1
|
Phipps KR, Patel S, Scaife K, Holmes T, Šoltésová A, Thrane SW, Vigsnæs LK, Baldwin N, Jørgensen C. Allergenicity, Genotoxicity and Subchronic Toxicity Assessment of IgG Binding Protein LT Produced From Aspergillus oryzae. J Appl Toxicol 2025. [PMID: 40288785 DOI: 10.1002/jat.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Gastrointestinal health is one of the fastest growing areas in the food and beverage industry, as its importance to overall health and well-being is becoming increasingly recognized. Immunoglobulins play a key role in protecting the gastrointestinal tract, and nonbovine sources of immunoglobulins (including camel milk, which has a long history of consumption in East Africa and Asia) are increasing in popularity in Western countries as functional foods, particularly for individuals with allergies or intolerances to cow's milk. The physiological benefits of consuming certain heavy-chain immunoglobulins from camel milk relate to the binding domains of camelid single-domain antibodies; thus, a novel binding protein termed "immunoglobulin G (IgG) binding protein LT" (a dimer of two camelid single-domain antibody protein sequences) has been developed for use in food and beverage products, to provide some of the physiological benefits attributed to consuming camel milk, on an industrial scale. To support the safety of IgG binding protein LT for such use, a comprehensive safety assessment (in silico allergenicity assessment, in vitro genotoxicity studies [bacterial reverse mutation test and in vitro mammalian cell micronucleus test], and a 90-day gavage toxicity study in rats) was conducted. The in silico allergenicity assessment results demonstrate that IgG binding protein LT is highly unlikely to pose a risk of allergenic cross-reactivity, and there was no evidence of genotoxicity in vitro. There were no test article-related effects in the 90-day toxicity study. These data demonstrate the safety of IgG binding protein LT for its intended uses in foods and beverages.
Collapse
Affiliation(s)
- Kirt R Phipps
- Intertek Health Sciences Inc., Farnborough, Hampshire, UK
| | - Sachin Patel
- Intertek Health Sciences Inc., Farnborough, Hampshire, UK
| | - Kevin Scaife
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | - Toby Holmes
- Labcorp Early Development Laboratories Ltd., Harrogate, North Yorkshire, UK
| | - Alica Šoltésová
- Labcorp Early Development Laboratories Ltd., Huntingdon, Cambridgeshire, UK
| | | | | | | | | |
Collapse
|
2
|
Lifshitz Y, Paz S, Saban R, Zuker I, Shmuely H, Gorshkov K, Meetro J, Tafazoli S, Vo T, Amiram G, Levi CS, Lesmes U, Samish I. Safety Evaluation of Serendipity Berry Sweet Protein From Komagataella phaffii. J Appl Toxicol 2025. [PMID: 40159929 DOI: 10.1002/jat.4781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Serendipity Berry Sweet Protein (sweelin) is a novel hyper-sweet thermophilic protein designed using Artificial Intelligence Computational Protein Design (AI-CPD) to improve the stability and sensory profile of the protein found in serendipity berry (Dioscoreophyllum cumminsii). sweelin is produced through precision fermentation by expression in Komagataella phaffii. The safety of sweelin was investigated through an evaluation of its genotoxicity, mutagenicity, systemic toxicity and digestibility potential in in vitro and in vivo models. sweelin was not genotoxic in in vitro reverse mutation and mammalian micronucleus assays and was not associated with systemic toxicity in a 90-day dietary toxicity study in rats. The no-observed-adverse-effect level for sweelin in Sprague Dawley rats was established as 14,300 ppm, the highest dose tested. This dose level corresponds to dietary intakes of 838.3 and 946.0 mg/kg body weight/day in male and female rats, respectively. sweelin was demonstrated to be readily digestible in an in vitro semi-dynamic model of the gastrointestinal tract. The results support the safety of sweelin as a food ingredient for sweetening purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jwar Meetro
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | | | - Trung Vo
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | - Gabriela Amiram
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Carmit Shani Levi
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Uri Lesmes
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
3
|
Cohen SM, Boobis AR, Jacobson-Kram D, Schoeny R, Rosol TJ, Williams GM, Kaminski NE, Eichenbaum GM, Guengerich FP, Nash JF. Mode of action approach supports a lack of carcinogenic potential of six organic UV filters. Crit Rev Toxicol 2025; 55:248-284. [PMID: 40208192 DOI: 10.1080/10408444.2025.2462642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 04/11/2025]
Abstract
Ultraviolet (UV) filters, the active ingredients in sunscreens, have been used for several decades to reduce the risk of acute and chronic damage to the skin from solar UV radiation, which can lead to skin cancer. Based on recent clinical studies showing that certain UV filters are absorbed systemically at low levels in humans, the US Food and Drug Administration (FDA) has requested supplementing existing safety data with preclinical studies including oral and dermal 2-year rodent carcinogenicity studies. Although the conduct of 2-year rodent carcinogenicity studies has been the standard approach for evaluating the carcinogenic potential of chemicals and new drugs for approximately 6 decades, there are multiple examples showing that such studies are not predictive of human cancer risk. Given these concerns with 2-year rodent carcinogenicity studies, we have developed and applied an alternative approach for supplementing existing data related to carcinogenic potential for six of the most commonly used UV filters in sunscreen products (i.e. avobenzone, ensulizole, homosalate, octinoxate, octisalate, and octocrylene). This approach evaluates their mode of action (MOA) based on in vivo, in vitro, and in silico data combined with an assessment of exposure margins. This approach is based on the substantial progress in understanding the MOAs that are responsible for tumor induction in humans. It is consistent with those being developed by the International Council for Harmonization (ICH) and other health authorities to replace 2-year carcinogenicity studies given their limitations and questionable biological relevance to humans. The available data for the six UV filters show that they are not genotoxic and show no evidence of biologically relevant carcinogenic MOAs. Furthermore, their systemic exposure levels in humans fall well below concentrations at which they have biologic activity. In conclusion, these data support the continued safe use of these six filters in sunscreen products.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology, Immunology, and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alan R Boobis
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | - Thomas J Rosol
- Histology Core Facility and Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Gary M Williams
- Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J F Nash
- Procter & Gamble, Mason, OH, USA
| |
Collapse
|
4
|
Fortin AMV, Long AS, Williams A, Meier MJ, Cox J, Pinsonnault C, Yauk CL, White PA. Application of a new approach methodology (NAM)-based strategy for genotoxicity assessment of data-poor compounds. FRONTIERS IN TOXICOLOGY 2023; 5:1098432. [PMID: 36756349 PMCID: PMC9899896 DOI: 10.3389/ftox.2023.1098432] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
The conventional battery for genotoxicity testing is not well suited to assessing the large number of chemicals needing evaluation. Traditional in vitro tests lack throughput, provide little mechanistic information, and have poor specificity in predicting in vivo genotoxicity. New Approach Methodologies (NAMs) aim to accelerate the pace of hazard assessment and reduce reliance on in vivo tests that are time-consuming and resource-intensive. As such, high-throughput transcriptomic and flow cytometry-based assays have been developed for modernized in vitro genotoxicity assessment. This includes: the TGx-DDI transcriptomic biomarker (i.e., 64-gene expression signature to identify DNA damage-inducing (DDI) substances), the MicroFlow® assay (i.e., a flow cytometry-based micronucleus (MN) test), and the MultiFlow® assay (i.e., a multiplexed flow cytometry-based reporter assay that yields mode of action (MoA) information). The objective of this study was to investigate the utility of the TGx-DDI transcriptomic biomarker, multiplexed with the MicroFlow® and MultiFlow® assays, as an integrated NAM-based testing strategy for screening data-poor compounds prioritized by Health Canada's New Substances Assessment and Control Bureau. Human lymphoblastoid TK6 cells were exposed to 3 control and 10 data-poor substances, using a 6-point concentration range. Gene expression profiling was conducted using the targeted TempO-Seq™ assay, and the TGx-DDI classifier was applied to the dataset. Classifications were compared with those based on the MicroFlow® and MultiFlow® assays. Benchmark Concentration (BMC) modeling was used for potency ranking. The results of the integrated hazard calls indicate that five of the data-poor compounds were genotoxic in vitro, causing DNA damage via a clastogenic MoA, and one via a pan-genotoxic MoA. Two compounds were likely irrelevant positives in the MN test; two are considered possibly genotoxic causing DNA damage via an ambiguous MoA. BMC modeling revealed nearly identical potency rankings for each assay. This ranking was maintained when all endpoint BMCs were converted into a single score using the Toxicological Prioritization (ToxPi) approach. Overall, this study contributes to the establishment of a modernized approach for effective genotoxicity assessment and chemical prioritization for further regulatory scrutiny. We conclude that the integration of TGx-DDI, MicroFlow®, and MultiFlow® endpoints is an effective NAM-based strategy for genotoxicity assessment of data-poor compounds.
