1
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
2
|
Wang Z, Zhang Y, Zhao J, Xie C, Wei Q, Yu H. Fabrication of the polyetherketoneketone-reinforced nano-hydroxyapatite composites as inspired by the cortical bone. SUPRAMOLECULAR MATERIALS 2024; 3:100062. [DOI: 10.1016/j.supmat.2023.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Chen H, Zhao M, Liu J, Xu R, Zou Y, Wang P, Tong L, Fan Y, Zhang X, Liang J, Sun Y. Hyaluronated nanohydroxyapatite responsively released from injectable hydrogels for targeted therapy of melanoma. NANOSCALE 2024; 16:11762-11773. [PMID: 38869001 DOI: 10.1039/d4nr01696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Nanohydroxyapatite (nHAp) has attracted significant attention for its tumor suppression and tumor microenvironment modulation capabilities. However, a strong tendency to aggregate greatly affects its anti-tumor efficiency. To address this issue, a hydrogel platform consisting of thiolated hyaluronic acid (HA-SH) modified nanohydroxyapatite (nHAp-HA) and HA-SH was developed for sustained delivery of nHAp for melanoma therapy. The hydrophilic and negatively charged HA-SH significantly improved the size dispersion and stability of nHAp in aqueous media while conferring nHAp targeting effects. Covalent sulfhydryl self-cross-linking between HA-SH and nHAp-HA groups ensured homogeneous dispersion of nHAp in the matrix material. Meanwhile, the modification of HA-SH conferred the targeting properties of nHAp and enhanced cellular uptake through the HA/CD44 receptor. The hydrogel platform could effectively reduce the aggregation of nHAp and release nHAp in a sustained and orderly manner. Antitumor experiments showed that the modified nHAp-HA retained the tumor cytotoxicity of nHAp in vitro and inhibited the growth of highly malignant melanomas up to 78.6% while being able to induce the differentiation of macrophages to the M1 pro-inflammatory and antitumor phenotype. This study will broaden the application of nanohydroxyapatite in tumor therapy.
Collapse
Affiliation(s)
- Huiling Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Jingyi Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
4
|
Fendi F, Abdullah B, Suryani S, Usman AN, Tahir D. Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review. Bone 2024; 183:117075. [PMID: 38508371 DOI: 10.1016/j.bone.2024.117075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Hydroxyapatite [HA, Ca10(PO4)6(OH)2], with its robust biocompatibility and bioactivity, has found extensive utility in bone grafting, replacement therapies, and supplemental medical materials. HA is highly regarded for its osteoconductive properties because it boasts hydrophilicity, nontoxicity, non-allergenicity, and non-mutagenicity. Nevertheless, HA's intrinsic mechanical weakness has spurred efforts to enhance its properties. This enhancement is achieved through ion incorporation, with elements such as magnesium, zinc, lithium, strontium, boron, and others being integrated into the HA structure. In the domain of orthopedics, HA-based scaffolds have emerged as a solution for addressing prevalent issues like bone deformities and defects stemming from congenital anomalies, injuries, trauma, infections, or tumors. The fabrication of three-dimensional scaffolds (3D scaffolds) has enabled advancements in bone regeneration and replacement, with a focus on practical applications such as repairing calvarial, skull, and femoral defects. In vitro and in vivo assessments have substantiated the effectiveness of 3D scaffolds for bone defect repair, regeneration, and tissue engineering. Beyond bone-related applications, scaffolds demonstrate versatility in enhancing cartilage healing and serving as bioimplants. The wide array of scaffold applications underscores their ongoing potential for further development in the realm of medical science.
