1
|
Dewenter I, Kumbrink J, Poxleitner P, Smolka W, Liokatis P, Fliefel R, Otto S, Obermeier KT. New insights into redox-related risk factors and therapeutic targets in oral squamous cell carcinoma. Oral Oncol 2023; 147:106573. [PMID: 37951115 DOI: 10.1016/j.oraloncology.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 11/13/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common cancer in the oral cavity accounting for 90 % of oral cancer with a global incidence of 350.000 new cases per year. Curative resection along with adjuvant radiation therapy or a combination of radiotherapy with chemotherapy remain as gold standard in treating OSCC. Still, local recurrence, lymph nodal recurrence, and complications of radiation remain the main cause of tumor-related mortality. Reactive oxygen species are not only correlated to the etiology of OSCC due to oxidative DNA damage, lipid peroxidation or effecting signal transduction cascades that effect cell proliferation and tumorigenesis, but are also of great interest in the therapy of OSCC patients. As induced oxidative stress can be used therapeutically for the induction of tumor cell death, redox targets might be a therapeutic addition to the conventional treatment options. In this review, we discuss markers of impaired redox homeostasis as well as potential redox-related treatment targets in OSCC.
Collapse
Affiliation(s)
- Ina Dewenter
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany.
| | - Joerg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Philipp Poxleitner
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Wenko Smolka
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Paris Liokatis
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Riham Fliefel
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Katharina Theresa Obermeier
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| |
Collapse
|
2
|
Bakar SAA, Ali AM, Noor SNFM, Hamid SBS, Azhar NA, Mohamad NM, Ahmad NH. Combination of Goniothalamin and Sol-Gel-Derived Bioactive Glass 45S5 Enhances Growth Inhibitory Activity via Apoptosis Induction and Cell Cycle Arrest in Breast Cancer Cells MCF-7. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5653136. [PMID: 35872839 PMCID: PMC9303150 DOI: 10.1155/2022/5653136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Combination of natural products with chemically synthesised biomaterials as cancer therapy has attracted great interest lately. Hence, this study is aimed at investigating the combined effects of goniothalamin and bioactive glass 45S5 (GTN-BG) and evaluating their anticancer properties on human breast cancer cells MCF-7. METHODS The BG 45S5 was prepared using the sol-gel process followed by characterisation using PSA, BET, SEM/EDS, XRD, and FTIR. The effects of GTN-BG on the proliferation of MCF-7 were assessed by MTT, PrestoBlue, and scratch wound assays. The cell cycle analysis, Annexin-FITC assay, and activation of caspase-3/7, caspase-8, and caspase-9 assays were determined to further explore its mechanism of action. RESULTS The synthesised BG 45S5 was classified as a fine powder, having a rough surface, and contains mesopores of 12.6 nm. EDS analysis revealed that silica and calcium elements are the primary components of BG powders. Both crystalline and amorphous structures were detected with 73% and 27% similarity to Na2Ca2(Si2O7) and hydroxyapatite, respectively. The combination of GTN-BG was more potent than GTN in inhibiting the proliferation of MCF-7 cells. G0/G1 and G2/M phases of the cell cycle were arrested by GTN and GTN-BG. The percentage of viable cells in GTN-BG treatment was significantly lower than that in GTN. In terms of activation of initiator caspases for both extrinsic and intrinsic apoptosis pathways, caspase-8 and caspase-9 were found more effective in response to GTN-BG than GTN. CONCLUSION The anticancer effect of GTN in MCF-7 cells was improved when combined with BG. The findings provide significant insight into the mechanism of GTN-BG against MCF-7 cells, which can potentially be used as a novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Siti Aishah Abu Bakar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Department of Dental Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Shahrul Bariyah Sahul Hamid
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Asna Azhar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Noor Muzamil Mohamad
- Centralised Laboratory Management Center, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Wang SC, Li RN, Lin LC, Tang JY, Su JH, Sheu JH, Chang HW. Comparison of Antioxidant and Anticancer Properties of Soft Coral-Derived Sinularin and Dihydrosinularin. Molecules 2021; 26:molecules26133853. [PMID: 34202721 PMCID: PMC8270243 DOI: 10.3390/molecules26133853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
Marine natural products are abundant resources for antioxidants, but the antioxidant property of the soft corals-derived sinularin and dihydrosinularin were unknown. This study aimed to assess antioxidant potential and antiproliferation effects of above compounds on cancer cells, and to investigate the possible relationships between them. Results show that sinularin and dihydrosinularin promptly reacted with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl (•OH), demonstrating a general radical scavenger activity. Sinularin and dihydrosinularin also show an induction for Fe+3-reduction and Fe+2-chelating capacity which both strengthen their antioxidant activities. Importantly, sinularin shows higher antioxidant properties than dihydrosinularin. Moreover, 24 h ATP assays show that sinularin leads to higher antiproliferation of breast, lung, and liver cancer cells than dihydrosinularin. Therefore, the differential antioxidant properties of sinularin and dihydrosinularin may contribute to their differential anti-proliferation of different cancer cells.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (R.-N.L.)
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (R.-N.L.)
| | - Li-Ching Lin
- Chi-Mei Foundation Medical Center, Department of Radiation Oncology, Tainan 71004, Taiwan;
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan;
- Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 90078, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (R.-N.L.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
4
|
Manoalide Shows Mutual Interaction between Cellular and Mitochondrial Reactive Species with Apoptosis in Oral Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6667355. [PMID: 33747349 PMCID: PMC7943270 DOI: 10.1155/2021/6667355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
We previously found that marine sponge-derived manoalide induced antiproliferation and apoptosis of oral cancer cells as well as reactive species generations probed by dichloro-dihydrofluorescein diacetate (DCFH-DA) and MitoSOX Red. However, the sources of cellular and mitochondrial redox stresses and the mutual interacting effects between these redox stresses and apoptosis remain unclear. To address this issue, we examined a panel of reactive species and used the inhibitors of cellular reactive species (N-acetylcysteine (NAC)), mitochondrial reactive species (MitoTEMPO), and apoptosis (Z-VAD-FMK; ZVAD) to explore their interactions in manoalide-treated oral cancer Ca9-22 and CAL 27 cells. Hydroxyl (˙OH), nitrogen dioxide (NO2˙), nitric oxide (˙NO), carbonate radical-anion (CO3 ˙-), peroxynitrite (ONOO-), and superoxide (O2 ˙-) were increased in oral cancer cells following manoalide treatments in terms of fluorescence staining and flow cytometry. Cellular reactive species (˙OH, NO2 ·, ˙NO, CO3 ˙-, and ONOO-) as well as cellular and mitochondrial reactive species (O2 ˙-) were induced in oral cancer cells following manoalide treatment for 6 h. NAC, MitoTEMPO, and ZVAD inhibit manoalide-induced apoptosis in terms of annexin V and pancaspase activity assays. Moreover, NAC inhibits mitochondrial reactive species and MitoTEMPO inhibits cellular reactive species, suggesting that cellular and mitochondrial reactive species can crosstalk to regulate each other. ZVAD shows suppressing effects on the generation of both cellular and mitochondrial reactive species. In conclusion, manoalide induces reciprocally activation between cellular and mitochondrial reactive species and apoptosis in oral cancer cells.
Collapse
|
5
|
de Souza KFS, Tófoli D, Pereira IC, Filippin KJ, Guerrero ATG, Paredes-Gamero EJ, de Fatima Cepa Matos M, Garcez WS, Garcez FR, Perdomo RT. A styrylpyrone dimer isolated from Aniba heringeri causes apoptosis in MDA-MB-231 triple-negative breast cancer cells. Bioorg Med Chem 2021; 32:115994. [PMID: 33477019 DOI: 10.1016/j.bmc.2021.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/11/2023]
Abstract
The styrylpyrone dehydrogoniothalamin (1) and two of its dimers (2 and 3) were isolated from the leaves of Aniba heringeri (Lauraceae). Compound 3 is new, while 1 and 2 are being reported for the first time in this species. Structures were determined by 1D- and 2D-NMR spectroscopy, mass spectrometry, and optical rotation data. Cytotoxic effects and selectivity indices were evaluated in five neoplastic cell lines-PC-3 (prostate), 786-0 (renal), HT-29 (colon), MCF-7, and MDA-MB-231 (breast)-and a non-neoplastic cell line, (NIH/3T3, murine fibroblast). Compound 1 inhibited cell growth by 50% (GI50) at concentrations in the 90.4-175.7 μM range, while 2 proved active against MCF-7 and MDA-MB-231 breast cells (GI50 = 12.24, and 34.22 μM, respectively). Compound 3 showed strong cytotoxicity (GI50 = 4.4 μM) against MDA-MB-231 (an established basal triple-negative breast carcinoma (TNBC) cell line), with a high selective index of 35. This compound was subsequently evaluated for apoptosis induction in MDA-MB-231 cells, using GI50 and 50% lethal concentrations (LC50). Flow cytometry analysis showed that at LC50 compound 3 induced cell death with phosphatidylserine externalization and caspase-3 activation. Apoptotic genes were measured by RT-qPCR, revealing an upregulation of BAX, with an increase in expression of the BAX/BCL2 ratio in treated cells. Fluorescence microscopy disclosed morphological changes related to apoptosis. Overall, these findings showed compound 3 to be a promising prototype against TNBC cells that tend to respond poorly to conventional therapies.
