prevent mother-to-child transmission of HIV. However, for many antiretroviral drugs, including maraviroc, a CCR5 antagonist, very little data exist regarding placental transfer. Besides, various factors may modulate this transfer, including efflux transporters belonging to the ATP-binding cassette (ABC) transporter superfamily. We investigated maraviroc placental transfer and the influence of ABC transporter expression on this transfer using the human cotyledon perfusion model. Term placentas were perfused ex vivo for 90 min with maraviroc (600 ng/ml) either in the maternal-to-fetal (n = 10 placentas) or fetal-to-maternal (n = 6 placentas) direction. Plasma concentrations were determined by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fetal transfer rates (FTR) and clearance indexes (CLI) were calculated as ratios of fetal to maternal concentrations at steady state (mean values between 30 and 90 min) and ratios of FTR of maraviroc to that of antipyrine, respectively. ABC transporter gene expression levels were determined by quantitative reverse transcription (RT)-PCR and ABCB1 protein expression by Western blotting. For the maternal-to-fetal direction, the mean FTR and CLI were 8.0% ± 3.0 and 0.26 ± 0.07, respectively, whereas the mean CLI was 0.52 ± 0.23 for the fetal-to-maternal direction. We showed a significant inverse correlation between maraviroc CLI and ABCC2, ABCC10, and ABCC11 placental gene expression levels (P < 0.05). To conclude, we report a low maraviroc placental transfer probably involving ABC efflux transporters and thus in all likelihood associated with a limited fetal exposition. Nevertheless, these results would need to be supported by in vivo data obtained from paired maternal and cord blood samples.
Collapse
|
27
|
Goeden N, Bonnin A. Ex vivo perfusion of mid-to-late-gestation mouse placenta for maternal-fetal interaction studies during pregnancy. Nat Protoc 2013; 8:66-74. [PMID: 23237830 PMCID: PMC5360402 DOI: 10.1038/nprot.2012.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ex vivo perfusion systems offer a reliable, reproducible method for studying acute physiological responses of an organ to various environmental manipulations. Unlike in vitro culture systems, the cellular organization, compartmentalization and three-dimensional structure of ex vivo-perfused organs are maintained. These particular parameters are crucial for the normal physiological function of the placenta, which supports fetal growth through transplacental exchange, nutritional synthesis and metabolism, growth factor promotion and regulation of both maternally and fetally derived molecules. The perfusion system described here, which can be completed in 4-5 h, allows for integrated, physiological studies of de novo synthesis and metabolism and transport of materials across the live mouse placenta, not only throughout a normal gestation period but also following a variety of individual or combined genetic and environmental perturbations compromising placental function.
Collapse
Affiliation(s)
- Nick Goeden
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
28
|
Ryan JG, Davis RK, Bloch JR. The Placenta as a Research Biospecimen. J Obstet Gynecol Neonatal Nurs 2012; 41:834-45. [DOI: 10.1111/j.1552-6909.2012.01420.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
29
|
Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target 2012; 20:736-63. [PMID: 22994411 DOI: 10.3109/1061186x.2012.716847] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.
Collapse
Affiliation(s)
- Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic.
