1
|
Hussien Y, Dertinger SD, Johnson GE. Synthesizing Genotoxicity Results in the MultiFlow Assay With Point-of-Departure Analysis and ToxPi Visualization Techniques. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:122-133. [PMID: 40079684 PMCID: PMC11986802 DOI: 10.1002/em.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
In vitro genotoxicity has historically served a hazard identification role, with simple binary outcomes provided for each of several single endpoint assays. This will need to change, given: (i) efforts to curtail animal testing, (ii) the increased use of multiplexed in vitro assays and the ongoing development of NAMS, and (iii) the desire to holistically consider quantitative results from multiple biomarkers/endpoints that take potency into consideration. To help facilitate more quantitative analyses of multiple biomarkers and/or assay streams, we explored the combined use of PROAST and Toxicological Prioritization Index (ToxPi) software. As a proofofconcept, this investigation employed the MultiFlow DNA damage assay, focusing on γH2AX and p53 biomarkers at two time points, whereby 10 genotoxicants were evaluated in the presence and absence of rat liver S9 metabolic activation. Whereas PROAST was used to calculate BMD point estimates and confidence intervals (CIs), ToxPi synthesized the BMD results into visual, quantitative summaries conveying genotoxicity and metabolic properties. Our analyses suggest that ToxPi's data synthesis and visualization modules provide useful insights into compound response, chemical grouping, and genotoxic mechanisms. By integrating multiple data sources, we find that ToxPi offers a powerful complementary approach to traditional BMD CI graphs, particularly for the simultaneous analysis of multiple biomarkers, enhancing chemical potency analysis of complex datasets.
Collapse
Affiliation(s)
- Yusuf Hussien
- Instiutue of Life SciencesSwansea UniversitySwanseaUK
| | | | | |
Collapse
|
2
|
Göpfert A, Schuster DM, Rülker C, Eichenlaub M, Tokovenko B, Dammann M, Funk-Weyer D, Honarvar N, Landsiedel R. The transgenic MutaMouse hepatocyte mutation assay in vitro: Mutagenicity and mutation spectra of six substances with different mutagenic mechanisms. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 901:503836. [PMID: 39855819 DOI: 10.1016/j.mrgentox.2024.503836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Mutagenicity testing is a component of the hazard assessment of industrial chemicals, biocides, and pesticides. Mutations induced by test substances can be detected by in vitro and in vivo methods that have been adopted as OECD Test Guidelines. One of these in vivo methods is the Transgenic Rodent Assay (TGRA), OECD test guideline no. 488. An analogous in vitro TGRA has been described, but experience with this test method is limited. In this study, six in vivo TGRA positive mutagens were tested in the in vitro TGRA based on primary MutaMouse hepatocytes. In addition to the functional read-out of the lacZ reporter gene, induced mutations were analysed by next-generation sequencing (NGS). Five of the six in vivo TGRA positive mutagens (N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), mitomycin C (MMC), benzo[a]pyrene (B[a]P), and azathioprine (AZA), but not cyproterone acetate) mutated the lacZ gene in vitro. NGS identified mutations which matched the mutagenic mechanisms described in the literature. The alkylating agent ENU induced a greater proportion of A:T to T:A transversions than did the other alkylating agent, EMS, whereas EMS increased smaller deletions (1-4 bp). G:C to T:A transversions accounted for the majority of mutations identified after treatments with MMC and B[a]P, both of which form monoadducts at the guanine N2 position. AZA induced mainly G:C to A:T transitions, explained by the structural similarity of one of its metabolites to guanine. An increased proportion of mid-size changes (0.3-2.5 kb) was detected only for the crosslinking mutagen MMC. The in vitro TGRA based on primary MutaMouse hepatocytes is a promising in vitro assay for the assessment of mutation induction, reflecting many aspects of the corresponding in vivo TGRA and allowing for mutation spectra analysis to evaluate the induced mutations.
Collapse
Affiliation(s)
- Alina Göpfert
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | | | - Claudia Rülker
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | | | - Bogdan Tokovenko
- BASF SE, Digitalization of Research & Development, Ludwigshafen am Rhein, Germany
| | - Martina Dammann
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
| | - Robert Landsiedel
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| |
Collapse
|
3
|
Shigano M, Takashima R, Satomoto K, Sales H, Harada R, Hamada S. Confirmation of Di(2-ethylhexyl) phthalate-induced micronuclei by repeated dose liver micronucleus assay: focus on evaluation of liver micronucleus assay in young rats. Genes Environ 2024; 46:17. [PMID: 39180124 PMCID: PMC11344444 DOI: 10.1186/s41021-024-00311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer commonly used in a wide variety of products, including medical devices. It is rapidly metabolized in the liver into various metabolites upon absorption through oral ingestion, dermal absorption, and inhalation. DEHP is classified as a non-genotoxic hepatocarcinogen in rodents, as its chronic exposure has been associated with the development of liver cancer in these animals, but most genotoxicity studies have been negative. Epidemiologic studies in humans suggest that long-term high intakes of DEHP may be a risk factor for liver dysfunction. The repeated-dose liver micronucleus (RDLMN) assay is a well-established method for assessing chromosomal changes caused by hepatic genotoxins and/or carcinogens. It is particularly valuable for detecting substances that undergo metabolic activation, especially when the metabolite has a short half-life or does not reach the bone marrow effectively. Therefore, we investigated whether the RDLMN assay could detect DEHP-induced micronucleus formation in the liver following a 14 or 28-day treatment. RESULTS We report that the RDLMN assay demonstrated an increased frequency of hepatic micronuclei in rats exposed to DEHP for 14 or 28 days. The increases in micronuclei correlated with hepatomegaly, an established response to phthalates in the liver. Conversely, no such increases were observed in the micronucleus assay using bone marrow from these rats. CONCLUSION The detection of DEHP-induced micronuclei by the RDLMN assay suggests that this assay could detect the potential genotoxicity and hepatocarcinogenicity of DEHP. It also demonstrated the utility of the RDLMN assay in identifying metabolically activated hepatic carcinogens.
Collapse
Affiliation(s)
- Miyuki Shigano
- Safety Assessment Department, Kashima Laboratories, Mediford Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan.
| | - Rie Takashima
- Nippon Kayaku Co., Ltd., 2-1-1 Marunouchi, Chiyoda-Ku, Tokyo, 100-0005, Japan
| | - Kensuke Satomoto
- Ishihara Sangyo Kaisha Ltd., 2-3-1 Nishi-Shibukawa Kusatsu-Shi, Shiga, 525-0025, Japan
| | - Henri Sales
- ITR Laboratories Canada Inc., 19601 Clark Graham Ave, Baie-D'Urfé, Quebec, H9X 3T1, Canada
| | - Ryoko Harada
- ITR Laboratories Canada Inc., 19601 Clark Graham Ave, Baie-D'Urfé, Quebec, H9X 3T1, Canada
| | - Shuichi Hamada
- BoZo Research Center Inc., 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| |
Collapse
|
4
|
Qu M, Chen J, Xu B, Shi Q, Zhao S, Wang Z, Li Z, Ma B, Xu H, Ye Q, Xie J. Assessing genotoxic effects of chemotherapy agents by a robust in vitro assay based on mass spectrometric quantification of γ-H2AX in HepG2 cells. Front Pharmacol 2024; 15:1356753. [PMID: 38962306 PMCID: PMC11219945 DOI: 10.3389/fphar.2024.1356753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Chemotherapy has already proven widely effective in treating cancer. Chemotherapeutic agents usually include DNA damaging agents and non-DNA damaging agents. Assessing genotoxic effect is significant during chemotherapy drug development, since the ability to attack DNA is the major concern for DNA damaging agents which relates to the therapeutic effect, meanwhile genotoxicity should also be evaluated for chemotherapy agents' safety especially for non-DNA damaging agents. However, currently applicability of in vitro genotoxicity assays is hampered by the fact that genotoxicity results have comparatively high false positive rates. γ-H2AX has been shown to be a bifunctional biomarker reflecting both DNA damage response and repair. Previously, we developed an in vitro genotoxicity assay based on γ-H2AX quantification using mass spectrometry. Here, we employed the assay to quantitatively assess the genotoxic effects of 34 classic chemotherapy agents in HepG2 cells. Results demonstrated that the evaluation of cellular γ-H2AX could be an effective approach to screen and distinguish types of action of different classes of chemotherapy agents. In addition, two crucial indexes of DNA repair kinetic curve, i.e., k (speed of γ-H2AX descending) and t50 (time required for γ-H2AX to drop to half of the maximum value) estimated by our developed online tools were employed to further evaluate nine representative chemotherapy agents, which showed a close association with therapeutic index or carcinogenic level. The present study demonstrated that mass spectrometric quantification of γ-H2AX may be an appropriate tool to preliminarily evaluate genotoxic effects of chemotherapy agents.
Collapse
Affiliation(s)
- Minmin Qu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jia Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bin Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qinyun Shi
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shujing Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhaoxia Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Ma
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Jianwei Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
5
|
Dertinger SD, Briggs E, Hussien Y, Bryce SM, Avlasevich SL, Conrad A, Johnson GE, Williams A, Bemis JC. Visualization strategies to aid interpretation of high-dimensional genotoxicity data. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:156-178. [PMID: 38757760 PMCID: PMC11178453 DOI: 10.1002/em.22604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
This article describes a range of high-dimensional data visualization strategies that we have explored for their ability to complement machine learning algorithm predictions derived from MultiFlow® assay results. For this exercise, we focused on seven biomarker responses resulting from the exposure of TK6 cells to each of 126 diverse chemicals over a range of concentrations. Obviously, challenges associated with visualizing seven biomarker responses were further complicated whenever there was a desire to represent the entire 126 chemical data set as opposed to results from a single chemical. Scatter plots, spider plots, parallel coordinate plots, hierarchical clustering, principal component analysis, toxicological prioritization index, multidimensional scaling, t-distributed stochastic neighbor embedding, and uniform manifold approximation and projection are each considered in turn. Our report provides a comparative analysis of these techniques. In an era where multiplexed assays and machine learning algorithms are becoming the norm, stakeholders should find some of these visualization strategies useful for efficiently and effectively interpreting their high-dimensional data.
