1
|
Park SS, Farwa U, Park I, Moon BG, Im SB, Lee BT. In-vivo bone remodeling potential of Sr-d-Ca-P /PLLA-HAp coated biodegradable ZK60 alloy bone plate. Mater Today Bio 2023; 18:100533. [PMID: 36619205 PMCID: PMC9816808 DOI: 10.1016/j.mtbio.2022.100533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Magnesium and its alloys are widely applied biomaterials due to their biodegradability and biocompatibility. However, rapid degradation and hydrogen gas evolution hinder its applicability on a commercial scale. In this study, we developed an Mg alloy bone plate for bone remodeling and support after a fracture. We further coated the Mg alloy plate with Sr-D-Ca-P (Sr dopped Ca-P coating) and Sr-D-Ca-P/PLLA-HAp to evaluate and compare their biodegradability and biocompatibility in both in vitro and in vivo experiments. Chemical immersion and dip coating were employed for the formation of Sr-D-Ca-P and PLLA-HAp layers, respectively. In vitro evaluation depicted that both coatings delayed the degradation process and exhibited excellent biocompatibility. MC3T3-E1cells proliferation and osteogenic markers expression were also promoted. In vivo results showed that both Sr-D-Ca-P and Sr-D-Ca-P/PLLA-HAp coated bone plates had slower degradation rate as compared to Mg alloy. Remarkable bone remodeling was observed around the Sr-D-Ca-P/PLLA-HAp coated bone plate than bare Mg alloy and Sr-D-Ca-P coated bone plate. These results suggest that Sr-D-Ca-P/PLLA-HAp coated Mg alloy bone plate with lower degradation and enhanced biocompatibility can be applied as an orthopedic implant.
Collapse
Affiliation(s)
- Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Ihho Park
- Korea Institute of Material Science, Changwon, South Korea
| | - Byoung-Gi Moon
- Korea Institute of Material Science, Changwon, South Korea
| | - Soo-Bin Im
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
- Department of Neuro-surgery, Soonchunhyang University Medical Centre, Bucheon, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
2
|
Park JE, Jang YS, Choi JB, Bae TS, Park IS, Lee MH. Evaluation of Corrosion Behavior and In Vitro of Strontium-Doped Calcium Phosphate Coating on Magnesium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6625. [PMID: 34772160 PMCID: PMC8586916 DOI: 10.3390/ma14216625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
This study investigated the biocompatibility of strontium-doped calcium phosphate (Sr-CaP) coatings on pure magnesium (Mg) surfaces for bone applications. Sr-CaP coated specimens were obtained by chemical immersion method on biodegradable magnesium. In this study, Sr-CaP coated magnesium was obtained by immersing pure magnesium in a solution containing Sr-CaP at 80 °C for 3 h. The corrosion resistance and biocompatibility of magnesium according to the content of Sr-CaP coated on the magnesium surface were evaluated. As a result, the corrosion resistance of Sr-CaP coated magnesium was improved compared to pure magnesium. In addition, it was confirmed that the biocompatibility of the group containing Sr was increased. Thus, the Ca-SrP coating with a reduced degradation and improved biocompatibility could be used in Mg-based orthopedic implant applications.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Yong-Seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Ji-Bong Choi
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Tae-Sung Bae
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Il-Song Park
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Jeonbuk National University, Jeonju-si 54896, Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| |
Collapse
|
3
|
Vahabzadeh S, Robertson S, Bose S. Beta-phase Stabilization and Increased Osteogenic Differentiation of Stem Cells by Solid-State Synthesized Magnesium Tricalcium Phosphate. JOURNAL OF MATERIALS RESEARCH 2021; 36:3041-3049. [PMID: 35757291 PMCID: PMC9231631 DOI: 10.1557/s43578-021-00311-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 06/15/2023]
Abstract
In this study, magnesium and strontium-doped β-tricalcium phosphates were synthesized to understand dopant impact on substrate chemistry and morphology, and proliferation and osteogenic differentiation of mesenchymal stem cells. Under solid-state synthesis, magnesium doping stabilized the β-phase in tricalcium phosphate, with 22% less α-phase content than control. Strontium doping increased α-phase formation by 17%, and also resulted in greater surface porosity, leading to greater crystal precipitation in vitro. Magnesium also significantly enhanced the proliferation of stem cells (P < 0.05) and differentiation into osteoblasts with increased alkaline phosphatase production (P < 0.05) at all time points. These results indicated that magnesium stabilizes β-tricalcium phosphate in vitro and enhanced early and late-time-point osteoconduction and osteoinduction of mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | - Susmita Bose
- Corresponding author , Phone: (509) 335-7461, Fax: (509) 335-4662
| |
Collapse
|
4
|
Wang Y, Bian Y, Zhou L, Feng B, Weng X, Liang R. Biological evaluation of bone substitute. Clin Chim Acta 2020; 510:544-555. [PMID: 32798511 DOI: 10.1016/j.cca.2020.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023]