| | | | | |
Collapse
|
30
|
Myllynen P, Vähäkangas K. Placental transfer and metabolism: an overview of the experimental models utilizing human placental tissue. Toxicol In Vitro 2012; 27:507-12. [PMID: 22960472 DOI: 10.1016/j.tiv.2012.08.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022]
Abstract
Over the decades several ex vivo and in vitro models which utilize delivered human placenta have been developed to study various placental functions. The use of models originating from human placenta to study transplacental transfer and related mechanisms is an attractive option because human placenta is relatively easily available for experimental studies. After delivery placenta has served its purpose and is usually disposed of. The purpose of this review is to give an overview of the use of human placental models for the studies on human placental transfer and related mechanisms such as transporter functions and xenobiotic metabolism. Human placental perfusion, the most commonly used continuous cell lines, primary cells and tissue culture, as well as subcellular fractions are briefly introduced and their major advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Päivi Myllynen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | | |
Collapse
|
31
|
Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Current toxicological aspects on drug and chemical transport and metabolism across the human placental barrier. Expert Opin Drug Metab Toxicol 2012; 8:1263-75. [PMID: 22780574 DOI: 10.1517/17425255.2012.699041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Placenta plays an obligatory role in fetal growth and development by performing a multitude of functions, including embryo implantation, transport of nutrients and elimination of metabolic waste products and endocrine activity. Drugs and chemicals can transfer across the placental barrier from mother to fetus either by passive diffusion mechanisms and/or via a network of active transporters, which may lead to potential fetotoxicity effects. Placenta also expresses a wide variety of enzymes, being capable of metabolizing a large diversity of drugs and chemicals to metabolites of lower or even higher toxicity than parent compounds. AREAS COVERED The present review aims to summarize the current toxicological aspects in the emerging topic of drug transport and metabolism across the human placental barrier. EXPERT OPINION There is an emerging demand for accurate assessment of drug transport and metabolism across the human placental barrier, on the basis of a high throughput screening process in the early stages of drug design, to avoid drug candidates from potential fetotoxicity effects. In this aspect, combined studies, which take into account in vivo and in vitro investigations, as well as the ex vivo perfusion method and the recently developed computer-aided technologies, may significantly contribute to this direction.
Collapse
Affiliation(s)
- Constantinos Giaginis
- University of the Aegean, Department of Food Science and Nutrition, 2 Mitropoliti Ioakeim Street, Myrina, Lemnos 81400, Greece.
| | | | | |
Collapse
|
32
|
Mose T, Mathiesen L, Karttunen V, Nielsen J, Sieppi E, Kummu M, Mørck T, Myöhänen K, Partanen H, Vähäkangas K, Knudsen L, Myllynen P. Meta-analysis of data from human ex vivo placental perfusion studies on genotoxic and immunotoxic agents within the integrated European project NewGeneris. Placenta 2012; 33:433-9. [DOI: 10.1016/j.placenta.2012.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
|
33
|
Halkoaho A, Kirsi Vähäkangas, Häggman-Laitila A, Pietilä AM. Views of midwives about ethical aspects of participation in placental perfusion studies. Midwifery 2012; 28:131-7. [DOI: 10.1016/j.midw.2011.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/12/2011] [Accepted: 02/12/2011] [Indexed: 01/31/2023]
|
34
|
Woo CSJ, Partanen H, Myllynen P, Vähäkangas K, El-Nezami H. Fate of the teratogenic and carcinogenic ochratoxin A in human perfused placenta. Toxicol Lett 2011; 208:92-9. [PMID: 22037670 DOI: 10.1016/j.toxlet.2011.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
Abstract
Ochratoxin A (OTA) is one of the most frequent mycotoxins detected in human blood worldwide. Apart from its well known nephrotoxicity, OTA-induced teratogenicity and carcinogenicity proven in animals are potential effects also in humans. Pregnant women have been exposed to this food contaminant via dietary exposure in a continuous and widespread manner. Although the transplacental transfer of OTA has been demonstrated in laboratory animals and the presence of OTA in human fetal samples has been reported, little is known about the role of human placenta in OTA toxicokinetics. In this study, human perfused placenta was used to reveal the actual placental toxicokinetics of OTA using concentrations found in serum of pregnant women. Moreover, the effect of protein concentration and biological significance of placental transporters on the OTA transfer in human placenta were also determined. Our study is the first to pursue the transfer of OTA through perfused human placenta. The transfer of OTA through term human placenta was barely detectable in all perfusions. Inhibitors of neither ABCG2 nor ABCC2 increased the transport of OTA to fetal circulation in placental perfusion, and thus these transporters apparently do not have biological significance in inhibiting transplacental transfer of OTA. Human albumin has inhibited OTA transfer through a tight monolayer of BeWo b30 cells. Finding from this study clearly contradict the existing epidemiological studies reporting higher OTA levels in fetal than in maternal circulation in vivo.