Collapse
Affiliation(s)
| | | | - Yusuf Hussien
- Institute of Life Sciences, Swansea University, Swansea, UK
| | | | | | - Adam Conrad
- Litron Laboratories, Rochester, New York, USA
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | |
Collapse
|
6
|
Seo JE, Le Y, Revollo J, Miranda-Colon J, Xu H, McKinzie P, Mei N, Chen T, Heflich RH, Zhou T, Robison T, Bonzo JA, Guo X. Evaluating the mutagenicity of N-nitrosodimethylamine in 2D and 3D HepaRG cell cultures using error-corrected next generation sequencing. Arch Toxicol 2024; 98:1919-1935. [PMID: 38584193 PMCID: PMC11106104 DOI: 10.1007/s00204-024-03731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Human liver-derived metabolically competent HepaRG cells have been successfully employed in both two-dimensional (2D) and 3D spheroid formats for performing the comet assay and micronucleus (MN) assay. In the present study, we have investigated expanding the genotoxicity endpoints evaluated in HepaRG cells by detecting mutagenesis using two error-corrected next generation sequencing (ecNGS) technologies, Duplex Sequencing (DS) and High-Fidelity (HiFi) Sequencing. Both HepaRG 2D cells and 3D spheroids were exposed for 72 h to N-nitrosodimethylamine (NDMA), followed by an additional incubation for the fixation of induced mutations. NDMA-induced DNA damage, chromosomal damage, and mutagenesis were determined using the comet assay, MN assay, and ecNGS, respectively. The 72-h treatment with NDMA resulted in concentration-dependent increases in cytotoxicity, DNA damage, MN formation, and mutation frequency in both 2D and 3D cultures, with greater responses observed in the 3D spheroids compared to 2D cells. The mutational spectrum analysis showed that NDMA induced predominantly A:T → G:C transitions, along with a lower frequency of G:C → A:T transitions, and exhibited a different trinucleotide signature relative to the negative control. These results demonstrate that the HepaRG 2D cells and 3D spheroid models can be used for mutagenesis assessment using both DS and HiFi Sequencing, with the caveat that severe cytotoxic concentrations should be avoided when conducting DS. With further validation, the HepaRG 2D/3D system may become a powerful human-based metabolically competent platform for genotoxicity testing.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Timothy Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jessica A Bonzo
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
7
|
Vahidi S, Agah S, Mirzajani E, Asghari Gharakhyli E, Norollahi SE, Rahbar Taramsari M, Babaei K, Samadani AA. microRNAs, oxidative stress, and genotoxicity as the main inducers in the pathobiology of cancer development. Horm Mol Biol Clin Investig 2024; 45:55-73. [PMID: 38507551 DOI: 10.1515/hmbci-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology. So, microRNAs manage and control the gene expression after transcription by mRNA degradation, or also they can inhibit their translation. Conspicuously, these molecular structures take part in controlling the cellular, physiological and pathological functions, which many of them can accomplish as tumor inhibitors or oncogenes. Relatively, Oxidative stress is defined as the inequality between the creation of reactive oxygen species (ROS) and the body's ability to detoxify the reactive mediators or repair the resulting injury. ROS and microRNAs have been recognized as main cancer promoters and possible treatment targets. Importantly, genotoxicity has been established as the primary reason for many diseases as well as several malignancies. The procedures have no obvious link with mutagenicity and influence the organization, accuracy of the information, or fragmentation of DNA. Conclusively, mutations in these patterns can lead to carcinogenesis. In this review article, we report the impressive and practical roles of microRNAs, oxidative stress, and genotoxicity in the pathobiology of cancer development in conjunction with their importance as reliable cancer biomarkers and their association with circulating miRNA, exosomes and exosomal miRNAs, RNA remodeling, DNA methylation, and other molecular elements in oncology.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | | | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Morteza Rahbar Taramsari
- Department of Forensic Medicine, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Kopp B, Khawam A, Di Perna K, Lenart D, Vinette M, Silva R, Zanoni TB, Rore C, Guenigault G, Richardson E, Kostrzewski T, Boswell A, Van P, Valentine Iii C, Salk J, Hamel A. Liver-on-chip model and application in predictive genotoxicity and mutagenicity of drugs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503762. [PMID: 38821675 DOI: 10.1016/j.mrgentox.2024.503762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/02/2024]
Abstract
Currently, there is no test system, whether in vitro or in vivo, capable of examining all endpoints required for genotoxicity evaluation used in pre-clinical drug safety assessment. The objective of this study was to develop a model which could assess all the required endpoints and possesses robust human metabolic activity, that could be used in a streamlined, animal-free manner. Liver-on-chip (LOC) models have intrinsic human metabolic activity that mimics the in vivo environment, making it a preferred test system. For our assay, the LOC was assembled using primary human hepatocytes or HepaRG cells, in a MPS-T12 plate, maintained under microfluidic flow conditions using the PhysioMimix® Microphysiological System (MPS), and co-cultured with human lymphoblastoid (TK6) cells in transwells. This system allows for interaction between two compartments and for the analysis of three different genotoxic endpoints, i.e. DNA strand breaks (comet assay) in hepatocytes, chromosome loss or damage (micronucleus assay) and mutation (Duplex Sequencing) in TK6 cells. Both compartments were treated at 0, 24 and 45 h with two direct genotoxicants: methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), and two genotoxicants requiring metabolic activation: benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). Assessment of cytochrome activity, RNA expression, albumin, urea and lactate dehydrogenase production, demonstrated functional metabolic capacities. Genotoxicity responses were observed for all endpoints with MMS and EMS. Increases in the micronucleus and mutations (MF) frequencies were also observed with CP, and %Tail DNA with B[a]P, indicating the metabolic competency of the test system. CP did not exhibit an increase in the %Tail DNA, which is in line with in vivo data. However, B[a]P did not exhibit an increase in the % micronucleus and MF, which might require an optimization of the test system. In conclusion, this proof-of-principle experiment suggests that LOC-MPS technology is a promising tool for in vitro hazard identification genotoxicants.
Collapse
Affiliation(s)
- B Kopp
- Charles River Laboratories Montreal ULC, Canada
| | - A Khawam
- Charles River Laboratories Montreal ULC, Canada
| | - K Di Perna
- Charles River Laboratories Montreal ULC, Canada
| | - D Lenart
- Charles River Laboratories Montreal ULC, Canada
| | - M Vinette
- Charles River Laboratories Montreal ULC, Canada
| | - R Silva
- CN Bio Innovations, Cambridge, United Kingdom
| | - T B Zanoni
- TwinStrand Biosciences, Seattle, United States
| | - C Rore
- CN Bio Innovations, Cambridge, United Kingdom
| | | | | | | | - A Boswell
- TwinStrand Biosciences, Seattle, United States
| | - P Van
- TwinStrand Biosciences, Seattle, United States
| | | | - J Salk
- TwinStrand Biosciences, Seattle, United States
| | - A Hamel
- Charles River Laboratories Montreal ULC, Canada.
| |
Collapse
|
9
|
Ab-latif NI, Abdullah R, Omar S, Sanny M. Risk Assessment of Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines in Processed Meat, Cooked Meat and Fish-Based Products Using the Margin of Exposure Approach. Malays J Med Sci 2024; 31:130-141. [PMID: 38694573 PMCID: PMC11057834 DOI: 10.21315/mjms2024.31.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/12/2023] [Indexed: 05/04/2024] Open
Abstract
Background The objective of this study is to assess the risk of exposure of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in meat and fish-based products marketed in Malaysia using the margin of exposure (MOE) approach. Methods Benchmark Dose (BMD) software was used to model the BMD at a lower end of a one-sided 95% confidence interval with a 10% incremental risk (BMDL10) of PAHs and HCAs from different target organ toxicities. The MOEs of PAHs and HCAs in meat and fish-based products were determined by utilising the calculated BMDL10 values and estimated daily intake of meat and fish-based products from published data. Results The calculated BMDL10 values of PAHs (i.e. benzo[a]pyrene [BaP] and fluoranthene [FA]) and HCAs (i.e. 2-amino-3,8,dimethylimidazo[4,5-f]quinoxaline [MeIQx] and 2-amino-1-methyl-6-phenylimidazo[4,5,6]pyridine [PhIP]) ranged from 19 mg/kg bw/day to 71,801 mg/kg bw/day. The MOE of BaP ranged from 41,895 to 71,801 and that of FA ranged from 19 to 1412. As for MeIQx and PhIP, their MOEs ranged from 6,322 to 7,652 and from 2,362 to 14,390, respectively. Conclusion The MOEs of FA, MeIQx and PhIP were lower than 10,000, indicating a high concern for human health and therefore demanding effective risk management actions.
Collapse
Affiliation(s)
- Nurin Irdina Ab-latif
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syaliza Omar
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, Malaysia
| | - Maimunah Sanny
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agricultural and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
10
|
Spiliotopoulos D, Koelbert C, Audebert M, Barisch I, Bellet D, Constans M, Czich A, Finot F, Gervais V, Khoury L, Kirchnawy C, Kitamoto S, Le Tesson A, Malesic L, Matsuyama R, Mayrhofer E, Mouche I, Preikschat B, Prielinger L, Rainer B, Roblin C, Wäse K. Assessment of the performance of the Ames MPF™ assay: A multicenter collaborative study with six coded chemicals. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503718. [PMID: 38272629 DOI: 10.1016/j.mrgentox.2023.503718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024]
Abstract
The Ames MPF™ is a miniaturized, microplate fluctuation format of the Ames test. It is a standardized, commercially available product which can be used to assess mutagenicity in Salmonella and E. coli strains in 384-well plates using a color change-based readout. Several peer-reviewed comparisons of the Ames MPF™ to the Ames test in Petri dishes confirmed its suitability to evaluate the mutagenic potential of a variety of test items. An international multicenter study involving seven laboratories tested six coded chemicals with this assay using five bacterial strains, as recommended by the OECD test guideline 471. The data generated by the participating laboratories was in excellent agreement (93%), and the similarity of their dose response curves, as analyzed with sophisticated statistical approaches further confirmed the suitability of the Ames MPF™ assay as an alternative to the Ames test on agar plates, but with advantages with respect to significantly reduced amount of test substance and S9 requirements, speed, hands-on time and, potentially automation.