Abstract
Critical-sized defects (CSDs) caused by trauma, tumor resection, or skeletal abnormalities create a high demand for bone repair materials (BRMs). Over the years, scientists have been trying to develop BRMs and evaluate their efficacy using numerous developed methods. BRMs are characterized by osteogenesis and angiogenesis promoting properties, the latter of which has rarely been studied in vitro and in vivo. While blood vessels are required to provide nutrients. Bone mass maintains a dynamic balance under the joint action of osteolytic and osteogenic activity in which monocytes differentiate into osteolytic cells, and osteoprogenitor cells differentiate into osteogenic cells. This review would be helpful for inexperienced researchers as well as present a comprehensive overview of methods used to investigate the effect of BRMs on osteogenic cells, osteolytic cells, and blood vessels, as well as their biocompatibility and biological performance. This review is expected to facilitate further research and development of new BRMs.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanyan Bian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lizhi Zhou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Zhou W, Hu Z, Wang T, Yang G, Xi W, Gan Y, Lu W, Hu J. Enhanced corrosion resistance and bioactivity of Mg alloy modified by Zn-doped nanowhisker hydroxyapatite coatings. Colloids Surf B Biointerfaces 2019; 186:110710. [PMID: 31838267 DOI: 10.1016/j.colsurfb.2019.110710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022]
Abstract
In this work, Zn is doped into a hydroxyapatite coating on the surface of ZK60 magnesium alloys using a one-pot hydrothermal method to obtain a corrosion-resistant implant with abilities of osteogenic differentiation and bacterial inhibition. With the addition of Zn, the morphology changes with a nanowhisker structure appearing on the coating. Electrochemical measurements show that the nanowhisker hydroxyapatite coating provides a high corrosion resistance. Compared with hydroxyapatite coating, the nanowhisker coating not only effectively inhibits bacteria, but also promotes the adhesion and differentiation of rat bone marrow mesenchymal stem cells at appropriate Zn concentrations. In conclusion, a novel nanowhisker structure prepared by a single variable Zn doping can significantly improve the corrosion resistance and biological activity of hydroxyapatite coatings.
Collapse
Affiliation(s)
- Wuchao Zhou
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Zhenrong Hu
- Weifang Medical University School of Stomatology, Weifang 261053, China
| | - Taolei Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Guangzheng Yang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Weihong Xi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Yanzi Gan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Lu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Jingzhou Hu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China.
| |
Collapse
|
6
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:3704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
| |
Collapse
|
7
|
Ding X, Li X, Li C, Qi M, Zhang Z, Sun X, Wang L, Zhou Y. Chitosan/Dextran Hydrogel Constructs Containing Strontium-Doped Hydroxyapatite with Enhanced Osteogenic Potential in Rat Cranium. ACS Biomater Sci Eng 2019; 5:4574-4586. [DOI: 10.1021/acsbiomaterials.9b00584] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Zhe Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | | | | | | |
Collapse
|
8
|
Nguyen TDT, Jang YS, Lee MH, Bae TS. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates. J Appl Biomater Funct Mater 2019; 17:2280800019826517. [PMID: 30803306 DOI: 10.1177/2280800019826517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Titanium biomedical devices coated with strontium-doped calcium phosphate ceramics can support desirable bone regeneration through anabolic and anti-catabolic effects of strontium and the compositions close to that of natural mineral tissue. METHODS: Strontium was doped into the calcium phosphate coating using the cyclic pre-calcification method on the anodized titanium plate. The effects of the different concentration of strontium in treatment solution and cycle numbers of the pre-calcification treatment on the biocompatibility were investigated in terms of the changes in morphology and chemical composition of coating, ion release pattern and cytocompatibility in vitro. RESULTS: At a high substitution ratio of strontium in the calcium phosphate coating, the size of precipitated particles was decreased and the solubility of the coating was increased. ASH55 group, which was coated by pre-calcification treatment of 20 cycles in coating solution with Sr:Ca molar ratio of 5:5, exhibited superior cellular attachment at 1 day and proliferation after 7 days of culturing in comparison with the non-doped surface and other doped surfaces. CONCLUSION: Sufficient strontium doping concentrations in calcium phosphate coating can enhance cell adhesion and proliferation on the titanium biomedical devices for bone regeneration.