Collapse
Affiliation(s)
- Chit Shing Jackson Woo
- School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
35
|
Kirsi M, Kirsi V. Foetal Exposure to Food and Environmental Carcinogens in Human Beings. Basic Clin Pharmacol Toxicol 2011; 110:101-12. [DOI: 10.1111/j.1742-7843.2011.00761.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther 2011; 90:67-76. [PMID: 21562489 DOI: 10.1038/clpt.2011.66] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dual perfusion of a single placental lobule is the only experimental model to study human placental transfer of substances in organized placental tissue. To date, there has not been any attempt at a systematic evaluation of this model. The aim of this study was to systematically evaluate the perfusion model in predicting placental drug transfer and to develop a pharmacokinetic model to account for nonplacental pharmacokinetic parameters in the perfusion results. In general, the fetal-to-maternal drug concentration ratios matched well between placental perfusion experiments and in vivo samples taken at the time of delivery of the infant. After modeling for differences in maternal and fetal/neonatal protein binding and blood pH, the perfusion results were able to accurately predict in vivo transfer at steady state (R² = 0.85, P < 0.0001). Placental perfusion experiments can be used to predict placental drug transfer when adjusting for extra parameters and can be useful for assessing drug therapy risks and benefits in pregnancy.
Collapse
|
37
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Halkoaho A, Pietilä AM, Vähäkangas K. Ethical aspects in placental perfusion studies: views of the researchers. Placenta 2011; 32:511-5. [PMID: 21524791 DOI: 10.1016/j.placenta.2011.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Within the EU-project NewGeneris human placental perfusion has been used for predicting fetal exposure to food carcinogens. Within the work package of ethical aspects of the research, we studied opinions of the researchers (n = 23) who carried out perfusions of human placenta. Data were collected by focus group interviews (n = 12) and an open-ended questionnaire (n =19 of which 8 were also attending the group session) from scientists representing 9 different nationalities. Both types of data were analysed together thematically and with data triangulation. Studied researchers considered communication between all stakeholders extremely important. Good communication was considered a prerequisite for the recruitment of mothers to donate the placenta, as well as for the process of getting the informed consent. Voluntariness, confidentiality and societal meaning were mentioned as important by all studied researchers. Educating the hospital personnel was regarded as essential in order to provide the best possible information to the mothers. The researchers also pointed out that cultural aspects should be respected, and that in Western thinking placenta is mostly considered as waste. Some researchers suggested that current guidelines and processes for obtaining informed consent should be reviewed also from a cultural perspective. With the development of biobanks, the use of human tissues, including placenta will most probably increase in the future, and the awareness of ethical considerations both in legislation and in practice need support. Thus, continuous effort for better research ethics is essential and requires research on research ethics.
Collapse
|
39
|
Prouillac C, Lecoeur S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos 2010; 38:1623-35. [PMID: 20606001 DOI: 10.1124/dmd.110.033571] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The placenta is a key organ in fetal growth and development because it controls maternal-to-fetal exchanges of nutrients and hormones. It also interferes with drug delivery to the fetus by expressing active membrane transporters and xenobiotic metabolism enzymes. Developing strategies to understand the role of the placenta in drug delivery is a challenge in toxicology. Despite common physiological functions, the placentas of different species are heterogeneous in their morphology and in their expression of membrane transporters and metabolizing proteins. These characteristics raise the difficulty of obtaining a good representative model of human placental transfer. To date, different in vitro, in vivo, and ex vivo tools have been used to elucidate transport and metabolism processes in the human placenta. This study recapitulates the typical features of human placenta and then presents the placental enzymes of xenobiotic metabolism, ATP-binding cassette transporters, solute carrier transporters, and their role in fetal exposure to xenobiotics. The study also compares the characteristics of different models of human placenta, in terms of membrane localization of transporters, and the expression of xenobiotic metabolism enzymes. The use of these models for toxicological studies, in particular xenobiotic transfer, is described, and the advantages and limits of each model are summarized.