Collapse
Affiliation(s)
- Anne-Marie V. Fortin
- Department of Biology, University of Ottawa, Ottawa, ON, Canada,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Alexandra S. Long
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Cox
- Bureau of Gastroenterology, Infection and Viral Diseases, Health Canada, Ottawa, ON, Canada
| | - Claire Pinsonnault
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L. Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada,*Correspondence: Carole L. Yauk, ; Paul A. White,
| | - Paul A. White
- Department of Biology, University of Ottawa, Ottawa, ON, Canada,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada,*Correspondence: Carole L. Yauk, ; Paul A. White,
| |
Collapse
|
5
|
Bouguellid G, Debbache-Benaida N, Atmani-Kilani D, Russo C, Lavorgna M, Piscitelli C, Ayouni K, Berboucha-Rahmani M, Isidori M, Atmani D. Pistacia lentiscus L. fruits showed promising antimutagenic and antigenotoxic activity using both in-vitro and in-vivo test systems. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:603-621. [PMID: 35387576 DOI: 10.1080/15287394.2022.2057885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pistacia lentiscus L. is one of the most popular medicinal plants attributed to its beneficial properties on human health. However, few toxicogenetic studies have been carried out. Therefore, the aim of this study was to examine the potential genotoxic/antigenotoxic and mutagenic/antimutagenic properties of oil, ethyl acetate and ethanolic extracts of P. lentiscus L. fruits using in vitro the Ames and Umu assays, as well as in vivo micronucleus (MN) test. Extracts did not exert any significant mutagenic/genotoxic effects but provided protection against standard mutagenic and genotoxic agents including 2 nitrofluorene (2-NF) at 2.5 and 5 µg/ml; sodium azide at 5 and 10 µg/ml; 3-methylcholanthrene (3-MC) at 25 and 50 μg/ml; cyclophosphamide (CP) at 50 and 100 μg/ml; 4-nitroquinoline 1-oxide (4-NQO) at 0.05 µg/ml and 2-amino-anthracene (AA) at 0.2 µg/ml. Further, cytotoxicity and selectivity were examined on human hepatocarcinoma (HepG2), and MCF-7 breast cancer cell lines as well as a human normal-like fibroblast cell line (TelCOFS02MA) using MTT assay. Among all extracts, PF1 (ethanolic) showed the most significant selectivity index (SI) (HepG2:11.98; MCF7:4.83), which led to further investigations using an animal model. Oral administration of PF1 (125-1000 mg/kg b.w.) significantly decreased the number of micronucleated cells in CP -initiated (50 mg/kg b.w.) mice, while the number of micronucleated reticulocytes (MNRET), micronucleated polychromatic erythrocytes (MNPCE) or mitotic index (MI) were not markedly affected. Further, PF1 significantly enhanced catalase (CAT) and superoxide dismutase (SOD) activities in the livers and kidneys of these animals. The obtained results indicated the beneficial properties of P. lentiscus L. fruits for use in therapy against harmful effects of genotoxic and mutagenic agents. However, while promising it should be noted that the obtained results are preliminary and need to be confirmed prior to therapeutic use.
Collapse
Affiliation(s)
- Ghania Bouguellid
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Nadjet Debbache-Benaida
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Dina Atmani-Kilani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Chiara Russo
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Margherita Lavorgna
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Concetta Piscitelli
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Karima Ayouni
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Meriem Berboucha-Rahmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| | - Marina Isidori
- Farmaceutiche, Università della Campania "Luigi Vanvitelli"Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e , Via Vivaldi 43, I-81100 Caserta, Italy
| | - Djebbar Atmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, 06000, Algeria
| |
Collapse
|
6
|
DNA Oxidative Damage as a Sensitive Genetic Endpoint to Detect the Genotoxicity Induced by Titanium Dioxide Nanoparticles. NANOMATERIALS 2022; 12:nano12152616. [PMID: 35957047 PMCID: PMC9370504 DOI: 10.3390/nano12152616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
The genotoxicity of nanomaterials has attracted great attention in recent years. As a possible occupational carcinogen, the genotoxic effects and underlying mechanisms of titanium dioxide nanoparticles (TiO2 NPs) have been of particular concern. In this study, the effect of TiO2 NPs (0, 25, 50 and 100 µg/mL) on DNA damage and the role of oxidative stress were investigated using human bronchial epithelial cells (BEAS-2B) as an in vitro model. After detailed characterization, the cytotoxicity of TiO2 NPs was detected. Through transmission electron microscopy (TEM), we found that TiO2 NPs entered the cytoplasm but did not penetrate deep into the nucleus of cells. The intracellular levels of reactive oxygen species (ROS) significantly increased in a dose-dependent manner and the ratios of GSH/GSSG also significantly decreased. The results of the normal comet assay were negative, while the Fpg-modified comet assay that specifically detected DNA oxidative damage was positive. Meanwhile, N-acetyl-L-cysteine (NAC) intervention inhibited the oxidative stress and genotoxicity induced by TiO2 NPs. Therefore, it was suggested that TiO2 NPs could induce cytotoxicity, oxidative stress and DNA oxidative damage in BEAS-2B cells. DNA oxidative damage may be a more sensitive genetic endpoint to detect the genotoxicity of TiO2 NPs.
Collapse
|
7
|
Kobets T, Duan JD, Vock E, Deschl U, Williams GM. Evaluation of Pharmaceuticals for DNA Damage in the Chicken Egg Genotoxicity Assay (CEGA). Int J Toxicol 2022; 41:297-311. [PMID: 35658642 DOI: 10.1177/10915818221093583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA damage is an established initiating event in the mutagenicity and carcinogenicity of genotoxic chemicals. Accordingly, assessment of this endpoint is critical for chemicals which are being developed for use in humans. To assess the ability of the Chicken Egg Genotoxicity Assay (CEGA) to detect genotoxic pharmaceuticals, a set of 23 compounds with different pharmacological and reported genotoxic effects was tested for the potential to produce nuclear DNA adducts and strand breaks in the embryo-fetal livers using the 32P-nucleotide postlabeling (NPL) and comet assays, respectively. Due to high toxicity, two aneugens, colchicine and vinblastine, and an autophagy inhibitor, hydroxychloroquine, could not be evaluated. Out of the 20 remaining pharmaceuticals, 10 including estrogen modulators, diethylstilbestrol and tamoxifen, antineoplastics cyclophosphamide, etoposide, and mitomycin C, antifungal griseofulvin, local anesthetics lidocaine and prilocaine, and antihistamines diphenhydramine and doxylamine, yielded clear positive outcomes in at least one of the assays. The antihypertensive vasodilator hydralazine and antineoplastics streptozotocin and teniposide, produced only DNA strand breaks, which were not dose-dependent, and thus, the results with these 3 pharmaceuticals were considered equivocal. No DNA damage was detected for 7 compounds, including the purine antagonist 6-thioguanine, antipyretic analgesics acetaminophen and phenacetin, antibiotic ciprofloxacin, antilipidemic clofibrate, anti-inflammatory ibuprofen, and sedative phenobarbital. However, low solubility of these compounds limited dosages tested in CEGA. Overall, results in CEGA were largely in concordance with the outcomes in other systems in vitro and in vivo, indicating that CEGA provides reliable detection of DNA damaging activity of genotoxic compounds. Further evaluations with a broader set of compounds would support this conclusion.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Immunology and Microbiology, 8137New York Medical College, Valhalla, NY, USA
| | - Jian-Dong Duan
- Department of Pathology, Immunology and Microbiology, 8137New York Medical College, Valhalla, NY, USA
| | - Esther Vock
- Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach an der Riss, Germany
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach an der Riss, Germany
| | - Gary M Williams
- Department of Pathology, Immunology and Microbiology, 8137New York Medical College, Valhalla, NY, USA
| |
Collapse
|
8
|
Maistro EL, Terrazzas PM, Sawaya ACHF, Rosa PCP, Perazzo FF, de Mascarenhas Gaivão IO. In vivo toxicogenic potential of Salix alba (Salicaceae) bark extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:121-130. [PMID: 34674609 DOI: 10.1080/15287394.2021.1989351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Salix alba (white willow) bark extract is widely used for conditions associated with inflammation, fever, microbial infection or pain. Exposure of human cultured leukocytes to S. alba in vitro noted a genotoxic response. However, data regarding the influence of this bark extract on DNA damage in vivo are lacking. The main goal of this study was to examine the potential of S.alba bark extract to induce DNA damage and chromosome aberrations in an in vivo model using cells obtained from male Swiss albino mice administered the compound orally. The extract was administered by oral gavage daily for 7 days at doses of 500, 1000, or 2000 mg/kg b.w. Genotoxicity analysis was performed using the comet assay on peripheral blood leukocytes, as well as liver, bone marrow, heart, and testicular cells collected 4 hr after the last treatment and the micronucleus (MN) test on bone marrow cells. In essence cells were collected 28 hr after the penultimate treatment Data demonstrated that S. alba bark extract did not induce significant DNA damage in any cell types examined, or clastogenic/aneugenic effects as detected by the MN test at the three tested doses. Under these experimental conditions, evidence indicates that S.alba bark extract did not initiate genotoxic or chromosome aberrations in various mouse cells investigated.