Collapse
Affiliation(s)
| | | | - Marc Audebert
- PrediTox, 1 place Pierre Potier, 31100 Toulouse, France; INRAE UMR1331 Toxalim, 180 chemin de Tournefeuille, 31300 Toulouse, France
| | - Ilona Barisch
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| | - Deborah Bellet
- GenEvolutioN, 2, 8 Rue de Rouen, 78440 Porcheville, France
| | | | - Andreas Czich
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| | - Francis Finot
- GenEvolutioN, 2, 8 Rue de Rouen, 78440 Porcheville, France
| | - Véronique Gervais
- Servier Group, Non-Clinical Safety Department, F-45403 Orléans-Gidy, France
| | - Laure Khoury
- PrediTox, 1 place Pierre Potier, 31100 Toulouse, France
| | - Christian Kirchnawy
- OFI, Austrian Research Institute for Chemistry and Technology, Department for Microbiology and Cell Culture, Franz-Grill Straße 5, Objekt 213, 1030 Vienna, Austria
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, konohana-ku, Osaka, Japan
| | - Audrey Le Tesson
- Servier Group, Non-Clinical Safety Department, F-45403 Orléans-Gidy, France
| | - Laure Malesic
- GenEvolutioN, 2, 8 Rue de Rouen, 78440 Porcheville, France
| | - Ryoko Matsuyama
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugadenaka 3-chome, konohana-ku, Osaka, Japan
| | - Elisa Mayrhofer
- OFI, Austrian Research Institute for Chemistry and Technology, Department for Microbiology and Cell Culture, Franz-Grill Straße 5, Objekt 213, 1030 Vienna, Austria
| | | | - Birgit Preikschat
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| | - Lukas Prielinger
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, 1100 Vienna, Austria
| | - Bernhard Rainer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, 1100 Vienna, Austria
| | - Clémence Roblin
- Servier Group, Non-Clinical Safety Department, F-45403 Orléans-Gidy, France
| | - Kerstin Wäse
- Genetic Toxicology, Preclinical Safety, Sanofi-Aventis Deutschland GmbH, 65926 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Hendriks G, Adriaens E, Allemang A, Clements J, Cole G, Derr R, Engel M, Hamel A, Kidd D, Kellum S, Kiyota T, Myhre A, Naëssens V, Pfuhler S, Roy M, Settivari R, Schuler M, Zeller A, van Benthem J, Vanparys P, Kirkland D. Interlaboratory validation of the ToxTracker assay: An in vitro reporter assay for mechanistic genotoxicity assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:4-24. [PMID: 38545858 DOI: 10.1002/em.22592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
ToxTracker is a mammalian cell reporter assay that predicts the genotoxic properties of compounds with high accuracy. By evaluating induction of various reporter genes that play a key role in relevant cellular pathways, it provides insight into chemical mode-of-action (MoA), thereby supporting discrimination of direct-acting genotoxicants and cytotoxic chemicals. A comprehensive interlaboratory validation trial was conducted, in which the principles outlined in OECD Guidance Document 34 were followed, with the primary objectives of establishing transferability and reproducibility of the assay and confirming the ability of ToxTracker to correctly classify genotoxic and non-genotoxic compounds. Reproducibility of the assay to predict genotoxic MoA was confirmed across participating laboratories and data were evaluated in terms of concordance with in vivo genotoxicity outcomes. Seven laboratories tested a total of 64 genotoxic and non-genotoxic chemicals that together cover a broad chemical space. The within-laboratory reproducibility (WLR) was up to 98% (73%-98% across participants) and the overall between-laboratory reproducibility (BLR) was 83%. This trial confirmed the accuracy of ToxTracker to predict in vivo genotoxicants with a sensitivity of 84.4% and a specificity of 91.2%. We concluded that ToxTracker is a robust in vitro assay for the accurate prediction of in vivo genotoxicity. Considering ToxTracker's robust standalone accuracy and that it can provide important information on the MoA of chemicals, it is seen as a valuable addition to the regulatory in vitro genotoxicity battery that may even have the potential to replace certain currently used in vitro battery assays.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jan van Benthem
- National Institute for Public Health and the Environment, The Netherlands
| | | | | |
Collapse
|
12
|
Diniz RR, Domingos TFS, Pinto GR, Cabral LM, de Pádula M, de Souza AMT. Use of in silico and in vitro methods as a potential new approach methodologies (NAMs) for (photo)mutagenicity and phototoxicity risk assessment of agrochemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167320. [PMID: 37748613 DOI: 10.1016/j.scitotenv.2023.167320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The increased use of agrochemicals raises concerns about environmental, animal, and mainly human toxicology. The development of New Approach Methodologies (NAMs) for toxicological risk assessment including new in vitro tests and in silico protocols is encouraged. Although agrochemical mutagenicity testing is well established, a complementary alternative approach may contribute to increasing reliability, with the consequent reduction of false-positive results that lead to unnecessary use of animals in follow-up in vivo testing. Additionally, it is unreasonable to underestimate the phototoxic effects of an accidental dermal exposure to agrochemicals during agricultural work or domestic application in the absence of adequate personal protection equipment, especially in terms of photomutagenicity. In this scenario, we addressed the integration of in vitro and in silico techniques as NAMs to assess the mutagenic and phototoxic potential of agrochemicals. In the present study we used the yno1 S. cerevisiae strain as a biomodel for in vitro assessment of agrochemical mutagenicity, both in the absence and in the presence of simulated sunlight. In parallel, in silico predictions were performed using a combination of expert rule-based and statistical-based models to assess gene mutations and phototoxicity. None of the tested agrochemicals showed mutagenic potential in the two proposed approaches. The Gly and 2,4D herbicides were photomutagenic in the in vitro yeast test despite the negative in silico prediction of phototoxicity. Herein, we demonstrated a novel experimental approach combining both in silico and in vitro experiments to address the complementary investigation of the phototoxicity and (photo)mutagenicity of agrochemicals. These findings shed light on the importance of investigating and reconsidering the photosafety assessment of these products, using not only photocytotoxicity assays but also photomutagenicity assays, which should be encouraged.
Collapse
Affiliation(s)
- Raiane R Diniz
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Rio de Janeiro, RJ, Brazil
| | | | - Gabriel R Pinto
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Rio de Janeiro, RJ, Brazil
| | - Lucio M Cabral
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Rio de Janeiro, RJ, Brazil
| | - Marcelo de Pádula
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Rio de Janeiro, RJ, Brazil
| | - Alessandra M T de Souza
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Modelagem Molecular & QSAR (ModMolQSAR), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Bergmann AJ, Breitenbach M, Muñoz C, Simon E, McCombie G, Biedermann M, Schönborn A, Vermeirssen EL. Towards detecting genotoxic chemicals in food packaging at thresholds of toxicological concern using bioassays with high-performance thin-layer chromatography. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
14
|
Dos Santos Rodrigues B, Leroy K, Mihajlovic M, De Boever S, Vanbellingen S, Cogliati B, Aerts JL, Vinken M. Evaluation of functional candidate biomarkers of non-genotoxic hepatocarcinogenicity in human liver spheroid co-cultures. Arch Toxicol 2023; 97:1739-1751. [PMID: 36941454 DOI: 10.1007/s00204-023-03486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Validated in vitro assays for testing non-genotoxic carcinogenic potential of chemicals are currently not available. Consequently, the two-year rodent bioassay remains the gold standard method for the identification of these chemicals. Transcriptomic and proteomic analyses have provided a comprehensive understanding of the non-genotoxic carcinogenic processes, however, functional changes induced by effects at transcriptional and translational levels have not been addressed. The present study was set up to test a number of proposed in vitro biomarkers of non-genotoxic hepatocarcinogenicity at the functional level using a translational 3-dimensional model. Spheroid cultures of human hepatocytes and stellate cells were exposed to 5 genotoxic carcinogenic, 5 non-genotoxic carcinogenic, and 5 non-carcinogenic chemical compounds and assessed for oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis, and inflammation. The spheroid model could capture many of these events triggered by the genotoxic carcinogenic chemicals, particularly aflatoxin B1 and hydroquinone. Nonetheless, no clear distinction could be made between genotoxic and non-genotoxic hepatocarcinogenicity. Therefore, spheroid cultures of human liver cells may be appropriate in vitro tools for mechanistic investigation of chemical-induced hepatocarcinogenicity, however, these mechanisms and their read-outs do not seem to be eligible biomarkers for detecting non-genotoxic carcinogenic chemicals.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sarah Vanbellingen
- Entity of Neuro-Aging and Viro-Immunotherapy, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Joeri L Aerts
- Entity of Neuro-Aging and Viro-Immunotherapy, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
15
|
Colacci A, Corvi R, Ohmori K, Paparella M, Serra S, Da Rocha Carrico I, Vasseur P, Jacobs MN. The Cell Transformation Assay: A Historical Assessment of Current Knowledge of Applications in an Integrated Approach to Testing and Assessment for Non-Genotoxic Carcinogens. Int J Mol Sci 2023; 24:ijms24065659. [PMID: 36982734 PMCID: PMC10057754 DOI: 10.3390/ijms24065659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.
Collapse
Affiliation(s)
- Annamaria Colacci
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
- Correspondence:
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy
| | - Kyomi Ohmori
- Chemical Division, Kanagawa Prefectural Institute of Public Health, Chigasaki 253-0087, Japan
- Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, A-6020 Innbruck, Austria
| | - Stefania Serra
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
| | | | - Paule Vasseur
- Universite de Lorraine, CNRS UMR 7360 LIEC, Laboratoire Interdisciplinaire des Environnements Continentaux, 57070 Metz, France
| | - Miriam Naomi Jacobs
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton OX11 0RQ, UK
| |
Collapse
|
16
|
Musto G, Schiano E, Iannuzzo F, Tenore GC, Novellino E, Stornaiuolo M. Genotoxicity Assessment of Nutraceuticals Extracted from Thinned Nectarine (Prunus persica L.) and Grape Seed (Vitis Vinifera L.) Waste Biomass. Foods 2023; 12:foods12061171. [PMID: 36981098 PMCID: PMC10048668 DOI: 10.3390/foods12061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Agri-food by-products represent a considerable portion of the waste produced in the world and especially when incorrectly disposed of, contribute to air, soil, and water pollution. Recently, recycling of food waste has proven to be an attractive area of research for pharmaceutical companies, that use agri-food by-products (leaves, bark, roots, seeds, second-best vegetables) as alternative raw material for the extraction of bioactive compounds. Developers and producers are however, advised to assess the safety of nutraceuticals obtained from biowaste that, in virtue of its chemical complexity, could undermine the overall safety of the final products. Here, in compliance with EFSA regulations, we use the Ames test (OECD 471) and the micronucleus test (OECD 487) to assess the mutagenicity of two nutraceuticals obtained from food waste. The first consists of grape seeds (Vitis vinifera L.) that have undergone a process of food-grade depolymerization of proanthocyanidins to release more bioavailable flavan-3-ols. The second nutraceutical product consists of thinned nectarines (Prunus persica L. var nucipersica) containing abscisic acid and polyphenols. The results presented here show that these products are, before as well as after metabolization, non-mutagenic, up to the doses of 5 mg and 100 μg per plate for the Ames and micronucleus test, respectively, and can be thus considered genotoxically safe.
Collapse
Affiliation(s)
- Giorgia Musto
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Pavanello S, Moretto A, La Vecchia C, Alicandro G. Non-sugar sweeteners and cancer: Toxicological and epidemiological evidence. Regul Toxicol Pharmacol 2023; 139:105369. [PMID: 36870410 DOI: 10.1016/j.yrtph.2023.105369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Several toxicological and epidemiological studies were published during the last five decades on non-sugar sweeteners (NSS) and cancer. Despite the large amount of research, the issue still continues to be of interest. In this review, we provided a comprehensive quantitative review of the toxicological and epidemiological evidence on the possible relation between NSS and cancer. The toxicological section includes the evaluation of genotoxicity and carcinogenicity data for acesulfame K, advantame, aspartame, cyclamates, saccharin, steviol glycosides and sucralose. The epidemiological section includes the results of a systematic search of cohort and case-control studies. The majority of the 22 cohort studies and 46 case-control studies showed no associations. Some risks for bladder, pancreas and hematopoietic cancers found in a few studies were not confirmed in other studies. Based on the review of both the experimental data on genotoxicity or carcinogenicity of the specific NSS evaluated, and the epidemiological studies it can be concluded that there is no evidence of cancer risk associated to NSS consumption.
Collapse
Affiliation(s)
- Sofia Pavanello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Università degli Studi di Padova, Padua, Italy; University Hospital of Padova, Padua, Italy
| | - Angelo Moretto
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Università degli Studi di Padova, Padua, Italy; University Hospital of Padova, Padua, Italy.
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Alicandro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
18
|
Beal MA, Audebert M, Barton-Maclaren T, Battaion H, Bemis JC, Cao X, Chen C, Dertinger SD, Froetschl R, Guo X, Johnson G, Hendriks G, Khoury L, Long AS, Pfuhler S, Settivari RS, Wickramasuriya S, White P. Quantitative in vitro to in vivo extrapolation of genotoxicity data provides protective estimates of in vivo dose. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:105-122. [PMID: 36495195 DOI: 10.1002/em.22521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Genotoxicity assessment is a critical component in the development and evaluation of chemicals. Traditional genotoxicity assays (i.e., mutagenicity, clastogenicity, and aneugenicity) have been limited to dichotomous hazard classification, while other toxicity endpoints are assessed through quantitative determination of points-of-departures (PODs) for setting exposure limits. The more recent higher-throughput in vitro genotoxicity assays, many of which also provide mechanistic information, offer a powerful approach for determining defined PODs for potency ranking and risk assessment. In order to obtain relevant human dose context from the in vitro assays, in vitro to in vivo extrapolation (IVIVE) models are required to determine what dose would elicit a concentration in the body demonstrated to be genotoxic using in vitro assays. Previous work has demonstrated that application of IVIVE models to in vitro bioactivity data can provide PODs that are protective of human health, but there has been no evaluation of how these models perform with in vitro genotoxicity data. Thus, the Genetic Toxicology Technical Committee, under the Health and Environmental Sciences Institute, conducted a case study on 31 reference chemicals to evaluate the performance of IVIVE application to genotoxicity data. The results demonstrate that for most chemicals considered here (20/31), the PODs derived from in vitro data and IVIVE are health protective relative to in vivo PODs from animal studies. PODs were also protective by assay target: mutations (8/13 chemicals), micronuclei (9/12), and aneugenicity markers (4/4). It is envisioned that this novel testing strategy could enhance prioritization, rapid screening, and risk assessment of genotoxic chemicals.