Collapse
Affiliation(s)
- Caroline Prouillac
- Métabolisme et Toxicologie Comparée des Xénobiotiques, VetAgroSup, Campus Vétérinaire de Lyon, 1 avenue Bourgelat, Marcy l'Etoile, France
| | | |
Collapse
|
40
|
Hahnova-Cygalova L, Ceckova M, Staud F. Fetoprotective activity of breast cancer resistance protein (BCRP, ABCG2): expression and function throughout pregnancy. Drug Metab Rev 2010; 43:53-68. [DOI: 10.3109/03602532.2010.512293] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Frederiksen M, Vorkamp K, Mathiesen L, Mose T, Knudsen LE. Placental transfer of the polybrominated diphenyl ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system: an experimental study. Environ Health 2010; 9:32. [PMID: 20598165 PMCID: PMC2908602 DOI: 10.1186/1476-069x-9-32] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/05/2010] [Indexed: 05/16/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in consumer products. PBDEs may affect thyroid hormone homeostasis, which can result in irreversible damage of cognitive performance, motor skills and altered behaviour. Thus, in utero exposure is of very high concern due to critical windows in fetal development. METHODS A human ex vivo placenta perfusion system was used to study the kinetics and extent of the placental transfer of BDE-47, BDE-99 and BDE-209 during four-hour perfusions. The PBDEs were added to the maternal circulation and monitored in the maternal and fetal compartments. In addition, the perfused cotyledon, the surrounding placental tissue as well as pre-perfusion placental tissue and umbilical cord plasma were also analysed. The PBDE analysis included Soxhlet extraction, clean-up by adsorption chromatography and GC-MS analysis. RESULTS AND DISCUSSION Placental transfer of BDE-47 was faster and more extensive than for BDE-99. The fetal-maternal ratios (FM-ratio) after four hours of perfusion were 0.47 and 0.25 for BDE-47 and BDE-99, respectively, while the indicative permeability coefficient (IPC) measured after 60 minutes of perfusion was 0.26 h-1 and 0.10 h-1, respectively. The transport of BDE-209 seemed to be limited. These differences between the congeners may be related to the degree of bromination. Significant accumulation was observed for all congeners in the perfused cotyledon as well as in the surrounding placental tissue. CONCLUSION The transport of BDE-47 and BDE-99 indicates in utero exposure to these congeners. Although the transport of BDE-209 was limited, however, possible metabolic debromination may lead to products which are both more toxic and transportable. Our study demonstrates fetal exposure to PBDEs, which should be included in risk assessment of PBDE exposure of women of child-bearing age.
Collapse
Affiliation(s)
- Marie Frederiksen
- Department of Environment & Health, Institute of Public Health, University of Copenhagen. Oester Farimagsgade 5, DK-1014 Copenhagen K, Denmark
- Department of Environmental Chemistry & Microbiology, National Environmental Research Institute (NERI), Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Danish Building Research Institute, Aalborg University, Dr. Neergaards Vej 15, DK-2970 Hørsholm, Denmark
| | - Katrin Vorkamp
- Department of Environmental Chemistry & Microbiology, National Environmental Research Institute (NERI), Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Line Mathiesen
- Department of Environment & Health, Institute of Public Health, University of Copenhagen. Oester Farimagsgade 5, DK-1014 Copenhagen K, Denmark
| | - Tina Mose
- Department of Environment & Health, Institute of Public Health, University of Copenhagen. Oester Farimagsgade 5, DK-1014 Copenhagen K, Denmark
| | - Lisbeth E Knudsen
- Department of Environment & Health, Institute of Public Health, University of Copenhagen. Oester Farimagsgade 5, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
42
|
Feinshtein V, Holcberg G, Amash A, Erez N, Rubin M, Sheiner E, Polachek H, Ben-Zvi Z. Nitrofurantoin transport by placental choriocarcinoma JAr cells: involvement of BCRP, OATP2B1 and other MDR transporters. Arch Gynecol Obstet 2009; 281:1037-44. [PMID: 19924425 DOI: 10.1007/s00404-009-1286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 11/02/2009] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To determine the role of BCRP in nitrofurantoin (NF) transport in JAr cells and the possible contribution of OATP2B1, P-gp and MRPs to this transport. METHODS Cells were incubated with various BCRP, P-gp, MRPs, organic anion transporting polypeptide (OAT) and OATP2B1 inhibitors for 15 min, followed by incubation for 30 min with NF, with or without the inhibitors mentioned earlier. NF cytotoxicity was examined using neutral red (NR) assay. Intracellular NF levels were analyzed by HPLC. RESULTS NR assay showed that incubation conditions with NF (as carried out in our experiments) were not cytotoxic. Incubation with specific inhibitors of BCRP (FTC, Chrysin and Novobiocin), showed a significant increase in NF accumulation in the cells. Inhibitors of OATP2B1 (EGCG and BSP) had no influence on NF accumulation. Specific inhibitors of P-gp and MRPs (Verapamil and Indomethacin, respectively) also had no influence on NF accumulation in JAr cells. CONCLUSIONS NF is probably a specific substrate of BCRP, and BCRP has a major active role in NF transport in JAr cells. For the first time, we showed, that P-gp, MRPs, and the OATP2B1, probably have a negligible contribution to NF transport in JAr cells.