Collapse
Affiliation(s)
- Edson Luis Maistro
- Speech and Hearing Therapy Department, São Paulo State University - Unesp, São Paulo, Brazil
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University - Unesp, Instituto De Biociências, Botucatu, Brazil
| | - Peterson Menezes Terrazzas
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University - Unesp, Instituto De Biociências, Botucatu, Brazil
| | | | | | - Fábio Ferreira Perazzo
- Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (Utad), Vila Real, Portugal
| | - Isabel O'Neill de Mascarenhas Gaivão
- Universidade De Tras-os-Montes E Alto Douro Escola De Ciencias Agrarias E Veterinarias, Genet. Biotech. Animal Veterinary Res. Centre, Vila Real, Portugal
| |
Collapse
|
9
|
Kumaravel TS, Sathya TN, Balaje R, Pradeepa P, Yogaraj D, Murali MR, Navaneethakrishnan KR, Murugan S, Jha AN. Genotoxicity evaluation of medical devices: A regulatory perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108407. [PMID: 35690410 DOI: 10.1016/j.mrrev.2021.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
This review critically evaluates our current regulatory understanding of genotoxicity testing and risk assessment of medical devices. Genotoxicity risk assessment of these devices begins with the evaluation of materials of construction, manufacturing additives and all residual materials for potential to induce DNA damage. This is followed by extractable and/or leachable (E&L) studies to understand the worst case and/or clinical exposures, coupled with risk assessment of extractables or leachables. The TTC (Threshold of Toxicological Concern) approach is used to define acceptable levels of genotoxic chemicals, when identified. Where appropriate, in silico predictions may be used to evaluate the genotoxic potentials of identifiable chemicals with limited toxicological data and above the levels defined by TTC. Devices that could not be supported by E&L studies are evaluated by in vitro genotoxicity studies conducted in accordance with ISO10993-3 and 33. Certain endpoints such as 'site of contact genotoxicity' that are specific for certain classes of medical devices are currently not addressed in the current standards. The review also illustrates the potential uses of recent advances to achieve the goal of robust genotoxicity assessment of medical devices which are being increasingly used for health benefits. The review also highlights the gaps for genotoxicity risk assessment of medical devices and suggests possible approaches to address them taking into consideration the recent advances in genotoxicity testing including their potential uses in biocompatibility assessment.
Collapse
Affiliation(s)
- Tirukalikundram S Kumaravel
- GLR Laboratories (Europe) Pvt. Ltd., Sharnbrook, MK44 1LZ, United Kingdom; GLR Laboratories Pvt Ltd, Chennai, 600068, India.
| | | | | | | | | | | | | | - Sivasubramanian Murugan
- GLR Laboratories (Europe) Pvt. Ltd., Sharnbrook, MK44 1LZ, United Kingdom; GLR Laboratories Pvt Ltd, Chennai, 600068, India
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| |
Collapse
|
10
|
Cha SB, Kim SS, Oh JJ, Lee WJ, Song SW, Lim JO, Kim JC. Evaluation of the in vitro and in vivo genotoxicity of a Dioscorea Rhizome water extract. Toxicol Res 2021; 37:385-393. [PMID: 34295802 PMCID: PMC8249543 DOI: 10.1007/s43188-020-00077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022] Open
Abstract
Dioscorea Rhizome is commonly used in traditional herbal medicines for the treatment of diabetes, hyperthyroidism, liver damage, neuropathy, and asthma. Here, we investigated the genotoxicity potential of D. Rhizome water extract (DRWE) using three standard battery systems in accordance with the test guidelines of the Organisation for Economic Cooperation and Development and Ministry of Food and Drug Safety as well as the principles of Good Laboratory Practice. A bacterial reverse mutation test (Ames test) was performed using the direct plate incorporation method in the presence or absence of a metabolic activation system (S9 mixture). The tester strains used included four histidine auxotrophic strains of Salmonella typhimurium, TA100, TA1535, TA98, and TA1537, along with a tryptophan auxotrophic strain of Escherichia coli, WP2 uvrA. An in vitro chromosome aberration test was performed using CHL/IU cells originally derived from the lung of a female Chinese hamster in the presence or absence of the S9 mixture. An in vivo mouse bone marrow micronucleus test was performed using male ICR mice. The micronucleus was confirmed after observation of the micro-nucleated polychromatic. The Ames test showed that DRWE did not induce gene mutations at any dose level in any of the tested strains. Additionally, DRWE did not result in any chromosomal aberrations specified in the in vitro chromosomal aberration and in vivo micronucleus tests. These results showed that DRWE exhibited neither mutagenic nor clastogenic potential in either the in vitro or in vivo test systems.
Collapse
Affiliation(s)
- Seung-Beom Cha
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Seong-Sook Kim
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Jeong-Ja Oh
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Woo-Joo Lee
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Si-Whan Song
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162 Korea
| | - Je-Oh Lim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 Korea
| |
Collapse
|
11
|
Elder DP, Johnson GE, Snodin DJ. Tolerability of risk: A commentary on the nitrosamine contamination issue. J Pharm Sci 2021; 110:2311-2328. [PMID: 33705731 DOI: 10.1016/j.xphs.2021.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
For decades, regulators have grappled with different approaches to address the issue of control of impurities. Safety-based limits, such as permissible daily exposure (PDE), acceptable intake (AI), threshold of toxicological concern (TTC) and less than lifetime limits (LTL) have all been used. For many years these safety-based limits have been recognized as virtually safe doses (VSDs). Recently, however, many regulatory agencies are seeking to impose limits for N-nitrosamine impurities, which are significantly below the VSD. This commentary will discuss the evolution of safety-based limits for impurities, provide an overview of the valsartan N-nitrosamine contamination issue and review the toxicology of N-nitrosamines. The outcome of a lessons-learned exercise on sartan medications undertaken by the European Medicines Agency (EMA) will also be discussed. The review will also highlight the many analytical challenges inherent with controlling impurities to ppb-based limits. The use of highly sensitive, low ppb limits, methods may lead to future issues of batch rejection, based on false positives. Regulators initially viewed the N-nitrosamine risk as being insufficient to prompt immediate product discontinuation and patients were specifically advised to continue using their affected medication. Patients were also informed that exposure to N-nitrosamines is extremely common via food and drinking water.
Collapse
|
12
|
Kirkland D, Kovochich M, More SL, Murray FJ, Monnot AD, Miller JV, Jaeschke H, Jacobson-Kram D, Deore M, Pitchaiyan SK, Unice K, Eichenbaum G. A comprehensive weight of evidence assessment of published acetaminophen genotoxicity data: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 122:104892. [PMID: 33592196 DOI: 10.1016/j.yrtph.2021.104892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.