Collapse
Affiliation(s)
- Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Marc Audebert
- Toxalim UMR1331, Toulouse University, INRAE, Toulouse, France
| | - Tara Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Hannah Battaion
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | | | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Connie Chen
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | | | | | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | | | | | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Stefan Pfuhler
- Global Product Stewardship, Procter & Gamble, Cincinnati, Ohio, USA
| | - Raja S Settivari
- Mammalian Toxicology Center, Corteva Agriscience, Newark, Delaware, USA
| | - Shamika Wickramasuriya
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Paul White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Fortin AMV, Long AS, Williams A, Meier MJ, Cox J, Pinsonnault C, Yauk CL, White PA. Application of a new approach methodology (NAM)-based strategy for genotoxicity assessment of data-poor compounds. FRONTIERS IN TOXICOLOGY 2023; 5:1098432. [PMID: 36756349 PMCID: PMC9899896 DOI: 10.3389/ftox.2023.1098432] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
The conventional battery for genotoxicity testing is not well suited to assessing the large number of chemicals needing evaluation. Traditional in vitro tests lack throughput, provide little mechanistic information, and have poor specificity in predicting in vivo genotoxicity. New Approach Methodologies (NAMs) aim to accelerate the pace of hazard assessment and reduce reliance on in vivo tests that are time-consuming and resource-intensive. As such, high-throughput transcriptomic and flow cytometry-based assays have been developed for modernized in vitro genotoxicity assessment. This includes: the TGx-DDI transcriptomic biomarker (i.e., 64-gene expression signature to identify DNA damage-inducing (DDI) substances), the MicroFlow® assay (i.e., a flow cytometry-based micronucleus (MN) test), and the MultiFlow® assay (i.e., a multiplexed flow cytometry-based reporter assay that yields mode of action (MoA) information). The objective of this study was to investigate the utility of the TGx-DDI transcriptomic biomarker, multiplexed with the MicroFlow® and MultiFlow® assays, as an integrated NAM-based testing strategy for screening data-poor compounds prioritized by Health Canada's New Substances Assessment and Control Bureau. Human lymphoblastoid TK6 cells were exposed to 3 control and 10 data-poor substances, using a 6-point concentration range. Gene expression profiling was conducted using the targeted TempO-Seq™ assay, and the TGx-DDI classifier was applied to the dataset. Classifications were compared with those based on the MicroFlow® and MultiFlow® assays. Benchmark Concentration (BMC) modeling was used for potency ranking. The results of the integrated hazard calls indicate that five of the data-poor compounds were genotoxic in vitro, causing DNA damage via a clastogenic MoA, and one via a pan-genotoxic MoA. Two compounds were likely irrelevant positives in the MN test; two are considered possibly genotoxic causing DNA damage via an ambiguous MoA. BMC modeling revealed nearly identical potency rankings for each assay. This ranking was maintained when all endpoint BMCs were converted into a single score using the Toxicological Prioritization (ToxPi) approach. Overall, this study contributes to the establishment of a modernized approach for effective genotoxicity assessment and chemical prioritization for further regulatory scrutiny. We conclude that the integration of TGx-DDI, MicroFlow®, and MultiFlow® endpoints is an effective NAM-based strategy for genotoxicity assessment of data-poor compounds.
Collapse
Affiliation(s)
- Anne-Marie V. Fortin
- Department of Biology, University of Ottawa, Ottawa, ON, Canada,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Alexandra S. Long
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Cox
- Bureau of Gastroenterology, Infection and Viral Diseases, Health Canada, Ottawa, ON, Canada
| | - Claire Pinsonnault
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L. Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada,*Correspondence: Carole L. Yauk, ; Paul A. White,
| | - Paul A. White
- Department of Biology, University of Ottawa, Ottawa, ON, Canada,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada,*Correspondence: Carole L. Yauk, ; Paul A. White,
| |
Collapse
|
20
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
21
|
Chen L, Huang F, Kei C, Zhang J, Sang J, Yang Y, Kuang R, Xiong X, Li Q, Liu Y, Qin Q, Zhao E, Alépée N, Ouedraogo G, Li N, Cai Z. Transferability and reproducibility of the EpiSkin™ Micronucleus Assay. Mutagenesis 2022; 37:173-181. [PMID: 36067354 DOI: 10.1093/mutage/geac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
A novel in vitro 3D micronucleus assay was developed in China using the EpiSkin™ 3D human skin model. This EpiSkin™ Micronucleus Assay showed good predictivity and reproducibility during internal validation and is expected to contribute to in vitro genotoxicity testing as a follow-up for positive results from 2D micronucleus assay. Having developed the assay in one laboratory, further work focused on the transferability and inter-laboratory reproducibility in two additional Chinese authority laboratories (Guangdong Provincial Center for Disease Control and Prevention and Zhejiang Institute for Food and Drug Control). Formal training was provided for both laboratories, which resulted in good transferability based on the results of two positive compounds, such as mitomycin C and vinblastine. Independent experiments were then performed, and inter-laboratory reproducibility was checked using 2-acetylaminofluorene, 5-fluorouracil, 2,4-dichlorophenol, and d-limonene. The dose-responses of the positive control chemical, mitomycin C, were similar to those of the developing laboratory, and all test chemicals were correctly classified by all laboratories. Overall, there was a good transferability as well as intra- and inter-laboratory reproducibility of the EpiSkin™ Micronucleus Assay. This study further confirmed the assay's robustness and provided confidence to enter following validation stages for scientific acceptance.
Collapse
Affiliation(s)
- Lizao Chen
- Advanced Research, L'Oréal Research & Innovation China, 550 Jinyu Road, 201206 Shanghai, China
| | - Fang Huang
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, 511430 Guangzhou, Guangdong, China
| | - CaiChun Kei
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, 511430 Guangzhou, Guangdong, China
| | - Jinsong Zhang
- Zhejiang Institute for Food and Drug Control (NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics), 325 Pingle Road, 310000 Hangzhou, Zhejiang, China
| | - Jing Sang
- Zhejiang Institute for Food and Drug Control (NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics), 325 Pingle Road, 310000 Hangzhou, Zhejiang, China
| | - Ying Yang
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, 511430 Guangzhou, Guangdong, China
| | - Rong Kuang
- Zhejiang Institute for Food and Drug Control (NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics), 325 Pingle Road, 310000 Hangzhou, Zhejiang, China
| | - Xikun Xiong
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, 511430 Guangzhou, Guangdong, China
| | - Qing Li
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, 511430 Guangzhou, Guangdong, China
| | - Yanfeng Liu
- Advanced Research, L'Oréal Research & Innovation China, 550 Jinyu Road, 201206 Shanghai, China
| | - Qin Qin
- Advanced Research, L'Oréal Research & Innovation China, 550 Jinyu Road, 201206 Shanghai, China
| | - E Zhao
- Advanced Research, L'Oréal Research & Innovation China, 550 Jinyu Road, 201206 Shanghai, China
| | - Nathalie Alépée
- Advanced Research, L'Oréal Research & Innovation France, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France
| | - Gladys Ouedraogo
- Advanced Research, L'Oréal Research & Innovation France, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France
| | - Nan Li
- Advanced Research, L'Oréal Research & Innovation China, 550 Jinyu Road, 201206 Shanghai, China
| | - Zhenzi Cai
- Advanced Research, L'Oréal Research & Innovation China, 550 Jinyu Road, 201206 Shanghai, China
| |
Collapse
|
22
|
Zeyad MT, Khan S, Malik A. Genotoxic hazard and oxidative stress induced by wastewater irrigated soil with special reference to pesticides and heavy metal pollution. Heliyon 2022; 8:e10534. [PMID: 36119855 PMCID: PMC9474314 DOI: 10.1016/j.heliyon.2022.e10534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Due to enhancement of industrial growth and urbanization, soil contamination is increasing prominently. Therefore, it is important to examine possible adverse effects of industrial waste. Soil samples were might to be polluted with several heavy-metals and pesticides. Gas chromatographic results showed occurrence of high-level of organochlorine and organophosphate pesticides in studied soil samples. Genotoxicity of soil extracts was assessed using environmental-risk assessment models. Soil samples were extracted in hexane and dichloromethane solvents and were evaluated for genotoxic potential by prokaryotic (Ames test, plasmid nicking assay and E. coli K-12 DNA repair defective mutants) and eukaryotic (Allium cepa root chromosomal aberration and Vigna radiata seed-germination test) bioassays. Strain TA98 was found the most susceptible among soil extracts. The mutagenicity of hexane soil extract from wastewater irrigation was found to be higher than that of DCM samples in terms of mutagenic index, mutagenic potential, and induction factor for Ames strains. The damage in DNA repair defective mutants of hexane extracts were found higher compared to DCM extracts at dose of 20 μl/ml of culture. Survival in polA, lexA and recA mutants were 39%, 47% and 55% while treated with hexane extract. Allium cepa test, mitotic index was decreased in dose-dependent way and various kinds of chromosomal aberrations were found. Vigna radiata seeds germination and other parameters were also affected when treated with wastewater irrigated (WWI) soil. Oxidative stress in V. radiata roots were also showed under CLS microscope. Genotoxicity of WWI soil extract was also confirmed by plasmid nicking test. Our study provides possible explanation for the assessment of potential health and environmental hazards of the industrial region.
Collapse
|
23
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
24
|
Debon E, Rogeboz P, Latado H, Morlock GE, Meyer D, Cottet-Fontannaz C, Scholz G, Schilter B, Marin-Kuan M. Incorporation of Metabolic Activation in the HPTLC-SOS-Umu-C Bioassay to Detect Low Levels of Genotoxic Chemicals in Food Contact Materials. TOXICS 2022; 10:501. [PMID: 36136466 PMCID: PMC9500983 DOI: 10.3390/toxics10090501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The safety evaluation of food contact materials requires excluding mutagenicity and genotoxicity in migrates. Testing the migrates using in vitro bioassays has been proposed to address this challenge. To be fit for that purpose, bioassays must be capable of detecting very low, safety relevant concentrations of DNA-damaging substances. There is currently no bioassay compatible with such qualifications. High-performance thin-layer chromatography (HPTLC), coupled with the planar SOS Umu-C (p-Umu-C) bioassay, was suggested as a promising rapid test (~6 h) to detect the presence of low levels of mutagens/genotoxins in complex mixtures. The current study aimed at incorporating metabolic activation in this assay and testing it with a set of standard mutagens (4-nitroquinoline-N-oxide, aflatoxin B1, mitomycin C, benzo(a)pyrene, N-ethyl nitrourea, 2-nitrofluorene, 7,12-dimethylbenzanthracene, 2-aminoanthracene and methyl methanesulfonate). An effective bioactivation protocol was developed. All tested mutagens could be detected at low concentrations (0.016 to 230 ng/band, according to substances). The calculated limits of biological detection were found to be up to 1400-fold lower than those obtained with the Ames assay. These limits are lower than the values calculated to ensure a negligeable carcinogenic risk of 10-5. They are all compatible with the threshold of toxicological concern for chemicals with alerts for mutagenicity (150 ng/person). They cannot be achieved by any other currently available test procedures. The p-Umu-C bioassay may become instrumental in the genotoxicity testing of complex mixtures such as food packaging, foods, and environmental samples.