Collapse
Affiliation(s)
- Kamylla Fernanda Souza de Souza
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Danilo Tófoli
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Indiara Correia Pereira
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Kelly Juliana Filippin
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria de Fatima Cepa Matos
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Walmir Silva Garcez
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Renata Trentin Perdomo
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
6
|
Alharbi RM. Hydroclathrus clathratus as anti-damaging agent against lung injury in male albino rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present investigation is designed to evaluate the antioxidant and protective efficacy of the brown alga, Hydroclathrus clathratus (C.Agardh) M. Howe, against copper-induced lung injury in male albino rats. The present study was carried out on 24 adult male albino rats, they were randomly divided into four groups (n = 6) (A group, control rats; B group, rats received 100 mg/kg body weight of H. clathratus ethanolic extract; C group, rats augmented with 100 mg/kg body weight of CuSO4; and D group, rats were supplemented with 100 mg/kg of CuSO4 and 100 mg/kg of H. clathratus ethanolic extract). All the experimental treatments were given orally and daily for 28 days.
Results
It was showing that Cu treatment was found to induce lung toxicity, histopathologically, Cu revealed severe degenerative and necrotic lesions in the lung. Also, Cu caused a significant decrease in glutathione-S-transferase (GST) count and glutathione (GSH); meanwhile, malondialdehyde (MDA) content was increased. Consistently, mRNA and protein expression levels of proapoptotic (caspase-3 and Bax) marker showed a significant upregulation, whereas the anti-apoptotic (Bcl-2) level was significantly downregulated in lung tissues of CuSO4-intubated groups. Moreover, H. clathratus plus CuSO4-treated group showed improvement in the histopathological changes of lung injury. The bronchi and bronchioles appeared like those of the control, where the alveoli showed thin septa in some parts and thickened septa in other parts.
Conclusion
Findings revealed that the natural antioxidant activity of H. clathratus could protect the lung tissue from the damage produced by CuSO4.
Collapse
|
7
|
Yu TJ, Hsieh CY, Tang JY, Lin LC, Huang HW, Wang HR, Yeh YC, Chuang YT, Ou-Yang F, Chang HW. Antimycin A shows selective antiproliferation to oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. ENVIRONMENTAL TOXICOLOGY 2020; 35:1212-1224. [PMID: 32662599 DOI: 10.1002/tox.22986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The antibiotic antimycin A (AMA) is commonly used as an inhibitor for the electron transport chain but its application in anticancer studies is rare. Recently, the repurposing use of AMA in antiproliferation of several cancer cell types has been reported. However, it is rarely investigated in oral cancer cells. The purpose of this study is to investigate the selective antiproliferation ability of AMA treatment on oral cancer cells. Cell viability, flow cytometry, and western blotting were applied to explore its possible anticancer mechanism in terms of both concentration- and exposure time-effects. AMA shows the higher antiproliferation to two oral cancer CAL 27 and Ca9-22 cell lines than normal oral HGF-1 cell lines. Moreover, AMA induces the production of higher reactive oxygen species (ROS) levels and pan-caspase activation in oral cancer CAL 27 and Ca9-22 cells than in normal oral HGF-1 cells, providing the possible mechanism for its selective antiproliferation effect of AMA. In addition to ROS, AMA induces mitochondrial superoxide (MitoSOX) generation and depletes mitochondrial membrane potential (MitoMP). This further supports the AMA-induced oxidative stress changes in oral cancer CAL 27 and Ca9-22 cells. AMA also shows high expressions of annexin V in CAL 27 and Ca9-22 cells and cleaved forms of poly (ADP-ribose) polymerase (PARP), caspase 9, and caspase 3 in CAL 27 cells, supporting the apoptosis-inducing ability of AMA. Furthermore, AMA induces DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine [8-oxodG]) in CAL 27 and Ca9-22 cells. Notably, the AMA-induced selective antiproliferation, oxidative stress, and DNA damage were partly prevented from N-acetylcysteine (NAC) pretreatments. Taken together, AMA selectively kills oral cancer cells in an oxidative stress-dependent mechanism involving apoptosis and DNA damage.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Yu Hsieh
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
- Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yun-Chiao Yeh
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Yu TJ, Tang JY, Lin LC, Lien WJ, Cheng YB, Chang FR, Ou-Yang F, Chang HW. Withanolide C Inhibits Proliferation of Breast Cancer Cells via Oxidative Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) 2020; 9:antiox9090873. [PMID: 32947878 PMCID: PMC7555407 DOI: 10.3390/antiox9090873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some withanolides, particularly the family of steroidal lactones, show anticancer effects, but this is rarely reported for withanolide C (WHC)—especially anti-breast cancer effects. The subject of this study is to evaluate the ability of WHC to regulate the proliferation of breast cancer cells, using both time and concentration in treatment with WHC. In terms of ATP depletion, WHC induced more antiproliferation to three breast cancer cell lines, SKBR3, MCF7, and MDA-MB-231, than to normal breast M10 cell lines. SKBR3 and MCF7 cells showing higher sensitivity to WHC were used to explore the antiproliferation mechanism. Flow cytometric apoptosis analyses showed that subG1 phase and annexin V population were increased in breast cancer cells after WHC treatment. Western blotting showed that cleaved forms of the apoptotic proteins poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Cas 3) were increased in breast cancer cells. Flow cytometric oxidative stress analyses showed that WHC triggered reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production as well as glutathione depletion. In contrast, normal breast M10 cells showed lower levels of ROS and annexin V expression than breast cancer cells. Flow cytometric DNA damage analyses showed that WHC triggered γH2AX and 8-oxo-2′-deoxyguanosine (8-oxodG) expression in breast cancer cells. Moreover, N-acetylcysteine (NAC) pretreatment reverted oxidative stress-mediated ATP depletion, apoptosis, and DNA damage. Therefore, WHC kills breast cancer cells depending on oxidative stress-associated mechanisms.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Wan-Ju Lien
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
9
|
Combined Treatment of Sulfonyl Chromen-4-Ones (CHW09) and Ultraviolet-C (UVC) Enhances Proliferation Inhibition, Apoptosis, Oxidative Stress, and DNA Damage against Oral Cancer Cells. Int J Mol Sci 2020; 21:ijms21176443. [PMID: 32899415 PMCID: PMC7504536 DOI: 10.3390/ijms21176443] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sensitizing effect of chromone-derived compounds on UVC-induced proliferation inhibition has not been comprehensively investigated so far. The subject of this study was to examine the proliferation change of oral cancer cells while using the combined treatment of UVC (254 nm) with our previously developed sulfonyl chromen-4-ones (CHW09), namely UVC/CHW09. Cell viability, apoptosis, oxidative stress, and DNA damage for the individual and combined treatments for UVC and/or CHW09 were examined in oral cancer Ca9-22 cells. In 24 h MTS assay, UVC (30 J/m2; UVC30), or CHW09 (25 and 50 µg/mL; namely, CHW09-25 and CHW09-50) show 54%, 59%, and 45% viability. The combined treatment (UVC30/CHW09-25 and UVC30/CHW09-50) show lower cell viability (45% and 35%). Mechanistically, UVC/CHW09 induced higher apoptosis than individual treatments and untreated control, which were supported by the evidence of flow cytometry for subG1, annexin V/7-aminoactinomycin D, pancaspase and caspases 3/7 activity, and western blotting for cleaved poly(ADP-ribose) polymerase. Moreover, this cleaved PARP expression was downregulated by pancaspase inhibitor Z-VAD-FMK. UVC/CHW09 showed higher oxidative stress than individual treatments and untreated control in terms of flow cytometry for reactive oxygen species, mitochondrial membrane potential, and mitochondrial mass. Furthermore, UVC/CHW09 showed higher DNA damage than individual treatments and untreated control in terms of flow cytometry for H2A histone family member X and 8-oxo-2’-deoxyguanosine. In conclusion, combined treatment UVC/CHW09 suppresses proliferation, and promotes apoptosis, oxidative stress, and DNA damage against oral cancer cells, providing a novel application of sulfonyl chromen-4-ones in order to sensitize UVC induced proliferation inhibition for oral cancer therapy.