Collapse
|
13
|
Jaeschke H, Murray FJ, Monnot AD, Jacobson-Kram D, Cohen SM, Hardisty JF, Atillasoy E, Hermanowski-Vosatka A, Kuffner E, Wikoff D, Chappell GA, Bandara SB, Deore M, Pitchaiyan SK, Eichenbaum G. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 120:104859. [PMID: 33388367 DOI: 10.1016/j.yrtph.2020.104859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
In 2019 California's Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. In parallel with this review, herein we evaluated the mechanistic data related to the steps and timing of cellular events following therapeutic recommended (≤4 g/day) and higher doses of acetaminophen that may cause hepatotoxicity to evaluate whether these changes indicate that acetaminophen is a carcinogenic hazard. At therapeutic recommended doses, acetaminophen forms limited amounts of N-acetyl-p-benzoquinone-imine (NAPQI) without adverse cellular effects. Following overdoses of acetaminophen, there is potential for more extensive formation of NAPQI and depletion of glutathione, which may result in mitochondrial dysfunction and DNA damage, but only at doses that result in cell death - thus making it implausible for acetaminophen to induce the kind of stable, genetic damage in the nucleus indicative of a genotoxic or carcinogenic hazard in humans. The collective data demonstrate a lack of a plausible mechanism related to carcinogenicity and are consistent with rodent cancer bioassays, epidemiological results reviewed in companion manuscripts in this issue, as well as conclusions of multiple international health authorities.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- University of Kansas Medical Center, Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, USA
| | | | | | | | - Samuel M Cohen
- University of Nebraska Medical Center, Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, Omaha, NE, USA
| | - Jerry F Hardisty
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | | | | | - Edwin Kuffner
- Johnson & Johnson Consumer Health, Fort Washington, PA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sasaki JC, Allemang A, Bryce SM, Custer L, Dearfield KL, Dietz Y, Elhajouji A, Escobar PA, Fornace AJ, Froetschl R, Galloway S, Hemmann U, Hendriks G, Li HH, Luijten M, Ouedraogo G, Peel L, Pfuhler S, Roberts DJ, Thybaud V, van Benthem J, Yauk CL, Schuler M. Application of the adverse outcome pathway framework to genotoxic modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:114-134. [PMID: 31603995 DOI: 10.1002/em.22339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Laura Custer
- Bristol-Myers Squibb Company, Drug Safety Evaluation, New Brunswick, New Jersey
| | | | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Heng-Hong Li
- Georgetown University, Washington, District of Columbia
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, District of Columbia
| | | | | | - Véronique Thybaud
- Sanofi, Research and Development, Preclinical Safety, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maik Schuler
- Pfizer Inc, World Wide Research and Development, Groton, Connecticut
| |
Collapse
|
15
|
Smart DJ, Helbling FR, Verardo M, McHugh D, Vanscheeuwijck P. Mode-of-action analysis of the effects induced by nicotine in the in vitro micronucleus assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:778-791. [PMID: 31294873 PMCID: PMC6900147 DOI: 10.1002/em.22314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 05/02/2023]
Abstract
Nicotine's genotoxic potential has been extensively studied in vitro. While the results of mammalian cell-based studies have inferred that it can potentially damage chromosomes, in general and with few exceptions, adverse DNA effects have been observed primarily at supraphysiological concentrations in nonregulatory assays that provide little information on its mode-of-action (MoA). In this study, a modern-day regulatory genotoxicity assessment was conducted using a flow cytometry-based in vitro micronucleus (MN) assay, Good Laboratory Practice study conditions, Chinese hamster ovary cells of known provenance, and acceptance/evaluation criteria from the current OECD Test Guideline 487. Nicotine concentrations up to 3.95 mM had no effect on background levels of DNA damage; however, concentrations above the point-of-departure range of 3.94-4.54 mM induced increases in MN and hypodiploid nuclei, indicating a possible aneugenicity hazard. Follow-up experiments designed to elucidate nicotine's MoA revealed cellular vacuolization, accompanying distortions in microtubules, inhibition of tubulin polymerization, centromere-positive DNA, and multinucleate cells at MN-inducing concentrations. Vacuoles likely originated from acidic cellular compartments (e.g., lysosomes). Remarkably, genotoxicity was suppressed by chemicals that raised the luminal pH of these organelles. Other endpoints (e.g., changes in phosphorylated histones) measured in the study cast doubt on the biological relevance of this apparent genotoxicity. In addition, three major nicotine metabolites, including cotinine, had no MN effects but nornicotine induced a nicotine-like profile. It is possible that nicotine's lysosomotropic properties drive the genotoxicity observed in vitro; however, the potency and mechanistic insights revealed here indicate that it is likely of minimal physiological relevance for nicotine consumers. Environ. Mol. Mutagen. 2019. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
| | | | | | - Damian McHugh
- PMI R&DPhilip Morris Products S.A.NeuchâtelSwitzerland
| | | |
Collapse
|
16
|
Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In Vitro Thrombogenicity Testing of Biomaterials. Adv Healthc Mater 2019; 8:e1900527. [PMID: 31612646 DOI: 10.1002/adhm.201900527] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed.
Collapse
Affiliation(s)
- Steffen Braune
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Robert A. Latour
- Rhodes Engineering Research CenterDepartment of BioengineeringClemson University Clemson SC 29634 USA
| | - Markus Reinthaler
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Ulf Landmesser
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam Karl‐Liebknecht‐Strasse 24‐25 14476 Potsdam Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| |
Collapse
|
17
|
Baldrick P, Hutchings JW, Heath MD, Skinner MA. Safety Evaluation of PQ Birch Allergy Immunotherapy to Support Product Development. Regul Toxicol Pharmacol 2019; 108:104441. [PMID: 31425728 DOI: 10.1016/j.yrtph.2019.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
PQ Birch represents an allergen-specific immunotherapy for the treatment of birch pollinosis. It consists of native birch pollen extract chemically modified with glutaldehyde adsorbed to L-tyrosine in its microcrystalline form with addition of the adjuvant Monophosphoryl Lipid A (MPL®). A nonclinical safety testing strategy was designed based upon interpretation of current legislation and regulatory intelligence and comprised genotoxicity studies (bacterial reverse mutation and Chinese hamster ovary micronucleus assays), a rat repeat dose toxicology study and a rabbit local tolerance study. No safety findings of concern were found. Thus, no evidence of genotoxicity was found. Relatively minor, immunostimulatory effects were seen following repeated subcutaneous dosing (once every 2 weeks for 13 weeks) as reversible increased white cell count (notably neutrophils), increased globulin level (resulting in decreased albumin/globulin [A/G] ratio) and increased fibrinogen, as well as minor dose site reaction in the form of inflammatory cell infiltrate. These findings are likely due to the immunostimulatory nature of MPL® and/or the presence of L-tyrosine within the adjuvanted vaccine. Similar dose site inflammatory changes to the injected formulation were also noted in the rabbit local tolerance study.
Collapse
Affiliation(s)
- Paul Baldrick
- Nonclinical Strategic Product Development, Covance Laboratories Ltd, Otley Road, Harrogate, North Yorkshire, HG3 1PY, England, UK.
| | - James W Hutchings
- Allergy Therapeutics (UK) Ltd, Dominion Way, Worthing, West Sussex, BN14 8SA, England, UK.
| | - Matthew D Heath
- Allergy Therapeutics (UK) Ltd, Dominion Way, Worthing, West Sussex, BN14 8SA, England, UK
| | - Murray A Skinner
- Allergy Therapeutics (UK) Ltd, Dominion Way, Worthing, West Sussex, BN14 8SA, England, UK
| |
Collapse
|
18
|
Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zain SR, Alshawsh MA. Mutagenicity and genotoxicity effects of Verbena officinalis leaves extract in Sprague-Dawley Rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:88-99. [PMID: 30738113 DOI: 10.1016/j.jep.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Verbena officinalis L. has been used for reproductive and gynaecological purposes. However, the mutagenicity and genotoxicity of V. officinalis have not been extensively investigated. AIM OF THE STUDY To assess the in vitro mutagenicity and in vivo genotoxicity of aqueous extract of V. officinalis leaves using a modified Ames test and rat bone marrow micronucleus assay according to OECD guidelines. MATERIALS AND METHODS In vitro Ames test was carried out using different strains of Salmonella (TA97a, TA98, TA100, and TA1535) and Escherichia coli WP2 uvrA (pKM101) in the presence or absence of metabolic activation (S9 mixture). For micronucleus experiment, male and female Sprague-Dawley rats (n = 6/group) were received a single oral daily dose of 500, 1000, and 2000 mg/kg of V. officinalis extract for three days. Negative and positive control rats were received distilled water or a single intraperitoneal injection of 50 mg/kg of cyclophosphamide, respectively. Following dissection, femurs were collected and bone marrow cells were stained with May-Grünwald-Giemsa solution for micronucleus assessment. RESULTS Ames test results demonstrated that 5, 2.5, 1.25 and 0.625 mg/ml of V. officinalis extract induced a significant mutagenic effect against TA100 and TA98 strains (with and without metabolic activation). Findings of the animal study showed there were no significant increase in the micronucleated polychromatic erythrocytes (MNPE) and no significant alterations in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio of treated rats as compared with their negative control. Meanwhile, significantly increased in the MNPEs was seen in the cyclophosphamide-treated group only. CONCLUSION Aqueous extract of V. officinalis has mutagenic effect against TA98 and TA100 strains as demonstrated by Ames test, however, there is no in vivo clastogenic and myelotoxic effect on bone marrow micronucleus of rats indicating that the benefits of using V. officinalis in traditional practice should outweigh risks.
Collapse
Affiliation(s)
- Abdulmannan H Fateh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Abdulsamad Alsalahi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Rosmani Md Zain
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
19
|
Kishino Y, Hasegawa T, Arakawa S, Shibaya Y, Yamoto T, Mori K. Effect of the metabolic capacity in rat liver S9 on the positive results of in vitro micronucleus tests. J Toxicol Sci 2019; 44:145-153. [PMID: 30842367 DOI: 10.2131/jts.44.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A high incidence of positive results is obtained with in vitro genotoxicity tests, which do not correlate with the in vivo negative results in many cases. To address this issue, the metabolic profile of rat liver 9000 × g supernatant fraction (S9) pretreated with phenobarbital (PB) and 5,6-benzoflavone (BNF) was characterized. Furthermore, the in vitro micronucleus tests of 10 compounds were performed with PB-BNF-induced rat S9. PB-BNF increased cytochrome P450 (CYP) activity and CYP1A1, CYP1A2, CYP2B1/2, CYP2C6, CYP3A1, and CYP3A2 expression in rat S9, whereas it decreased CYP2C11 and CYP2E1 expression. PB-BNF-induced S9 enhanced the micronucleus induction (MI) of benzo[a]pyrene (BaP), cyclophosphamide (CPA), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine hydrochloride (PhIP), which are metabolized by CYP1A1, CYP2C6, and CYP1A2, respectively. In contrast, coumarin and chlorpheniramine showed MI with PB-BNF-induced S9 despite the fact that they show negative results in the in vivo studies. Furthermore, diclofenac, piroxicam, lansoprazole, and caffeine showed MI regardless of the enzyme induction by PB-BNF, whereas phenacetin did not show MI. These results indicate that PB-BNF-induced rat S9 is effective in detecting the genotoxic potential of promutagens, such as BaP, CPA, and PhIP, but not of coumarin and chlorpheniramine, probably due to the differences in the in vitro and in vivo metabolic profile and its exposure levels of the drugs.