Collapse
Affiliation(s)
- Thuy-Duong Thi Nguyen
- 1 Odonto-stomatology Faculty, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Yong-Seok Jang
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| | - Min-Ho Lee
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| | - Tae-Sung Bae
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
9
|
Effect of Surface Pre-Treatments on the Formation and Degradation Behaviour of a Calcium Phosphate Coating on Pure Magnesium. COATINGS 2019. [DOI: 10.3390/coatings9040259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcium phosphate (CaPh) coatings are considered promising surface treatments for Mg-based implants. Normally, the phase conversion process of CaPh compounds occurs during immersion in simulated body fluid (SBF) and allows the easy penetration of a corrosive medium. To solve the issue, pre-treatment is often performed, creating an effective barrier that further improves the corrosion resistance of the underlying Mg. In the present work three pre-treatments including hydrothermal treatment, anodization, and plasma electrolytic oxidation (PEO) were performed on pure Mg prior to CaPh deposition. Results indicated that the composition, morphology, and thickness of the CaPh coatings were strongly influenced by the pre-treatments. Dicalcium phosphate dihydrate (DCPD) was formed on PEO surface, whilst DCPD and hydroxyapatite (HA) were deposited on hydrothermally prepared and anodized surfaces. HA could be deposited on the studied samples during immersion in SBF. The electrochemical impedance spectrum indicated that CaPh coating combined with PEO pre-treatment had the highest corrosion resistance at 120 h due to the superior barrier properties conferred by the PEO layer.
Collapse
|
10
|
Zarins J, Pilmane M, Sidhoma E, Salma I, Locs J. Immunohistochemical evaluation after Sr-enriched biphasic ceramic implantation in rabbits femoral neck: comparison of seven different bone conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:119. [PMID: 30030632 DOI: 10.1007/s10856-018-6124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Strontium (Sr) has shown effectiveness for stimulating bone remodeling. Nevertheless, the exact therapeutic values are not established yet. Authors hypothesized that local application of Sr-enriched ceramics would enhance bone remodeling in constant osteoporosis of rabbits' femoral neck bone. Seven different bone conditions were analyzed: ten healthy rabbits composed a control group, while other twenty underwent ovariectomy and were divided into three groups. Bone defect was filled with hydroxyapatite 30% (HAP) and tricalcium phosphate 70% (TCP) granules in 7 rabbits, 5% of Sr-enriched HAP/TCP granules in 7, but sham defect was left unfilled in 6 rabbits. Bone samples were obtained from operated and non-operated legs 12 weeks after surgery and analyzed by histomorphometry and immunohistochemistry (IMH). Mean trabecular bone area in control group was 0.393 mm2, in HAP/TCP - 0.226 mm2, in HAP/TCP/Sr - 0.234 mm2 and after sham surgery - 0.242 mm2. IMH revealed that HAP/TCP/Sr induced most noticeable increase of nuclear factor kappa beta 105 (NFkB 105), osteoprotegerin (OPG), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP 2/4), collagen type 1α (COL-1α), interleukin 1 (IL-1) with comparison to intact leg; NFkB 105 and OPG rather than pure HAP/TCP or sham bone. We concluded that Sr-enriched biomaterials induce higher potential to improve bone regeneration than pure bioceramics in constant osteoporosis of femoral neck bone. Further studies on bigger osteoporotic animals using Sr-substituted orthopedic implants for femoral neck fixation should be performed to confirm valuable role in local treatment of osteoporotic femoral neck fractures in humans.