Collapse
Affiliation(s)
- Valeria Feinshtein
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Giaginis C, Zira A, Theocharis S, Tsantili-Kakoulidou A. Application of quantitative structureâactivity relationships for modeling drug and chemical transport across the human placenta barrier: a multivariate data analysis approach. J Appl Toxicol 2009; 29:724-33. [DOI: 10.1002/jat.1466] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Saunders M. Transplacental transport of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:671-84. [DOI: 10.1002/wnan.53] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Poulsen MS, Rytting E, Mose T, Knudsen LE. Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol In Vitro 2009; 23:1380-6. [PMID: 19647068 DOI: 10.1016/j.tiv.2009.07.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 12/25/2022]
Abstract
The placental passage of three compounds with different physicochemical properties was recently investigated in ex vivo human placental perfusion experiments (caffeine, benzoic acid, and glyphosate) [Mose, T., Kjaerstad, M.B., Mathiesen, L., Nielsen, J.B., Edelfors, S., Knudsen, L.E., 2008. Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system. J. Toxicol. Environ. Health, Part A 71, 984-991]. In this work, the transport of these same three compounds, plus the reference compound antipyrine, was investigated using BeWo (b30) cell monolayers. Transport across the BeWo cells was observed in the rank order of caffeine>antipyrine>benzoic acid>glyphosate in terms of both the apparent permeability coefficient and the initial slope, defined as the linear rate of substance transferred to the fetal compartment as percent per time, a parameter used to compare the two experimental models. The results from the in vitro studies were in excellent agreement with the ex vivo results (caffeine approximately antipyrine>benzoic acid>glyphosate). However the transfer rate was much slower in the BeWo cells compared to the perfusion system. The advantages and limitations of each model are discussed in order to assist in the preparation, prediction, and performance of future studies of maternal-fetal transfer.
Collapse
|
46
|
Vähäkangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol 2009; 158:665-78. [PMID: 19788499 DOI: 10.1111/j.1476-5381.2009.00336.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies on the increasing number of transporters found in the placental barrier are gaining momentum, because of their tissue-specific expression, significance in physiology and disease, and the possible utilization of the emerging knowledge in pharmacology. In the placenta, both syncytiotrophoblast and fetal capillary endothelium express transporters. Fetal exposure is determined by the net effect of combination of transporters, their nature and localization in relation to placental cells and their substrate specificity. Although the significance of placental transporters on human fetal drug exposure is almost an unstudied field so far, their potential use to design drugs that do not cross the placenta is already being pursued. It is thus of interest to review the existing knowledge of human placental transporters. Transporters in all groups which take part in drug transport are found in human placenta. Especially, ATP-binding cassette transporters ABCG2/breast cancer resistance protein, ABCB1/P-glycoprotein and ABCC2/MRP2 are all expressed at the apical surface of syncytiotrophoblast facing maternal blood and are putatively important protective proteins both for placental tissue and the fetus, because they are efflux transporters and their substrates include many drugs and also environmental chemicals. Such protective effect has been shown in animals, but these results cannot be directly extrapolated to humans due to interspecies differences in placental structure and function. Experimental models utilizing human placental tissue, especially human placental perfusion, offer valuable possibilities, which have been insufficiently studied so far.