Collapse
Affiliation(s)
- Yuki Kishino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Tomoko Hasegawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Shingo Arakawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Yukari Shibaya
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Takashi Yamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| |
Collapse
|
20
|
de Oliveira Galvão MF, de Oliveira Alves N, Ferreira PA, Caumo S, de Castro Vasconcellos P, Artaxo P, de Souza Hacon S, Roubicek DA, Batistuzzo de Medeiros SR. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:960-970. [PMID: 29031407 DOI: 10.1016/j.envpol.2017.09.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Emissions from burning of biomass in the Amazon region have adverse effects on the environment and human health. Herein, particulate matter (PM) emitted from biomass burning in the Amazon region during two different periods, namely intense and moderate, was investigated. This study focused on: i) organic characterization of nitro- and oxy-polycyclic aromatic hydrocarbons (PAHs); ii) assessment of the excess lifetime cancer risk (LCR); and iii) assessment of the in vitro mutagenic effects of extractable organic matter (EOM). Further, we compared the sensitivity of two mutagenicity tests: Salmonella/microsome test and cytokinesis-block micronucleus (CBMN) with human lung cells. Among the nitro-PAHs, 2-nitrofluoranthene, 7-nitrobenz[a]anthracene, 1-nitropyrene, and 3-nitrofluoranthene showed the highest concentrations, while among oxy-PAHs, 2-metylanthraquinone, benz[a]anthracene-7,12-dione, and 9,10-anthraquinone were the most abundant. The LCR calculated for nitro-PAH exposure during intense biomass burning period showed a major contribution of 6-nitrochrysene to human carcinogenic risk. The EOM from intense period was more mutagenic than that from moderate period for both TA98 and YG1041 Salmonella strains. The number of revertants for YG1041 was 5-50% higher than that for TA98, and the most intense responses were obtained in the absence of metabolic activation, suggesting that nitroaromatic compounds with direct-acting frameshift mutagenic activity are contributing to the DNA damage. Treatment of cells with non-cytotoxic doses of EOM resulted in an increase in micronuclei frequencies. The minimal effective dose showed that Salmonella/microsome test was considerably more sensitive in comparison with CBMN mainly for the intense burning period samples. This was the first study to assess the mutagenicity of EOM associated with PM collected in the Amazon region using Salmonella/microsome test. The presence of compounds with mutagenic effects, particularly nitro- and oxy-PAHs, and LCR values in the range of 10-5 indicate that the population is potentially exposed to an increased risk of DNA damage, mutation, and cancer.
Collapse
Affiliation(s)
| | | | | | - Sofia Caumo
- Chemistry Institute, University of São Paulo, São Paulo, Brazil.
| | | | - Paulo Artaxo
- Physics Institute, University of São Paulo, São Paulo, Brazil.
| | - Sandra de Souza Hacon
- National School of Public Health at Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
21
|
Liu Q, Lei Z, Zhu F, Ihsan A, Wang X, Yuan Z. A Novel Strategy to Predict Carcinogenicity of Antiparasitics Based on a Combination of DNA Lesions and Bacterial Mutagenicity Tests. Front Public Health 2017; 5:288. [PMID: 29170735 PMCID: PMC5684118 DOI: 10.3389/fpubh.2017.00288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Genotoxicity and carcinogenicity testing of pharmaceuticals prior to commercialization is requested by regulatory agencies. The bacterial mutagenicity test was considered having the highest accuracy of carcinogenic prediction. However, some evidences suggest that it always results in false-positive responses when the bacterial mutagenicity test is used to predict carcinogenicity. Along with major changes made to the International Committee on Harmonization guidance on genotoxicity testing [S2 (R1)], the old data (especially the cytotgenetic data) may not meet current guidelines. This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity of 136 antiparasitics. Neither genotoxicity nor carcinogenicity data is available for 84 (61.8%), while 52 (38.2%) have been evaluated in at least one genotoxicity or carcinogenicity study, and only 20 (14.7%) in both genotoxicity and carcinogenicity studies. Among 33 antiparasitics with at least one old result in in vitro genotoxicity, 15 (45.5%) are in agreement with the current ICH S2 (R1) guidance for data acceptance. Compared with other genotoxicity assays, the DNA lesions can significantly increase the accuracy of prediction of carcinogenicity. Together, a combination of DNA lesion and bacterial tests is a more accurate way to predict carcinogenicity.
Collapse
Affiliation(s)
- Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Feng Zhu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
22
|
Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Simanek V, Liu L. Carcinogenic potential of sanguinarine, a phytochemical used in 'therapeutic' black salve and mouthwash. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:46-56. [PMID: 29173498 DOI: 10.1016/j.mrrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023]
Abstract
Black salves are escharotic skin cancer therapies in clinical use since the mid 19th century. Sanguinaria canadensis, a major ingredient of black salve formulations, contains a number of bioactive phytochemicals including the alkaloid sanguinarine. Despite its prolonged history of clinical use, conflicting experimental results have prevented the carcinogenic potential of sanguinarine from being definitively determined. Sanguinarine has a molecular structure similar to known polyaromatic hydrocarbon carcinogens and is a DNA intercalator. Sanguinarine also generates oxidative and endoplasmic reticulum stress resulting in the unfolded protein response and the formation of 8-hydroxyguanine genetic lesions. Sanguinarine has been the subject of contradictory in vitro and in vivo genotoxicity and murine carcinogenesis test results that have delayed its carcinogenic classification. Despite this, epidemiological studies have linked mouthwash that contains sanguinarine with the development of oral leukoplakia. Sanguinarine is also proposed as an aetiological agent in gallbladder carcinoma. This literature review investigates the carcinogenic potential of sanguinarine. Reasons for contradictory genotoxicity and carcinogenesis results are explored, knowledge gaps identified and a strategy for determining the carcinogenic potential of sanguinarine especialy relating to black salve are discussed. As patients continue to apply black salve, especially to skin regions suffering from field cancerization and skin malignancies, an understanding of the genotoxic and carcinogenic potential of sanguinarine is of urgent clinical relevance.
Collapse
Affiliation(s)
- Andrew Croaker
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia; Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - John H Pyne
- School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Shailendra Anoopkumar-Dukie
- Quality Use of Medicines Network, Queensland, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.
| |
Collapse
|
23
|
Galloway SM. International regulatory requirements for genotoxicity testing for pharmaceuticals used in human medicine, and their impurities and metabolites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:296-324. [PMID: 28299826 DOI: 10.1002/em.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The process of developing international (ICH) guidelines is described, and the main guidelines reviewed are the ICH S2(R1) guideline that includes the genotoxicity test battery for human pharmaceuticals, and the ICH M7 guideline for assessing and limiting potentially mutagenic impurities and degradation products in drugs. Key aspects of the guidelines are reviewed in the context of drug development, for example the incorporation of genotoxicity assessment into non-clinical toxicity studies, and ways to develop and assess weight of evidence. In both guidelines, the existence of "thresholds" or non-linear dose responses for genotoxicity plays a part in the strategies. Differences in ICH S2(R1) protocol recommendations from OECD guidelines are highlighted and rationales explained. The use of genotoxicity data during clinical development and in assessment of carcinogenic potential is also described. There are no international guidelines on assessment of potentially genotoxic metabolites, but some approaches to safety assessment are discussed for these. Environ. Mol. Mutagen. 58:296-324, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
24
|
Current nonclinical testing paradigms in support of safe clinical trials: An IQ Consortium DruSafe perspective. Regul Toxicol Pharmacol 2017; 87 Suppl 3:S1-S15. [PMID: 28483710 DOI: 10.1016/j.yrtph.2017.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The transition from nonclinical to First-in-Human (FIH) testing is one of the most challenging steps in drug development. In response to serious outcomes in a recent Phase 1 trial (sponsored by Bial), IQ Consortium/DruSafe member companies reviewed their nonclinical approach to progress small molecules safely to FIH trials. As a common practice, safety evaluation begins with target selection and continues through iterative in silico and in vitro screening to identify molecules with increased probability of acceptable in vivo safety profiles. High attrition routinely occurs during this phase. In vivo exploratory and pivotal FIH-enabling toxicity studies are then conducted to identify molecules with a favorable benefit-risk profile for humans. The recent serious incident has reemphasized the importance of nonclinical testing plans that are customized to the target, the molecule, and the intended clinical plan. Despite the challenges and inherent risks of transitioning from nonclinical to clinical testing, Phase 1 studies have a remarkably good safety record. Given the rapid scientific evolution of safety evaluation, testing paradigms and regulatory guidance must evolve with emerging science. The authors posit that the practices described herein, together with science-based risk assessment and management, support safe FIH trials while advancing development of important new medicines.
