1
|
Cant A, Bado-Nilles A, Porcher JM, Bolzan D, Prygiel J, Catteau A, Turiès C, Geffard A, Bonnard M. Application of the Fpg-modified comet assay on three-spined stickleback in freshwater biomonitoring: toward a multi-biomarker approach of genotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3357-3373. [PMID: 37989949 DOI: 10.1007/s11356-023-30756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.
Collapse
Affiliation(s)
- Amélie Cant
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Anne Bado-Nilles
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Dorothée Bolzan
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Jean Prygiel
- Agence de L'Eau Artois-Picardie, Centre Tertiaire de L'Arsenal, BP 80818, 59508, Douai Cedex, France
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Cyril Turiès
- Institut National de L'Environnement Industriel Et Des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de La Housse, B.P. 1039, 51687, Reims, France.
| |
Collapse
|
2
|
Bony S, Labeille M, Lefrancois E, Noury P, Olivier JM, Santos R, Teichert N, Besnard A, Devaux A. The goby fish Sicydium spp. as valuable sentinel species towards the chemical stress in freshwater bodies of West Indies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106623. [PMID: 37429095 DOI: 10.1016/j.aquatox.2023.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Implementation of the European Water Framework Directive in tropical areas such as the French West Indies (FWI) requires to select relevant aquatic sentinel species for investigating the ecological status of surface waters. The present work aimed to study the biological response of the widespread fish Sicydium spp. towards river chemical quality in Guadeloupe island through a set of proper biomarkers. During a 2-year survey, the hepatic EROD activity, the micronucleus formation and the level of primary DNA strand breaks in erythrocytes were measured respectively as an enzymatic biomarker of exposure and genotoxicity endpoints in fish living upstream and downstream of two chemically-contrasted rivers. Hepatic EROD activity was shown to be variable along the time but always significantly higher in fish from the most contaminated river (Rivière aux Herbes) compared to the low contaminated one (Grande Rivière de Vieux-Habitants). Fish size did not influence EROD activity. Female fish exhibited a lower EROD activity compared to males depending on the catching period. We observed significant temporal variation in micronucleus frequency and primary DNA damage level measured in fish erythrocytes that did not depend on the fish size. Micronucleus frequency and to a lesser extent DNA damage were significantly higher in fish from the Rivière aux Herbes compared to the Grande Rivière de Vieux-Habitants. Our results argue for the interest of using Sicydium spp. as sentinel species to assess river quality and chemical pressures in FWI.
Collapse
Affiliation(s)
- S Bony
- Univ Lyon, Université Claude Bernard Lyon 1, ENTPE, CNRS, INRAE, USC 1369, UMR 5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - M Labeille
- Sentinelle Lab, F-97125 Bouillante, France
| | | | - P Noury
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - J M Olivier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - R Santos
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69616 Villeurbanne, France
| | - N Teichert
- UMR 7208 BOREA, MNHN, CNRS, IRD, SU, UCN, UA, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France
| | - A Besnard
- CEFE, Université Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - A Devaux
- Univ Lyon, Université Claude Bernard Lyon 1, ENTPE, CNRS, INRAE, USC 1369, UMR 5023 LEHNA, F-69518 Vaulx-en-Velin, France.
| |
Collapse
|
3
|
Baines C, Meitern R, Kreitsberg R, Fort J, Scharsack JP, Nogueira P, Giraudeau M, Sepp T. Correlations between oxidative DNA damage and formation of hepatic tumours in two flatfish species from contaminated environments. Biol Lett 2023; 19:20220583. [PMID: 37254521 PMCID: PMC10230182 DOI: 10.1098/rsbl.2022.0583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Many species in aquatic environments face increased exposure to oncogenic pollution due to anthropogenic environmental change which can lead to higher cancer prevalence. The mechanistic relationship connecting environmental pollution and cancer is multi-factorial and poorly understood, and the specific mechanisms are so far still uncharacterized. One potential mediator between pollutant exposure and cancer is oxidative damage to DNA. We conducted a study in the field with two flatfish species, European flounder (Platichthys flesus L.) and common dab (Limanda limanda L.) with overlapping distribution and similar ecological niche, to investigate if the link between oncogenic pollutants and cancer described in ecotoxicological literature could be mediated by oxidative DNA damage. This was not the case for flounders as neither polycyclic aromatic hydrocarbon (PAH) bile metabolites nor metallic trace element concentrations were related to oxidative DNA damage measurements. However, dabs with higher PAH concentrations did exhibit increased oxidative damage. High oxidative DNA damage also did not predict neoplasm occurrence, rather, healthy individuals tended to have higher oxidative damage measurements compared to fishes with pre-neoplastic tumours. Our analyses showed that flounders had lower concentrations of PAH bile metabolites, suggesting that compared to dab this species is less exposed or better at eliminating these contaminants.
Collapse
Affiliation(s)
- Ciara Baines
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Harju County, Estonia
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Randel Kreitsberg
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jörn Peter Scharsack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Pedro Nogueira
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
4
|
Yasui GS, Ferreira do Nascimento N, Pereira-Santos M, dos Santos Silva AP, Coelho GCZ, Visintin JA, Porto-Foresti F, Okada Nakaghi LS, Vianna NC, Carvalho GB, Monzani PS, López LS, Senhorini JA. Establishing a model fish for the Neotropical region: The case of the yellowtail tetra Astyanax altiparanae in advanced biotechnology. Front Genet 2022; 13:903990. [PMID: 36531235 PMCID: PMC9749136 DOI: 10.3389/fgene.2022.903990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2023] Open
Abstract
The use of model organisms is important for basic and applied sciences. Several laboratory species of fishes are used to develop advanced technologies, such as the zebrafish (Danio rerio), the medaka (Oryzias latipes), and loach species (Misgurnus spp.). However, the application of these exotic species in the Neotropical region is limited due to differences in environmental conditions and phylogenetic distances. This situation emphasizes the establishment of a model organism specifically for the Neotropical region with the development of techniques that may be applicable to other Neotropical fish species. In this work, the previous research efforts are described in order to establish the yellowtail tetra Astyanax altiparanae as a model laboratory species for both laboratory and aquaculture purposes. Over the last decade, starting with artificial fertilization, the yellowtail tetra has become a laboratory organism for advanced biotechnology, such as germ cell transplantation, chromosome set manipulation, and other technologies, with applications in aquaculture and conservation of genetic resources. Nowadays, the yellowtail tetra is considered the most advanced fish with respect to fish biotechnology within the Neotropical region. The techniques developed for this species are being used in other related species, especially within the characins class.
Collapse
Affiliation(s)
- George Shigueki Yasui
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
- Peixetec Biotecnologia Em Organismos Aquáticos LTDA, São Paulo, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | | | - Matheus Pereira-Santos
- Federal Rural University of Rio de Janeiro, Animal Science Graduate Program, Seropédica, Brazil
| | - Amanda Pereira dos Santos Silva
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - Geovanna Carla Zacheo Coelho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - José Antônio Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Fábio Porto-Foresti
- Department of Biological Sciences, São Paulo State University, São Paulo, Brazil
| | | | | | - Gabriela Braga Carvalho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - Lucia Suárez López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| | - José Augusto Senhorini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Brasília, Brazil
- Peixetec Biotecnologia Em Organismos Aquáticos LTDA, São Paulo, Brazil
- Graduate Course of Biological Sciences (Zoology), São Paulo State University, São Paulo, Brazil
| |
Collapse
|
5
|
Integration of Genotoxic Biomarkers in Environmental Biomonitoring Analysis Using a Multi-Biomarker Approach in Three-Spined Stickleback (Gasterosteus aculeatus Linnaeus, 1758). TOXICS 2022; 10:toxics10030101. [PMID: 35324726 PMCID: PMC8950626 DOI: 10.3390/toxics10030101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Water is impacted by a variety of increasing pressures, such as contaminants, including genotoxic pollutants. The proposed multi-biomarker approach at a sub-individual level gives a complementary indicator to the chemical and ecological parameters of the Water Framework Directive (WFD, 2000/60/EC). By integrating biomarkers of genotoxicity and erythrocyte necrosis in the sentinel fish species the three-spined stickleback (Gasterosteus aculeatus) through active biomonitoring of six stations of the Artois-Picardie watershed, north France, our work aimed to improve the already existing biomarker approach. Even if fish in all stations had high levels of DNA strand breaks, the multivariate analysis (PCA), followed by hierarchical agglomerative clustering (HAC), improved discrimination among stations by detecting an increase of nuclear DNA content variation (Etaing, St Rémy du Nord, Artres and Biache-St-Vaast) and erythrocyte necrosis (Etaing, St Rémy du Nord). The present work highlighted that the integration of these biomarkers of genotoxicity in a multi-biomarker approach is appropriate to expand physiological parameters which allow the targeting of new potential effects of contaminants.
Collapse
|
6
|
Ahmadi A, Moore F, Keshavarzi B, Soltani N, Sorooshian A. Potentially toxic elements and microplastics in muscle tissues of different marine species from the Persian Gulf: Levels, associated risks, and trophic transfer. MARINE POLLUTION BULLETIN 2022; 175:113283. [PMID: 35101745 DOI: 10.1016/j.marpolbul.2021.113283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Selected potentially toxic elements (PTEs), including As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, and Zn, along with microplastic particles (MPs) were characterized in the muscle of seafood species in order to study potential health risk and also investigate biomagnification of the contaminants. The results revealed high levels of the analyzed PTEs and MPs in crustaceans. The cancer risk among the consumer population (adult and children) posed by As is higher than the acceptable lifetime risk of 10-4. Portunus plagicus and Platycephalus indicus had the highest and lowest amount of MP particles in their muscles, respectively, among investigated species. Finally, PTEs (except Hg) and MPs are not biomagnified in the collected species. The results of this research emphasize the importance of accounting for health risks posed by potential pollutants via consumption of contaminated seafood.