Collapse
Affiliation(s)
- Emma Debon
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Paul Rogeboz
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Hélia Latado
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Gertrud E. Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center of Effect-Directed Analysis, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Daniel Meyer
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center of Effect-Directed Analysis, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Claudine Cottet-Fontannaz
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Gabriele Scholz
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Benoît Schilter
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Maricel Marin-Kuan
- Food Safety Research Department, Société des Produits Nestlé SA—Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
25
|
Kuo B, Beal MA, Wills JW, White PA, Marchetti F, Nong A, Barton-Maclaren TS, Houck K, Yauk CL. Comprehensive interpretation of in vitro micronucleus test results for 292 chemicals: from hazard identification to risk assessment application. Arch Toxicol 2022; 96:2067-2085. [PMID: 35445829 PMCID: PMC9151546 DOI: 10.1007/s00204-022-03286-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
Risk assessments are increasingly reliant on information from in vitro assays. The in vitro micronucleus test (MNvit) is a genotoxicity test that detects chromosomal abnormalities, including chromosome breakage (clastogenicity) and/or whole chromosome loss (aneugenicity). In this study, MNvit datasets for 292 chemicals, generated by the US EPA's ToxCast program, were evaluated using a decision tree-based pipeline for hazard identification. Chemicals were tested with 19 concentrations (n = 1) up to 200 µM, in the presence and absence of Aroclor 1254-induced rat liver S9. To identify clastogenic chemicals, %MN values at each concentration were compared to a distribution of batch-specific solvent controls; this was followed by cytotoxicity assessment and benchmark concentration (BMC) analyses. The approach classified 157 substances as positives, 25 as negatives, and 110 as inconclusive. Using the approach described in Bryce et al. (Environ Mol Mutagen 52:280-286, 2011), we identified 15 (5%) aneugens. IVIVE (in vitro to in vivo extrapolation) was employed to convert BMCs into administered equivalent doses (AEDs). Where possible, AEDs were compared to points of departure (PODs) for traditional genotoxicity endpoints; AEDs were generally lower than PODs based on in vivo endpoints. To facilitate interpretation of in vitro MN assay concentration-response data for risk assessment, exposure estimates were utilized to calculate bioactivity exposure ratio (BER) values. BERs for 50 clastogens and two aneugens had AEDs that approached exposure estimates (i.e., BER < 100); these chemicals might be considered priorities for additional testing. This work provides a framework for the use of high-throughput in vitro genotoxicity testing for priority setting and chemical risk assessment.
Collapse
Affiliation(s)
- Byron Kuo
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Marc A Beal
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - John W Wills
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
- Biominerals Research, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Andy Nong
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Safe Environments Directorate, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Keith Houck
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environment and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Room 269, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
26
|
Genotoxic Assessment of Nutraceuticals Obtained from Agricultural Biowaste: Where Do We " AMES"? Antioxidants (Basel) 2022; 11:antiox11061197. [PMID: 35740094 PMCID: PMC9230180 DOI: 10.3390/antiox11061197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Several pharmaceutical companies are nowadays considering the use of agri-food waste as alternative raw material for the extraction of bioactive compounds to include in nutraceuticals and food supplements. This recycling activity is encountering the support of authorities, which are alarmed by air, soil and water pollution generated by agricultural waste disposal. Waste reuse has several economic advantages: (i) its low cost; (ii) its abundance; (iii) the high content of bioactive molecule (antioxidants, minerals, fibers, fatty acids); as well as (iv) the financial support received by governments eager to promote eco-compatible and pollution-reducing practices. While nutraceuticals produced from biowaste are becoming popular, products that have been risk-assessed in terms of safety are quite rare. This despite waste biomass, in virtue of its chemical complexity, could, in many cases, mine the overall safety of the final nutraceutical product. In this review, we summarize the scientific results published on genotoxicity risk-assessment of bioactive compounds extracted from agricultural waste. The review depicts a scenario where the risk-assessment of biowaste derived products is still scarcely diffuse, but when available, it confirms the safety of these products, and lets us envisage their future inclusion in the list of botanicals allowed for formulation intended for human consumption.
Collapse
|
27
|
Reisinger K, Fieblinger D, Heppenheimer A, Kreutz J, Liebsch M, Luch A, Maul K, Poth A, Strauch P, Dony E, Schulz M, Wolf T, Pirow R. The hen's egg test for micronucleus induction (HET-MN): validation data set. Mutagenesis 2022; 37:61-75. [PMID: 34080017 PMCID: PMC9071061 DOI: 10.1093/mutage/geab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The classical in vitro genotoxicity test battery is known to be sensitive for indicating genotoxicity. However, a high rate of 'misleading positives' was reported when three assays were combined as required by several legislations. Despite the recent optimisations of the standard in vitro tests, two gaps could hardly be addressed with assays based on 2D monolayer cell cultures: the route of exposure and a relevant intrinsic metabolic capacity to transform pro-mutagens into reactive metabolites. Following these considerations, fertilised chicken eggs have been introduced into genotoxicity testing and were combined with a classical read-out parameter, the micronucleus frequency in circulating erythrocytes, to develop the hen's egg test for micronucleus induction (HET-MN). As a major advantage, the test mirrors the systemic availability of compounds after oral exposure by reflecting certain steps of Absorption, Distribution, Metabolism, Excretion (ADME) without being considered as an animal experiment. The assay is supposed to add to a toolbox of assays to follow up on positive findings from initial testing with classical in vitro assays. We here report on a validation exercise, in which >30 chemicals were tested double-blinded in three laboratories. The specificity and sensitivity of the HET-MN were calculated to be 98 and 84%, respectively, corresponding to an overall accuracy of 91%. A detailed protocol, which includes a picture atlas detailing the cell and micronuclei analysis, is published in parallel (Maul et al. Validation of the hen's egg test for micronucleus induction (HET-MN): detailed protocol including scoring atlas, historical control data and statistical analysis).
Collapse
Affiliation(s)
| | - Dagmar Fieblinger
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | - Manfred Liebsch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katrin Maul
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Albrecht Poth
- ICCR-Roßdorf GmbH (formerly Harlan CCR GmbH), Rossdorf, Germany
| | - Pamela Strauch
- ICCR-Roßdorf GmbH (formerly Harlan CCR GmbH), Rossdorf, Germany
| | - Eva Dony
- ICCR-Roßdorf GmbH (formerly Harlan CCR GmbH), Rossdorf, Germany
| | - Markus Schulz
- ICCR-Roßdorf GmbH (formerly Harlan CCR GmbH), Rossdorf, Germany
| | | | - Ralph Pirow
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
28
|
Evaluation of a 4-day repeated-dose micronucleus test in rat glandular stomach and colon using aneugens and non-genotoxic non-carcinogens. Genes Environ 2022; 44:12. [PMID: 35410395 PMCID: PMC9004010 DOI: 10.1186/s41021-022-00241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background We previously developed a rodent gastrointestinal (GI) tract micronucleus (MN) test using the glandular stomach and/or colon, and evaluated this test method using several genotoxic carcinogens (clastogens) and genotoxic non-carcinogens; we demonstrated that this test method could detect genotoxic stomach and/or colon carcinogens with target organ specificity. In the present study, we further evaluated the sensitivity and specificity of the MN test for the rat glandular stomach and colon using three aneugens (colchicine, vinblastine sulfate, and docetaxel hydrate) and two non-genotoxic non-carcinogens (sodium chloride and sucrose). Results Male Crl:CD (SD) rats were administered test compounds through clinical administration route (orally or intravenously) for four consecutive days and then examined for the micronucleated cell frequencies in the glandular stomach and colon. We observed that all three aneugens significantly and dose-dependently increased the micronucleated cell frequencies in the stomach and colon. In contrast, neither of the two non-genotoxic non-carcinogens increased the micronucleated cell frequency in these tissues. Notably, an increase in cell proliferation was observed in the glandular stomach of rats administered a stomach toxicant, sodium chloride, but this increase did not affect the induction of micronuclei in the gastric cells. Conclusions In the present study, it was demonstrated that the glandular stomach and colon MN tests could detect aneugens as positive and could adequately evaluate non-genotoxic non-carcinogens as negative, including a chemical that enhances cell proliferation. These results provide important evidence supporting good performance of the rat glandular stomach and colon MN tests with a 4-day treatment regimen.
Collapse
|
29
|
Hall NE, Tichenor K, Bryce SM, Bemis JC, Dertinger SD. In vitro human cell-based aneugen molecular mechanism assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:151-161. [PMID: 35426156 PMCID: PMC9106857 DOI: 10.1002/em.22480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 05/25/2023]
Abstract
This laboratory previously described an in vitro human cell-based assay and data analysis scheme that discriminates common molecular targets responsible for chemical-induced in vitro aneugenicity: tubulin destabilization, tubulin stabilization, and inhibition of Aurora kinases (Bernacki et al., Toxicol. Sci. 170 [2019] 382-393). The current report describes updated procedures that simplify benchtop processing and data analysis methods. For these experiments, human lymphoblastoid TK6 cells were exposed to each of 25 aneugens over a range of concentrations in the presence of fluorescent paclitaxel (488 Taxol). After a 4 h treatment period, cells were lysed and nuclei were stained with a nucleic acid dye and labeled with fluorescent antibodies against phospho-histone H3 (p-H3). Flow cytometric analyses revealed several unique signatures: tubulin stabilizers caused increased frequencies of p-H3-positive events with concentration-dependent increases in 488 Taxol-associated fluorescence; tubulin destabilizers caused increased frequencies of p-H3-positive events with concomitant decreases in 488 Taxol-associated fluorescence; and Aurora kinase B inhibitors caused reduced frequencies of p-H3-positive events and lower median fluorescent intensities of p-H3-positive events. These results demonstrate a simple rubric based on 488 Taxol- and p-H3-associated metrics can reliably discriminate between several commonly encountered aneugenic molecular mechanisms.
Collapse
|
30
|
Llewellyn SV, Parak WJ, Hühn J, Burgum MJ, Evans SJ, Chapman KE, Jenkins GJS, Doak SH, Clift MJD. Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines in vitro. Nanotoxicology 2022; 16:52-72. [PMID: 35085458 DOI: 10.1080/17435390.2022.2030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human ENP exposure is inevitable and the novel, size-dependent physicochemical properties that enable ENPs to be beneficial in innovative technologies are concomitantly causing heightened public concerns as to their potential adverse effects upon human health. This study aims to deduce the mechanisms associated with potential ENP mediated (geno)toxicity and impact upon telomere integrity, if any, of varying concentrations of both ∼16 nm (4.34 × 10-3 to 17.36 × 10-3 mg/mL) Gold (Au) and ∼14 nm (0.85 × 10-5 to 3.32 × 10-5 mg/mL) Silver (Ag) ENPs upon two commonly used lung epithelial cell lines, 16HBE14o- and A549. Following cytotoxicity analysis (via Trypan Blue and Lactate Dehydrogenase assay), two sub-lethal concentrations were selected for genotoxicity analysis using the cytokinesis-blocked micronucleus assay. Whilst both ENP types induced significant oxidative stress, Ag ENPs (1.66 × 10-5 mg/mL) did not display a significant genotoxic response in either epithelial cell lines, but Au ENPs (8.68 × 10-3 mg/mL) showed a highly significant 2.63-fold and 2.4-fold increase in micronucleus frequency in A549 and 16HBE14o- cells respectively. It is hypothesized that the DNA damage induced by acute 24-h Au ENP exposure resulted in a cell cycle stall indicated by the increased mononuclear cell fraction (>6.0-fold) and cytostasis level. Albeit insignificant, a small reduction in telomere length was observed following acute exposure to both ENPs which could indicate the potential for ENP mediated telomere attrition. Finally, from the data shown, both in vitro lung cell cultures (16HBE14o- and A549) are equally as suitable and reliable for the in vitro ENP hazard identification approach adopted in this study.