Collapse
|
25
|
Abstract
A number of drugs have been withdrawn from the market or severely restricted in their use because of unexpected toxicities that become apparent only after the launch of new drug entities. Circumstantial evidence suggests that, in most cases, reactive metabolites are responsible for these unexpected toxicities. In this review, a general overview of the types of reactive metabolites and the consequences of their formation are presented. The current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these procedures will be discussed. Reasonable reasons for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive-metabolite assessments when nominating drug candidates for development. This will, in turn, help us to design and bring safer drugs to the market.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology; College of Pharmacy; King Saud University; Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Aydιn A, Aktay G, Yesilada E. A Guidance Manual for the Toxicity Assessment of Traditional Herbal Medicines. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herbal remedies have been used for thousands of years in worldwide traditional medicines for their potential health benefits. Although they are generally presumed safe unless a significant risk has been identified in humans, increasing number of case reports notify acute or chronic intoxications resulting from their use. This study aims to produce a scientific guide for the evaluation of traditional herbal medicines (THMs) in terms of their toxicity risks based on the published regulatory documents. For this purpose recommended in vitro and in vivo toxicity tests on medicinal products for human use issued by the international regulatory bodies are overviewed and they are then adopted to be used for the toxicity assessment of THMs. Accordingly, based on compilation of these issued regulations, the following tests are recommended for the toxicity assessment of THMs; in vitro cytotoxicity, genotoxicity, acute and repeated dose toxicity, carcinogenicity, reproductive and developmental toxicity, local tolerance tests, toxicokinetic studies, and additional toxicity tests including safety pharmacology, immunotoxicity and antigenicity, endocrine system toxicity, gastro-intestinal toxicity, renal and hepatotoxicity, and drug interaction studies. This study describes and discusses the applicability of these tests for the risk assessment in THMs.
Collapse
Affiliation(s)
- Ahmet Aydιn
- Yeditepe University, Faculty of Pharmacy, Dept. Toxicology, Atasehir, 34755 Istanbul, Turkey
| | - Göknur Aktay
- Inönü University, Faculty of Pharmacy, Dept. Pharmacology, Malatya, Turkey
| | - Erdem Yesilada
- Yeditepe University, Faculty of Pharmacy, Dept. Pharmacognosy, Atasehir, 34755 Istanbul, Turkey
| |
Collapse
|
27
|
Cohen SM, Arnold LL. Critical role of toxicologic pathology in a short-term screen for carcinogenicity. J Toxicol Pathol 2016; 29:215-227. [PMID: 27821906 PMCID: PMC5097964 DOI: 10.1293/tox.2016-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
Carcinogenic potential of chemicals is currently evaluated using a two year bioassay in rodents. Numerous difficulties are known for this assay, most notably, the lack of information regarding detailed dose response and human relevance of any positive findings. A screen for carcinogenic activity has been proposed based on a 90 day screening assay. Chemicals are first evaluated for proliferative activity in various tissues. If negative, lack of carcinogenic activity can be concluded. If positive, additional evaluation for DNA reactivity, immunosuppression, and estrogenic activity are evaluated. If these are negative, additional efforts are made to determine specific modes of action in the animal model, with a detailed evaluation of the potential relevance to humans. Applications of this approach are presented for liver and urinary bladder. Toxicologic pathology is critical for all of these evaluations, including a detailed histopathologic evaluation of the 90 day assay, immunohistochemical analyses for labeling index, and involvement in a detailed mode of action analysis. Additionally, the toxicologic pathologist needs to be involved with molecular evaluations and evaluations of new molecularly developed animal models. The toxicologic pathologist is uniquely qualified to provide the expertise needed for these evaluations.
Collapse
Affiliation(s)
- Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| |
Collapse
|
28
|
Dambach DM, Misner D, Brock M, Fullerton A, Proctor W, Maher J, Lee D, Ford K, Diaz D. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making. Chem Res Toxicol 2015; 29:452-72. [DOI: 10.1021/acs.chemrestox.5b00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donna M. Dambach
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dinah Misner
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Aaron Fullerton
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - William Proctor
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dong Lee
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Kevin Ford
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dolores Diaz
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| |
Collapse
|
29
|
Zhang SH, Miao DY, Tan L, Liu AL, Lu WQ. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umuassay. Mutagenesis 2015; 31:35-41. [DOI: 10.1093/mutage/gev053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
30
|
MacGregor JT, Frötschl R, White PA, Crump KS, Eastmond DA, Fukushima S, Guérard M, Hayashi M, Soeteman-Hernández LG, Johnson GE, Kasamatsu T, Levy DD, Morita T, Müller L, Schoeny R, Schuler MJ, Thybaud V. IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:66-78. [PMID: 25953401 DOI: 10.1016/j.mrgentox.2014.10.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 11/26/2022]
Abstract
This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.
Collapse
Affiliation(s)
| | - Roland Frötschl
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | | | | | | | | | - Melanie Guérard
- F. Hoffmann-La Roche Ltd., Pharmaceutical Science and Early Development Innovation Center, Basel, Switzerland
| | - Makoto Hayashi
- Public Interest Incorporated Foundation BioSafety Research Center, Iwata, Shizuoka, Japan
| | | | - George E Johnson
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | | | - Dan D Levy
- U.S. Food and Drug Administration, College Park, MD, USA
| | | | - Lutz Müller
- F. Hoffmann-La Roche Ltd., Pharmaceutical Science and Early Development Innovation Center, Basel, Switzerland
| | - Rita Schoeny
- U.S. Environmental Protection Agency, Washington, DC, USA
| | | | | |
Collapse
|
31
|
Abstract
Nonclinical safety pharmacology and toxicology testing of drug candidates assess the potential adverse effects caused by the drug in relation to its intended use in humans. Hazards related to a drug have to be identified and the potential risks at the intended exposure have to be evaluated in comparison to the potential benefit of the drug. Preclinical safety is thus an integral part of drug discovery and drug development. It still causes significant attrition during drug development.Therefore, there is a need for smart selection of drug candidates in drug discovery including screening of important safety endpoints. In the recent years,there was significant progress in computational and in vitro technology allowing in silico assessment as well as high-throughput screening of some endpoints at very early stages of discovery. Despite all this progress, in vivo evaluation of drug candidates is still an important part to safety testing. The chapter provides an overview on the most important areas of nonclinical safety screening during drug discovery of small molecules.
Collapse
|
32
|
Johnson GE, Slob W, Doak SH, Fellows MD, Gollapudi BB, Heflich RH, Rees BJ, Soeteman-Hernández LG, Verma JR, Wills JW, Jenkins GJS, White PA. New approaches to advance the use of genetic toxicology analyses for human health risk assessment. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00118d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic toxicology testing has a crucial role in the safety assessment of substances of societal value by reducing human exposure to potential somatic and germ cell mutagens.
Collapse
Affiliation(s)
- George E. Johnson
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Wout Slob
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Shareen H. Doak
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | | | | | - Robert H. Heflich
- National Centre for Toxicological Research
- U.S. Food and Drug Administration
- Jefferson
- USA
| | - Ben J. Rees
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Lya G. Soeteman-Hernández
- Center for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- Netherlands
| | - Jatin R. Verma
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - John W. Wills
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | | | - Paul A. White
- Environmental Health Sciences and Research Bureau
- Healthy Environments and Consumer Safety Branch
- Health Canada
- Ottawa
- Canada
| |
Collapse
|
33
|
Ware MJ, Godin B, Singh N, Majithia R, Shamsudeen S, Serda RE, Meissner KE, Rees P, Summers HD. Analysis of the influence of cell heterogeneity on nanoparticle dose response. ACS NANO 2014; 8:6693-700. [PMID: 24923782 PMCID: PMC4216222 DOI: 10.1021/nn502356f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/12/2014] [Indexed: 05/22/2023]
Abstract
Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure–response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle–cell interaction dynamics and accurately predicts the population exposure–response curves from individual cell heterogeneity distributions.
Collapse
Affiliation(s)
- Matthew J. Ware
- Centre for Nanohealth, College of Engineering and College of Medicine, Swansea University, Swansea SA2 8PP, U.K.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Neenu Singh
- Centre for Nanohealth, College of Engineering and College of Medicine, Swansea University, Swansea SA2 8PP, U.K.
| | - Ravish Majithia
- Department of Surgery, Baylor College of Medicine, 6501 Fannin Street, Houston, Texas 77030, United States
| | - Sabeel Shamsudeen
- Centre for Nanohealth, College of Engineering and College of Medicine, Swansea University, Swansea SA2 8PP, U.K.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Rita E. Serda
- Centre for Nanohealth, College of Engineering and College of Medicine, Swansea University, Swansea SA2 8PP, U.K.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Surgery, Baylor College of Medicine, 6501 Fannin Street, Houston, Texas 77030, United States
| | - Kenith E. Meissner
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Paul Rees
- Centre for Nanohealth, College of Engineering and College of Medicine, Swansea University, Swansea SA2 8PP, U.K.
- Broad Institute of MIT and Harvard, Cambridge, Boston, Massachusetts 02148, United States
| | - Huw D. Summers
- Centre for Nanohealth, College of Engineering and College of Medicine, Swansea University, Swansea SA2 8PP, U.K.