Collapse
Affiliation(s)
- Azam Ahmadi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran.
| | - Naghmeh Soltani
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Silva DDS, Gonçalves B, Rodrigues CC, Dias FC, Trigueiro NSDS, Moreira IS, de Melo E Silva D, Sabóia-Morais SMT, Gomes T, Rocha TL. A multibiomarker approach in the caged neotropical fish to assess the environment health in a river of central Brazilian Cerrado. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141632. [PMID: 32889457 DOI: 10.1016/j.scitotenv.2020.141632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Water safety is a world-wide concern and several efforts have been made in order to ensure the conservation of aquatic ecosystems. Water quality monitoring must be performed with an integrated approach using biomonitor organisms allied to water parameters. Nonetheless, very few studies have focused on biomarker responses in neotropical fish, especially in the freshwater ecosystem of Brazilian Cerrado savanna. In present study, the active biomonitoring of the João Leite river (central Brazilian Cerrado river) was performed through the evaluation of biomarker responses in caged Astyanax lacustris in combination with land use classification and analysis of water parameters. Caged fish were exposed for seven days at four sites along the river and two control groups were kept in a tank under controlled conditions. Results showed that pasture was the predominant land use in the João Leite river basin (54.07%), followed by natural vegetation (34.92%) and other kind of land use (11.01%). Water analyses showed metal concentrations (Mn and Fe) above the maximum allowed by Brazilian regulation, with particularly higher concentrations at Site 2 (near to pasture area). Biomarker responses did not show significant differences for somatic and mutagenic biomarkers between sites. However, the comet assay showed high DNA damage at Sites 2 and 3, indicating genotoxic effects in caged fish at pasture areas. Histopathological analysis showed highest frequency of leukocyte infiltration in liver of fish from Site 2, confirming the ecotoxic effects on A. lacustris in streams impacted by grazing activities. DNA damage and leukocyte infiltration in fish hepatic tissues were sensitive biomarkers in the neotropical fish A. lacustris to assess the environment health of the Cerrado river. These results showed the importance of using a multibiomarker approach in environmental risk assessment, especially in areas more at risk from anthropogenic pollution.
Collapse
Affiliation(s)
- Douglas Dos Santos Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Bruno Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Izabella Soares Moreira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behaviour, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
8
|
D'Agostini F, La Maestra S. Micronuclei in Fish Erythrocytes as Genotoxic Biomarkers of Water Pollution: An Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:195-240. [PMID: 34611757 DOI: 10.1007/398_2021_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Freshwater and marine water bodies receive chemical contaminants from industrial, agricultural, urban, and domestic wastes. Eco-genotoxicity assays are useful tools to assess the cumulative genotoxicity of these pollutants. Fish are suitable indicators for biomonitoring of mutagenic and carcinogenic pollution.In this review, we present a complete overview of the studies performed so far using the micronucleus test in peripheral erythrocytes of fish exposed to polluted water. We have listed all the species of fish used and the geographical distribution of the investigations. We have analyzed and discussed all technical aspects of using this test in fish, as well as the advantages and disadvantages of the different experimental protocols. We have reported the results of all studies. This assay has become, for years, one of the simplest, fastest, and most cost-effective for assessing genotoxic risk in aquatic environments. However, there are still several factors influencing the variability of the results. Therefore, we have given indications and suggestions to achieve a standardization of experimental procedures and ensure uniformity of future investigations.
Collapse
|
9
|
Kontaş S, Bostancı D. Genotoxic Effects of Environmental Pollutant Heavy Metals on Alburnus chalcoides (Pisces: Cyprinidae) Inhabiting Lower Melet River (Ordu, Turkey). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:763-769. [PMID: 32356000 DOI: 10.1007/s00128-020-02857-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The lower Melet River is a drinking water source that is surrounded by hazelnut grove, agricultural lands, resulting in the accumulation of genotoxic agents such as mining activities, various domestic and agricultural wastes. Therefore, it receives many domestic and agricultural wastes that contain the genotoxic agent. This study was aimed to assess the heavy metal concentrations in water, sediment, and bioaccumulation in the tissues of Alburnus chalcoides. Comet assay and micronucleus test were used to evaluate the genotoxic effects on the blood cells of A. chalcoides. The concentrations of heavy metals and metalloid in the water, in the sediments and in the muscle of fish were in the order of Fe > Al > Mn > As > Zn > Cu > Ni > Cr > Cd = Pb = Co, Fe > Al > Mn > Zn > Cu > Pb > Cr > As > Co > Ni > Cd and Fe > Zn > Al > Mn > Cu > Pb > As > Cr > Ni > Co > Cd, respectively. The blood cells of fish collected from the polluted location showed significantly higher DNA damage and micronucleus frequency compared to the reference location (p < 0.05). The study indicated that the DNA integrity of A. chalcoides was affected by heavy metals which originated from many anthropogenic sources.
Collapse
Affiliation(s)
- Seda Kontaş
- Department of Fisheries Technology Engineering, Ordu University, 52400, Ordu, Turkey.
| | - Derya Bostancı
- Department of Molecular Biology and Genetics, Ordu University, 52200, Ordu, Turkey
| |
Collapse
|
10
|
Falfushynska H, Horyn O, Fedoruk O, Khoma V, Rzymski P. Difference in biochemical markers in the gibel carp (Carassius auratus gibelio) upstream and downstream of the hydropower plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113213. [PMID: 31541825 DOI: 10.1016/j.envpol.2019.113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
However the physiological stress in aquatic organisms associated with hydropower plants (HPP) ecosystems has been previously investigated, no studies have so far assessed it on biochemical level. Therefore this study evaluated an oxidative stress and toxicity in the gibel carp Carassius auratus gibelio associated with a small-scale HPP in the West Ukraine. A battery of liver, brain and blood markers was evaluated individuals inhabiting upstream and downstream of the dam of the small-scale Kasperivtci HPP (KHPP; an installed capacity of 7.5 MW), and from a reference site. Number of alterations were noted in fish from the KHPP impoundment facility including signs of oxidative stress (a decrease in superoxide dismutase (SOD) activity and an increase in protein carbonyls) and cytotoxicity (an increase in micronucleated erythrocytes and caspase-3 activity). No changes in DNA fragmentation in hepatocytes or brain cholinesterase activity were detected. As demonstrated by the integral stress index, fish associated with downstream of the dam revealed the greatest alterations reflected by the combined oppression of antioxidant system (SOD, catalase) and pro-oxidants (thiobarbituric acid reactive substances and oxyradicals), low concentration of metallothioneins, but high cathepsin D activity (as markers of lysosomal dysfunction and autophagy) and increased vitellogenin concentration in males (indicating an endocrine disruption). The study highlights that fish inhabiting ecosystems associated with HPP, particularly downstream of the dam, may face additional stresses with long-term effects yet to be evaluated.
Collapse
Affiliation(s)
| | - Oksana Horyn
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Olga Fedoruk
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Vira Khoma
- Ternopil V. Hnatiuk National Pedagogical University, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poland
| |
Collapse
|
11
|
Pourmoghadam MN, Poorbagher H, de Oliveira Fernandes JM, Jafari O. Diazinon negatively affects the integrity of environmental DNA stability: a case study with common carp (Cyprinus carpio). ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:672. [PMID: 31650301 DOI: 10.1007/s10661-019-7816-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Environmental DNA (eDNA) has been used to detect the presence of various species in aquatic ecosystems, but its degradation by several environmental factors can influence the correct identification of aquatic organisms. The present study examined the effects of a pesticide, diazinon, on breakage of Cyprinus carpio eDNA. The specimens were exposed to 0 (control), 0.06, 0.1, and 1 ppm of diazinon for 9 days. Water samples were collected at three time points (3, 6, and 9 days postexposure, dpe), and eDNA was extracted. The cytochrome oxidase I (COI) gene was successfully amplified by PCR, and a fuzzy inference system was used to convert DNA smears and breakage to numerical values. eDNA breakage percentage increased with diazinon concentration at all sampling times. At 3 dpe, the maximum eDNA breakage percentage occurred at 0.06 and 0.1 ppm of diazinon; whereas at 6 and 9 dpe, the maximum breakage was found at 1 ppm of diazinon, while exposure time had no significant effect. To the best of our knowledge, this is the first study to demonstrate that eDNA integrity can be compromised by a diazinon in surface waters. Hence, it is recommended that future eDNA studies take into account pesticide pollution when detecting aquatic species.
Collapse
Affiliation(s)
- Maryam Nasrolah Pourmoghadam
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Box 4314, Karaj, PO, Iran
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Hadi Poorbagher
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Box 4314, Karaj, PO, Iran.
| | | | - Omid Jafari
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
Pereira V, Marques A, Gaivão I, Rego A, Abreu H, Pereira R, Santos MA, Guilherme S, Pacheco M. Marine macroalgae as a dietary source of genoprotection in gilthead seabream (Sparus aurata) against endogenous and exogenous challenges. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:12-24. [PMID: 30721760 DOI: 10.1016/j.cbpc.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
DNA integrity and stability are essential to organisms' health and survival. However, it has been neglected in what concerns to fish farming, disregarding the potential impact of endogenous/ exogenous factors. As marine macroalgae constitute a source of natural compounds with a large spectrum of biological activities, this study, situated in the interface of nutritional-genetic research and development of algae practical applications, aimed to evaluate the genoprotective properties of a macroalgae-enriched diet (total percentage of 5%, incorporating equal percentages of Ulva rigida, Gracilaria gracilis and Fucus vesiculosus) in gilthead seabream (Sparus aurata). Protection was assessed in relation to a basal genome integrity and against an exogenous genotoxic challenge (cyclophosphamide; CP). Fish were reared for 30 days with the supplemented diet, being then injected with CP and sampled at days 3 and 10 post-injection (p.i.). To evaluate whether the favorable effects remain after the end of supplementation, a fish subgroup previously fed with algae-enriched diet was submitted to a diet reversion at day 3 p.i., being thereafter fed with the standard diet. Genetic damage was evaluated through the erythrocytic nuclear abnormalities (ENA) and comet assays and complemented by the assessment of the antioxidant system. Results pointed out that algae-enriched feed exhibits anti-genotoxic properties, mostly expressed in relation to the exogenous pressure, manifest in relation to DNA strand breaks and chromosomal lesions, also reducing oxidative DNA damage. Nonetheless, blood antioxidants were only punctually altered by the supplemented diet (e.g. catalase and glutathione-S-transferase). Analyzing the effect persistence, it was perceived that 7 days without algae uptake was enough to partially reduce the protection efficacy. Overall, these findings are promising towards the benefits of macroalgae inclusion in fish diet, and thus, to invigorate mariculture activity and the commercial use of algae, also providing new insights on the DNA protection mechanisms.
Collapse
Affiliation(s)
- Vitória Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Marques
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Gaivão
- CECAV and Department of Genetics and Biotechnology, Trás-os-Montes and Alto Douro University, 5001-801 Vila Real, Portugal
| | - Andreia Rego
- ALGAplus Lda., Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal
| | - Helena Abreu
- ALGAplus Lda., Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal
| | - Rui Pereira
- ALGAplus Lda., Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal
| | - Maria Ana Santos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sofia Guilherme
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Pustiglione Marinsek G, Moledo de Souza Abessa D, Gusso-Choueri PK, Brasil Choueri R, Nascimento Gonçalves AR, D'angelo Barroso BV, Souza Santos G, Margarete Cestari M, Galvão de Campos B, de Britto Mari R. Enteric nervous system analyses: New biomarkers for environmental quality assessment. MARINE POLLUTION BULLETIN 2018; 137:711-722. [PMID: 30503489 DOI: 10.1016/j.marpolbul.2018.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The gastrointestinal tract (GIT) of fish is a target of contaminants since it can absorb these substances. We evaluated the morphophysiological alterations in the GIT of Sphoeroides testudineus collected in two estuaries presenting differences in their environmental quality (NIA and IA). The intestine was analyzed for histological and neuronal changes; liver and gills for biochemical markers; muscle tissues for neurotoxicity and peripheral blood for genotoxic damage. The results showed alterations in the GIT of the animals collected in the IA, such as muscle tunica and goblet cell density reduction, increased intraepithelial lymphocytes density and changes in neuronal density. Furthermore, changes were observed in MTs and LPO in the gills. Thus, we suggest that TGI is functioning as a barrier that responds to ingested contaminants, in order to reduce their absorption and translocation. Thus, alterations in morphophysiological and enteric neurons in S. testudineus can be used as biomarkers of environmental contamination.