Collapse
Affiliation(s)
- Samantha V Llewellyn
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Wolfgang J Parak
- Faculty of Physics, Centre of Hybrid Nanostructures, Universität Hamburg, Hamburg, Germany
| | - Jonas Hühn
- Faculty of Physics, Philipps Universität Marburg, Marburg, Germany
| | - Michael J Burgum
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| |
Collapse
|
31
|
A tiered approach to investigate the inhalation toxicity of cobalt substances. Tier 2 b: Reactive cobalt substances induce oxidative stress in ToxTracker and activate hypoxia target genes. Regul Toxicol Pharmacol 2022; 129:105120. [PMID: 35038485 DOI: 10.1016/j.yrtph.2022.105120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
Abstract
Cobalt metal and cobalt sulfate are carcinogenic in rodents following inhalation exposure. The pre-carcinogenic effects associated with exposure to these cobalt substances include oxidative stress and genotoxicity. Some, but not all, cobalt substances induce in vitro clastogenicity or an increase in micronuclei. As a result, these substances are classified genotoxic carcinogens, having major impacts on their risk assessment, e.g. assumption of a non-thresholded dose response. Here, we investigated the potential of nine cobalt substances to cause genotoxicity and oxidative stress using the ToxTracker assay, with an extension to measure biomarkers of hypoxia. None of the nine tested substances activated the DNA damage markers in ToxTracker, and five substances activated the oxidative stress response reporters. The same five substances also activated the expression of several hypoxia target genes. Consistent with the lower tier of testing found in the preceding paper of this series, these compounds can be grouped based on their ability to release bioavailable cobalt ion and to trigger subsequent key events.
Collapse
|
32
|
|
33
|
Busch M, Kämpfer AAM, Schins RPF. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. CHEMOSPHERE 2021; 284:131345. [PMID: 34216924 DOI: 10.1016/j.chemosphere.2021.131345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
As environmental pollution with plastic waste is increasing, numerous reports show the contamination of natural habitats, food and drinking water with plastic particles in the micro- and nanometer range. Since oral exposure to these particles is virtually unavoidable, health concerns towards the general population have been expressed and risk assessment regarding ingested plastic particles is of great interest. To study the intestinal effects of polymeric particles with a density of <1 g/cm³ in vitro, we spatially inverted a triple culture transwell model of the healthy and inflamed intestine (Caco-2/HT29-MTX-E12/THP-1), which allows contact between buoyant particles and cells. We validated the inverted model against the original model using the enterotoxic, non-steroidal anti-inflammatory drug diclofenac and subsequently assessed the cytotoxic and pro-inflammatory effects of polyethylene (PE) microparticles. The results show that the inverted model exhibits the same distinct features as the original model in terms of barrier development and inflammatory parameters. Treatment with 2 mM diclofenac causes severe cytotoxicity, DNA damage and complete barrier disruption in both models. PE particles induced cytotoxicity and pro-inflammatory effects in the inverted model, which would have remained undetected in conventional in vitro approaches, as no effect was observed in non-inverted control cultures.
Collapse
Affiliation(s)
- Mathias Busch
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany.
| |
Collapse
|
34
|
Avlasevich S, Pellegrin T, Godse M, Bryce S, Bemis J, Bajorski P, Dertinger S. Biomarkers of DNA damage response improve in vitro micronucleus assays by revealing genotoxic mode of action and reducing the occurrence of irrelevant positive results. Mutagenesis 2021; 36:407-418. [PMID: 34718711 DOI: 10.1093/mutage/geab039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022] Open
Abstract
We have previously described two flow cytometry-based in vitro genotoxicity tests: micronucleus (MN) scoring (MicroFlow®) and a multiplexed DNA damage response biomarker assay (MultiFlow®). Here, we describe a strategy for combining the assays in order to efficiently supplement MN analyses with a panel of biomarkers that comment on cytotoxicity (i.e. relative nuclei count, relative increased nuclei count, cleaved PARP-positive chromatin and ethidium monoazide-positive chromatin) and genotoxic mode of action (MoA; i.e. γH2AX, phospho-histone H3, p53 activation and polyploidy). For these experiments, human TK6 cells were exposed to each of 32 well-studied reference chemicals in 96-well plates for 24 continuous hours. The test chemicals were evaluated over a range of concentrations in the presence and absence of a rat liver S9-based metabolic activation system. MultiFlow assay data were acquired at 4 and 24 h, and micronuclei were scored at 24 h. Testing 32 chemicals in two metabolic activation arms translated into 64 a priori calls: 42 genotoxicants and 22 non-genotoxicants. The MN assay showed high sensitivity and moderate specificity (90% and 68%, respectively). When a genotoxic call required significant MN and MultiFlow responses, specificity increased to 95% without adversely affecting sensitivity. The dose-response data were analysed with PROAST Benchmark Dose (BMD) software in order to calculate potency metrics for each endpoint, and ToxPi software was used to synthesise the resulting lower and upper bound 90% confidence intervals into visual profiles. The BMD/ToxPi combination was found to represent a powerful strategy for synthesising multiple BMD confidence intervals, as the software output provided MoA information as well as insights into genotoxic potency.
Collapse
Affiliation(s)
| | - Tina Pellegrin
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Manali Godse
- Department of Mathematics, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Steven Bryce
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Jeffrey Bemis
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Peter Bajorski
- Department of Mathematics, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623, USA
| | | |
Collapse
|
35
|
Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: A marker of DNA damage and repair. DNA Repair (Amst) 2021; 108:103243. [PMID: 34710661 DOI: 10.1016/j.dnarep.2021.103243] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
The phosphorylation of histone variant H2AX and formation of γH2AX is a primary response to the DNA double-strand breaks (DSBs). Detection of γH2AX is a robust and sensitive tool for diagnosis of DNA damage and repair in pre-clinical drug discovery investigations. In addition, the replication stress also leads to the formation of γH2AX and cell death and so γH2AX can serve as a surrogate marker of drug-induced cytotoxicity. Recent advances in genomic research offer an opportunity to detect γH2AX as a specific biomarker for quantitative analysis of DNA damages and repair using high content screening technology and quantitative imaging analysis. The proposed approaches identify a wide range of genetic disorders and are applied in combination with other assays in drug discovery and also for the evaluation of the efficacy of various developmental drugs. In the current review, we provide recent insights into the potential of γH2AX biomarker as a powerful tool in genotoxicity analyses for the monitoring and managing of cancer diseases.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Pharmaceutical Sciences Research Center, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
37
|
Qu M, Xu H, Li W, Chen J, Zhang Y, Xu B, Li Z, Liu T, Guo L, Xie J. Dynamically monitoring cellular γ-H2AX reveals the potential of carcinogenicity evaluation for genotoxic compounds. Arch Toxicol 2021; 95:3559-3573. [PMID: 34510228 DOI: 10.1007/s00204-021-03156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Amongst all toxicological endpoints, carcinogenicity might pose the greatest concern. Genetic damage has been considered an important underlying mechanism for the carcinogenicity of chemical substances. The demand for in vitro genotoxic tests as alternative approaches is growing rapidly with the implementation of new regulations for compounds. However, currently available in vitro genotoxicity tests are often limited by relatively high false positive rates. Moreover, few studies have explored carcinogenicity potential by in vitro genotoxicity testing due to the shortage of suitable toxicological biomarkers to link gene damage with cancer risk. γ-H2AX is a recently acknowledged attractive endpoint (biomarker) for evaluating DNA damage and can simultaneously reflect the DNA damage response and repair of cells. We previously reported an ultrasensitive and reliable method, namely stable-isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS), for detecting cellular γ-H2AX and evaluating genotoxic chemicals. More importantly, our method can dynamically monitor the specific processes of genotoxic compounds affecting DNA damage and repair reflected by the amount of γ-H2AX. To clarify the possibility of using this method to assess the potential carcinogenicity of genotoxic chemicals, we applied it to a set of 69 model compounds recommended by the European Center for the Validation of Alternative Methods (ECVAM), with already-characterized genotoxic potential. Compared to conventional in vitro genotoxicity assays, including the Ames test, the γ-H2AX assay by MS has high accuracy (94-96%) due to high sensitivity and specificity (88% and 100%, respectively). The dynamic profiles of model compounds after exposure in HepG2 cells were explored, and a mathematical approach was employed to simulate and quantitatively model the DNA repair kinetics of genotoxic carcinogens (GCs) based on γ-H2AX time-effect curves up to 8 h. Two crucial parameters, i.e., k (rate of γ-H2AX decay) and t50 (time required for γ-H2AX from maximum decrease to half) estimated by the least squares method, were achieved. An open web server to help researchers calculate these two key parameters and profile simulated curves of the tested compound is available online ( http://ccb1.bmi.ac.cn:81/shiny-server/sample-apps/prediction1/ ). We detected a positive association between carcinogenic levels and k and t50 values of γ-H2AX in tested GCs, validating the potential of using this MS-based γ-H2AX in vitro assay to help preliminarily evaluate carcinogenicity and assess genotoxicity. This approach may be used alone or integrated into an existing battery of in vitro genetic toxicity tests.
Collapse
Affiliation(s)
- Minmin Qu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Wuju Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Tao Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
38
|
Seo JE, Davis K, Malhi P, He X, Bryant M, Talpos J, Burks S, Mei N, Guo X. Genotoxicity evaluation using primary hepatocytes isolated from rhesus macaque (Macaca mulatta). Toxicology 2021; 462:152936. [PMID: 34509578 DOI: 10.1016/j.tox.2021.152936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Non-human primates (NHPs) have played a vital role in fundamental, pre-clinical, and translational studies because of their high physiological and genetic similarity to humans. Here, we report a method to isolate primary hepatocytes from the livers of rhesus macaques (Macaca mulatta) after in situ whole liver perfusion. Isolated primary macaque hepatocytes (PMHs) were treated with various compounds known to have different pathways of genotoxicity/carcinogenicity and the resulting DNA damage was evaluated using the high-throughput CometChip assay. The comet data were quantified using benchmark dose (BMD) modeling and the BMD50 values for treatments of PMHs were compared with those generated from primary human hepatocytes (PHHs) in our previous study (Seo et al. Arch Toxicol 2020, 2207-2224). The results showed that despite varying CYP450 enzyme activities, PMHs had the same sensitivity and specificity as PHHs in detecting four indirect-acting (i.e., requiring metabolic activation) and seven direct-acting genotoxicants/carcinogens, as well as five non-carcinogens that are negative or equivocal for genotoxicity in vivo. The BMD50 estimates and their confidence intervals revealed species differences for DNA damage potency, especially for direct-acting compounds. The present study provides a practical method for maximizing the use of animal tissues by isolating primary hepatocytes from NHPs. Our data support the use of PMHs as a reliable surrogate of PHHs for evaluating the genotoxic hazards of chemical substances for humans.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Pritpal Malhi
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - John Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Susan Burks
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
39
|
Buick JK, Williams A, Meier MJ, Swartz CD, Recio L, Gagné R, Ferguson SS, Engelward BP, Yauk CL. A Modern Genotoxicity Testing Paradigm: Integration of the High-Throughput CometChip® and the TGx-DDI Transcriptomic Biomarker in Human HepaRG™ Cell Cultures. Front Public Health 2021; 9:694834. [PMID: 34485225 PMCID: PMC8416458 DOI: 10.3389/fpubh.2021.694834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Higher-throughput, mode-of-action-based assays provide a valuable approach to expedite chemical evaluation for human health risk assessment. In this study, we combined the high-throughput alkaline DNA damage-sensing CometChip® assay with the TGx-DDI transcriptomic biomarker (DDI = DNA damage-inducing) using high-throughput TempO-Seq®, as an integrated genotoxicity testing approach. We used metabolically competent differentiated human HepaRG™ cell cultures to enable the identification of chemicals that require bioactivation to cause genotoxicity. We studied 12 chemicals (nine DDI, three non-DDI) in increasing concentrations to measure and classify chemicals based on their ability to damage DNA. The CometChip® classified 10/12 test chemicals correctly, missing a positive DDI call for aflatoxin B1 and propyl gallate. The poor detection of aflatoxin B1 adducts is consistent with the insensitivity of the standard alkaline comet assay to bulky lesions (a shortcoming that can be overcome by trapping repair intermediates). The TGx-DDI biomarker accurately classified 10/12 agents. TGx-DDI correctly identified aflatoxin B1 as DDI, demonstrating efficacy for combined used of these complementary methodologies. Zidovudine, a known DDI chemical, was misclassified as it inhibits transcription, which prevents measurable changes in gene expression. Eugenol, a non-DDI chemical known to render misleading positive results at high concentrations, was classified as DDI at the highest concentration tested. When combined, the CometChip® assay and the TGx-DDI biomarker were 100% accurate in identifying chemicals that induce DNA damage. Quantitative benchmark concentration (BMC) modeling was applied to evaluate chemical potencies for both assays. The BMCs for the CometChip® assay and the TGx-DDI biomarker were highly concordant (within 4-fold) and resulted in identical potency rankings. These results demonstrate that these two assays can be integrated for efficient identification and potency ranking of DNA damaging agents in HepaRG™ cell cultures.