Collapse
|
10
|
Yu TJ, Tang JY, Ou-Yang F, Wang YY, Yuan SSF, Tseng K, Lin LC, Chang HW. Low Concentration of Withaferin a Inhibits Oxidative Stress-Mediated Migration and Invasion in Oral Cancer Cells. Biomolecules 2020; 10:E777. [PMID: 32429564 PMCID: PMC7277689 DOI: 10.3390/biom10050777] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Withaferin A (WFA) has been reported to inhibit cancer cell proliferation based on high cytotoxic concentrations. However, the low cytotoxic effect of WFA in regulating cancer cell migration is rarely investigated. The purpose of this study is to investigate the changes in migration and mechanisms of oral cancer Ca9-22 cells after low concentrations of WFA treatment. WFA under 0.5 μM at 24 h treatment shows no cytotoxicity to oral cancer Ca9-22 cells (~95% viability). Under this condition, WFA triggers reactive oxygen species (ROS) production and inhibits 2D (wound healing) and 3D cell migration (transwell) and Matrigel invasion. Mechanically, WFA inhibits matrix metalloproteinase (MMP)-2 and MMP-9 activities but induces mRNA expression for a group of antioxidant genes, such as nuclear factor, erythroid 2-like 2 (NFE2L2), heme oxygenase 1 (HMOX1), glutathione-disulfide reductase (GSR), and NAD(P)H quinone dehydrogenase 1 (NQO1)) in Ca9-22 cells. Moreover, WFA induces mild phosphorylation of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 expression. All WFA-induced changes were suppressed by the presence of ROS scavenger N-acetylcysteine (NAC). Therefore, these results suggest that low concentration of WFA retains potent ROS-mediated anti-migration and -invasion abilities for oral cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yen-Yun Wang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Shyng-Shiou F. Yuan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kevin Tseng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Goniothalamin Induces Necroptosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells. Int J Mol Sci 2019; 20:ijms20163953. [PMID: 31416203 PMCID: PMC6720804 DOI: 10.3390/ijms20163953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 01/14/2023] Open
Abstract
Goniothalamin (GTN) is toxic to several types of cancer cells in vitro. However, its effects on non-apoptotic cell death induction of human cancer cells have been poorly documented. Here, an investigation of the anti-cancer activity of GTN and the molecular signaling pathways of non-apoptotic cell death in the invasive human breast cancer MDA-MB-231 cell line were undertaken. Apoptotic cell death was suppressed by using a pan-caspase inhibitor (Benzyloxycarbonyl-Val-Ala-Asp-[O-methyl]-fluoromethylketone), z-VAD-fmk) as a model to study whether GTN induced caspase-independent cell death. In the anoikis study, MDA-MB-231 cells were cultured on poly-(2-hydroxyethyl methacrylate)- or poly-HEMA- coated plates to mimic anoikis-resistance growth and determine whether GTN induced cell death and the mechanisms involved. GTN and z-VAD-fmk induced human breast cancer MDA-MB-231 cells to undergo necroptosis via endoplasmic reticulum (ER) and oxidative stresses, with increased expressions of necroptotic genes such as rip1, rip3, and mlkl. GTN induced MDA-MB-231 cells to undergo anoikis via reversed epithelial-mesenchymal transition (EMT) protein expressions, inhibited the EGFR/FAK/Src survival signaling pathway, and decreased matrix metalloproteinase secretion.
Collapse
|
12
|
Tang JY, Shu CW, Wang CL, Wang SC, Chang MY, Lin LC, Chang HW. Sulfonyl chromen-4-ones (CHW09) shows an additive effect to inhibit cell growth of X-ray irradiated oral cancer cells, involving apoptosis and ROS generation. Int J Radiat Biol 2019; 95:1226-1235. [PMID: 31141432 DOI: 10.1080/09553002.2019.1625490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: This study evaluates the growth inhibiting potential of our previously described sulfonyl chromen-4-ones (CHW09) compound in X-ray irradiated oral cancer cells. Materials and methods: The growth inhibiting effect and mechanism of combined CHW09/X-ray treatment was examined by analyzing cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), and DNA damage. Results: Individual treatments of CHW09 (10 μg/mL) and X-ray irradiation (12 Gy) slightly decreased cell viability of oral cancer Ca9-22 (87.25% and 86.54%) and CAL 27 (80.00% and 74.01%) cells and normal oral HGF-1 cells (92.76% and 87.56%) at 24 h-MTS assay, respectively. In a combined treatment (CHW09/X-ray), the cell viability in Ca9-22 and CAL 27 cells was significantly decreased to 73.48% and 59.07%, whereas HGF-1 cells maintained 84.97% viability in 24 h-MTS assay. For CAL 27 cells, both 72 h-MTS assay and clonogenic assay showed that CHW09/X-ray resulted in more growth inhibition than other treatments. Intracellular ROS levels of CHW09/X-ray were higher than for CHW09, X-ray and control. CHW09/X-ray and X-ray alone had higher G2/M arrest than the control and CHW09 alone. Moreover, flow cytometry and western blotting showed that CHW09/X-ray treatment caused higher apoptosis levels. Levels of H2A histone family member X (γH2AX)-based DNA damage and 8-oxo-2'-deoxyguanosine (8-oxodG)-oxidative DNA damage of CHW09/X-ray were higher than for CHW09, X-ray and control. Conclusion: CHW09/X-ray treatment had additive growth inhibiting effects against X-ray irradiated oral cancer cells, partly attributing to apoptosis and ROS generation.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University , Kaohsiung , Taiwan
| | - Chun-Lin Wang
- Food Industry Research and Development Institute, Bioresource Collection and Research Center , Hsinchu , Taiwan
| | - Sheng-Chieh Wang
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center , Tainan , Taiwan.,School of Medicine, Taipei Medical University , Taipei , Taiwan.,Chung Hwa University of Medical Technology , Tainan , Taiwan
| | - Hsueh-Wei Chang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University , Kaohsiung , Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung , Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
13
|
Wang CY, Lin CS, Hua CH, Jou YJ, Liao CR, Chang YS, Wan L, Huang SH, Hour MJ, Lin CW. Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells. Biomol Ther (Seoul) 2019; 27:54-62. [PMID: 30261716 PMCID: PMC6319548 DOI: 10.4062/biomolther.2017.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 11/05/2022] Open
Abstract
Cis-3-O-p-hydroxycinnamoyl ursolic acid (HCUA), a triterpenoid compound, was purified from Elaeagnus oldhamii Maxim. This traditional medicinal plant has been used for treating rheumatoid arthritis and lung disorders as well as for its anti-inflammation and anticancer activities. This study aimed to investigate the anti-proliferative and apoptotic-inducing activities of HCUA in oral cancer cells. HCUA exhibited anti-proliferative activity in oral cancer cell lines (Ca9-22 and SAS cells), but not in normal oral fibroblasts. The inhibitory concentration of HCUA that resulted in 50% viability was 24.0 µM and 17.8 µM for Ca9-22 and SAS cells, respectively. Moreover, HCUA increased the number of cells in the sub-G1 arrest phase and apoptosis in a concentration-dependent manner in both oral cancer cell lines, but not in normal oral fibroblasts. Importantly, HCUA induced p53-mediated transcriptional regulation of pro-apoptotic proteins (Bax, Bak, Bim, Noxa, and PUMA), which are associated with mitochondrial apoptosis in oral cancer cells via the loss of mitochondrial membrane potential. HCUA triggered the production of intracellular reactive oxygen species (ROS) that was ascertained to be involved in HCUA-induced apoptosis by the ROS inhibitors YCG063 and N-acetyl-L-cysteine. As a result, HCUA had potential antitumor activity to oral cancer cells through eliciting ROS-dependent and p53-mediated mitochondrial apoptosis. Overall, HCUA could be applicable for the development of anticancer agents against human oral cancer.
Collapse
Affiliation(s)
- Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402,Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Jen Jou
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402,Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Chi-Ren Liao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Lei Wan
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Wufeng, Taichung 41357, Taiwan
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402,Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan.,Department of Biotechnology, Asia University, Wufeng, Taichung 41357, Taiwan
| |
Collapse
|
14
|
Apoptosis Induction via ATM Phosphorylation, Cell Cycle Arrest, and ER Stress by Goniothalamin and Chemodrugs Combined Effects on Breast Cancer-Derived MDA-MB-231 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7049053. [PMID: 30598998 PMCID: PMC6287143 DOI: 10.1155/2018/7049053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/17/2018] [Accepted: 11/10/2018] [Indexed: 12/17/2022]
Abstract
Goniothalamin (GTN), a styryl-lactone, exhibits inhibitory effects on many kinds of cancer cells in vitro. The objectives of this study were to investigate the anticancer activities of GTN and molecular signaling pathways associated with cell death in human breast cancer MDA-MB-231 cell line. GTN inhibited the growth of MDA-MB-231 cells. Apoptosis was confirmed by annexin V-FITC and PI staining, and apoptotic morphology was observed by microscopy. Reduction of mitochondrial transmembrane potential and enhanced caspases activities were found in GTN-treated MDA-MB-231 cells. GTN significantly altered apoptosis-related protein expressions, including Noxa, PUMA, Bax, Bim, Bad, Bcl-2, Bcl-xL, and DIABLO, which was related to the gene expression levels. Mitochondrial calcium released to the cytosol and ER stress related proteins increased, which correlated with increases in ER stress gene expression levels. GTN induced hydrogen peroxide and superoxide anion radicals in MDA-MB-231 cells associated with cell cycle arrest in G2/M phase, which was induced by phosphorylation and ATM gene expression. Moreover, GTN had synergistic effects when combined with cyclophosphamide, 5-fluorouracil, paclitaxel, and vinblastine, and additive effect with methotrexate through caspases enzyme-acceleration. In conclusion, goniothalamin-induced MDA-MB-231 cell apoptosis occurred via intrinsic and extrinsic pathways, along with ER stress. These pathways provide new targeted drug strategies for advancements in anticancer medicine.