Collapse
Affiliation(s)
- Gabriela Pustiglione Marinsek
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil..
| | - Denis Moledo de Souza Abessa
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Paloma Kachel Gusso-Choueri
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP - Santos), Av. Almirante Saldanha da Gama, 89, CP 11030-490 Santos, SP, Brazil
| | | | - Beatriz Vivian D'angelo Barroso
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Gustavo Souza Santos
- Genetics Department, Federal University of Paraná (UFPR), 81531-990 Curitiba, PR, Brazil
| | | | - Bruno Galvão de Campos
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Renata de Britto Mari
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| |
Collapse
|
14
|
Mintram KS, Brown AR, Maynard SK, Liu C, Parker SJ, Tyler CR, Thorbek P. Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Zhang M, Cao G, Guo X, Gao Y, Li W, Lu D. A Comet Assay for DNA Damage and Repair After Exposure to Carbon-Ion Beams or X-rays in Saccharomyces Cerevisiae. Dose Response 2018; 16:1559325818792467. [PMID: 30116170 PMCID: PMC6088507 DOI: 10.1177/1559325818792467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation (IR) can result in serious genomic instability and genotoxicity by causing DNA damage. Carbon ion (CI) beams and X-rays are typical IRs and possess high-linear energy transfer (LET) and low-LET, respectively. In this article, a comet assay that was optimized by decreasing the electrophoresis time (8 minutes) and voltage (0.5 V/cm) was performed to elucidate and quantify the DNA damage induced by CI or X-rays radiation. Two quantitative methods for the comet assay, namely, comet score and olive tail moment, were compared, and the appropriate means and parameter values were selected for the present assay. The dose-effect relationship for CI or X-rays radiation and the DNA repair process were studied in yeast cells. These results showed that the quadratic function fitted the dose-effect relationship after CI or X-rays exposure, and the trend for the models fitted the dose-effect curves for various repair times was precisely described by the cubic function. A kinetics model was also creatively used to describe the process of DNA repair, and equations were calculated within repairable ranges that could be used to roughly evaluate the process and time necessary for DNA repair.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Guozhen Cao
- Department of Pharmacology, School of Preclinical Medicine of Xinjiang Medical University, Urumqi, China
| | - Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| |
Collapse
|
16
|
Cuevas N, Zorita I. Baseline levels of environmental genotoxicity and potential confounding factors using common sole (Solea solea) as sentinel organism. MARINE ENVIRONMENTAL RESEARCH 2018; 138:1-8. [PMID: 29605424 DOI: 10.1016/j.marenvres.2018.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Micronuclei (MN) and nuclear buds (NB) frequency was assessed monthly over a one-year period in erythrocytes of common soles (Solea solea) from the Basque continental shelf, a minor disturbed area, in order to determine baseline levels and potential biotic and abiotic confounding factors within biomonitoring purposes. Both genotoxic parameters presented seasonal variations, although only NB frequency was positively correlated with environmental variables (i.e. water temperature and salinity). On the contrary, MN and NB were not affected by age and gender. Therefore, samples of combined age and gender can be used for biomonitoring genotoxic effects, although sampling period together with water temperature and salinity should be thoroughly considered for NB. Overall, these findings are the first attempt to establish baseline MN (0.10-0.78‰) and NB (0.13-0.82‰) frequencies in common sole from Basque marine waters, which are useful for upcoming data comparisons and integration within genotoxicity evaluation procedures of similar marine environments under biomonitoring scopes.
Collapse
Affiliation(s)
- N Cuevas
- AZTI, Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.
| | - I Zorita
- AZTI, Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain.
| |
Collapse
|
17
|
Erraud A, Bonnard M, Chaumot A, Geffard O, Duflot A, Forget-Leray J, Le Foll F, Geffard A, Xuereb B. Use of sperm DNA integrity as a marker for exposure to contamination in Palaemon serratus (Pennant 1777): Intrinsic variability, baseline level and in situ deployment. WATER RESEARCH 2018; 132:124-134. [PMID: 29324292 DOI: 10.1016/j.watres.2017.12.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
In a previous study, the Comet assay was optimized for Palaemon serratus prawns in order to propose a biomarker for sperm quality in this species. However, better knowledge of its basal level and its natural variability, related to intrinsic biotic and environmental abiotic factors, is required before any relevant use of this biomarker in the field. To fulfill this goal, the present study proceeded in three steps: (i) the temporal variability of DNA integrity was followed monthly in a reference population over a 2-year period, (ii) the correlation between the main intrinsic biotic (i.e. size, weight and molting stage) and abiotic factors (i.e. water temperature) were recorded in the field, and the basal DNA integrity was assessed in order to scrutinize any confounding influence of factors unrelated to toxic response, (iii) the baseline level was used to discriminate biomarker response among different stations displaying contrasting contamination levels. The results of the two-year monitoring in the reference population revealed no correlation between the levels of spermatozoa DNA damage and temperature, body size, weight or molting stage. Only a slight variability between monthly samplings was detected. On the basis of these field-collected data, we defined a reference distribution (i.e. 52.6 ± 5.6 A.U) with a threshold value (i.e. 61.7 A.U). Finally, this threshold value proved its relevance to discriminate among stations with contrasting pollution levels around the Seine Bay. Indeed, the results suggest significant DNA damage in populations nearest the Seine estuary, a major source of contaminants in the Bay, and a lower effect in populations further away from the estuary. The overall conclusion was that the Comet assay on P. serratus spermatozoa could be a useful tool for the monitoring of the toxicological print within sperm and main globally the contamination exposure of crustaceans in marine waters.
Collapse
Affiliation(s)
- Alexandre Erraud
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600 Le Havre, France
| | - Marc Bonnard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France
| | - Arnaud Chaumot
- IRSTEA, UR MALY Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - Olivier Geffard
- IRSTEA, UR MALY Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - Aurélie Duflot
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600 Le Havre, France
| | - Joëlle Forget-Leray
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600 Le Havre, France
| | - Frank Le Foll
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600 Le Havre, France
| | - Alain Geffard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France
| | - Benoit Xuereb
- Normandie Univ, UNIHAVRE, UMR-I 02 SEBIO, FR CNRS 3730 SCALE, 76600 Le Havre, France.
| |
Collapse
|
18
|
Hariri M, Mirvaghefi A, Farahmand H, Taghavi L, Shahabinia AR. In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:59-69. [PMID: 29304400 DOI: 10.1016/j.etap.2017.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/07/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The in situ evaluation of the genotoxic impact of the Karaj River was performed using the comet and micronucleus (MN) assays in erythrocytes, liver, gill and kidney of indigenous brown trout, Salmo trutta fario from three different stations, including Varangerud, Asara and Purkan. The results showed that DNA damage significantly increased in sampled fish erythrocytes, liver and gill from low levels in the upstream river (Varangerud) via intermediate levels in downstream (Purkan) to high levels in the middle of the river (Asara), correlating with the river increasing pollution gradient. Gill was the most sensitive tissue followed by blood and liver. Kidney did not respond to the genotoxic gradient of the river. MN test (as a complementary assay) of liver cells of fish was a sensitive biomarker of genotoxic exposure. MN test in blood, gill and kidney did not reflect the genotoxic condition of the river.
Collapse
Affiliation(s)
- Mehran Hariri
- Department of Environment and Energy, Science and Research Branch Islamic Azad University, 14515/775, Tehran, Iran.
| | - Alireza Mirvaghefi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314, Karaj, Iran
| | - Hamid Farahmand
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314, Karaj, Iran
| | - Lobat Taghavi
- Department of Environment and Energy, Science and Research Branch Islamic Azad University, 14515/775, Tehran, Iran
| | - Amir-Reza Shahabinia
- UNITWIN/UNESCO/WiCoP, Departamento de Química Física, Universidad de Cádiz, Facultad de Ciencias del Mary Ambientales, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
19
|
Ghisi NC, Oliveira EC, Guiloski IC, de Lima SB, Silva de Assis HC, Longhi SJ, Prioli AJ. Multivariate and integrative approach to analyze multiple biomarkers in ecotoxicology: A field study in Neotropical region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1208-1218. [PMID: 28787795 DOI: 10.1016/j.scitotenv.2017.07.266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/26/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Aquatic pollution has dramatically worsened in developing countries, due to the discharge of a mixture of pollutants into water bodies, to the lack of stringent laws, and the inadequate treatment of effluents. In this study, the Neotropical fish Astyanax aff. paranae was sampled from three sites with different pollution levels: 1) a Biological Reserve (Rebio), protected by the Brazilian government; 2) an agricultural area in one of the most productive regions of Brazil, upstream of an urban zone; and 3) a site downstream from urban zone, characterized by the influx of different effluents, including wastes from industry, a sewer treatment plant, and agricultural areas. We assess biomarkers at multiple levels, such as the comet assay, hepatic histopathological analysis, brain and muscle acetylcholinesterase (AChE) and the hepatic enzymes glutathione-S-transferase (GST), catalase (CAT), and lipoperoxidation (LPO), during winter and summer. The interpretation of field results is always a very complex operation, since many factors can influence the variables analyzed in uncontrollable conditions. For this reason, we apply an integrative multivariate analysis. The results showed that the environmental risk of the three sites was significantly different. We can see a gradient in data distribution in discriminant analysis: separating, from one side, the fish of Rebio; in the middle are the fish from agricultural area and, in the other side are the animals from downstream site. Overall, the biomarkers responses were more greatly altered in the downstream site, whereas fish from the agricultural area showed an intermediate level of damage. The greatest changes were likely caused by agriculture, industrial chemical effluents and ineffective sewage treatments, in a synergic interaction in downstream site. In conclusion, the use of multiple biomarkers at different response levels to assess the toxic effects of mixed pollutants in a natural aquatic environment is an important tool for monitoring polluted regions.