Collapse
Affiliation(s)
- Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carol D Swartz
- Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, NC, United States
| | - Leslie Recio
- Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, NC, United States
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Stephen S Ferguson
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Zhou CH, Yu CR, Huang PC, Li RW, Wang JT, Zhao TT, Zhao ZH, Ma J, Chang Y. In Vitro PIG-A Gene Mutation Assay in Human B-Lymphoblastoid TK6 Cells. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractThe X-linked PIG-A gene is involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. PIG-A mutant cells fail to synthesize GPI and to express GPI-anchored protein markers (e.g., CD59 and CD55). In recent years, in vitro PIG-A assay has been established based on the high conservation of PIG-A/Pig-a loci among different species and the large data from the in vivo system. The purpose of this study was to extend the approach for PIG-A mutation assessment to in vitro human B-lymphoblastoid TK6 cells by detecting the loss of GPI-linked CD55 and CD59 proteins. TK6 cells were treated with three mutagens 7,12-dimethylbenz[a]anthracene (DMBA), N-ethyl-N-nitrosourea (ENU), etoposide (ETO), and two nonmutagens: cadmium chloride (CdCl2) and sodium chloride (NaCl). The mutation rate of PIG-A gene within TK6 cells was determined on the 11th day with flow cytometry analysis for the negative frequencies of CD55 and CD59. The antibodies used in this production were APC mouse-anti-human CD19 antibody, PE mouse anti-human CD55 antibody, PE mouse anti-human CD59 antibody, and nucleic acid dye 7-AAD. An immunolabeling method was used to reduce the high spontaneous level of preexisting PIG-A mutant cells. Our data suggested that DMBA-, ENU-, and ETO-induced mutation frequency of PIG-A gene was increased by twofold compared with the negative control, and the effects were dose-dependent. However, CdCl2 and NaCl did not significantly increase the mutation frequency of PIG-A gene, with a high cytotoxicity at a dose of 10 mmol/L. Our study suggested that the novel in vitro PIG-A gene mutation assay within TK6 cells may represent a complement of the present in vivo Pig-a assay, and may provide guidance for their potential use in genotoxicity even in cells with a significant deficiency of GPI anchor.
Collapse
Affiliation(s)
- Chang-Hui Zhou
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Chun-Rong Yu
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng-Cheng Huang
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ruo-Wan Li
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jing-Ting Wang
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Tian-Tian Zhao
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ze-Hao Zhao
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jing Ma
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yan Chang
- Shanghai Innostar Bio-tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Lea IA, Chappell GA, Wikoff DS. Overall lack of genotoxic activity among five common low- and no-calorie sweeteners: A contemporary review of the collective evidence. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503389. [PMID: 34454695 DOI: 10.1016/j.mrgentox.2021.503389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Low- and no-calorie sweeteners (LNCS) are food additives that have been widely consumed for many decades. Their safety has been well established by authoritative bodies globally and is re-evaluated periodically. The objective herein was to survey and summarize the genotoxicity potential of five commonly utilized LNCS: acesulfame potassium (Ace-K), aspartame, saccharin, steviol glycosides and sucralose. Data from peer-reviewed literature and the ToxCast/Tox21 database were evaluated and integrated with the most recent weight-of-evidence evaluations from authoritative sources. Emphasis was placed on assays most frequently considered for hazard identification and risk assessment: mutation, clastogenicity and/or aneugenicity, and indirect DNA damage, such as changes in DNA repair mechanisms or gene expression data. These five sweeteners have been collectively evaluated in hundreds of in vivo or in vitro studies that employ numerous testing models, many of which have been conducted according to specific testing guidelines. The weight-of-evidence demonstrates overall negative findings across assay types for each sweetener when considering the totality of study design, reliability and reporting quality, as well as the lack of carcinogenic responses (or lack of responses relevant to humans) in animal cancer bioassays as well as observational studies in humans. This conclusion is consistent with the opinions of authoritative sources that have consistently determined that these sweeteners lack mutagenic and genotoxic potential.
Collapse
|
42
|
Leão TK, Ribeiro DL, Machado ART, Costa TR, Sampaio SV, Antunes LMG. Synephrine and caffeine combination promotes cytotoxicity, DNA damage and transcriptional modulation of apoptosis-related genes in human HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503375. [PMID: 34454690 DOI: 10.1016/j.mrgentox.2021.503375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The abusive consumption of thermogenic supplements occurs worldwide and deserves special attention due to their use to stimulate weight loss and prevent obesity. Thermogenic formulations usually contain Synephrine (SN) and Caffeine (CAF), stimulating compounds extracted from natural sources, but no genetic toxicology studies have predicted this hazardous combination potential. This study examined the toxicogenomic responses induced by SN and CAF, either alone or in combination, in the human hepatic cell line HepG2 in vitro. SN (0.03-30 μM) and CAF (0.6-600 μM) alone did neither decrease cell viability nor induce DNA damage, as assessed using the MTT and comet assays, respectively. SN (3 μM) and CAF (30-600 μM) were combined at concentrations similar to those found in commercial dietary supplements. SN/CAF at 3:90 and 3:600 μM ratios significantly decreased cell viability and increased DNA damage levels in HepG2 cells. CAF (600 μM) and the SN/CAF association at 3:60, 3:90, and 3:600 μM ratios promoted cell death by apoptosis, as demonstrated by flow cytometry. Similar results were observed in gene expression (RT-qPCR): SN/CAF up-regulated the expression of apoptosis- (BCL-2 and CASP9) and DNA repair-related (XPC) genes. SN/CAF at 3:90 μM also downregulated the expression of cell cycle control (CDKN1A) genes. In conclusion, the SN/CAF combination reduces cell viability by inducing apoptosis, damages DNA, and modulates the transcriptional expression of apoptosis-, cell cycle-, and DNA repair-related genes in human hepatic (HepG2) cells in vitro. These effects can be worrisome to consumers of thermogenic supplements.
Collapse
Affiliation(s)
- Tainá Keiller Leão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Diego Luís Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, CEP: 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Tássia Rafaela Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
43
|
Ter Braak B, Niemeijer M, Wolters L, Le Dévédec S, Bouwman P, van de Water B. Towards an advanced testing strategy for genotoxicity using image-based 2D and 3D HepG2 DNA damage response fluorescent protein reporters. Mutagenesis 2021; 37:130-142. [PMID: 34448005 PMCID: PMC9071099 DOI: 10.1093/mutage/geab031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
In vitro assessment of mutagenicity is an essential component in the chemical risk assessment. Given the diverse modes of action by which chemicals can induce DNA damage, it is essential that these in vitro assays are carefully evaluated for their possibilities and limitations. In this study, we used a fluorescent protein HepG2 reporter test system in combination with high content imaging. To measure induction of the DNA damage response (DDR), we used three different green fluorescent protein reporters for p53 pathway activation. These allowed for accurate quantification of p53, p21 and BTG2 (BTG anti-proliferation factor 2) protein expression and cell viability parameters at a single cell or spheroid resolution. The reporter lines were cultured as 2D monolayers and as 3D spheroids. Furthermore, liver maturity and cytochrome P450 enzyme expression were increased by culturing in an amino acid-rich (AAGLY) medium. We found that culture conditions that support a sustained proliferative state (2D culturing with normal DMEM medium) give superior sensitivity when genotoxic compounds are tested that do not require metabolisation and of which the mutagenic mode of action is dependent on replication. For compounds, which are metabolically converted to mutagenic metabolites, more differentiated HepG2 DDR reporters (e.g. 3D cultures) showed a higher sensitivity. This study stratifies how different culture methods of HepG2 DDR reporter cells can influence the sensitivity towards diverse genotoxicants and how this provides opportunities for a tiered genotoxicity testing strategy.
Collapse
Affiliation(s)
- Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Liesanne Wolters
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Sylvia Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
44
|
Chen L, Li N, Liu Y, Faquet B, Alépée N, Ding C, Eilstein J, Zhong L, Peng Z, Ma J, Cai Z, Ouedraogo G. A new 3D model for genotoxicity assessment: EpiSkin™ Micronucleus Assay. Mutagenesis 2021; 36:51-61. [PMID: 32067034 DOI: 10.1093/mutage/geaa003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/14/2020] [Indexed: 11/12/2022] Open
Abstract
The European Regulation on Cosmetics (no. 1223/2009) has prohibited the use of animals in safety testing since March 2009 for ingredients used in cosmetics. Irreversible events at the chromosome level (clastogenesis and aneugenesis) are commonly evaluated by scoring either micronuclei or chromosome aberrations using cell-based genotoxicity assays. Like most in vitro genotoxicity assays, the 2D in vitro micronucleus assay exhibits a poor specificity and does not mimic the dermal route. To address these limitations, the current project aims to develop and validate a 3D micronucleus assay using the EpiSkin™ model. This project is scientifically supported by the Cosmetics Europe Genotoxicity Task Force. In a first step, two key criteria for the development of micronucleus assay, namely, the sufficient yield of cells from the EpiSkin™ model and an acceptable proliferation rate of the basal layer, were assessed and demonstrated. Subsequently, six chemicals (vinblastine, n-ethylnitrosourea, β-butyrolactone, 2-acetylaminofluorene, 2,4-dichlorophenoland d-limonene) were evaluated in the EpiSkin™ Micronucleus Assay. At least two independent experiments using 48- and 72-h incubations were performed for each chemical. Results showed good inter-experimental reproducibility, as well as the correct identification of all six tested chemicals. The metabolism of 2-acetylaminofluorene on the EpiSkin™ model was also investigated and confirmed by the formation of an intermediate metabolite (2-aminofluorene). These preliminary results from the EpiSkin™ Micronucleus Assay indicate that it is a promising in vitro assay for assessing genotoxicity. The availability and suitability of this test method contribute significantly to the development of non-animal testing methods in China and its impact on the worldwide field.