Collapse
|
15
|
Protective Effects of Lycium barbarum Extracts on UVB-Induced Damage in Human Retinal Pigment Epithelial Cells Accompanied by Attenuating ROS and DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4814928. [PMID: 30524656 PMCID: PMC6247443 DOI: 10.1155/2018/4814928] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023]
Abstract
The medicinal herb Lycium barbarum fruit has been widely used for improving and maintaining the health of the eyes in the Far East for many centuries. This study is aimed at investigating whether protective effects generated from the aqueous (LBA) and ethanol (LBE) extracts of the L. barbarum fruit existed against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. L. barbarum extracts LBA and LBE exerted the activity of ROS scavenging and rescued UVB irradiation-induced growth inhibition in retinal pigment epithelial ARPE-19 cells. Compared to LBA, the ethanol extract LBE exerted a superior protective activity on UVB-induced growth arrest in ARPE-19 cells. Both L. barbarum extracts significantly reduced cell cycle G2-arrest population in ARPE-19 cells. Furthermore, the cytometer-based Annexin V/propidium iodide staining assay further showed that both L. barbarum extracts protected ARPE-19 cells from UVB-induced apoptosis. L. barbarum extracts also reduced the activation of γH2AX, a sensor of DNA damage in ARPE-19 cells in a dose-responsive manner. By using Ingenuity Pathway Analysis (IPA), the bioinformatics revealed that the protective effects of both LBA and LBE extracts might be involved in three signaling pathways, especially the Toll-like receptor (TLR) pathway associated with cellular proliferation. Our study suggests that both ethanol and aqueous extracts of L. barbarum exhibit antioxidant activity and rescue UVB-induced apoptosis of ARPE-19 cells. Collectively, the ethanol extract exerts a superior effect on rescuing UVB-induced growth arrest of ARPE-19 compared to the aqueous extract, which might be associated with the activation of TLR signaling. Our present work will benefit the preventive strategy of herbal medicine-based vision protection for treating eye diseases such as age-related macular degeneration in the future.
Collapse
|
16
|
Tang JY, Wu CY, Shu CW, Wang SC, Chang MY, Chang HW. A novel sulfonyl chromen-4-ones (CHW09) preferentially kills oral cancer cells showing apoptosis, oxidative stress, and DNA damage. ENVIRONMENTAL TOXICOLOGY 2018; 33:1195-1203. [PMID: 30256521 DOI: 10.1002/tox.22625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Several functionalized chromones, the key components of naturally occurring oxygenated heterocycles, have anticancer effects but their sulfone compounds are rarely investigated. In this study, we installed a sulfonyl substituent to chromen-4-one skeleton and synthesized CHW09 to evaluate its antioral cancer effect in terms of cell viability, cell cycle, apoptosis, oxidative stress, and DNA damage. In cell viability assay, CHW09 preferentially kills two oral cancer cells (Ca9-22 and CAL 27), less affecting normal oral cells (HGF-1). Although CHW09 does not change the cell cycle distribution significantly, CHW09 induces apoptosis validated by flow cytometry for annexin V and by western blotting for cleaved poly(ADP-ribose) polymerase (PARP), and caspases 3/8/9. These apoptosis signaling expressions are partly decreased by apoptosis inhibitor (Z-VAD-FMK) or free radical scavenger (N-acetylcysteine). Furthermore, CHW09 induces oxidative stress validated by flow cytometry for the generations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), and the suppression of mitochondrial membrane potential (MMP). CHW09 also induces DNA damage validated by flow cytometry for the increases of DNA double strand break marker γH2AX and oxidative DNA damage marker 8-oxo-2'-deoxyguanosine (8-oxodG). Therefore, our newly synthesized CHW09 induces apoptosis, oxidative stress, and DNA damage, which may lead to preferential killing of oral cancer cells compared with normal oral cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Pilli RA, de Toledo I, Meirelles MA, Grigolo TA. Goniothalamin-Related Styryl Lactones: Isolation, Synthesis, Biological Activity and Mode of Action. Curr Med Chem 2018; 26:7372-7451. [PMID: 30306856 DOI: 10.2174/0929867325666181009161439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/25/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
Abstract
This review covers the chemistry and biological aspects of goniothalamin-related styryl lactones isolated from natural sources. This family of secondary metabolites has been reported to display diverse uses in folk medicine, but only a limited number of these compounds have been throughly investigated regarding their biological profile. Herein, we cover the goniothalamin-related styryl lactones having a C6-C3-C4 framework which appeared in the literature for the first time in the period 2000-2017, and the reports on the synthesis, biological activity and mechanism of action which were published from 2007-2017.
Collapse
Affiliation(s)
- Ronaldo Aloise Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Ian de Toledo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | | | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Folic acid supplementation repressed hypoxia-induced inflammatory response via ROS and JAK2/STAT3 pathway in human promyelomonocytic cells. Nutr Res 2018; 53:40-50. [PMID: 29685624 DOI: 10.1016/j.nutres.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/15/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022]
Abstract
Hypoxia is associated with inflammation and various chronic diseases. Folic acid is known to ameliorate inflammatory reactions, but the metabolism of folic acid protecting against hypoxia-induced injury is still unclear. In our study, we examined the inflammatory signal transduction pathway in human promyelomonocytic cells (THP-1 cells) with or without treatment with folic acid under hypoxic culture conditions. Our results indicated that supplementation with folic acid significantly reduced the levels of interleukin-1β and tumor necrosis factor-α in hypoxic conditions. Treating THP-1 cells with folic acid suppressed oxidative stress and hypoxia-inducible factor-1α in a dose-dependent manner. Folic acid targeted the activation of Janus kinase 2, downregulated the phosphorylation of signal transducer and activator of transcription 3, and decreased the expression of nuclear factor-κB p65 protein in cells. However, the absence of folic acid did not make cells more vulnerable under hypoxic conditions. In conclusion, folic acid efficiently inhibited the inflammatory response of THP-1 cells under hypoxic conditions by inhibiting reactive oxygen species production and the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Our study supports a basis for treatment with folic acid for chronic inflammation, which correlated with hypoxia.
Collapse
|
19
|
Tang JY, Huang HW, Wang HR, Chan YC, Haung JW, Shu CW, Wu YC, Chang HW. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:295-304. [PMID: 29165875 DOI: 10.1002/tox.22516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ya-Ching Chan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jo-Wen Haung
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Chang HW, Li RN, Wang HR, Liu JR, Tang JY, Huang HW, Chan YH, Yen CY. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells. Front Physiol 2017; 8:634. [PMID: 28936177 PMCID: PMC5594071 DOI: 10.3389/fphys.2017.00634] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University HospitalKaohsiung, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical UniversityKaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Jing-Ru Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University HospitalKaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung HospitalKaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Yu-Hsuan Chan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical CenterTainan, Taiwan.,School of Dentistry, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
21
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|
22
|
Sophonnithiprasert T, Mahabusarakam W, Nakamura Y, Watanapokasin R. Goniothalamin induces mitochondria-mediated apoptosis associated with endoplasmic reticulum stress-induced activation of JNK in HeLa cells. Oncol Lett 2016; 13:119-128. [PMID: 28123531 PMCID: PMC5245090 DOI: 10.3892/ol.2016.5381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
Goniothalamin, a natural occurring styryl-lactone isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus, can trigger cancer cell death in various types of cancer cell. The present study focused on elucidation of the mitochondria-mediated apoptosis associated with endoplasmic reticulum (ER) stress-induced activation of c-Jun NH2-terminal kinase (JNK) by goniothalamin in HeLa cervical cancer cells. Cell viability was determined using an MTT assay, and DNA condensation and loss of mitochondrial membrane potential were determined using Hoechst 33342 and JC-1 staining, respectively. Flow cytometry was used for cell cycle and phosphatidyl-serine exposure analyses. Apoptotic-associated ER stress signaling pathways were determined using immunoblotting, reverse transcription-polymerase chain reaction (RT-PCR) and RT-quantitative PCR analyses. The results suggested that goniothalamin suppressed cell proliferation in a time- and dose-dependent manner. The induction of apoptosis was confirmed by increased DNA condensation, loss of mitochondrial membrane potential and cell surface phosphatidyl-serine presentation. The cell cycle analysis demonstrated that the goniothalamin-treated HeLa cells were in G2/M arrest. Determination of the caspase cascade and apoptotic proteins indicated the induction of apoptosis through the intrinsic pathway. In addition, the levels of phosphorylated JNK and the transcription factor, C/EBP homologous protein (CHOP), an ER stress-associated apoptotic molecule, were increased in the goniothalamin-treated cells. These data indicated that goniothalamin exerted a cytotoxic effect against HeLa cells via the induction of mitochondria-mediated apoptosis, associated with ER stress-induced activation of JNK.