Collapse
Affiliation(s)
- Fendi Fendi
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Bualkar Abdullah
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
5
|
Tang S, Shen Y, Jiang L, Zhang Y. Surface Modification of Nano-Hydroxyapatite/Polymer Composite for Bone Tissue Repair Applications: A Review. Polymers (Basel) 2024; 16:1263. [PMID: 38732732 PMCID: PMC11085102 DOI: 10.3390/polym16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which has been widely used as a reinforcing filler for polymers in bone materials, and it can promote cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and material surfaces through selective protein adsorption and has therefore always been a research hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements between n-HA nano-particles and biological apatite, so the biological activity needs to be improved, and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields, is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature. This article reviewed the physical modification and various chemical modification methods of n-HA in recent years, as well as their modification effects. In particular, various chemical modification methods and their modification effects were reviewed in detail. Finally, a summary and suggestions for the modification of n-HA were proposed, which would provide significant reference for achieving high-performance n-HA in biomedical applications.
Collapse
Affiliation(s)
- Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yifei Shen
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
6
|
Yingjun M, Shuo T, Liuyun J, Yan Z, Shengpei S. Study on a co-hybrid nano-hydroxyapatite with lignin derivatives and alendronate and the reinforce effect for poly(lactide-co-glycolide). Int J Biol Macromol 2023; 253:126785. [PMID: 37696379 DOI: 10.1016/j.ijbiomac.2023.126785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
A novel co-hybrid nano-apatite (n-HA) by introducing lignin derivatives (LDs) and alendronate (ALE) was designed to reinforce poly(lactide-co-glycolide) (PLGA). The effect of different addition methods and contents of LDs, lignin derivatives sorts of lignosulfonate (LS), alkali lignin (AL) and carboxymethyl lignin (CML), and the addition order of ALE on the dispersion of hybrid n-HA, and reinforce effective for PLGA were investigated by FTIR, XRD, TEM, TGA, XPS, N2 adsorption/desorption, zeta potential, dispersion experiments, universal testing machine, SEM, DSC and POM. The results showed that the addition order could regulate the growth of n-HA crystal planes by binding with Ca2+, and co-hybrid HA by LDs and ALE possessed better dispersion owing to the synergistic effect. Moreover, 10 wt% LS-ALE-n-HA displayed the best reinforce effect, and the tensile strength of composite was 24.43 % higher than that of PLGA, even 15 wt% LS-ALE-n-HA was added, it still exhibited reinforce effect for PLGA. In vitro soaking in simulated body fluid (SBF) results indicated that LS-ALE-n-HA delayed tensile strength reduce of PLGA and promoted bone-like apatite deposition. The cell proliferation results demonstrated that the hybrid n-HA by the introduction of ALE endowed PLGA with better cell adhesion and proliferation.
Collapse
Affiliation(s)
- Ma Yingjun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| | - Tang Shuo
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jiang Liuyun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Zhang Yan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| | - Su Shengpei
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
7
|
Pańtak P, Czechowska JP, Zima A. The influence of silane coupling agents on the properties of α-TCP-based ceramic bone substitutes for orthopaedic applications. RSC Adv 2023; 13:34020-34031. [PMID: 38020001 PMCID: PMC10663883 DOI: 10.1039/d3ra06027f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Biomaterials based on α-TCP are highly recommended for medical applications due to their ability to bond chemically with bone tissue. However, in order to improve their physicochemical properties, modifications are needed. In this work, novel, hybrid α-TCP-based bone cements were developed and examinated. The influence of two different silane coupling agents (SCAs) - tetraethoxysilane (TEOS) and 3-glycidoxypropyl trimethoxysilane (GPTMS) on the properties of the final materials was investigated. Application of modifiers allowed us to obtain hybrid materials due to the presence of different bonds in their structure, for example between calcium phosphates and SCA molecules. The use of SCAs increased the compressive strength of the bone cements from 7.24 ± 0.35 MPa to 12.17 ± 0.48 MPa. Moreover, modification impacted the final setting time of the cements, reducing it from 11.0 to 6.5 minutes. The developed materials displayed bioactive potential in simulated body fluid. Presented findings demonstrate the beneficial influence of silane coupling agents on the properties of calcium phosphate-based bone substitutes and pave the way for their further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| | - Joanna P Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| |