- Address correspondence to
| |
Collapse
|
34
|
Berthelot-Ricou A, Perrin J, Orsière T, Aye M, Roustan A, Botta A, Courbiere B. [Genotoxicity risk assessment and oocytes: basis of genetic toxicology and application in reproductive science]. ACTA ACUST UNITED AC 2013; 41:544-7. [PMID: 23972924 DOI: 10.1016/j.gyobfe.2013.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/09/2013] [Indexed: 12/22/2022]
Abstract
The aim of genotoxicity tests in germ cells is to assess the impact of exposure to environmental mutagens that may represent a risk for the fertility or for the offspring of exposed subject. The comet assay on mature mouse oocytes is a simple, reproductive and rapid test to study primary DNA damage in oocytes. This test is used to complete toxicology assays applied in first line to somatic cells, and could find many applications in reproductive toxicology to study impact of environmental factors on female germ cells. We describe a practical application of comet assay in reproductive biology to assess the genotoxicity of cryoprotectants used at high concentrations in oocyte vitrification protocols. This test allowed us to demonstrate that dimethylsulfoxide and ethylene glycol are non-genotoxic for the mouse oocytes and led us to hypothesize a genotoxic effect of 1,2-propanediol (PrOH) at high concentrations after having observed induction of significant DNA damage on CHO cell line and on mouse oocytes.
Collapse
Affiliation(s)
- A Berthelot-Ricou
- FR CNRS 3098, ECCOREV, UMR CNRS 7263 AMU, IMBE, biogénotoxicologie, santé humaine & environnement, faculté de médecine, Aix-Marseille université, 27, boulevard Jean-Moulin, 13005 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Hwang YH, Ha H, Ma JY. Acute oral toxicity and genotoxicity of Dryopteris crassirhizoma. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:133-139. [PMID: 23773828 DOI: 10.1016/j.jep.2013.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/24/2013] [Accepted: 06/01/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dryopteris crassirhizoma has been traditionally used for the treatment of tapeworm infestation, the common cold and cancer in Korea, China and Japan. Despite various pharmacological properties of Dryopteris crassirhizoma, there is no available information about the safety of Dryopteris crassirhizoma. AIM OF THIS STUDY To ensure more information about the safety of Dryopteris crassirhizoma, we performed the acute oral toxicity and genotoxicity tests of Dryopteris crassirhizoma. MATERIALS AND METHODS The acute oral toxicity test of Dryopteris crassirhizoma was performed in rats. Genotoxicity of Dryopteris crassirhizoma was evaluated by bacterial reverse mutation, chromosomal aberration and bone marrow micronucleus tests. RESULTS In acute toxicity test, Dryopteris crassirhizoma exhibited no mortality, body weight and behavioral changes and adverse effects in male and female rats. Dryopteris crassirhizoma did not significantly increase the number of the bacterial revertant and chromosomal aberration in both in vitro assays. Moreover, the Dryopteris crassirhizoma-related increases of micronucleated polychromatic erythrocytes (MNPCE) in mouse bone marrow were not observed. CONCLUSION Therefore, Dryopteris crassirhizoma is non-genotoxic in a three standard battery of tests and the oral LD50 of Dryopteris crassirhizoma is >2000 mg/kg.
Collapse
Affiliation(s)
- Youn-Hwan Hwang
- KM-Based Herbal Drug Research Group, Korea Institute of Oriental Medicine, Daejeon 305-811, South Korea
| | | | | |
Collapse
|
36
|
Brambilla G, Mattioli F, Robbiano L, Martelli A. Genotoxicity and carcinogenicity studies of bronchodilators and antiasthma drugs. Basic Clin Pharmacol Toxicol 2013; 112:302-13. [PMID: 23374861 DOI: 10.1111/bcpt.12054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/02/2013] [Indexed: 11/30/2022]
Abstract
This survey is a compendium of genotoxicity and carcinogenicity information of bronchodilators and antiasthma drugs. Data from 46 marketed drugs were collected. Of these 46 drugs, 25 (54.3%) did not have retrievable genotoxicity or carcinogenicity data. The remaining 21 (45.7%) had at least one genotoxicity or carcinogenicity test result. Of these 21 drugs, 10 had at least one positive finding: three tested positive in at least one genotoxicity assay, eight in at least one carcinogenicity assay, and one of them gave positive results in both genotoxicity assay and carcinogenicity assay. Concerning the predictivity of genetic toxicology findings for the result(s) of long-term carcinogenesis assays, 15 drugs had both genotoxicity and carcinogenicity data: seven of them (46.6%) were neither genotoxic nor carcinogenic, 6 (40.0%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, 1 (6.7%) tested positive in genotoxicity assay but was non-carcinogenic, and 1 (6.7%) gave positive responses in both genotoxicity and carcinogenicity assay. Only 11 (23.9%) of the 46 drugs considered had all data required by current guidelines for testing of pharmaceuticals, but a large fraction of them were developed and marketed prior to the present regulatory climate.
Collapse
Affiliation(s)
- Giovanni Brambilla
- Department of Internal Medicine, Division of Clinical Pharmacology and Toxicology, University of Genoa, Genoa, Italy.
| | | | | | | |
Collapse
|
37
|
Gollapudi BB, Johnson GE, Hernandez LG, Pottenger LH, Dearfield KL, Jeffrey AM, Julien E, Kim JH, Lovell DP, Macgregor JT, Moore MM, van Benthem J, White PA, Zeiger E, Thybaud V. Quantitative approaches for assessing dose-response relationships in genetic toxicology studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:8-18. [PMID: 22987251 DOI: 10.1002/em.21727] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Genetic toxicology studies are required for the safety assessment of chemicals. Data from these studies have historically been interpreted in a qualitative, dichotomous "yes" or "no" manner without analysis of dose-response relationships. This article is based upon the work of an international multi-sector group that examined how quantitative dose-response relationships for in vitro and in vivo genetic toxicology data might be used to improve human risk assessment. The group examined three quantitative approaches for analyzing dose-response curves and deriving point-of-departure (POD) metrics (i.e., the no-observed-genotoxic-effect-level (NOGEL), the threshold effect level (Td), and the benchmark dose (BMD)), using data for the induction of micronuclei and gene mutations by methyl methanesulfonate or ethyl methanesulfonate in vitro and in vivo. These results suggest that the POD descriptors obtained using the different approaches are within the same order of magnitude, with more variability observed for the in vivo assays. The different approaches were found to be complementary as each has advantages and limitations. The results further indicate that the lower confidence limit of a benchmark response rate of 10% (BMDL(10) ) could be considered a satisfactory POD when analyzing genotoxicity data using the BMD approach. The models described permit the identification of POD values that could be combined with mode of action analysis to determine whether exposure(s) below a particular level constitutes a significant human risk. Subsequent analyses will expand the number of substances and endpoints investigated, and continue to evaluate the utility of quantitative approaches for analysis of genetic toxicity dose-response data.
Collapse
|
38
|
The Evolution, Scientific Reasoning and Use of ICH S2 Guidelines for Genotoxicity Testing of Pharmaceuticals. GLOBAL APPROACH IN SAFETY TESTING 2013. [DOI: 10.1007/978-1-4614-5950-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
39
|
Valant J, Iavicoli I, Drobne D. The importance of a validated standard methodology to define in vitro toxicity of nano-TiO2. PROTOPLASMA 2012; 249:493-502. [PMID: 21932125 DOI: 10.1007/s00709-011-0320-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Several in vitro studies on the potential toxicity of nano-TiO(2) have been published and recent reviews have summarised them. Most of these reports concluded that physicochemical properties of nanoparticles are fundamental to their toxicological effects. No published review has compared in vitro tests with similar test strategies in terms of exposure duration and measured endpoints and for this reason we have attempted to assess the degree of homogeneity among in vitro tests and to assess if they afford reliable data to support risk assessment. The responses in different in vitro tests appeared to be unrelated to primary particle size. The biologically effective concentrations in different tests can be seen to differ by as many as two orders of magnitude and such differences could be explained either by different sensitivities of cell lines to nanoparticles or by effect of the test media. Our review indicates that even when the in vitro tests measure the same biomarkers with the same exposure duration and known primary particle sizes, it is insufficient merely to use such data for risk assessment. In the future, validated standard methods should include a limited number of cell lines and an obligatory selection of biomarkers. For routine purposes, it is important that assays can be easily conducted, false negatives and false positives are excluded and unbiased interpretation of results is provided. Papers published to date provide an understanding of the mode on nano-TiO(2) action but are not suitable for assessment and management of risk.