Collapse
Affiliation(s)
- Nédia C Ghisi
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos e Continentais (PEA)/Nupélia, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil; Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança, km 04, P.O. Box 157, 85660-000 Dois Vizinhos, PR, Brazil.
| | - Elton C Oliveira
- Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança, km 04, P.O. Box 157, 85660-000 Dois Vizinhos, PR, Brazil
| | - Izonete C Guiloski
- Departamento de Farmacologia, Universidade Federal do Paraná (UFPR), Rua Coronel Fco. H. dos Santos, s/n, P.O. Box 19031, 81531-990 Curitiba, PR, Brazil
| | - Sonia Barbosa de Lima
- Universidade Tecnológica Federal do Paraná (UTFPR), Campus Campo Mourão, Via Rosalina Maria dos Santos, 1233, P. O. Box 271, 87301-899 Campo Mourão, PR, Brazil
| | - Helena C Silva de Assis
- Departamento de Farmacologia, Universidade Federal do Paraná (UFPR), Rua Coronel Fco. H. dos Santos, s/n, P.O. Box 19031, 81531-990 Curitiba, PR, Brazil.
| | - Solon Jonas Longhi
- Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança, km 04, P.O. Box 157, 85660-000 Dois Vizinhos, PR, Brazil
| | - Alberto J Prioli
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos e Continentais (PEA)/Nupélia, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
20
|
Gagnaire B, Adam-Guillermin C, Festarini A, Cavalié I, Della-Vedova C, Shultz C, Kim SB, Ikert H, Dubois C, Walsh S, Farrow F, Beaton D, Tan E, Wen K, Stuart M. Effects of in situ exposure to tritiated natural environments: A multi-biomarker approach using the fathead minnow, Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:597-611. [PMID: 28494285 DOI: 10.1016/j.scitotenv.2017.04.210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/14/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Aquatic ecosystems are chronically exposed to radionuclides as well as other pollutants. Increased concentrations of pollutants in aquatic environments can present a risk to exposed organisms, including fish. The goal of this study was to characterize the effects of tritium, in the context of natural environments, on the health of fathead minnow, Pimephales promelas. Fish were exposed to tritium (activity concentrations ranging from 2 to 23,000Bq/L) and also to various concentrations of several metals to replicate multiple-stressor environments. Fish were exposed for 60days, then transferred to the tritium background site where they stayed for another 60days. Tritium, in the forms of tritiated water (HTO) and organically bound tritium (OBT), and a series of fish health indicators were measured in fish tissues at seven time points throughout the 120days required to complete the exposure and the depuration phases. Results showed effects of environmental exposure following the increase of tritium activity and metals concentrations in water. The internal dose rates of tritium, estimated from tissue HTO and OBT activity concentrations, were consistently low (maximum of 0.2μGy/h) compared to levels at which population effects may be expected (>100μGy/h) and no effects were observed on survival, fish condition, gonado-somatic, hepato-somatic, spleno-somatic and metabolic indices (RNA/DNA, proteins/DNA and protein carbonylation (in gonads and kidneys)). Using multivariate analyses, we showed that several biomarkers (DNA damages, MN frequency, gamma-H2AX, SFA/MUFA ratios, lysosomal membrane integrity, AChE, SOD, phagocytosis and esterase activities) were exclusively correlated with fish tritium internal dose rate, showing that tritium induced genotoxicity, DNA repair activity, changes in fatty acid composition, and immune, neural and antioxidant responses. Some biomarkers were responding to the presence of metals, but overall, more biomarkers were linked to internalized tritium. The results are discussed in the context of multiple stressors involving metals and tritium.
Collapse
Affiliation(s)
- B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - A Festarini
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - I Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Della-Vedova
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LRTE, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Shultz
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S B Kim
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - H Ikert
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - C Dubois
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France; Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S Walsh
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - F Farrow
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - D Beaton
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - E Tan
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - K Wen
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - M Stuart
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| |
Collapse
|
21
|
D'Costa A, Shyama SK, Praveen Kumar MK. Bioaccumulation of trace metals and total petroleum and genotoxicity responses in an edible fish population as indicators of marine pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:22-28. [PMID: 28384500 DOI: 10.1016/j.ecoenv.2017.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The present study reports the genetic damage and the concentrations of trace metals and total petroleum hydrocarbons prevailing in natural populations of an edible fish, Arius arius in different seasons along the coast of Goa, India as an indicator of the pollution status of coastal water. Fish were collected from a suspected polluted site and a reference site in the pre-monsoon, monsoon and post-monsoon seasons. Physico-chemical parameters as well as the concentrations of total petroleum hydrocarbons (TPH) and trace metals in the water and sediment as well as the tissues of fish collected from these sites were recorded. The genotoxicity status of the fish was assessed employing the micronucleus test and comet assay. A positive correlation (p<0.001) was observed between the tail DNA and micronuclei in all the fish collected. Multiple regression analysis revealed that tissue and environmental pollutant concentrations and genotoxicity were positively associated and higher in the tissues of the fish collected from the polluted site. Pollution indicators and genotoxicity tests, combined with other physiological or biochemical parameters represent an essential integrated approach for efficient monitoring of aquatic ecosystems in Goa.
Collapse
Affiliation(s)
- Avelyno D'Costa
- Genetic Toxicology Laboratory, Department of Zoology, Goa University, Goa 403 206, India.
| | - S K Shyama
- Genetic Toxicology Laboratory, Department of Zoology, Goa University, Goa 403 206, India.
| | - M K Praveen Kumar
- Genetic Toxicology Laboratory, Department of Zoology, Goa University, Goa 403 206, India.
| |
Collapse
|
22
|
Vasanthi LA, Revathi P, Babu Rajendran R, Munuswamy N. Detection of metal induced cytopathological alterations and DNA damage in the gills and hepatopancreas of green mussel Perna viridis from Ennore Estuary, Chennai, India. MARINE POLLUTION BULLETIN 2017; 117:41-49. [PMID: 28132732 DOI: 10.1016/j.marpolbul.2017.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/27/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
This study report the impact of heavy metals on cytopathology and DNA damage in the gills and hepatopancreas of Perna viridis collected from Ennore estuary and the Kovalam coastal waters. Principal Component Analysis (PCA) showed significant differences among all variables at the scale of plots. The ultrastructural alterations such as lack of microvilli, distorted mitochondria, electron dense particles and the presence of large mucous droplets were common in the gill and hepatopancreatic cells of mussels from Ennore estuary. However, the gill and hepatopancreatic cells of P. viridis from Kovalam revealed normal compartmentalization of cells. The percentage of tail DNA in the mussels from Ennore estuary was recorded as 12.44 and 10.14% in the gills and hepatopancreas respectively. Overall, it has been demonstrated that the Comet and cytopathological assays are useful biomarkers to assess the level of pollution and it provide reliable information on ecotoxicology and genotoxicology of coastal waters.
Collapse
Affiliation(s)
- Lourduraj A Vasanthi
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India.
| | - Peranandam Revathi
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramaswamy Babu Rajendran
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Natesan Munuswamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| |
Collapse
|
23
|
Le Guernic A, Sanchez W, Palluel O, Bado-Nilles A, Floriani M, Turies C, Chadili E, Vedova CD, Cavalié I, Adam-Guillermin C, Porcher JM, Geffard A, Betoulle S, Gagnaire B. Acclimation capacity of the three-spined stickleback (Gasterosteus aculeatus, L.) to a sudden biological stress following a polymetallic exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1478-1499. [PMID: 27475951 DOI: 10.1007/s10646-016-1699-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
To get closer to the environmental reality, ecotoxicological studies should no longer consider the evaluation of a single pollutant, but rather combination of stress and their interaction. The aim of this study was to determine if responses of a fish to a sudden biological stress could be modified by a prior exposure to a chemical stress (a polymetallic contamination). For this purpose, in situ experiment was conducted in three ponds in the Haute-Vienne department (France). One pond was chosen for its high uranium concentration due to uranium mine tailings, and the two other ponds, which were not submitted to these tailings. Three-spined sticklebacks (Gasterosteus aculeatus) were caged in these ponds for 14 days. After this period, fish were submitted to a biological stress, exerted by lipopolysaccharides injection after anesthesia, and were sacrificed 4 days after these injections for multi-biomarkers analyses (leucocyte viability, phagocytic capacity and reactive oxygen species production, antioxidant peptide and enzymes, lipid peroxidation and DNA damage). The pond which received uranium mine tailings had higher metallic concentrations. Without biological stress, sticklebacks caged in this pond presented an oxidative stress, with increasing of reactive oxygen species levels, modification of some parts of the antioxidant system, and lipid peroxidation. Caging in the two most metal-contaminated ponds resulted in an increase of susceptibility of sticklebacks to the biological stress, preventing their phagocytic responses to lipopolysaccharides and modifying their glutathione contents and glutathione-S-transferase activity.
Collapse
Affiliation(s)
- Antoine Le Guernic
- UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550, Verneuil-En-Halatte, France.
- Centre de Cadarache, PRP-ENV/SERIS/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 13115, Saint-Paul-Lez-Durance, France.
- UFR Sciences Exactes et Naturelles, UMR-I 02 SEBIO, Université de Reims Champagne-Ardenne (URCA), Campus Moulin de la Housse, B.P. 1039, 51687, Reims, France.
| | - Wilfried Sanchez
- UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550, Verneuil-En-Halatte, France
| | - Olivier Palluel
- UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550, Verneuil-En-Halatte, France
| | - Anne Bado-Nilles
- UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550, Verneuil-En-Halatte, France
| | - Magali Floriani
- Centre de Cadarache, PRP-ENV/SERIS/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 13115, Saint-Paul-Lez-Durance, France
| | - Cyril Turies
- UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550, Verneuil-En-Halatte, France
| | - Edith Chadili
- UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550, Verneuil-En-Halatte, France
| | - Claire Della Vedova
- Centre de Cadarache, PRP-ENV/SERIS/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 13115, Saint-Paul-Lez-Durance, France
| | - Isabelle Cavalié
- Centre de Cadarache, PRP-ENV/SERIS/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 13115, Saint-Paul-Lez-Durance, France
| | - Christelle Adam-Guillermin
- Centre de Cadarache, PRP-ENV/SERIS/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 13115, Saint-Paul-Lez-Durance, France
| | - Jean-Marc Porcher
- UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Institut National de l'Environnement Industriel et des Risques (INERIS), BP 2, 60550, Verneuil-En-Halatte, France
| | - Alain Geffard
- UFR Sciences Exactes et Naturelles, UMR-I 02 SEBIO, Université de Reims Champagne-Ardenne (URCA), Campus Moulin de la Housse, B.P. 1039, 51687, Reims, France
| | - Stéphane Betoulle
- UFR Sciences Exactes et Naturelles, UMR-I 02 SEBIO, Université de Reims Champagne-Ardenne (URCA), Campus Moulin de la Housse, B.P. 1039, 51687, Reims, France
| | - Béatrice Gagnaire
- Centre de Cadarache, PRP-ENV/SERIS/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 13115, Saint-Paul-Lez-Durance, France
| |
Collapse
|
24
|
Le Guernic A, Sanchez W, Bado-Nilles A, Palluel O, Turies C, Chadili E, Cavalié I, Delahaut L, Adam-Guillermin C, Porcher JM, Geffard A, Betoulle S, Gagnaire B. In situ effects of metal contamination from former uranium mining sites on the health of the three-spined stickleback (Gasterosteus aculeatus, L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1234-1259. [PMID: 27272751 DOI: 10.1007/s10646-016-1677-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Human activities have led to increased levels of various pollutants including metals in aquatic ecosystems. Increase of metallic concentrations in aquatic environments represents a potential risk to exposed organisms, including fish. The aim of this study was to characterize the environmental risk to fish health linked to a polymetallic contamination from former uranium mines in France. This contamination is characterized by metals naturally present in the areas (manganese and iron), uranium, and metals (aluminum and barium) added to precipitate uranium and its decay products. Effects from mine releases in two contaminated ponds (Pontabrier for Haute-Vienne Department and Saint-Pierre for Cantal Department) were compared to those assessed at four other ponds outside the influence of mine tailings (two reference ponds/department). In this way, 360 adult three-spined sticklebacks (Gasterosteus aculeatus) were caged for 28 days in these six ponds before biomarker analyses (immune system, antioxidant system, biometry, histology, DNA integrity, etc.). Ponds receiving uranium mine tailings presented higher concentrations of uranium, manganese and aluminum, especially for the Haute-Vienne Department. This uranium contamination could explain the higher bioaccumulation of this metal in fish caged in Pontabrier and Saint-Pierre Ponds. In the same way, many fish biomarkers (antioxidant and immune systems, acetylcholinesterase activity and biometric parameters) were impacted by this environmental exposure to mine tailings. This study shows the interest of caging and the use of a multi-biomarker approach in the study of a complex metallic contamination.