Collapse
Affiliation(s)
- Janis Zarins
- Department of Hand and Plastic Surgery, Microsurgery Centre of Latvia, Brivibas Street 410, Riga, Latvia.
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Elga Sidhoma
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Ilze Salma
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, Dzirciema Street 20, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of Riga Technical University, Pulka Street 3, Riga, Latvia
| |
Collapse
|
11
|
The Formation Mechanism and Corrosion Resistance of a Composite Phosphate Conversion Film on AM60 Alloy. MATERIALS 2018. [PMID: 29518038 PMCID: PMC5872981 DOI: 10.3390/ma11030402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Magnesium alloy AM60 has high duc and toughness, which is expected to increase in demand for automotive applications. However, it is too active, and coatings have been extensively studied to prevent corrosion. In this work, a Ba-containing composite phosphate film has been prepared on the surface of AM60. The composition and formation mechanism of the film have been investigated using a scanning electronic microscope equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and X-ray diffractometry tests. The corrosion resistance of the film has been measured by electrochemical and immersion tests. The results show that the deposition film has fully covered the substrate but there are some micro-cracks. The structure of the film is complex, and consists of MgHPO4·3H2O, MnHPO4·2.25H2O, BaHPO4·3H2O, BaMg2(PO4)2, Mg3(PO4)2·22H2O, Ca3(PO4)2·xH2O, and some amorphous phases. The composite phosphate film has better anticorrosion performance than the AM60 and can protect the bare alloy from corrosion for more than 12 h in 0.6 M NaCl.
Collapse
|
12
|
Li J, Yang L, Guo X, Cui W, Yang S, Wang J, Qu Y, Shao Z, Xu S. Osteogenesis effects of strontium-substituted hydroxyapatite coatings on true bone ceramic surfaces in vitro and in vivo. Biomed Mater 2017; 13:015018. [PMID: 28862155 DOI: 10.1088/1748-605x/aa89af] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To develop bioactive bone graft materials that can induce rapid bone regeneration, a novel biomaterial was synthesized by coating true bone ceramic (TBC) substrates with strontium-substituted nano-hydroxyapatites (SrHA) (Sr concentrations of 0%, 10%, 40%, 100%) through a sol-gel dip-coating approach. All coated TBC scaffolds retained the inherent natural trabecular structure, porosity, compressive strength and simultaneously possessed a micro/nanotopography SrHA layer on the substrate surface. The dimension of the deposited crystal increased and the density of the deposited apatite particles became sparse with increasing Sr content, but a unique HA crystalline phase was observed under all conditions. The modified TBC scaffolds significantly enhanced the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 osteoblasts in vitro. Particularly, the Sr10-TBC group (10 mol% Sr2+ in apatite coating) revealed the highest osteogenic efficacy over the other groups. Three-dimensional CT imaging and histological evaluations on a bilateral critical-sized rabbit radial defect model for 12 weeks showed significant bone formation in the Sr10-TBC implants. The new bone area ratios of the Sr10-TBC group were significantly higher than that of the TBC group. Additionally, Sr10-TBC implants showed faster degradability compared with raw TBC implants during the 12 weeks of implantation. The results indicate that TBC modification with 10% SrHA coating stimulated osteogenesis and could be a promising biomaterial for future bone defect regeneration.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yu W, Zhao H, Ding Z, Zhang Z, Sun B, Shen J, Chen S, Zhang B, Yang K, Liu M, Chen D, He Y. In vitro and in vivo evaluation of MgF 2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids Surf B Biointerfaces 2016; 149:330-340. [PMID: 27792982 DOI: 10.1016/j.colsurfb.2016.10.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023]
Abstract
Porous magnesium scaffolds are attracting increasing attention because of their degradability and good mechanical property. In this work, a porous and degradable AZ31 magnesium alloy scaffold was fabricated using laser perforation technique. To enhance the corrosion resistance and cytocompatibility of the AZ31 scaffolds, a fluoride treatment was used to acquire the MgF2 coating. Enhanced corrosion resistance was confirmed by immersion and electrochemical tests. Due to the protection provided by the MgF2 coating, the magnesium release and pH increase resulting from the degradation of the FAZ31 scaffolds were controllable. Moreover, in vitro studies revealed that the MgF2 coated AZ31 (FAZ31) scaffolds enhanced the proliferation and attachment of rat bone marrow stromal cells (rBMSCs) compared with the AZ31 scaffolds. In addition, our present data indicated that the extract of the FAZ31 scaffold could enhance the osteogenic differentiation of rBMSCs. To compare the in vivo bone regenerative capacity of the AZ31 and FAZ31 scaffolds, a rabbit femoral condyle defect model was used. Micro-computed tomography (micro-CT) and histological examination were performed to evaluate the degradation of the scaffolds and bone volume changes. In addition to the enhanced the corrosion resistance, the FAZ31 scaffolds were more biocompatible and induced significantly more new bone formation in vivo. Conversely, bone resorption was observed from the AZ31 scaffolds. These promising results suggest potential clinical applications of the fluoride pretreated AZ31 scaffold for bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Weilin Yu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huakun Zhao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenyu Ding
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhiwang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Benben Sun
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ji Shen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
| | - Bingchun Zhang
- Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
| | - Meixia Liu
- Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China.