Collapse
|
8
|
Rabbani FA, Sulaiman M, Tabasum F, Yasin S, Iqbal T, Shahbaz M, Mujtaba M, Bashir S, Fayaz H, Saleel CA. Investigation of tribo-mechanical performance of alkali treated rice-husk and polypropylene-random-copolymer based biocomposites. Heliyon 2023; 9:e22028. [PMID: 38034731 PMCID: PMC10685183 DOI: 10.1016/j.heliyon.2023.e22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
This study was based on the experimental performance evaluation of a wood polymer composite (WPC) that was synthesized by incorporating untreated and treated rice husk (RH) fibers into a polypropylene random copolymer matrix. The submicron-scale RH fibers were alkali-treated to modify the surface and introduce new functional groups in the WPC. A compatibilizer (maleic anhydride) and a thermos-mechanical properties modifier (polypropylene grafted with 30 % glass fiber) were used in the WPC. The effects of untreated and treated RH on the WPC panels were studied using FESEM, FTIR, and microscope images. A pin-on-disk setup was used to investigate the bulk tribological properties of PPRC and WPC. The complex relationship between the friction coefficient of different loading of RH fibers in the WPC, as a function of sliding distance, was analyzed along with the temperature and morphology of the surface. It was observed that untreated RH acted as a friction modifier, while treated RH acted as a solid lubricant. Microhardness was calculated using the QCSM module on nanoindentation. It was found that untreated RH led to an increase in microhardness, while treated RH caused a decrease in hardness compared to PPRC.
Collapse
Affiliation(s)
- Fahad Ali Rabbani
- Department of Chemical, Polymer and Composite Materials Engineering, UET Lahore, New Campus, Kala Shah Kaku 39020, Pakistan
| | - Muhammad Sulaiman
- Department of Chemical, Polymer and Composite Materials Engineering, UET Lahore, New Campus, Kala Shah Kaku 39020, Pakistan
| | - Fatima Tabasum
- Department of Chemical, Polymer and Composite Materials Engineering, UET Lahore, New Campus, Kala Shah Kaku 39020, Pakistan
| | - Saima Yasin
- Department of Chemical Engineering, UET Lahore, Main Campus, Lahore 54890, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer and Composite Materials Engineering, UET Lahore, New Campus, Kala Shah Kaku 39020, Pakistan
| | - Muhammad Shahbaz
- Department of Chemical, Polymer and Composite Materials Engineering, UET Lahore, New Campus, Kala Shah Kaku 39020, Pakistan
| | - M.A. Mujtaba
- Department of Mechanical Engineering, UET Lahore, New Campus, Kala Shah Kaku 39020, Pakistan
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990 Kuala Lumpur, Malaysia
| | - H. Fayaz
- Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - C Ahamed Saleel
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Asir-Abha 61421, Saudi Arabia
| |
Collapse
|
9
|
Shiroud Heidari B, Lopez EM, Chen P, Ruan R, Vahabli E, Davachi SM, Granero-Moltó F, De-Juan-Pardo EM, Zheng M, Doyle B. Silane-modified hydroxyapatite nanoparticles incorporated into polydioxanone/poly(lactide- co-caprolactone) creates a novel toughened nanocomposite with improved material properties and in vivo inflammatory responses. Mater Today Bio 2023; 22:100778. [PMID: 37664796 PMCID: PMC10474235 DOI: 10.1016/j.mtbio.2023.100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
The interface tissue between bone and soft tissues, such as tendon and ligament (TL), is highly prone to injury. Although different biomaterials have been developed for TL regeneration, few address the challenges of the TL-bone interface. Here, we aim to develop novel hybrid nanocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL), and hydroxyapatite (HA) nanoparticles suitable for TL-bone interface repair. Nanocomposites, containing 3-10% of both unmodified and chemically modified hydroxyapatite (mHA) with a silane coupling agent. We then explored biocompatibility through in vitro and in vivo studies using a subcutaneous mouse model. Through different characterisation tests, we found that mHA increases tensile properties, creates rougher surfaces, and reduces crystallinity and hydrophilicity. Morphological observations indicate that mHA nanoparticles are attracted by PDO rather than LCL phase, resulting in a higher degradation rate for mHA group. We found that adding the 5% of nanoparticles gives a balance between the properties. In vitro experiments show that osteoblasts' activities are more affected by increasing the nanoparticle content compared with fibroblasts. Animal studies indicate that both HA and mHA nanoparticles (10%) can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. In summary, this work highlights the potential of PDO/LCL/HA nanocomposites as an excellent biomaterial for TL-bone interface tissue engineering applications.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Emma Muinos Lopez