Collapse
Affiliation(s)
- Janez Valant
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | | | | |
Collapse
|
40
|
Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes. Arch Toxicol 2012; 86:1717-27. [PMID: 22710402 DOI: 10.1007/s00204-012-0883-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Under REACH, the European Community Regulation on chemicals, the testing strategy for carcinogenicity is based on in vitro and in vivo genotoxicity assays. Given that non-genotoxic carcinogens are negative for genotoxicity and chronic bioassays are no longer regularly performed, this class of carcinogens will go undetected. Therefore, test systems detecting non-genotoxic carcinogens, or even better their modes of action, are required. Here, we investigated whether gene expression profiling in primary hepatocytes can be used to distinguish different modes of action of non-genotoxic carcinogens. For this, primary mouse hepatocytes were exposed to 16 non-genotoxic carcinogens with diverse modes of action. Upon profiling, pathway analysis was performed to obtain insight into the biological relevance of the observed changes in gene expression. Subsequently, both a supervised and an unsupervised comparison approach were applied to recognize the modes of action at the transcriptomic level. These analyses resulted in the detection of three of eight compound classes, that is, peroxisome proliferators, metalloids and skin tumor promotors. In conclusion, gene expression profiles in primary hepatocytes, at least in rodent hepatocytes, appear to be useful to detect some, certainly not all, modes of action of non-genotoxic carcinogens.
Collapse
|
41
|
Zwart EP, Schaap MM, van den Dungen MW, Braakhuis HM, White PA, van Steeg H, van Benthem J, Luijten M. Proliferating primary hepatocytes from the pUR288 lacZ plasmid mouse are valuable tools for genotoxicity assessment in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:1-8. [PMID: 22619112 DOI: 10.1002/em.21700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 06/01/2023]
Abstract
Safety assessments of substances with regard to genotoxicity are generally based on a combination of in vitro and in vivo tests. These tests are performed according to a (tiered) test strategy whereby a positive result in vitro usually triggers further testing in vivo. A low specificity and high frequency of irrelevant positive results associated with most in vitro mammalian cell genotoxicity assays necessitates the design and validation of suitable alternatives. As such, we examined the feasibility of culturing primary hepatocytes from the pUR288 lacZ reporter mouse, and moreover, using established cultures to reliably assess genotoxic activity in vitro. Initial studies characterizing the metabolic capacity of proliferating lacZ primary hepatocytes indicated that these cells retained at least some activities important for xenobiotic metabolism: cytochrome P450 1A1 enzyme activities were markedly increased in the hepatocytes after exposure to benzo[a]pyrene, and also UDP-glucuronosyl transferase and glutathione-S-transferase activities, both Phase II enzymes, were detected. Increasing levels of phosphorylated p53 at residue serine 389 after ultraviolet treatment indicated a properly functioning p53, one of the criteria for an effective new test system. Four genotoxic substances with different mechanisms of genotoxicity, i.e., benzo[a]pyrene, bleomycin, etoposide, and cyclophosphamide, were tested in the lacZ rescue assay. For etoposide and cyclophosphamide, the induction of mutant colonies was rather low. Exposure to benzo[a]pyrene and bleomycin, however, yielded a clear concentration-dependent induction of the lacZ mutant frequency. Based on our preliminary observations, proliferating lacZ primary hepatocytes are a promising new tool for the assessment of genotoxic hazard.
Collapse
Affiliation(s)
- Edwin P Zwart
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Brambilla G, Mattioli F, Robbiano L, Martelli A. Studies on genotoxicity and carcinogenicity of antibacterial, antiviral, antimalarial and antifungal drugs. Mutagenesis 2012; 27:387-413. [PMID: 22228823 DOI: 10.1093/mutage/ger094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity studies performed of antibacterial, antiviral, antimalarial and antifungal drugs of long-term or intermittent frequent use. Of the 48 drugs considered, 9 (18.75%) do not have retrievable data, whereas the other 39 (81.25%) have at least one genotoxicity or carcinogenicity tests result. Of these 39 drugs, 24 tested positive in at least one genotoxicity assay and 19 in at least one carcinogenicity assay; 14 of them gave a positive response in both at least one genotoxicity assay and at least one carcinogenicity assay. Concerning the predictivity of genetic toxicology findings for the results of long-term carcinogenesis assays, of 23 drugs with both genotoxicity and carcinogenicity data: 2 (8.7%) were neither genotoxic nor carcinogenic, 2 (8.7%) tested positive in at least one genotoxicity assay but were non-carcinogenic, 4 (17.4%) tested negative in genotoxicity assays but were carcinogenic, and 15 (65.2%) gave a positive response in at least one genotoxicity assay and in at least one carcinogenicity assay. Only 18 (37.5%) of the 48 drugs examined had all data required by present guidelines for testing of pharmaceuticals, but a fraction of them (49%) were developed and marketed prior to the present regulatory climate. In the absence of compelling indications, the prescription of the 19 drugs that are animal carcinogens should be avoided.
Collapse
Affiliation(s)
- Giovanni Brambilla
- Department of Internal Medicine, Division of Clinical Pharmacology and Toxicology, University of Genoa, Viale Benedetto XV, 2, I-16132 Genoa, Italy
| | | | | | | |
Collapse
|
43
|
Kirkland D. Improvements in the reliability ofin vitrogenotoxicity testing. Expert Opin Drug Metab Toxicol 2011; 7:1513-20. [DOI: 10.1517/17425255.2011.627855] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Plattner S, Erb R, Pitterl F, Brouwer HJ, Oberacher H. Formation and characterization of covalent guanosine adducts with electrochemistry-liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:198-204. [PMID: 22000962 PMCID: PMC3284773 DOI: 10.1016/j.jchromb.2011.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/12/2011] [Accepted: 09/27/2011] [Indexed: 01/14/2023]
Abstract
Chemicals can interact with the genetic material giving rise to the formation of covalent adducts. These alterations can lead to adverse consequences, including cancer, reproductive impairment, development anomalies, or genetic diseases. In search for an assay allowing identification of hazardous compounds that might form covalent adducts with nucleic acids, electrochemistry (EC)/liquid chromatography (LC)/mass spectrometry (MS) is presented. EC/LC/MS is a purely instrumental approach. EC is used for oxidative activation, LC for the fractionation of the reaction mixture, and MS for the detection and characterization of the reaction products. To test the system capabilities, we investigated the formation of covalent adducts produced by guanosine and acetaminophen (APAP). Electrochemical activation of mixtures of guanosine and APAP gave rise to the formation of four isomers of (guanosine + APAP-2H). Mass voltammograms as well as dose–response-curves were used to obtain insights in the mechanism of adduct formation. These experiments revealed that a mechanism involving radical intermediates is favored. The initial step of adduct formation is the conversion of both APAP and guanosine into radicals via one-electron–one-proton reactions. Among different competing reaction pathways, the generated radical intermediates undergo intermolecular reactions to form covalent adducts between guanosine and APAP.
Collapse
Affiliation(s)
- Sabine Plattner
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
45
|
A battery of genotoxicity studies with an allergy vaccine adjuvanted with monophosphoryl lipid A (MPL®) for the treatment of grass pollen allergy. J Appl Toxicol 2011; 32:608-16. [DOI: 10.1002/jat.1726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/07/2022]
|
46
|
Strategies in case of positive in vivo results in genotoxicity testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:121-8. [DOI: 10.1016/j.mrgentox.2010.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 01/23/2023]
|
47
|
Summary of major conclusions from the 5th IWGT, Basel, Switzerland, 17–19 August 2009. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:73-6. [DOI: 10.1016/j.mrgentox.2011.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Hayashi M, Dearfield K, Kasper P, Lovell D, Martus HJ, Thybaud V. Compilation and use of genetic toxicity historical control data. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:87-90. [DOI: 10.1016/j.mrgentox.2010.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/29/2010] [Indexed: 10/19/2022]
|
49
|
Breheny D, Oke O, Faux SP. The use of in vitro systems to assess cancer mechanisms and the carcinogenic potential of chemicals. Altern Lab Anim 2011; 39:233-55. [PMID: 21777038 DOI: 10.1177/026119291103900301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Carcinogenesis is a highly complex, multi-stage process that can occur over a relatively long period before its clinical manifestation. While the sequence in which a cancer cell acquires the necessary traits for tumour formation can vary, there are a number of mechanisms that are common to most, if not all, cancers across the spectrum of possible causes. Many aspects of carcinogenesis can be modelled in vitro. This has led to the development of a number of mechanistically driven, cell-based assays to assess the pro-carcinogenic and anti-carcinogenic potential of chemicals. A review is presented of the current in vitro models that can be used to study carcinogenesis, with examples of cigarette smoke testing in some of these models, in order to illustrate their potential applications. We present an overview of the assays used in regulatory genotoxicity testing, as well as those designed to model other aspects that are considered to be hallmarks of cancer. The latter assays are described with a view to demonstrating the recent advances in these areas, to a point where they should now be considered for inclusion in an overall testing strategy for chemical carcinogens.
Collapse
|
50
|
Lynch AM, Sasaki JC, Elespuru R, Jacobson-Kram D, Thybaud V, De Boeck M, Aardema MJ, Aubrecht J, Benz RD, Dertinger SD, Douglas GR, White PA, Escobar PA, Fornace A, Honma M, Naven RT, Rusling JF, Schiestl RH, Walmsley RM, Yamamura E, van Benthem J, Kim JH. New and emerging technologies for genetic toxicity testing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:205-223. [PMID: 20740635 DOI: 10.1002/em.20614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans.
Collapse
|