Collapse
Affiliation(s)
- Thanet Sophonnithiprasert
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusarakam
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinkharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
23
|
Chen CY, Yen CY, Wang HR, Yang HP, Tang JY, Huang HW, Hsu SH, Chang HW. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage. Toxins (Basel) 2016; 8:toxins8110319. [PMID: 27827950 PMCID: PMC5127116 DOI: 10.3390/toxins8110319] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022] Open
Abstract
The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N-acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan.
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hui-Ru Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hui-Ping Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Cancer Center, Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Research Resources and Development of Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
24
|
Lin JJ, Wang RYL, Chen JC, Chiu CC, Liao MH, Wu YJ. Cytotoxicity of 11-epi-Sinulariolide Acetate Isolated from Cultured Soft Corals on HA22T Cells through the Endoplasmic Reticulum Stress Pathway and Mitochondrial Dysfunction. Int J Mol Sci 2016; 17:ijms17111787. [PMID: 27801783 PMCID: PMC5133788 DOI: 10.3390/ijms17111787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/29/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Natural compounds from soft corals have been increasingly used for their antitumor therapeutic properties. This study examined 11-epi-sinulariolide acetate (11-epi-SA), an active compound isolated from the cultured soft coral Sinularia flexibilis, to determine its potential antitumor effect on four hepatocellular carcinoma cell lines. Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the results demonstrated that 11-epi-SA treatment showed more cytotoxic effect toward HA22T cells. Protein profiling of the 11-epi-SA-treated HA22T cells revealed substantial protein alterations associated with stress response and protein synthesis and folding, suggesting that the mitochondria and endoplasmic reticulum (ER) play roles in 11-epi-SA-initiated apoptosis. Moreover, 11-epi-SA activated caspase-dependent apoptotic cell death, suggesting that mitochondria-related apoptosis genes were involved in programmed cell death. The unfolded protein response signaling pathway-related proteins were also activated on 11-epi-SA treatment, and these changes were accompanied by the upregulated expression of growth arrest and DNA damage-inducible protein (GADD153) and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), the genes encoding transcription factors associated with growth arrest and apoptosis under prolonged ER stress. Two inhibitors, namely salubrinal (Sal) and SP600125, partially abrogated 11-epi-SA-related cell death, implying that the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)–activating transcription factor (ATF) 6–CHOP or the inositol-requiring enzyme 1 alpha (IRE1α)–c-Jun N-terminal kinase (JNK)–cJun signal pathway was activated after 11-epi-SA treatment. In general, these results suggest that 11-epi-SA exerts cytotoxic effects on HA22T cells through mitochondrial dysfunction and ER stress cell death pathways.
Collapse
Affiliation(s)
- Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Robert Y L Wang
- Department of Biomedical Sciences and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo 33305, Taiwan.
| | - Jiing-Chuan Chen
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ming-Hui Liao
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan.
| |
Collapse
|
25
|
Boonmuen N, Thongon N, Chairoungdua A, Suksen K, Pompimon W, Tuchinda P, Reutrakul V, Piyachaturawat P. 5-Acetyl goniothalamin suppresses proliferation of breast cancer cells via Wnt/β-catenin signaling. Eur J Pharmacol 2016; 791:455-464. [PMID: 27640746 DOI: 10.1016/j.ejphar.2016.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022]
Abstract
Styryl lactones are plant-derived compounds from genus Goniothalamus with promising anti-proliferation and anticancer properties. However, the exact mechanism and the target for their activities remained unclear. In the present study, we investigated the effect of 5-acetyl goniothalamin (5GTN) from Goniothalamus marcanii on Wnt/β-catenin signaling pathway which is a key regulator in controlling cell proliferation in breast cancer cells (MCF-7 and MDA-MB-231). 5GTN, a naturally occurring derivative of goniothalamin (GTN) mediated the toxicity to MCF-7 and MDA-MB-231 cells in a dose- and time- related manner, and was more potent than that of GTN. 5GTN strongly inhibited cell proliferation and markedly suppressed transcriptional activity induced by β-catenin in luciferase reporter gene assay. In consistent with this view, the expression of Wnt/β-catenin signaling target genes including c-Myc, cyclin D1 and Axin2 in MCF-7 and MDA-MB-231 cells were suppressed after treatment with 5GTN. It was concomitant with cell cycle arrest at G1 phase and cell apoptosis in MCF-7 cells. In addition, 5GTN enhanced glycogen synthase kinase (GSK-3β) activity and therefore reduced the expression of active form of β-catenin protein in MCF-7 and MDA-MB-231 cells. Taken together, 5GTN exhibited a promising anticancer effect against breast cancer cells through an inhibition of Wnt/β-catenin signaling. This pathway may be served as a potential chemotherapeutic target for breast cancer by 5GTN.
Collapse
Affiliation(s)
- Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natthakan Thongon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wilart Pompimon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Patoomratana Tuchinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
26
|
Kumar M, Kaur V, Kumar S, Kaur S. Phytoconstituents as apoptosis inducing agents: strategy to combat cancer. Cytotechnology 2016; 68:531-63. [PMID: 26239338 PMCID: PMC4960184 DOI: 10.1007/s10616-015-9897-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
Advancement in the field of cancer molecular biology has aided researchers to develop various new chemopreventive agents which can target cancer cells exclusively. Cancer chemopreventive agents have proficiency to inhibit, reverse and delay process of carcinogenesis during its early and later course. Chemopreventive agents can act as antioxidative, antimutagenic/antigenotoxic, anti-inflammatory agents or via aiming various molecular targets in a cell to induce cell death. Apoptosis is a kind of cell death which shows various cellular morphological alterations such as cell shrinkage, blebbing of membrane, chromatin condensation, DNA fragmentation, formation of apoptotic bodies etc. Nowadays, apoptosis is being one of the new approaches for the identification and development of novel anticancer therapies. For centuries, plants are known to play part in daily routine from providing food to management of human health. In the last two decades, diverse phytochemicals and various botanical formulations have been characterized as agents that possess potential to execute cancer cells via inducing apoptosis. Data obtained from the research carried out globally pointed out that natural products are the potential candidates which have capability to combat cancer. In the present review, we surveyed literature on natural products which throws light on the mechanism through which these phytochemicals induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Varinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Subodh Kumar
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
27
|
Vendramini-Costa DB, Alcaide A, Pelizzaro-Rocha KJ, Talero E, Ávila-Román J, Garcia-Mauriño S, Pilli RA, de Carvalho JE, Motilva V. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line. Toxicol Appl Pharmacol 2016; 300:1-12. [DOI: 10.1016/j.taap.2016.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
|
28
|
Annamalai G, Kathiresan S, Kannappan N. [6]-Shogaol, a dietary phenolic compound, induces oxidative stress mediated mitochondrial dependant apoptosis through activation of proapoptotic factors in Hep-2 cells. Biomed Pharmacother 2016; 82:226-36. [PMID: 27470359 DOI: 10.1016/j.biopha.2016.04.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022] Open
Abstract
Ginger (Zingiber officinale) is a well-known herb used in ethnomedicine. [6]-shogaol, a phenolic nature is a major constituent of ginger. In this study, we investigated the anticancer activity of [6]-shogaol in Laryngeal cancer (Hep-2) cells. We demonstrated the effects of [6]-shogaol on the cell growth and apoptosis in Hep-2 cells were analyzed by the generation of reactive oxygen species (ROS), the level of mitochondrial membrane potential (ΔYm), DNA damage and apoptotic morphological changes were analyzed by AO/EtBr, AO and Hoechst staining. Further, apoptotic protein expressions were analyzed by western blot analysis. Our results indicated that [6]-shogaol induces apoptosis as evidenced by loss of cell viability, enhanced ROS, lipid peroxidation results in altered mitochondrial membrane potential, increased DNA damage in Hep-2 cells. Further, the prooxidant role of [6]-shogaol inhibit Bcl-2 expression with the simultaneous up-regulation of Bax, Cytochrome c, Caspase-9 and -3 protein expressions were observed in Hep-2 cells. Thus, [6]-shogaol induces apoptosis in Hep-2 cells through inducing oxidative damage and modulate apoptotic marker expressions. Therefore, [6]-shogaol might be used as a therapeutic agent for the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Govindhan Annamalai
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India.
| | - Nagappan Kannappan
- Department of Pharmacy, Annnamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
29
|
Yeh CC, Li KT, Tang JY, Wang HR, Liu JR, Huang HW, Chang FR, Tsai CE, Lo IW, Huang MY, Chang HW. Butanol-Partitioned Extraction from Aqueous Extract of Gracilaria tenuistipitata Inhibits Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress. DNA Cell Biol 2016; 35:210-6. [DOI: 10.1089/dna.2015.3044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chi-Chen Yeh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kun-Tzu Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Ru Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-En Tsai
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Wen Lo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Yang JI, Tang JY, Liu YS, Wang HR, Lee SY, Yen CY, Chang HW. Roe Protein Hydrolysates of Giant Grouper (Epinephelus lanceolatus) Inhibit Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8305073. [PMID: 27195297 PMCID: PMC4852358 DOI: 10.1155/2016/8305073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022]
Abstract
Roe protein hydrolysates were reported to have antioxidant property but the anticancer effects were less addressed, especially for oral cancer. In this study, we firstly used the ultrafiltrated roe hydrolysates (URH) derived from giant grouper (Epinephelus lanceolatus) to evaluate the impact of URH on proliferation against oral cancer cells. We found that URH dose-responsively reduced cell viability of two oral cancer cells (Ca9-22 and CAL 27) in terms of ATP assay. Using flow cytometry, URH-induced apoptosis of Ca9-22 cells was validated by morphological features of apoptosis, sub-G1 accumulation, and annexin V staining in dose-responsive manners. URH also induced oxidative stress in Ca9-22 cells in terms of reactive oxygen species (ROS)/superoxide generations and mitochondrial depolarization. Taken together, these data suggest that URH is a potential natural product for antioral cancer therapy.