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Peilin Chen
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- School of Medicine, Monash University, VIC, Melbourne, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Ebrahim Vahabli
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, USA
| | - Froilán Granero-Moltó
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Elena M. De-Juan-Pardo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Barry Doyle
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Zhang WL, Dai ZW, Chen SY, Guo WX, Wang ZW, Wei JS. A novel poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV)-PEG-melatonin composite scaffold enhances for inhibiting bone tumor recurrence and enhancing bone regeneration. Front Pharmacol 2023; 14:1246783. [PMID: 37663244 PMCID: PMC10469957 DOI: 10.3389/fphar.2023.1246783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Postoperative comprehensive treatment has become increasingly important in recent years. This study was to repair tissue defects resulting from the removal of diseased tissue and to eliminate or inhibit the recurrence and metastasis of residual tumors under the condition of reducing the systemic side effects of chemotherapeutic drugs. To address these challenges, multifunctional scaffolds based local drug delivery systems will be a promising solution. Methods: An optimal drug-loaded scaffold material PHBV-mPEG5k (PP5) was prepared, which is biocompatible, hydrophilic and biodegradable. Furthermore, this material showed to promote bone healing, and could be conveniently prepared into porous scaffold by freeze-drying the solution. By means of introducing melatonin (MT) into the porous surfaces, the MT loaded PP5 scaffold with desirable sustained release ability was successfully prepared. The effectiveness of the MT loaded PP5 scaffold in promoting bone repair and anti-tumor properties was evaluated through both in vivo and in vitro experiments. Results and Discussion: The MT loaded PP5 scaffold is able to achieve the desired outcome of bone tissue repair and anti-bone tumor properties. Furthermore, our study demonstrates that the PP5 scaffold was able to enhance the anti-tumor effect of melatonin by improving cellular autophagy, which provided a therapeutic strategy for the comprehensive postoperative treatment of osteosarcoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Song Wei
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion. Bioact Mater 2023; 23:234-246. [DOI: 10.1016/j.bioactmat.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
|
12
|
Lau NC, Huang YY, Chen DW, Cheng KW. Preparation of Ta2O5/ polyetheretherketone samples with loading of PLGA/antibiotic agents for the tests of antibacterial performances and cell growth activities. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Padinjarathil H, Mudradi S, Balasubramanian R, Drago C, Dattilo S, Kothurkar NK, Ramani P. Design of an Antibiotic-Releasing Polymer: Physicochemical Characterization and Drug Release Patterns. MEMBRANES 2023; 13:membranes13010102. [PMID: 36676910 PMCID: PMC9866011 DOI: 10.3390/membranes13010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/01/2023]
Abstract
Conventional drug delivery has its share of shortcomings, especially its rapid drug release with a relatively short duration of therapeutic drug concentrations, even in topical applications. Prolonged drug release can be effectively achieved by modifying the carrier in a drug delivery system. Among the several candidates for carriers studied over the years, poly (ether ether ketone), a biocompatible thermoplastic, was chosen as a suitable carrier. Its inherent hydrophobicity was overcome by controlled sulfonation, which introduced polar sulfonate groups onto the polymer backbone. Optimization of the sulfonation process was completed by the variation of the duration, temperature of the sulfonation, and concentration of sulfuric acid. The sulfonation was confirmed by EDS and the degree of sulfonation was determined by an NMR analysis (61.6% and 98.9%). Various physical properties such as morphology, mechanical strength, and thermal stability were studied using scanning electron microscopy, tensile testing, and thermogravimetric analysis. Cytotoxicity tests were performed on the SPEEK samples to study the variation in biocompatibility against a Vero cell line. The drug release kinetics of ciprofloxacin (CP) and nalidixic acid sodium salt (NA)-loaded membranes were studied in deionized water as well as SBF and compared against the absorbance of standardized solutions of the drug. The data were then used to determine the diffusion, distribution, and permeability coefficients. Various mathematical models were used to fit the obtained data to establish the order and mechanism of drug release. Studies revealed that drug release occurs by diffusion and follows zero-order kinetics.