Collapse
Affiliation(s)
- Antoine Le Guernic
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Centre de Cadarache, 13115, Saint-Paul-Lez-Durance, France.
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550, Verneuil-en-Halatte, France.
- Université de Reims Champagne-Ardenne, UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Wilfried Sanchez
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Edith Chadili
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Centre de Cadarache, 13115, Saint-Paul-Lez-Durance, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, BP 1039, 51687, Reims, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Centre de Cadarache, 13115, Saint-Paul-Lez-Durance, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, BP 1039, 51687, Reims, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, UMR-I 02 (INERIS, Université de Reims Champagne-Ardenne, Université du Havre) SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, BP 1039, 51687, Reims, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Centre de Cadarache, 13115, Saint-Paul-Lez-Durance, France
| |
Collapse
|
25
|
Santos R, Joyeux A, Palluel O, Palos-Ladeiro M, Besnard A, Blanchard C, Porcher JM, Bony S, Devaux A, Sanchez W. Characterization of a genotoxicity biomarker in three-spined stickleback (Gasterosteus aculeatus L.): Biotic variability and integration in a battery of biomarkers for environmental monitoring. ENVIRONMENTAL TOXICOLOGY 2016; 31:415-426. [PMID: 25346099 DOI: 10.1002/tox.22055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/14/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
As a large array of hazardous substances exhibiting genotoxicity are discharged into surface water, this work aimed at assessing the relevance of adding a genotoxicity biomarker in a battery of biomarkers recently developed in the model fish three-spined stickleback (Gasterosteus aculeatus). First the confounding influence of gender, body length, and season (used as a proxy of age and of the fish reproductive status, respectively) on the level of primary DNA damage in erythrocytes was investigated in wild sticklebacks. Then, the genotoxity biomarker was included in a large battery of biomarkers assessing xenobiotic biotransformation, oxidative stress and neurotoxicity, and implemented in five sites. Gender, age and reproductive status did not influence DNA damage level in fish from the reference site. A significant relationship between the level of primary DNA damage and fish length (as a proxy of age also correlated to the season) was highlighted in the contaminated site. Among all biomarkers investigated in the field, the level of DNA damage was one of the four most discriminating biomarkers with EROD, catalase activity and the level of lipid peroxidation representing together 75.40% of the discriminating power in sampled fish. The level of DNA damage was correlated to the EROD activity and to the level of peroxidation, which mainly discriminated fish from sites under urban pressure. Finally, Integrated Biomarker Response indexes (IBRv2), which were calculated with the whole biomarker response dataset exhibited higher values in the Reveillon (9.62), the Scarpe and Rhonelle contaminated sites (5.11 and 4.90) compared with the two reference sites (2.38 and 2.55). The present work highlights that integration of a genotoxicity biomarker in a multiparametric approach is relevant to assess ecotoxicological risk in freshwater aquatic organisms.
Collapse
Affiliation(s)
- Raphael Santos
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550, Verneuil en Halatte, France
- Université de Lyon, UMR 5023 LEHNA, F-69100, Villeurbanne, France
| | - Aude Joyeux
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550, Verneuil en Halatte, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550, Verneuil en Halatte, France
- UMR-I 02 Stress Environnementaux et BIOsurveillance des milieux aquatiques, INERIS, Université de Reims Champagne Ardenne, Université du Havre, France
| | - Mélissa Palos-Ladeiro
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550, Verneuil en Halatte, France
| | - Aurélien Besnard
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), Ecole Pratique des Hautes Etudes, Biogéographie et Ecologie des Vertébrés, campus CNRS, 1919 route de Mende, 34 293 Montpellier cedex 5, France
| | - Christophe Blanchard
- Office National de l'Eau et des Milieux Aquatiques, Délégation Inter-Régionale Nord-Ouest, 60200, Compiègne, France
| | - Jean Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550, Verneuil en Halatte, France
- UMR-I 02 Stress Environnementaux et BIOsurveillance des milieux aquatiques, INERIS, Université de Reims Champagne Ardenne, Université du Havre, France
| | - Sylvie Bony
- Université de Lyon, UMR 5023 LEHNA, F-69100, Villeurbanne, France
- INRA, USC LEHNA 1369, ENTPE, F-69518, Vaulx en Velin, France
| | - Alain Devaux
- Université de Lyon, UMR 5023 LEHNA, F-69100, Villeurbanne, France
- INRA, USC LEHNA 1369, ENTPE, F-69518, Vaulx en Velin, France
| | - Wilfried Sanchez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550, Verneuil en Halatte, France
- UMR-I 02 Stress Environnementaux et BIOsurveillance des milieux aquatiques, INERIS, Université de Reims Champagne Ardenne, Université du Havre, France
| |
Collapse
|
26
|
Gusso-Choueri PK, Choueri RB, Santos GS, de Araújo GS, Cruz ACF, Stremel T, de Campos SX, Cestari MM, Ribeiro CAO, Abessa DMDS. Assessing genotoxic effects in fish from a marine protected area influenced by former mining activities and other stressors. MARINE POLLUTION BULLETIN 2016; 104:229-239. [PMID: 26822909 DOI: 10.1016/j.marpolbul.2016.01.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The goal of the current study was to evaluate different genotoxicity tools in order to assess a marine protected area (MPA) affected by former mining activities and urban settlements. A catfish (Cathorops spixii) was analyzed for genotoxic effects at the (i) molecular and at the (ii) chromosomal levels. Through factor analysis, genotoxicity was found to be linked to levels of metals bioaccumulated and PAH metabolites in the bile. Micronucleus and nuclear alteration were less vulnerable to the effects of confounding factors in mildly contaminated areas since they were more frequently associated with bioaccumulated metals than the DNA analysis. The different genotoxicity responses allowed for the identification of sources of pollution in the MPA. This approach was important for detecting environmental risks related to genotoxic contaminants in a mildly contaminated MPA.
Collapse
Affiliation(s)
- Paloma Kachel Gusso-Choueri
- Graduate Program in Ecology and Conservation, Federal University of Paraná (UFPR), CP 19031, CEP 81531-990 Curitiba, PR, Brazil; Cellular Toxicology Laboratory, Department of Cellular Biology, Federal University of Paraná (UFPR), CP19031, 81531-990 Curitiba, PR, Brazil; Laboratory for the Study of Aquatic Pollution and Ecotoxicology (NEPEA), São Paulo State University, São Vicente Campus (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil.
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP - Santos), Av. Almirante Saldanha da Gama, 89, CP 11030-490 Santos, SP, Brazil
| | - Gustavo Souza Santos
- Graduate Program in Ecology and Conservation, Federal University of Paraná (UFPR), CP 19031, CEP 81531-990 Curitiba, PR, Brazil; Genetics Department, Federal University of Paraná (UFPR), 81531-990 Curitiba, PR, Brazil
| | - Giuliana Seraphim de Araújo
- Laboratory for the Study of Aquatic Pollution and Ecotoxicology (NEPEA), São Paulo State University, São Vicente Campus (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil; Institute of Oceanography, University of São Paulo (IOUSP), Praça do Oceanográfico, 191, CEP 05508-120 São Paulo, SP, Brazil
| | - Ana Carolina Feitosa Cruz
- Laboratory for the Study of Aquatic Pollution and Ecotoxicology (NEPEA), São Paulo State University, São Vicente Campus (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil; Institute of Oceanography, University of São Paulo (IOUSP), Praça do Oceanográfico, 191, CEP 05508-120 São Paulo, SP, Brazil
| | - Tatiana Stremel
- Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Ponta Grossa State University, Av. General Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, Brazil
| | - Sandro Xavier de Campos
- Research Group on Environmental and Sanitary Analytical Chemistry (QAAS), Ponta Grossa State University, Av. General Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, Brazil
| | - Marta Margarete Cestari
- Graduate Program in Ecology and Conservation, Federal University of Paraná (UFPR), CP 19031, CEP 81531-990 Curitiba, PR, Brazil; Genetics Department, Federal University of Paraná (UFPR), 81531-990 Curitiba, PR, Brazil
| | - Ciro Alberto Oliveira Ribeiro
- Graduate Program in Ecology and Conservation, Federal University of Paraná (UFPR), CP 19031, CEP 81531-990 Curitiba, PR, Brazil; Cellular Toxicology Laboratory, Department of Cellular Biology, Federal University of Paraná (UFPR), CP19031, 81531-990 Curitiba, PR, Brazil
| | - Denis Moledo de Sousa Abessa
- Laboratory for the Study of Aquatic Pollution and Ecotoxicology (NEPEA), São Paulo State University, São Vicente Campus (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n, CP 11330-900 São Vicente, SP, Brazil
| |
Collapse
|
27
|
Sibanda T, Selvarajan R, Tekere M. Urban effluent discharges as causes of public and environmental health concerns in South Africa's aquatic milieu. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18301-17. [PMID: 26408112 DOI: 10.1007/s11356-015-5416-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/14/2015] [Indexed: 05/18/2023]
Abstract
The water quality in South Africa's river systems is rapidly deteriorating as a consequence of increased discharge of wastewater effluents. The natural ability of rivers and reservoirs to trap toxic chemicals and nutrients in their sediments enables these systems to accumulate contaminants, altering the natural balance in environmental water quality, thereby raising a plethora of public and environmental health concerns. Impaired water quality has been linked to an array of problems in South Africa including massive fish mortalities, altered habitat template leading to the thinning of riverine macroinvertebrate diversity, shifts in microbial community structures with drastic ecological consequences and evolvement of antibiotic resistance genes that, under natural conditions, can be transferred to waterborne pathogens. Urban wastewater discharge has also been implicated in increased bioaccumulation of metals in edible plant parts, elevated concentrations of endocrine-disrupting compounds (EDCs), which are blamed for reduced fertility and increased cancer risk, excessive growth of toxic cyanobacteria and an increase in concentrations of pathogenic microorganisms which constitute a potential health threat to humans. However, despite the ecotoxicological hazards posed by wastewater effluents, ecotoxicological studies are currently underutilised in South African aquatic ecosystem assessments, and where they have been done, the observation is that ecotoxicological studies are mostly experimental and restricted to small study areas. More research is still needed to fully assess especially the ecotoxicological consequences of surface water pollution by urban wastewater effluents in South Africa. A review of the effects of urban effluent discharges that include domestic effluent mixed with industrial effluent and/or urban stormwater run-off is hereby presented.