Collapse
Affiliation(s)
- Jing-Iong Yang
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan
| | - Ya-Sin Liu
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Hui-Ru Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Division of Orthodontics, Wan-Fang Medical Center, Taipei Medical University, Taipei 11648, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Research Resources and Development of Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
31
|
Yen CY, Huang HW, Shu CW, Hou MF, Yuan SSF, Wang HR, Chang YT, Farooqi AA, Tang JY, Chang HW. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett 2016; 373:185-92. [DOI: 10.1016/j.canlet.2016.01.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 02/09/2023]
|
32
|
Chang HS, Tang JY, Yen CY, Huang HW, Wu CY, Chung YA, Wang HR, Chen IS, Huang MY, Chang HW. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. Altern Ther Health Med 2016; 16:94. [PMID: 26955958 PMCID: PMC4784356 DOI: 10.1186/s12906-016-1073-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022]
Abstract
Background Cryptocarya-derived crude extracts and their compounds have been reported to have an antiproliferation effect on several types of cancers but their impact on oral cancer is less well understood. Methods We examined the cell proliferation effect and mechanism of C. concinna-derived cryptocaryone (CPC) on oral cancer cells in terms of cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial depolarization, and DNA damage. Results We found that CPC dose-responsively reduced cell viability of two types of oral cancer cells (Ca9-22 and CAL 27) in MTS assay. The CPC-induced dose-responsive apoptosis effects on Ca9-22 cells were confirmed by flow cytometry-based sub-G1 accumulation, annexin V staining, and pancaspase analyses. For oral cancer Ca9-22 cells, CPC also induced oxidative stress responses in terms of ROS generation and mitochondrial depolarization. Moreover, γH2AX flow cytometry showed DNA damage in CPC-treated Ca9-22 cells. CPC-induced cell responses in terms of cell viability, apoptosis, oxidative stress, and DNA damage were rescued by N-acetylcysteine pretreatment, suggesting that oxidative stress plays an important role in CPC-induced death of oral cancer cells. Conclusions CPC is a potential ROS-mediated natural product for anti-oral cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1073-5) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Innajak S, Mahabusrakum W, Watanapokasin R. Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells. Oncol Rep 2016; 35:2851-8. [PMID: 26987063 DOI: 10.3892/or.2016.4655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Goniothalamin, a plant bioactive styrly-lactone, possesses many biological activities. In the present study, the anticancer effect of goniothalamin on human breast cancer cell line SK-BR-3 was investigated. The results showed that goniothalamin induced nuclear condensation, DNA fragmentation, apoptotic bodies and mitochondrial dysfunction as determined by JC-1 staining. Goniothalamin also increased the Bax/Bcl-2 ratio and expression of cleaved caspase-7, cleaved caspase-9 and cleaved PARP, but decreased Bcl-2 expression. In addition, goniothalamin induced apoptosis via p-JNK1/2 and p-p38 upregulation and inhibited cell survival via p-ERK1/2 and p-Akt downregulation. Notably, goniothalamin induced autophagy through upregulation of Atg7, Atg12-Atg5 conjugation and LC3II. The increased p-p38 and p-JNK1/2 and decreased p-Akt may lead to autophagy induction. Therefore, goniothalamin promoted apoptosis associated with autophagy induction in SK-BR-3 cells through p-p38 and p-JNK1/2 upregulation and p-Akt downregulation. The present study indicated that goniothalamin may be further used as a potential therapeutic candidate or may offer an alternative treatment for breast cancer.
Collapse
Affiliation(s)
- Sukanda Innajak
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusrakum
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
34
|
Chang HW, Tang JY, Yen CY, Chang HS, Huang HW, Chung YA, Chen IS, Huang MY. Synergistic anti-oral cancer effects of UVC and methanolic extracts of Cryptocarya concinna roots via apoptosis, oxidative stress and DNA damage. Int J Radiat Biol 2016; 92:263-72. [PMID: 26887975 DOI: 10.3109/09553002.2016.1145753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose Radiation combined with natural products may improve the radiosensitivity of cancer cells. This study investigated the potential of a combined modality treatment with Ultraviolet C (UVC; wavelength range 200-280 nm) and our previously identified anti-oral cancer agent (methanolic extracts of Cryptocarya concinna roots; MECCrt) in oral cancer cells. Materials and methods The mechanism of the possible synergy of UVC and MECCrt was explored in terms of cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MitoMP), and DNA damage analyses. Results In cell viability (%) at 24 h treatment, the low doses of UVC (14 J/m(2)) and MECCrt (10 μg/ml) resulted in slight damage to human oral cancer Ca9-22 cells (83.2 and 80.4) but was less harmful to human oral normal HGF-1 cells (93.4 and 91.8, respectively). The combined treatment of UVC and MECCrt (UVC/MECCrt) had a lower viability (54.5%) than UVC or MECCrt alone in Ca9-22 cells but no showed significant change in HGF-1 cells. In Ca9-22 cells, the expression of flow cytometry-based apoptosis (sub-G1 phase, annexin V, and pancaspase assays) was significantly higher in UVC/MECCrt than in UVC or MECCrt alone (p < 0.0001). Using flow cytometry, intracellular ROS levels of UVC/MECCrt and MECCrt alone were higher than for UVC alone. MitoMP change and H2A histone family member X (γH2AX; H2AFX)-based DNA damage were synergistically inhibited and induced by MECCrt/UVC compared to its single treatment in Ca9-22 cells, respectively. Conclusion UVC plus MECCrt treatment had selective killing and synergistic anti-proliferative effects against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. This combination therapy appears to have a great clinical potential against oral cancer cells.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- a Department of Biomedical Science and Environmental Biology , Kaohsiung Medical University , Kaohsiung , Taiwan ;,b Institute of Medical Science and Technology, National Sun Yat-sen University , Kaohsiung , Taiwan ;,c Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung , Taiwan ;,d Center for Research Resources and Development, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jen-Yang Tang
- e Department of Radiation Oncology, Faculty of Medicine, College of Medicine , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan ;,f Department of Radiation Oncology , Kaohsiung Medical University , Kaohsiung , Taiwan ;,g Department of Radiation Oncology , Kaohsiung Municipal Ta-Tung Hospital , Kaohsiung , Taiwan
| | - Ching-Yu Yen
- h Department of Oral and Maxillofacial Surgery , Chi-Mei Medical Center , Tainan ;,i School of Dentistry , Taipei Medical University , Taipei
| | - Hsun-Shuo Chang
- j Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung , Taiwan ;,k School of Pharmacy, College of Pharmacy , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Hurng-Wern Huang
- l Institute of Biomedical Science, National Sun Yat-Sen University , Kaohsiung , Taiwan
| | - Yi-An Chung
- a Department of Biomedical Science and Environmental Biology , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ih-Sheng Chen
- j Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung , Taiwan ;,k School of Pharmacy, College of Pharmacy , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ming-Yii Huang
- e Department of Radiation Oncology, Faculty of Medicine, College of Medicine , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan ;,f Department of Radiation Oncology , Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
35
|
Li LK, Rola AS, Kaid FA, Ali AM, Alabsi AM. Goniothalamin induces cell cycle arrest and apoptosis in H400 human oral squamous cell carcinoma: A caspase-dependent mitochondrial-mediated pathway with downregulation of NF-κβ. Arch Oral Biol 2015; 64:28-38. [PMID: 26752226 DOI: 10.1016/j.archoralbio.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/27/2015] [Accepted: 12/18/2015] [Indexed: 01/01/2023]
Abstract
Goniothalamin is a natural occurring styryl-lactone compound isolated from Goniothalamus macrophyllus. It had been demonstrated to process promising anticancer activity on various cancer cell lines. However, little study has been carried out on oral cancer. The aim of this study was to determine the cytotoxic effects of goniothalamin against H400 oral cancer cells and its underlying molecular pathways. Results from MTT assay demonstrated that goniothalamin exhibited selective cytotoxicity as well as inhibited cells growth of H400 in dose and time-dependent manner. This was achieved primarily via apoptosis where apoptotic bodies and membrane blebbing were observed using AO/PI and DAPI/Annexin V-FITC fluorescence double staining. In order to understand the apoptosis mechanisms induced by goniothalamin, apoptosis assessment based on mitochondrial membrane potential assay and cytochrome c enzyme-linked immunosorbent assay were carried out. Results demonstrated that the depolarization of mitochondrial transmembrane potential facilitated the release of mitochondrial cytochrome c into cytosol. Caspases assays revealed the activation of initiator caspase-9 and executioner caspase-3/7 in dose-dependent manners. This form of apoptosis was closely associated with the regulation on Bcl-2 family proteins, cell cycle arrest at S phase and inhibition of NF-κβ translocation from cytoplasm to nucleus. Conclusion, goniothalamin has the potential to act as an anticancer agent against human oral squamous cell carcinoma (H400 cells).