Collapse
Affiliation(s)
- Lizao Chen
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Nan Li
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Yanfeng Liu
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Brigitte Faquet
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Nathalie Alépée
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Chunmei Ding
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Joan Eilstein
- Advanced Research, L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| | - Lingyan Zhong
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhengang Peng
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Jie Ma
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhenzi Cai
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Gladys Ouedraogo
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| |
Collapse
|
45
|
Piergiovanni M, Leite SB, Corvi R, Whelan M. Standardisation needs for organ on chip devices. LAB ON A CHIP 2021; 21:2857-2868. [PMID: 34251386 DOI: 10.1039/d1lc00241d] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organ on chip (OoC) devices represent the cutting edge of biotechnologies, combining advanced cell and tissue culture with microengineering. OoC is accelerating innovation in the life sciences and has the potential to revolutionise many fields including biomedical research, drug development and chemical risk assessment. In order to gain acceptance by end-users of OoC based methods and the data derived from them, and to establish OoC approaches as credible alternatives to animal testing, OoC devices need to go through an extensive qualification process. In this context, standardisation can play a key role in ensuring proper characterisation of individual devices, benchmarking against appropriate reference elements and aiding efficient communication among stakeholders. The development of standards for OoC will address several important issues such as basic terminology, device classification, and technical and biological performance. An analysis of technical and biological aspects related to OoC is presented here to identify standardisation areas specific for OoC, focusing on needs and opportunities. About 90 standards are already available from related fields including microtechnologies, medical devices and in vitro cell culture, laying the basis for future work in the OoC domain. Finally, two priority areas for OoC are identified that could be addressed with standards, namely, characterisation of small molecule absorption and measurement of microfluidic parameters.
Collapse
Affiliation(s)
| | - Sofia B Leite
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
46
|
Pinter E, Friedl C, Irnesberger A, Czerny T, Piwonka T, Peñarroya A, Tacker M, Riegel E. HepGentox: a novel promising HepG2 reportergene-assay for the detection of genotoxic substances in complex mixtures. PeerJ 2021; 9:e11883. [PMID: 34395098 PMCID: PMC8323594 DOI: 10.7717/peerj.11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In risk assessment, genotoxicity is a key factor to determine the safety for the consumer. Most in vitro genotoxicity assays were developed for the assessment of pure substances. However, in recent years more attention has been given to complex mixtures, where usually low amounts of a substance are present. For high-throughput screening, a toxicologically sensitive assay should be used, covering a broad range of genotoxic substances and detecting them at low concentrations. HepG2 cells have been recommended as one of the prime candidates for genotoxicity testing, as they are p53 competent, less prone towards cytotoxic effects and tend to have some metabolic activity. METHODS A HepG2 liver cell line was characterized for its suitability for genotoxicity assessment. For this, a luciferase based reporter gene assay revolving around the p53 pathway was validated for the analysis of pure substances and of complex mixtures. Further, the cell's capability to detect genotoxins correctly with and without an exogenous metabolizing system, namely rat liver S9, was assessed. RESULTS The assay proved to have a high toxicological sensitivity (87.5%) and specificity (94%). Further, the endogenous metabolizing system of the HepG2 cells was able to detect some genotoxins, which are known to depend on an enzymatic system. When complex mixtures were added this did not lead to any adverse effects concerning the assays performance and cytotoxicity was not an issue. DISCUSSION The HepGentox proved to have a high toxicological sensitivity and specificity for the tested substances, with similar or even lower lowest effective concentration (LEC) values, compared to other regulatory mammalian assays. This combines some important aspects in one test system, while also being less time and material consuming and covering several genotoxicity endpoints. As the assay performs well with and without an exogenous metabolizing system, no animal liver fractions have to be used, which application is discussed controversially and is considered to be expensive and laborious in sample testing. Because of this, the HepGentox is suitable for a cost-efficient first screening approach to obtain important information with human cells for further approaches, with a relatively fast and easy method. Therefore, the HepGentox is a promising assay to detect genotoxic substances correctly in complex mixtures even at low concentrations, with the potential for a high throughput application. In a nutshell, as part of an in vitro bioassay test battery, this assay could provide valuable information for complex mixtures.
Collapse
Affiliation(s)
- Elisabeth Pinter
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Christina Friedl
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Alexandra Irnesberger
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Thomas Czerny
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Tina Piwonka
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Alfonso Peñarroya
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Manfred Tacker
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| | - Elisabeth Riegel
- Departement of Applied Life Sciences, University of Applied Sciences Vienna, FH Campus Wien, Vienna, Austria
| |
Collapse
|
47
|
Direct Comparison of the Lowest Effect Concentrations of Mutagenic Reference Substances in Two Ames Test Formats. TOXICS 2021; 9:toxics9070152. [PMID: 34209992 PMCID: PMC8309791 DOI: 10.3390/toxics9070152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
The Ames assay is the standard assay for identifying DNA-reactive genotoxic substances. Multiple formats are available and the correct choice of an assay protocol is essential for achieving optimal performance, including fit for purpose detection limits and required screening capacity. In the present study, a comparison of those parameters between two commonly used formats, the standard pre-incubation Ames test and the liquid-based Ames MPF™, was performed. For that purpose, twenty-one substances with various modes of action were chosen and tested for their lowest effect concentrations (LEC) with both tests. In addition, two sources of rat liver homogenate S9 fraction, Aroclor 1254-induced and phenobarbital/β-naphthoflavone induced, were compared in the Ames MPF™. Overall, the standard pre-incubation Ames and the Ames MPF™ assay showed high concordance (>90%) for mutagenic vs. non-mutagenic compound classification. The LEC values of the Ames MPF™ format were lower for 17 of the 21 of the selected test substances. The S9 source had no impact on the test results. This leads to the conclusion that the liquid-based Ames MPF™ assay format provides screening advantages when low concentrations are relevant, such as in the testing of complex mixtures.
Collapse
|
48
|
Barul C, Parent ME. Occupational exposure to polycyclic aromatic hydrocarbons and risk of prostate cancer. Environ Health 2021; 20:71. [PMID: 34154586 PMCID: PMC8218525 DOI: 10.1186/s12940-021-00751-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/23/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Several industries entailing exposure to polycyclic aromatic hydrocarbons (PAHs) are known or suspected carcinogens. A handful of studies have assessed the role of PAHs exposure in prostate cancer risk, but none has examined tumor aggressiveness or the influence of screening practices and detection issues. We aimed to examine the association between lifetime occupational exposure to PAHs and prostate cancer risk. METHODS Detailed work histories were collected from 1,929 prostate cancer cases (436 aggressive) and 1,994 controls from Montreal, Canada (2005-2012). Industrial hygienists applied the hybrid expert approach to assign intensity, frequency and certainty of exposure to benzo[a]pyrene, PAHs from wood, coal, petroleum, other sources, and any source, in each job held. Odds ratios (ORs) for prostate cancer risk associated with lifetime PAHs exposure, adjusted for age, ancestry, education, lifestyle and occupational factors, and 95% confidence intervals (CI), were estimated using unconditional logistic regression. RESULTS After restriction to probable and definite exposures, and application of a 5-year lag, no clear association emerged for any of the PAHs, although small excesses in risk were apparent with 5-year increments in exposure to PAHs from wood (OR = 1.06, 95%CI 0.95 to 1.18). While analyses by cancer aggressiveness suggested no major differences, some elevated risk of high-grade cancer was observed for exposure to PAHs from wood (OR = 1.37, 95%CI 0.65 to 2.89), frequently occurring among firefighters. CONCLUSION Findings provide weak support for an association between occupational exposure to PAHs from wood and prostate cancer risk.
Collapse
Affiliation(s)
- Christine Barul
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7 Canada
| | - Marie-Elise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7 Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montréal, Québec Canada
- University of Montreal’s Hospital Research Centre, Montréal, Québec Canada
| |
Collapse
|
49
|
Mišík M, Nersesyan A, Kment M, Ernst B, Setayesh T, Ferk F, Holzmann K, Krupitza G, Knasmueller S. Micronucleus assays with the human derived liver cell line (Huh6): A promising approach to reduce the use of laboratory animals in genetic toxicology. Food Chem Toxicol 2021; 154:112355. [PMID: 34147571 DOI: 10.1016/j.fct.2021.112355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/22/2023]
Abstract
The inadequate representation of enzymes which catalyze the activation/detoxification of xenobiotics in cells that are currently used in genotoxicity testing of chemicals leads to a high number of false positive results and the number of follow up studies with rodents could be reduced by use of more reliable in vitro models. We found earlier that several xenobiotic drug metabolizing enzymes are represented in the human derived liver cell line Huh6 and developed a protocol for micronucleus (MN) experiments which is in agreement with the current OECD guideline. This protocol was used to test 23 genotoxic and non-genotoxic reference chemicals; based on these results and of earlier findings (with 9 chemicals) we calculated the predictive value of the assay for the detection of genotoxic carcinogens. We found a sensitivity of 80% and a specificity of 94% for a total number of 32 chemicals; comparisons with results obtained with other in vitro assays show that the validity of MN tests with Huh6 is higher as that of other experimental models. These results are promising and indicate that the use of Huh6 cells in genetic toxicology may contribute to the reduction of the use of laboratory rodents; further experimental work to confirm this assumption is warranted.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Kment
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Benjamin Ernst
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tahereh Setayesh
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Klaus Holzmann
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | | |
Collapse
|
50
|
Bryce SM, Dertinger SD, Bemis JC. Kinetics of γH2AX and phospho-histone H3 following pulse treatment of TK6 cells provides insights into clastogenic activity. Mutagenesis 2021; 36:255-264. [PMID: 33964157 DOI: 10.1093/mutage/geab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
The desire for in vitro genotoxicity assays to provide higher information content, especially regarding chemicals' predominant genotoxic mode of action, has led to the development of a novel multiplexed assay available under the trade name MultiFlow®. We report here on an experimental design variation that provides further insight into clastogens' genotoxic activity. First, the standard MultiFlow DNA Damage Assay-p53, γ H2AX, phospho-histone H3 was used with human TK6 lymphoblastoid cells that were exposed for 24 continuous hours to each of 50 reference clastogens. This initial analysis correctly identified 48/50 compounds as clastogenic. These 48 compounds were then evaluated using a short-term, 'pulse' treatment protocol whereby cells were exposed to test chemical for 4 h, a centrifugation/washout step was performed, and cells were allowed to recover for 20 h. MultiFlow analyses were accomplished at 4 and 24 h. The γ H2AX and phospho-histone H3 biomarkers were found to exhibit distinct differences in terms of their persistence across chemical classes. Unsupervised hierarchical clustering analysis identified three groups. Examination of the compounds within these groups showed one cluster primarily consisting of alkylators that directly target DNA. The other two groups were dominated by non-DNA alkylators and included anti-metabolites, oxidative stress inducers and chemicals that inhibit DNA-processing enzymes. These results are encouraging, as they suggest that a simple follow-up test for in vitro clastogens provides mechanistic insights into their genotoxic activity. This type of information will contribute to improve decision-making and help guide further testing.
Collapse
Affiliation(s)
- Steven M Bryce
- Litron Laboratories, 3500 Winton Place, Suite 1B, Rochester, NY 14623, USA
| | | | - Jeffrey C Bemis
- Litron Laboratories, 3500 Winton Place, Suite 1B, Rochester, NY 14623, USA
| |
Collapse
|