Collapse
Affiliation(s)
- Timothy Sibanda
- Department of Environmental Sciences, UNISA Florida Campus, PO Box 1710, Florida, South Africa.
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, UNISA Florida Campus, PO Box 1710, Florida, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, UNISA Florida Campus, PO Box 1710, Florida, South Africa
| |
Collapse
|
28
|
Yan S, Chen L, Dou X, Qi M, Du Q, He Q, Nan M, Chang Z, Nan P. Toxicity of 8-Hydroxyquinoline in Cryprinus carpio Using the Acute Toxicity Test, Hepatase Activity Analysis and the Comet Assay. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:171-176. [PMID: 26067700 DOI: 10.1007/s00128-015-1566-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
To evaluate the environmental toxicity of 8-hydroxyquinoline (8-HOQ), an important industrial raw material found in China's major ornamental fish, Cryprinus carpio, using the acute toxicity test, hepatase activity analysis and the comet assay. The results indicated that 8-HOQ had significant acute toxicity in adult C. carpio with a 96 h-LC50 of 1.15 and 0.22 mg L(-1) hepatic quinoline residues as assessed by HPLC. 8-HOQ also induced genotoxicity in the form of strand breaks in the DNA of hepatic cells as shown by the comet assay. With regard to physiological toxicity, 8-HOQ induced a decrease in the activities of hepatic GOT and GPT with increased exposure concentration and time. These data suggest that 8-HOQ may be toxic to the health of aquatic organisms when accidentally released into aquatic ecosystems. The data also suggest that the comet assay may be used in biomonitoring to determine 8-HOQ genotoxicity and hepatic GPT and GOT activities may be potential biomarkers of physiological toxicity.
Collapse
Affiliation(s)
- Shuaiguo Yan
- College of Life Science, Henan Normal University, No. 46, East Jianshe Road, Xinxiang City, 453007, Henan, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghisi NDC, de Oliveira EC, Fávaro LF, Silva de Assis HC, Prioli AJ. In situ assessment of a neotropical fish to evaluate pollution in a river receiving agricultural and urban wastewater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:699-709. [PMID: 25319198 DOI: 10.1007/s00128-014-1403-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
We aimed to assess the quality of a midsize river that receives agricultural and urban wastewater. Nuclear abnormalities (NA), comet assays of blood and gills, and gill histopathology were evaluated in fish Astyanax aff. paranae during the summer and winter 2011 at three sites in Paraná State, Brazil: (1) a biological reserve (Rebio-reference area); (2) an agricultural site; (3) a downstream site that accumulates agricultural and urban effluents. We found the highest effects of pollutants in fish at the downstream site during the summer. The agricultural site showed an intermediate damage rate, and fish at Rebio generally had the least damage, with the exception of NA. Despite conflicting results from the biomarkers used, we observed an increase in damage associated with the accumulation of pollutants. Pesticides are probable xenobiotics in the agricultural area. Additionally, metals and substances such as pharmaceuticals and ammonia may be present at the downstream site.
Collapse
Affiliation(s)
- Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA)/Nupélia, Universidade Estadual de Maringá (UEM), Maringá, PR, Brazil,
| | | | | | | | | |
Collapse
|
30
|
Harabawy ASA, Mosleh YYI. The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:28-35. [PMID: 24632120 DOI: 10.1016/j.ecoenv.2014.02.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 06/03/2023]
Abstract
This study was carried out to investigate the genotoxic and cytotoxic potentials of sublethal concentration (5mg L(-1)) of combined metals including Cd, Cu, Pb and Zn (1.25mg L(-1) of each) on erythrocytes of Nile tilapia, Oreochromis niloticus after exposure for five and seven days; and to evaluate the protective role of vitamin E alone and a combination of selenium (Se) with vitamins A, C and E which was added to the diet as antioxidants against the genotoxicity and cytotoxicity of these metals. This was accomplished by application of micronuclei (MN), binuclei (BN), nuclear abnormalities (NAs) assays in addition to morphological erythrocyte alteration (MAEs) assay. The results revealed that, exposure of O. niloticus to Cd, Cu, Pb and Zn induced the formation of nine genotoxic endpoints including MN, BN and seven patterns of NAs, kidney-shaped nuclei, blebbed nuclei, lobed nuclei, bilobed nuclei, notched nuclei, hook-shaped nuclei and vacuolated nuclei; and five patterns of morphological malformations were recorded as cytotoxic endpoints including echinocytes, acanthocytes, teardrop-like erythrocytes, microcytes and fused erythrocytes. Frequencies of these abnormalities were significantly different (p<0.05) in comparison to control group. The maximum number of MN, BN and most of NAs and MAEs were recorded in the 5th day of exposure and then start to decrease as recorded in the 7th day. Addition of the vitamin E alone to the diet significantly (p<0.05) decreased the frequencies of MN, BN, and most of NAs and MAEs to become less than those recorded in metals-treated fish. But, addition of a combination of Se with vitamins A, C and E in the diet resulted in more significant decrease (p<0.05) in frequencies of MN, BN, NAs and most MAEs to become less than those recorded in both, fish treated with metals only and fish treated with metals and supplied with vitamin E alone in the diet. Therefore, this study confirms the powerful protective potential of the vitamin E alone and a combination of SE with vitamins A, C and E as antioxidants against the genotoxicity and cytotoxicity of Cd, Cu, Pb and Zn in erythrocytes of O. niloticus. Also, confirmed on the validity of MN test and NAs in addition to MAEs as effective indicators and valuable sensitive monitoring tools for detecting genotoxic and cytotoxic agents in the aquatic environment.
Collapse
Affiliation(s)
- Ahmed S A Harabawy
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt; Biology Department, Faculty of Science, North Jeddah, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Yahia Y I Mosleh
- Department of Aquatic Environment, Faculty of Fish Resources, Suez University, Suez, Egypt; Biology Department, Faculty of Science, North Jeddah, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Sunjog K, Kolarević S, Kračun-Kolarević M, Gačić Z, Skorić S, Ðikanović V, Lenhardt M, Vuković-Gačić B. Variability in DNA damage of chub (Squalius cephalus L.) blood, gill and liver cells during the annual cycle. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:967-974. [PMID: 24709324 DOI: 10.1016/j.etap.2014.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
In this work the genotoxic potential of water in three localities in Serbia, which differ by the nature and degree of pollution, was determined in tissues of European chub (Squalius cephalus L.) on monthly basis over the 2011/2012 year season using the alkaline comet assay. Specimen samples of chub were taken from Special Nature Reserve "Uvac", as control site, and Pestan and Beljanica Rivers, as polluted sites at Kolubara basin, surrounded with coal mines. Three tissues, blood, gills and liver were used for assessing the level of DNA damage. Analysis was done by software (Comet Assay IV). The control site at Reserve "Uvac" showed the lowest DNA damage values for all three tissues compared to Pestan and Beljanica. Blood has the lowest level of DNA damage in comparison with liver and gills. Decreased damage for all three tissues was observed at summer, while during the spring and autumn damage increased.
Collapse
Affiliation(s)
- K Sunjog
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - S Kolarević
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - M Kračun-Kolarević
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - Z Gačić
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - S Skorić
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - V Ðikanović
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - M Lenhardt
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia.
| | - B Vuković-Gačić
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Schaumburg LG, Poletta GL, Siroski PA, Mudry MD. Spontaneous genetic damage in the tegu lizard (Tupinambis merianae): The effect of age. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 766:5-9. [DOI: 10.1016/j.mrgentox.2014.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/15/2014] [Accepted: 03/19/2014] [Indexed: 11/29/2022]
|
33
|
Guilherme S, Santos MA, Gaivão I, Pacheco M. DNA and chromosomal damage induced in fish (Anguilla anguilla L.) by aminomethylphosphonic acid (AMPA)--the major environmental breakdown product of glyphosate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8730-9. [PMID: 24696215 DOI: 10.1007/s11356-014-2803-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/12/2014] [Indexed: 05/27/2023]
Abstract
The assessment of the direct impact of breakdown products of pesticide components on aquatic wildlife is ecotoxicologically relevant, but frequently disregarded. In this context, the evaluation of the genotoxic hazard posed by aminomethylphosphonic acid (AMPA--the major natural degradation product of glyphosate) to fish emerges as a critical but unexplored issue. Hence, the main goal of the present research was to assess the AMPA genotoxic potential to fish following short-term exposures (1 and 3 days) to environmentally realistic concentrations (11.8 and 23.6 μg L(-1)), using the comet and erythrocytic nuclear abnormalities (ENA) assays, as reflecting different levels of damage, i.e. DNA and chromosomal damage, respectively. Overall, the present findings pointed out the genotoxic hazard of AMPA to fish and, subsequently, the importance of including it in future studies concerning the risk assessment of glyphosate-based herbicides in the water systems.