| | - Daoyun Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
14
|
Singh SS, Roy A, Lee B, Banerjee I, Kumta PN. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:636-645. [PMID: 27287163 DOI: 10.1016/j.msec.2016.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/15/2016] [Accepted: 04/21/2016] [Indexed: 11/19/2022]
Abstract
Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg(2+) and PO4(3-) ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400-600°C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg(2+) and PO4(3-) ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg(2+) and PO4(3-) ions was studied. Interestingly, 5mM PO4(3-) supported mineralization while the addition of 5mM Mg(2+) to 5mM PO4(3-) inhibited mineralization. It was therefore concluded that the release of Ca(2+) ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg(2+) in regulating hMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Satish S Singh
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Abhijit Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Boeun Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Ipsita Banerjee
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prashant N Kumta
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
15
|
Birgani ZT, Malhotra A, van Blitterswijk CA, Habibovic P. Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. J Biomed Mater Res A 2016; 104:1946-60. [PMID: 27012665 DOI: 10.1002/jbm.a.35725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022]
Abstract
The incorporation of bioinorganics into synthetic biomaterials is a promising approach to improve the biological performance of bone graft substitutes, while still retaining their synthetic nature. Among these bioinorganics, strontium ions (Sr(2+) ) have reported enhanced bone formation, and a reduced risk of bone fractures. While previous results have been encouraging, more detailed studies are needed to further develop specific applications. This study demonstrates the effects of Sr(2+) on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) when introduced as either a dissolved salt, or incorporated into biomimetic calcium phosphate (CaP) coatings. Upon attachment, hMSCs seeded in the presence of higher Sr(2+) concentrations presented with a more elongated shape as compared to the controls without Sr(2+) . Both Sr(2+) as a dissolved salt in the medium, or incorporated into CaP coatings, positively influenced hMSC alkaline phosphatase (ALP) activity in a dose-dependent manner. At the mRNA level, the expression of osteogenic markers ALP, bone sialoprotein, bone morphogenetic protein 2, osteopontin, and osteoclacin were increased in the presence of Sr(2+) , independent of the delivery method. Overall, this study demonstrates the positive effects of strontium on the osteogenic differentiation of human MSCs, and supports the use of strontium-incorporated CaPs for bone regeneration applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1946-1960, 2016.
Collapse
Affiliation(s)
- Zeinab Tahmasebi Birgani
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Angad Malhotra
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
16
|
Bakhsheshi-Rad H, Hamzah E, Kasiri-Asgarani M, Jabbarzare S, Iqbal N, Abdul Kadir M. Deposition of nanostructured fluorine-doped hydroxyapatite–polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:526-537. [DOI: 10.1016/j.msec.2015.11.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/31/2015] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
|
17
|
Ratna Sunil B, Sampath Kumar T, Chakkingal U, Nandakumar V, Doble M, Devi Prasad V, Raghunath M. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:356-367. [DOI: 10.1016/j.msec.2015.10.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
18
|
Zhou H, Kong S, Pan Y, Zhang Z, Deng L. Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:174-80. [DOI: 10.1016/j.msec.2015.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022]
|