Collapse
Affiliation(s)
- Kirsi Vähäkangas
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
47
|
PÉREZ R, PALMA C, NÚÑEZ MJ, NAVAS M, OLMOS G, COX J. Transplacental exchange of moxidectin after maternal or fetal intravenous administration in sheep. J Vet Pharmacol Ther 2009; 32:596-605. [DOI: 10.1111/j.1365-2885.2009.01081.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Annola K, Keski-Rahkonen P, Vähäkangas K, Lehtonen M. Simultaneous determination of acrylamide, its metabolite glycidamide and antipyrine in human placental perfusion fluid and placental tissue by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 876:191-7. [PMID: 19010089 DOI: 10.1016/j.jchromb.2008.10.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 11/18/2022]
Abstract
A rapid and sensitive method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous determination of acrylamide (AA) and its genotoxic metabolite glycidamide (GA) with a test marker antipyrine (AP) in placental tissue and perfusion medium used in human placental perfusion studies. An internal standard ((13)C-acrylamide) was added to the samples which were then deproteinized with acetonitrile. Chromatographic separation was performed on a reversed phase column with a gradient elution of acetonitrile and 0.01% formic acid at a flow rate of 0.3 mL/min. Detection and quantification of the analytes were carried out with a triple quadrupole mass spectrometer using positive electrospray ionization (ESI) and multiple reaction monitoring (MRM). The method was validated and linear over a concentration range of 0.5-20 microg/mL for acrylamide and glycidamide and 5-200 microg/mL for antipyrine. The lower limit of quantification for acrylamide and glycidamide was 0.5 microg/mL and for antipyrine 5 microg/mL. The method was selective, and good accuracy, precision, recovery, and stability were obtained for concentrations within the standard curve. The method was successfully used to analyze the placental perfusion medium and tissue samples in a toxicokinetic study for transplacental transfer of acrylamide and glycidamide. This is the first time that acrylamide, glycidamide and antipyrine are measured simultaneously.
Collapse
Affiliation(s)
- Kirsi Annola
- University of Kuopio, Department of Pharmacology and Toxicology, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
49
|
Giaginis C, Spanopoulou E, Theocharis S. PPAR-gamma signaling pathway in placental development and function: a potential therapeutic target in the treatment of gestational diseases. Expert Opin Ther Targets 2008; 12:1049-63. [PMID: 18620525 DOI: 10.1517/14728222.12.8.1049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND PPAR-gamma is a target for the treatment of metabolic disorders, as Pioglitazone and Rosiglitazone are already used against type 2 diabetes. Pleiotropic functions, such as antiproliferative and anti-inflammatory effects against several pathological states, including cardiovascular disease and cancer, are currently being explored in clinical studies. OBJECTIVE Evidence indicates that PPAR-gamma is expressed in the placenta, playing a crucial role in placental development and function, while PPAR-gamma ligands appear to modulate fetal membrane signals. Thus, in the last few years, the pivotal role of PPAR-gamma in placental biology has been the focus of extensive research, as diabetes appears to be the most common metabolic dysfunction in pregnancy. METHODS We aim to present data concerning the expression of PPAR-gamma in animal and human placenta, underlining its significance in normal placental development and several gestational diseases. The effects of PPAR-gamma ligands as modulators of placental biology in normal and certain pathological conditions are also discussed. RESULTS/CONCLUSION Current research provides substantial evidence that PPAR-gamma plays a pivotal role in placental biology and may reveal new perspectives in the treatment of gestational diseases.
Collapse
Affiliation(s)
- Costas Giaginis
- University of Athens, Department of Forensic Medicine and Toxicology, Medical School, 75, M. Asias street, Goudi, Athens, GR11527, Greece
| | | | | |
Collapse
|
50
|
Grujicic D, Miloševic-Djordjevic O, Arsenijevic S, Marinkovic D. Treatment of Pregnant Women with a Betamimetic and Verapamil Increases the Micronuclei Frequency in Umbilical Cord Blood Lymphocytes. TOHOKU J EXP MED 2008; 215:363-71. [DOI: 10.1620/tjem.215.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|