Collapse
Affiliation(s)
- S Guilherme
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | |
Collapse
|
34
|
Raphael S, Mélissa PL, Aurélien B, Emmanuelle V, Marc PJ, Sylvie B, Alain D, Wilfried S. Kinetic response of a genotoxicity biomarker in the three-spined stickleback and implication for environmental monitoring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 102:6-11. [PMID: 24580815 DOI: 10.1016/j.ecoenv.2014.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
The ultimate sink for the majority of anthropogenic compounds are the aquatic ecosystems, either through direct discharges or indirectly through hydrologic or atmospheric processes, possibly leading to long-term adverse effects in aquatic living resources. In order to assess exposure, fate and effects of chemical contaminants, aquatic ecotoxicologists have developed a large array of early-warning biomarkers proving that toxicants have entered organisms, have been distributed between organs and have triggered toxic effects regarding critical targets. However, optimal use of biomarkers in environmental studies previously requires in-depth knowledge of the kinetics of response of biomarkers. This work aimed to define as a first step of a validation process the kinetic response of a genotoxicity biomarker recently developed in the three-spined stickleback (Gasterosteus aculeatus). DNA damage was assessed in stickleback erythrocytes after in vivo exposure for 12 days to methylmethanesulfonate (MMS), an alkylating compound, followed by a 20 day-recovery period. Results show a dose-response relationship, time to maximal induction being reached after 6 days at the highest MMS concentration. No acclimation process was noticed during exposure whatever the MMS concentration, and genotoxicity decreased during the recovery phase only in fish exposed to the highest MMS concentration, suggesting more an effect of erythrocyte turn-over than of DNA repair system on the observed DNA damage level. Further field experiments are needed before including this genotoxicity biomarker in a battery of biochemical markers to monitor adverse effects of pollutants on fish health.
Collapse
Affiliation(s)
- Santos Raphael
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550 Verneuil en Halatte, France; Université de Lyon, UMR 5023 LEHNA, F-69100, Villeurbanne, France
| | - Palos-Ladeiro Mélissa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550 Verneuil en Halatte, France
| | - Besnard Aurélien
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), Ecole Pratique des Hautes Etudes, Biogéographie et Ecologie des Vertébrés, Campus CNRS, 1919 Route de Mende, 34 293 Montpellier Cedex 5, France
| | - Vulliet Emmanuelle
- Institut des Sciences Analytiques, Département Service Central d'Analyse, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Porcher Jean Marc
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550 Verneuil en Halatte, France
| | - Bony Sylvie
- Université de Lyon, UMR 5023 LEHNA, F-69100, Villeurbanne, France; INRA, USC IGH 1369, ENTPE, F-69518, Vaulx en Velin, France
| | - Devaux Alain
- Université de Lyon, UMR 5023 LEHNA, F-69100, Villeurbanne, France; INRA, USC IGH 1369, ENTPE, F-69518, Vaulx en Velin, France
| | - Sanchez Wilfried
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'écotoxicologie in vitro et in vivo, BP 2, F-60550 Verneuil en Halatte, France.
| |
Collapse
|
35
|
Fuzinatto CF, Flohr L, Melegari SP, Matias WG. Induction of micronucleus of Oreochromis niloticus exposed to waters from the Cubatão do Sul River, southern Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:103-109. [PMID: 24138896 DOI: 10.1016/j.ecoenv.2013.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/03/2013] [Accepted: 09/13/2013] [Indexed: 06/02/2023]
Abstract
In an effort to characterize the pollution of surface waters by potentially genotoxic agents, this study aimed at assessing the frequency of micronucleated (MN) erythrocytes of the fish species, Oreochromis niloticus, from the Cubatão do Sul River. This river is the source of drinking water for the region of Florianópolis, capital of Santa Catarina State, Brazil. Negative control fish showed low frequency of MN, ranging between 0.49‰ and 0.90‰. Positive control (potassium dichromate 2.5 mg/L) organisms showed high MN frequency (16.82-17.25‰). The MN frequency increased along the river (Site 1--1.24‰ winter 2011; Site 4--9.76‰ summer 2011). Based on the observation of elevated MN erythrocytes frequency in O. niloticus exposed to water samples from along the river course, we conclude that the complex environmental mixtures of water from the Cubatão do Sul River have genotoxic potential. This genotoxicity most likely originated from agricultural runoff and domestic effluents released without treatment, based on the evidence from literature data and a survey in the region. This study provides a scientific basis for future studies regarding the genotoxicity of complex environmental mixtures in natural environments.
Collapse
Affiliation(s)
- Cristiane F Fuzinatto
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
36
|
Ganesan N, Arunachalam KD, Sathya TN. Genotoxicity evaluation of 1,2 dichlorobenzene in the Indian major carp, Catla catla L. using alkaline comet assay. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 91:616-622. [PMID: 24114273 DOI: 10.1007/s00128-013-1097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
The genotoxic effect of 1,2 dichlorobenzene (1,2 DCB), a volatile organic compound in the Indian Major Carp, Catla catla L. was assessed using the alkaline comet assay in the gills and blood. Fish were exposed to various sub-lethal concentrations of 1,2 DCB in vivo. At 24 h, DNA damage scores (expressed as arbitrary units) increased at 0.35 and 0.7 mg/L whereas at 28 days, there was a statistically significant increase in the DNA damage score at all the doses tested (0.175, 0.23, 0.35 and 0.7 mg/L). When the DNA damage scores were considered in the blood samples, the trend was similar to that observed in the gills - significant increase at 0.35 and 0.7 mg/L at 24 h and at all doses at 28 days. The results indicate that 1,2 DCB induces genotoxicity in the form of strand breaks in the DNA of fish as evidenced by the alkaline comet assay.
Collapse
Affiliation(s)
- Nirmala Ganesan
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, 603203, India,
| | | | | |
Collapse
|
37
|
Poletta GL, Gigena F, Loteste A, Parma MJ, Kleinsorge EC, Simoniello MF. Comet assay in gill cells of Prochilodus lineatus exposed in vivo to cypermethrin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:385-390. [PMID: 24267701 DOI: 10.1016/j.pestbp.2013.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
Agricultural chemicals can induce genetic alterations on aquatic organisms that have been associated with effects on growth, reproduction and population dynamics. The evaluation of DNA damage in fish using the comet assay (CA) frequently involves the utilization of erythrocytes. However, epithelial gill cells (EGC) can be more sensitive, as they are constantly dividing and in direct contact with potentially stressing compounds from the aquatic environment. The aim of the present study was to evaluate (1) the sensitivity and suitability of epithelial gill cells of Prochilodus lineatus in response to different genotoxic agents through the application of the CA, (2) the induction of DNA damage in this cell population after in vivo exposure to cypermethrin. Baseline value of the CA damage index (DI) for EGC of juvenile P. lineatus was 144.68±5.69. Damage increased in a dose-dependent manner after in vitro exposure of EGC to methyl methanesulfonate (MMS) and H2O2, two known genotoxic agents. In vivo exposure of fish to cypermethrin induced a significant increase in DNA DI of EGC at 0.150μg/l (DI: 239.62±6.21) and 0.300μg/l (270.63±2.09) compared to control (150.25±4.38) but no effect was observed at 0.075μg/l (168.50±10.77). This study shows that EGC of this species are sensitive for the application of the CA, demonstrating DNA damage in response to alkylation (MMS), oxidative damage (H2O2), and to the insecticide cypermethryn. These data, together with our previous study on DNA damage induction on erythrocytes of this species, provides useful information for future work involving biomonitoring in regions where P. lineatus is naturally exposed to pesticides and other genotoxic agents.
Collapse
Affiliation(s)
- G L Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, UNL, Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) CABA, Argentina.
| | | | | | | | | | | |
Collapse
|
38
|
Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences. Anal Bioanal Chem 2013; 405:4879-85. [DOI: 10.1007/s00216-013-6909-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/01/2013] [Accepted: 03/08/2013] [Indexed: 11/30/2022]
|
39
|
Baršienė J, Rybakovas A, Lang T, Andreikėnaitė L, Michailovas A. Environmental genotoxicity and cytotoxicity levels in fish from the North Sea offshore region and Atlantic coastal waters. MARINE POLLUTION BULLETIN 2013; 68:106-116. [PMID: 23313042 DOI: 10.1016/j.marpolbul.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
In the framework of the ICON project, environmental genotoxicity and cytotoxicity levels were assessed in blood erythrocytes of dab (Limanda limanda) and haddock (Melanogrammus aeglefinus) collected at 25 stations in the North Sea and near the coast of Iceland in August-October 2008. Micronuclei, nuclear buds and bi-nucleated cells with nucleoplasmic bridges were assessed as environmental genotoxicity biomarkers, and the frequency of fragmented-apoptotic and bi-nucleated erythrocytes were assessed as environmental cytotoxicity biomarkers. The lowest frequencies of genotoxic and cytotoxic abnormalities were detected in fish from the Icelandic study stations. The highest frequencies of abnormalities were recorded in dab from the Dogger Bank and the German Bight, in haddock from the Egersund Bank and from an area off the Firth of Forth (North Sea). In fish from the Icelandic reference area, frequencies of genotoxicity and cytotoxicity responses were significantly lower than in fish from most areas of the North Sea.
Collapse
Affiliation(s)
- Janina Baršienė
- Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
40
|
El-Shafai SA, Abdel-Gawad FK, Samhan F, Nasr FA. Resource recovery from septic tank effluent using duckweed-based tilapia aquaculture. ENVIRONMENTAL TECHNOLOGY 2013; 34:121-9. [PMID: 23530322 DOI: 10.1080/09593330.2012.689357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two parallel duckweed ponds were deployed to utilize nutrients from the effluent of a septic tank treating domestic wastewater. The effluent and fresh biomass of duckweed pond were fed to two subsequent fish ponds stocked with Nile tilapia (Oreochromis niloticus). Fish ponds receiving freshwater and commercial feed were used as control. The results of specific growth rate and feed conversion ratio showed no significant difference between the control ponds and treatment ponds. On the other hand, the total and net fish yields were significantly higher in the control. Microbial analysis revealed contamination of gills, intestine and liver of fish in the treatment ponds. The activity of the immune response genes was up-regulated in the brain and liver of the treatment samples. A micronucleus assay revealed a similar percentage of micronuclei in the polychromatic erythrocytes of blood in the control and treatment samples, while the treatment samples a had higher incidence of micronuclei in the polychromatic erythrocytes of gills, compared with the control.
Collapse
|
41
|
Schaumburg LG, Poletta GL, Siroski PA, Mudry MD. Baseline values of micronuclei and comet assay in the lizard Tupinambis merianae (Teiidae, Squamata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:99-103. [PMID: 22902164 DOI: 10.1016/j.ecoenv.2012.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/20/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
The Micronucleus test (MN) and Comet assay (CA) are currently the most widely used methods that allow the characterization of DNA damage induced by physical and chemical agents in wild species. The continuous expansion of the cultivated areas in Argentina, since the introduction of transgenic crops, mainly soy, in association with the increased use of pesticides, transformed deeply the natural environments where the lizard Tupinambis merianae (tegu lizard) occurs. Despite the fact that reptiles have shown to be excellent bioindicators of environmental contaminants, there is no record of genotoxicity studies in T. merianae. The aim of the present study was to adjust the MN test and CA protocols to be applied in erythrocytes of T. merianae, and determine the baseline values of DNA damage in this species. We used 20 adult lizards (10 males: 10 females) from Estación Zoológica Experimental "Granja La Esmeralda" (Santa Fe, Argentina). Peripheral blood samples were collected from all animals and the MN test and CA applied according to the protocols established for other reptilian species. We test critical parameters of CA protocol (cell density, unwinding and electrophoresis times) using increasing concentrations of H2O2 (10, 25 and 50 μM) as a known genotoxic agent to induce DNA damage. Based on this, we determined the most suitable conditions for the CA in this species: a cell density of 4×10(3) erythrocytes per slide, 10 min of unwinding and 15 min of electrophoresis at 0.90 V/cm approximately. The baseline frequency of micronuclei (BFMN=MN/1000 erythrocytes counted) determined for this species was 0.95±0.27 and the basal damage index (BDI: calculated from 100 comet images classified in arbitrary units)=103.85±0.97. No differences were observed between sexes in the BFMN or BDI (p>0.05), and no relation was found between baseline values and length or weight of the analyzed animals (p>0.05). These results demonstrated the sensitivity of both biomarkers of genotoxicity to be applied in erythrocytes of this species, with baseline values comparable to those reported in other reptilian species. These results allow us to propose the tegu lizard for future in vivo studies to assess the genotoxicity of different agents, including those possibly affecting it in its natural geographic distribution.