Collapse
Affiliation(s)
- Lim K Li
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ali-Saeed Rola
- Faculty of Bioresource & Food Industry, University Sultan Zainal Abidin, 22200, Terengganu, Malaysia
| | - Fahme A Kaid
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresource & Food Industry, University Sultan Zainal Abidin, 22200, Terengganu, Malaysia
| | - Aied M Alabsi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Oral Cancer Research and Coordinating Centre,Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Yang IH, Shin JA, Kim LH, Kwon KH, Cho SD. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells. J Clin Biochem Nutr 2015; 58:40-7. [PMID: 26798196 PMCID: PMC4705010 DOI: 10.3164/jcbn.15-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
Abstract
In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing its protein stability whereas other Bcl-2 family members were not altered. In addition, the treatment with pycnogenol led to the production of reactive oxygen species and N-acetyl-l-cysteine almost blocked pycnogenol-induced reactive oxygen species generation. Taken together, these findings suggest that pycnogenol may be a potential candidate for the chemoprevention or chemotherapy of human oral cancer.
Collapse
Affiliation(s)
- In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| | - Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| | - Ki Han Kwon
- Department of Food Science and Nutrition, College of Health, Welfare and Education, Gwangju University, Gwangju 503-703, Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
37
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Reinert S. Apoptosis resistance-related ABCB5 and DNaseX (Apo10) expression in oral carcinogenesis. Acta Odontol Scand 2015; 73:336-42. [PMID: 25234444 DOI: 10.3109/00016357.2014.961029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Apoptosis resistance is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). METHODS Expression of apoptosis resistance-related ATP-binding cassette (ABC) transporter ABCB5 [subfamily B (MDR/TAP) member 5] and DNaseX (Apo10) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry. RESULTS Expression of ABCB5 and Apo10 were significantly increased in the carcinogenesis of OSCC compared with normal tissue. Compared with SIN I-III, ABCB5 expression was significantly decreased in OSCC. Apo10 expression did not significantly differ from OSCC compared with SIN I-III. CONCLUSIONS This study provides the first evidence of the expression of ABCB5 and Apo10 in the multi-step carcinogenesis of OSCC. Overcoming drug resistance of ABCB5+ and Apo10+ cells in precursor lesions and tumors by natural compounds may act as sensitizers for apoptosis or could be useful for chemoprevention.
Collapse
|
38
|
Yen CY, Hou MF, Yang ZW, Tang JY, Li KT, Huang HW, Huang YH, Lee SY, Fu TF, Hsieh CY, Chen BH, Chang HW. Concentration effects of grape seed extracts in anti-oral cancer cells involving differential apoptosis, oxidative stress, and DNA damage. Altern Ther Health Med 2015; 15:94. [PMID: 25880412 PMCID: PMC4393634 DOI: 10.1186/s12906-015-0621-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/21/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Grape seeds extract (GSE) is a famous health food supplement for its antioxidant property. Different concentrations of GSE may have different impacts on cellular oxidative/reduction homeostasis. Antiproliferative effect of GSE has been reported in many cancers but rarely in oral cancer. METHODS The aim of this study is to examine the antioral cancer effects of different concentrations of GSE in terms of cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial function, and DNA damage. RESULTS High concentrations (50-400 μg/ml) of GSE dose-responsively inhibited proliferation of oral cancer Ca9-22 cells but low concentrations (1-10 μg/ml) of GSE showed a mild effect in a MTS assay. For apoptosis analyses, subG1 population and annexin V intensity in high concentrations of GSE-treated Ca9-22 cells was increased but less so at low concentrations. ROS generation and mitochondrial depolarization increased dose-responsively at high concentrations but showed minor changes at low concentrations of GSE in Ca9-22 cells. Additionally, high concentrations of GSE dose-responsively induced more γH2AX-based DNA damage than low concentrations. CONCLUSIONS Differential concentrations of GSE may have a differentially antiproliferative function against oral cancer cells via differential apoptosis, oxidative stress and DNA damage.
Collapse
|
39
|
Indoxyl sulfate-induced oxidative stress, mitochondrial dysfunction, and impaired biogenesis are partly protected by vitamin C and N-acetylcysteine. ScientificWorldJournal 2015; 2015:620826. [PMID: 25839054 PMCID: PMC4369955 DOI: 10.1155/2015/620826] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 11/28/2022] Open
Abstract
Indoxyl sulfate (IS) contributes to oxidative stress and endothelial dysfunction in chronic kidney disease patients. However, the role of mitochondria in IS-induced oxidative stress is not very clear. In this study, we examined whether mitochondria play a pivotal role in modulating the effects of antioxidants during IS treatment. In the context of human umbilical vein endothelial cells, we found that IS had a dose-dependent antiproliferative effect. In addition, we used flow cytometry to demonstrate that the level of reactive oxygen species increased in a dose-dependent manner after treatment with IS. High doses of IS also corresponded to increased mitochondrial depolarization and decreased mitochondrial DNA copy number and mitochondrial mass. However, these effects could be reversed by the addition of antioxidants, namely, vitamin C and N-acetylcysteine. Thus, our results suggest that IS-induced oxidative stress and antiproliferative effect can be attributed to mitochondrial dysfunction and impaired biogenesis and that these processes can be protected by treatment with antioxidants.
Collapse
|
40
|
Ouyang L, Luo Y, Tian M, Zhang SY, Lu R, Wang JH, Kasimu R, Li X. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif 2015; 47:506-15. [PMID: 25377084 DOI: 10.1111/cpr.12143] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 02/05/2023] Open
Abstract
Natural products are chemical compounds or substances produced naturally by living organisms. With the development of modern technology, more and more plant extracts have been found to be useful to medical practice. Both micromolecules and macromolecules have been reported to have the ability to inhibit tumour progression, a novel weapon to fight cancer by targeting its 10 characteristic hallmarks. In this review, we focus on summarizing plant natural compounds and their derivatives with anti-tumour properties, into categories, according to their potential therapeutic strategies against different types of human cancer. Taken together, we present a well-grounded review of these properties, hoping to shed new light on discovery of novel anti-tumour therapeutic drugs from known plant natural sources.
Collapse
Affiliation(s)
- L Ouyang
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Petsophonsakul P, Pompimon W, Banjerdpongchai R. Apoptosis induction in human leukemic promyelocytic HL-60 and monocytic U937 cell lines by goniothalamin. Asian Pac J Cancer Prev 2015; 14:2885-9. [PMID: 23803048 DOI: 10.7314/apjcp.2013.14.5.2885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways.
Collapse
|
42
|
Liou JR, Wu TY, Thang TD, Hwang TL, Wu CC, Cheng YB, Chiang MY, Lan YH, El-Shazly M, Wu SL, Beerhues L, Yuan SS, Hou MF, Chen SL, Chang FR, Wu YC. Bioactive 6S-styryllactone constituents of Polyalthia parviflora. JOURNAL OF NATURAL PRODUCTS 2014; 77:2626-32. [PMID: 25419616 DOI: 10.1021/np5004577] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Parvistones A-E (1-5), five new styryllactones possessing a rare α,β-lactone moiety and a 6S configuration, were isolated from a methanolic extract of Polyalthia parviflora leaves. The structures and the absolute configuration of the isolates were elucidated using NMR spectroscopy, specific rotation, circular dichroism, and X-ray single-crystal analysis. Compounds 8, 9, 11, and 12 were isolated for the first time. The results were supported by comparing the data measured to those of 6R-styryllactones. Moreover, a plausible biogenetic pathway of the isolated compounds was proposed. The structure-activity relationship of the compounds in an in vitro anti-inflammatory assay revealed the 6S-styryllactones to be more potent than the 6R derivatives. However, the effect was opposite regarding their cytotoxic activity. In addition, 6S-styrylpyrones isolated showed more potent anti-inflammatory and cytotoxic activity when compared to the 1S-phenylpyranopyrones obtained.
Collapse
Affiliation(s)
- Jing-Ru Liou
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yen YH, Farooqi AA, Li KT, Butt G, Tang JY, Wu CY, Cheng YB, Hou MF, Chang HW. Methanolic extracts of Solieria robusta inhibits proliferation of oral cancer Ca9-22 cells via apoptosis and oxidative stress. Molecules 2014; 19:18721-32. [PMID: 25405289 PMCID: PMC6271418 DOI: 10.3390/molecules191118721] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022] Open
Abstract
Many red algae-derived natural products are known to have anticancer effects. The biological functions of the red alga Solieria robusta from the Karachi coast (Pakistan) remain unclear. Here, we prepared a methanolic extracts of S. robusta (MESR) to examine its possible anti-oral cancer effects and the corresponding mechanism of action. Cell viability of MESR-incubated oral cancer Ca9-22 cells was dose-responsively decreased (p<0.001). According to a propidium iodide (PI)-based assay the cell cycle distribution was dramatically changed, especially for subG1 accumulation. Annexin V/PI assay of apoptosis using flow cytometry also showed that MESR-incubated Ca9-22 cells were dose-responsively increased (p<0.001). For evaluation of oxidative stress in MESR-incubated Ca9-22 cells, we found that reactive oxygen species (ROS) were overexpressed dose- and time-responsively and mitochondrial depolarization was also increased (p<0.001). Taken together, MESR showed inhibitory effects on oral cancer proliferation coupled with apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Yii-Huei Yen
- Department of Dentistry, Ten Chan General Hospital, Chung-Li 32043, Taiwan.