Collapse
Affiliation(s)
- Laura G Schaumburg
- Grupo de Investigación en Biología Evolutiva (GIBE), IEGEBA (CONICET-UBA), Labs. 43-46, Piso 4, FCEyN, Pabellón II, Cdad Universitaria, Intendente Güiraldes 2160, CP: 1428EGA, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
42
|
Sunjog K, Gačić Z, Kolarević S, Višnjić-Jeftić Ž, Jarić I, Knežević-Vukčević J, Vuković-Gačić B, Lenhardt M. Heavy metal accumulation and the genotoxicity in barbel (Barbus barbus) as indicators of the Danube river pollution. ScientificWorldJournal 2012; 2012:351074. [PMID: 22629137 PMCID: PMC3353304 DOI: 10.1100/2012/351074] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/30/2011] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to analyze 16 trace elements (Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sr, and Zn) in different barbel (Barbus barbus) tissues and to detect the presence of genotoxic effects in erythrocytes with the alkaline comet assay. Barbel specimens were collected in the Danube river near Belgrade, Serbia, where the discharge of untreated communal and industrial wastewaters is likely to produce negative effects on fish residing in this area. The highest concentrations of Sr, Mn, Fe, Ba, B, and Al were found in gills, Mo and Cu in liver, and As and Zn in gonads. Concentrations of Zn and Fe were above maximum acceptable concentrations (MACs) in a number of gonad, gill, and liver samples. Three-year-old barbel specimens had higher tail moment and Zn concentrations in gills (1.71 and 51.20 μg/g dw, resp.) than 5-year-old specimens (0.85 and 42.51 μg/g dw, resp.). Results indicate that the younger barbel specimens might be more suitable for the monitoring of environmental pollution.
Collapse
Affiliation(s)
- Karolina Sunjog
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pavlica M, Stambuk A, Malović L, Mladinić M, Klobučar GIV. DNA integrity of chub erythrocytes (Squalius cephalus L.) as an indicator of pollution-related genotoxicity in the River Sava. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 177:85-94. [PMID: 20661769 DOI: 10.1007/s10661-010-1620-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
An alkaline comet assay and a micronucleus test were carried out on erythrocytes of the European chub, Squalius cephalus L., collected in spring and autumn in 2005 and 2006 at three sampling sites in River Sava, near Zagreb, Croatia. The results of comet assay showed the lowest genotoxic influence at the least polluted site, while higher DNA damage was observed at the polluted sites. Although the basal levels of DNA damage were elevated, a clear gradation of DNA damage was found due to pollution intensity in all sampling periods. The lowest cytogenetic damage as revealed by the micronucleus test (MNT) was observed as well at the least polluted site. High variations in MN frequency were observed between sampling periods, although the number of micronucleated erythrocytes was consistently the highest one at the polluted site. The comet assay as a biomarker of genotoxic effect exhibited higher sensitivity in discriminating the genotoxic capacity of studied polluted sites while the MNT was less sensitive. However, both tests should be used together in biomonitoring studies because they can reveal different aspects of DNA damage; comet assay, the early event of genotoxic exposure, and MNT, its final result as a mutagenic potential.
Collapse
Affiliation(s)
- Mirjana Pavlica
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
44
|
Mohanty G, Mohanty J, Nayak AK, Mohanty S, Dutta SK. Application of comet assay in the study of DNA damage and recovery in rohu (Labeo rohita) fingerlings after an exposure to phorate, an organophosphate pesticide. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:283-292. [PMID: 21153054 DOI: 10.1007/s10646-010-0580-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 05/30/2023]
Abstract
Labeo rohita (rohu) fingerlings were exposed to different concentrations (0.001, 0.002 and 0.01 ppm) of phorate, an organophosphate pesticide; samplings were done at 24, 48, 72 and 96 h. The study was carried out to evaluate tissue specific genotoxic effects produced by phorate, on three different tissue systems and to assess DNA repair response in fish. Results of tissue specific DNA damage experiments showed low baseline damage in blood cells followed by gill and liver cells in control individuals whereas more DNA breaks were found in liver followed by gill and blood cells of treated individuals. Concentrations-dependent DNA damage showed a strong, linear and positive relationship (r(2) = >0.7) in all three tissues. Clear time-related increase in DNA damage was observed for all tissues exposed to all concentrations except in liver cells at 0.01 ppm, where the DNA damage declined significantly after 72 h. For the assessment of DNA repair response, fingerlings were first exposed to 0.01 ppm of phorate for 72 h and then transferred to pesticide free water. Tissue chosen for the repair experiment was liver. Samplings were done at 0, 3, 6, 12 and 24 h after the release of 72 h pesticide treated fishes into pesticide free water. Fishes showed a reduction in DNA breaks from 3 h onwards in pesticide free water and at 24 h returned to control level damage. The results indicate that phorate is a potential genotoxicant, comet assay can be used in DNA damage and repair analysis, response to pollutants in multicellular animals is often tissue specific.
Collapse
Affiliation(s)
- G Mohanty
- Department of Biotechnology, North Orissa University, Baripada, 757003, Orissa, India.
| | | | | | | | | |
Collapse
|
45
|
Costa PM, Neuparth TS, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TA, Costa MH. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: laboratory versus in situ studies. ENVIRONMENTAL RESEARCH 2011; 111:25-36. [PMID: 20965503 DOI: 10.1016/j.envres.2010.09.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 07/15/2010] [Accepted: 09/24/2010] [Indexed: 05/30/2023]
Abstract
Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or "comet") assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with sediment contamination levels. While field assays may provide more ecologically relevant data, the multiple environmental variables may produce sufficient background noise to mask the true effects of contamination.
Collapse
Affiliation(s)
- Pedro M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Oliveira M, Ahmad I, Maria V, Ferreira C, Serafim A, Bebianno M, Pacheco M, Santos M. Evaluation of oxidative DNA lesions in plasma and nuclear abnormalities in erythrocytes of wild fish (Liza aurata) as an integrated approach to genotoxicity assessment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 703:83-9. [DOI: 10.1016/j.mrgentox.2010.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 07/16/2010] [Accepted: 07/31/2010] [Indexed: 10/19/2022]
|
48
|
Oliveira M, Maria VL, Ahmad I, Pacheco M, Santos MA. Seasonal Liza aurata tissue-specific DNA integrity in a multi-contaminated coastal lagoon (Ria de Aveiro, Portugal). MARINE POLLUTION BULLETIN 2010; 60:1755-1761. [PMID: 20619864 DOI: 10.1016/j.marpolbul.2010.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 06/04/2010] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
In this study, the DNA integrity of golden grey mullet (Liza aurata) collected in differently contaminated sites of a coastal lagoon, Ria de Aveiro (Portugal), was assessed, over the period of 1 year, using the DNA alkaline unwinding assay, in four different tissues (gill, kidney, liver and blood) and compared to a reference site. The four tissues displayed different DNA integrity basal levels, clearly affected by seasonal factors. Gill and kidney were, respectively, the most and least sensitive tissues. All sites demonstrated the capacity to interfere with DNA integrity. The sites displaying the highest and lowest DNA damage capability were, respectively, Barra (subject to naval traffic) and Vagos (contaminated with polycyclic aromatic hydrocarbons). In terms of seasonal variability, autumn seems to be the more critical season (more DNA damage) unlike summer when no DNA damage was found in any tissue. Data recommend the continued monitoring of this aquatic system.
Collapse
Affiliation(s)
- M Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
49
|
Genotoxicity in herring gulls (Larus argentatus) in Sweden and Iceland. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 702:24-31. [DOI: 10.1016/j.mrgentox.2010.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/16/2010] [Accepted: 06/23/2010] [Indexed: 11/17/2022]
|
50
|
Guilherme S, Gaivão I, Santos MA, Pacheco M. European eel (Anguilla anguilla) genotoxic and pro-oxidant responses following short-term exposure to Roundup--a glyphosate-based herbicide. Mutagenesis 2010; 25:523-30. [PMID: 20643706 DOI: 10.1093/mutage/geq038] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The glyphosate-based herbicide, Roundup, is among the most used pesticides worldwide. Due to its extensive use, it has been widely detected in aquatic ecosystems representing a potential threat to non-target organisms, including fish. Despite the negative impact of this commercial formulation in fish, as described in literature, the scarcity of studies assessing its genotoxicity and underlying mechanisms is evident. Therefore, as a novel approach, this study evaluated the genotoxic potential of Roundup to blood cells of the European eel (Anguilla anguilla) following short-term (1 and 3 days) exposure to environmentally realistic concentrations (58 and 116 microg/l), addressing also the possible association with oxidative stress. Thus, comet and erythrocytic nuclear abnormalities (ENAs) assays were adopted, as genotoxic end points, reflecting different types of genetic damage. The pro-oxidant state was assessed through enzymatic (catalase, glutathione-S-transferase, glutathione peroxidase and glutathione reductase) and non-enzymatic (total glutathione content) antioxidants, as well as by lipid peroxidation (LPO) measurements. The Roundup potential to induce DNA strand breaks for both concentrations was demonstrated by the comet assay. The induction of chromosome breakage and/or segregational abnormalities was also demonstrated through the ENA assay, though only after 3-day exposure to both tested concentrations. In addition, the two genotoxic indicators were positively correlated. Antioxidant defences were unresponsive to Roundup. LPO levels increased only for the high concentration after the first day of exposure, indicating that oxidative stress caused by this agrochemical in blood was not severe. Overall results suggested that both DNA damaging effects induced by Roundup are not directly related with an increased pro-oxidant state. Moreover, it was demonstrated that environmentally relevant concentrations of Roundup can pose a health risk for fish populations.
Collapse
Affiliation(s)
- S Guilherme
- Centre for Environmental and Marine Studies and Department of Biology, Campus Universitário de Santiago, Aveiro University, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|