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore 54000, Pakistan.
| | - Kun-Tzu Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ghazala Butt
- Department of Botany, Government College University, Lahore, Katchery Road Lahore 54000, Pakistan.
| | - Jen-Yang Tang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Yuan-Bin Cheng
- Department of Dentistry, Ten Chan General Hospital, Chung-Li 32043, Taiwan.
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
44
|
Antiproliferative effects of methanolic extracts of Cryptocarya concinna Hance roots on oral cancer Ca9-22 and CAL 27 cell lines involving apoptosis, ROS induction, and mitochondrial depolarization. ScientificWorldJournal 2014; 2014:180462. [PMID: 25379520 PMCID: PMC4213999 DOI: 10.1155/2014/180462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Cryptocarya-derived natural products were reported to have several biological effects such as the antiproliferation of some cancers. The possible antioral cancer effect of Cryptocarya-derived substances was little addressed as yet. In this study, we firstly used the methanolic extracts of C. concinna Hance roots (MECCrt) to evaluate its potential function in antioral cancer bioactivity. We found that MECCrt significantly reduced cell viability of two oral cancer Ca9-22 and CAL 27 cell lines in dose-responsive manners (P < 0.01). The percentages of sub-G1 phase and annexin V-positive of MECCrt-treated Ca9-22 and CAL 27 cell lines significantly accumulated (P < 0.01) in a dose-responsive manner as evidenced by flow cytometry. These apoptotic effects were associated with the findings that intracellular ROS generation was induced in MECCrt-treated Ca9-22 and CAL 27 cell lines in dose-responsive and time-dependent manners (P < 0.01). In a dose-responsive manner, MECCrt also significantly reduced the mitochondrial membrane potential in these two cell lines (P < 0.01–0.05). In conclusion, we demonstrated that MECCrt may have antiproliferative potential against oral cancer cells involving apoptosis, ROS generation, and mitochondria membrane depolarization.
Collapse
|
45
|
Barcelos RC, Pastre JC, Vendramini-Costa DB, Caixeta V, Longato GB, Monteiro PA, de Carvalho JE, Pilli RA. Design and synthesis of N-acylated aza-goniothalamin derivatives and evaluation of their in vitro and in vivo antitumor activity. ChemMedChem 2014; 9:2725-43. [PMID: 25263285 DOI: 10.1002/cmdc.201402292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 01/24/2023]
Abstract
Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.
Collapse
Affiliation(s)
- Rosimeire Coura Barcelos
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970, Campinas, SP (Brazil)
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Emerging anticancer potentials of goniothalamin and its molecular mechanisms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:536508. [PMID: 25247178 PMCID: PMC4163372 DOI: 10.1155/2014/536508] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
The treatment of most cancers is still inadequate, despite tremendous steady progress in drug discovery and effective prevention. Nature is an attractive source of new therapeutics. Several medicinal plants and their biomarkers have been widely used for the treatment of cancer with less known scientific basis of their functioning. Although a wide array of plant derived active metabolites play a role in the prevention and treatment of cancer, more extensive scientific evaluation of their mechanisms is still required. Styryl-lactones are a group of secondary metabolites ubiquitous in the genus Goniothalamus that have demonstrated to possess antiproliferative activity against cancer cells. A large body of evidence suggests that this activity is associated with the induction of apoptosis in target cells. In an effort to promote further research on the genus Goniothalamus, this review offers a broad analysis of the current knowledge on Goniothalamin (GTN) or 5, 6, dihydro-6-styryl-2-pyronone (C13H12O2), a natural occurring styryl-lactone. Therefore, it includes (i) the source of GTN and other metabolites; (ii) isolation, purification, and (iii) the molecular mechanisms of actions of GTN, especially the anticancer properties, and summarizes the role of GTN which is crucial for drug design, development, and application in future for well-being of humans.
Collapse
|
47
|
Fong Y, Lin YC, Wu CY, Wang HMD, Lin LL, Chou HL, Teng YN, Yuan SS, Chiu CC. The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis. ScientificWorldJournal 2014; 2014:937051. [PMID: 25184156 PMCID: PMC4144300 DOI: 10.1155/2014/937051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Sirtuins, NAD(+)-dependent deacetylases, could target both histones and nonhistone proteins in mammalian cells. Sirt1 is the major sirtuin and has been shown to involve various cellular processes, including antiapoptosis, cellular senescence. Sirt1 was reported to be overexpressed in many cancers, including lung cancer. Sirtinol, a specific inhibitor of Sirt1, has been shown to induce apoptosis of cancer cells by elevating endogenous level of reactive oxygen species. In the study, we investigated the effect of sirtinol on the proliferation and apoptosis of nonsmall cell lung cancer (NSCLC) H1299 cells. The results of proliferation assay and colony formation assay showed the antigrowth effect of sirtinol. The annexin-V staining further confirmed the apoptosis induction by sirtinol treatment. Interestingly, the levels of phosphorylated Akt and β-catenin were significantly downregulated with treating the apoptotic inducing doses. On the contrary, sirtinol treatment causes the significantly increased level of FoxO3a, a proapoptotic transcription factor targeted by Sirt1. These above results suggested that sirtinol may inhibit cell proliferation of H1299 cells by regulating the axis of Akt-β-catenin-FoxO3a. Overall, this study demonstrates that sirtinol attenuates the proliferation and induces apoptosis of NSCLC cells, indicating the potential treatment against NSCLC cells by inhibiting Sirt1 in future applications.
Collapse
Affiliation(s)
- Yao Fong
- Department of Thoracic Surgery, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Yin-Chieh Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Li Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Han Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Shyng-Shiou Yuan
- Translational Research Center, Cancer Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
- Translational Research Center, Cancer Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
48
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lin IL, Chou HL, Lee JC, Chen FW, Fong Y, Chang WC, Huang HW, Wu CY, Chang WT, Wang HMD, Chiu CC. The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NFκB. Cancer Cell Int 2014; 14:1. [PMID: 24393431 PMCID: PMC3893380 DOI: 10.1186/1475-2867-14-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/23/2013] [Indexed: 01/30/2023] Open
Abstract
The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NFκB, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells.
Collapse
Affiliation(s)
- I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Han-Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Feng-Wei Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yao Fong
- Chest Surgery, Chi-Mei Foundation Medical Center, Yung Kang City, Tainan, 901, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hurng Wern Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
| | - Wen-Tsan Chang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetic Science; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
50
|
Liu YY, Zheng Q, Fang B, Wang W, Ma FY, Roshan S, Banafa A, Chen MJ, Chang JL, Deng XM, Li KX, Yang GX, He GY. Germacrone induces apoptosis in human hepatoma HepG2 cells through inhibition of the JAK2/STAT3 signalling pathway. ACTA ACUST UNITED AC 2013; 33:339-345. [PMID: 23771657 DOI: 10.1007/s11596-013-1121-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that STAT3 plays a vital role in the genesis and progression of cancer. In this study, we investigated the relationship between the JAK2/STAT3 signalling pathway and germacrone-induced apoptosis in HepG2 cells. HepG2 cells were incubated with germacrone for 24 h, the protein expression of p-STAT3, STAT3, p-JAK2 and JAK2 was detected by Western Blotting, and RT-PCR was used to determine the expression of STAT3, p53, Bcl-2 and Bax at transcriptional levels. Besides that, HepG2 cells were pre-treated with AG490 or IL-6 for 2 h, and then incubated with germacrone for 24 h. The expression of p-JAK2, JAK2, p-STAT3, STAT3, p53, Bax and Bcl-2 was detected by Western blotting. The activity of HepG2 cells was tested by MTT assay. The apoptosis of HepG2 cells and levels of reactive oxygen species (ROS) were flow cytometrically measured. The results showed that germacrone exposure decreased p-STAT3 and p-JAK2 and regulated expression of p53 and Bcl-2 family members at the same time. Moreover, IL-6 enhanced the activation of the JAK2/STAT3 signalling pathway and therefore attenuated the germacrone-induced apoptosis. Suppression of JAK2/STAT3 signalling pathway by AG490, an inhibitor of JAK2, resulted in apoptosis and an increase in ROS in response to germacrone exposure. We therefore conclude that germacrone induces apoptosis through the JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yun-Yi Liu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qian Zheng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Fang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng-Yun Ma
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sadia Roshan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Amal Banafa
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming-Jie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun-Li Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiao-Min Deng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ke-Xiu Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|