Collapse
Affiliation(s)
- Himabindu Padinjarathil
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Department of Chemical Engineering and Materials Science, School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Srikrishna Mudradi
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Rajalakshmi Balasubramanian
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry, CNR, via Paolo Gaifami 18, 95126 Catania, Italy
| | - Sandro Dattilo
- Institute for Polymer, Composite and Biomaterials, CNR, via Paolo Gaifami 18, 95126 Catania, Italy
| | - Nikhil K. Kothurkar
- Department of Chemical Engineering and Materials Science, School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| |
Collapse
|
14
|
Senra MR, Marques MDFV, Monteiro SN. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers (Basel) 2023; 15:373. [PMID: 36679253 PMCID: PMC9861117 DOI: 10.3390/polym15020373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
The global orthopedic market is forecasted to reach US$79.5 billion by the end of this decade. Factors driving the increase in this market are population aging, sports injury, road traffic accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is of utmost importance to develop bone implants with superior mechanical and biological properties to face the demand and improve patients' quality of life. Today, metallic implants still hold a dominant position in the global orthopedic implant market, mainly due to their superior mechanical resistance. However, their performance might be jeopardized due to the possible release of metallic debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone) (PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates to be used in manufacturing bone implants due to its similarity to the mechanical properties of bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration. Notwithstanding, PEEK's bioactivity can be improved through surface modification techniques and by the development of bioactive composites. This paper overviews the advantages of using PEEK for manufacturing implants and addresses the most common strategies to improve the bioactivity of PEEK in order to promote enhanced biomechanical performance.
Collapse
Affiliation(s)
- Mônica Rufino Senra
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering, IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro CEP 22290-270, RJ, Brazil
| |
Collapse
|
15
|
Javaid S, Dey M, Matzke C, Gupta S. Synthesis and characterization of engineered
PEEK
‐based composites for enhanced tribological and mechanical performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sabah Javaid
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Maharshi Dey
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Caleb Matzke
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| | - Surojit Gupta
- Department of Mechanical Engineering University of North Dakota Grand Forks North Dakota USA
| |
Collapse
|
16
|
Application of biomolecules modification strategies on PEEK and its composites for osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2022; 215:112492. [PMID: 35430485 DOI: 10.1016/j.colsurfb.2022.112492] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
Abstract
As orthopedic and dental implants, polyetheretherketone (PEEK) is expected to be a common substitute material of titanium (Ti) and its alloys due to its good biocompatibility, chemical stability, and elastic modulus close to that of bone tissue. It could avoid metal allergy and bone resorption caused by the stress shielding effect of Ti implants, widely studied in the medical field. However, the lack of biological activity is not conducive to the clinical application of PEEK implants. Therefore, the surface modification of PEEK has increasingly become one of the research hotspots. Researchers have explored various biomolecules modification methods to effectively enhance the osteogenic and antibacterial activities of PEEK and its composites. Therefore, this review mainly summarizes the recent research of PEEK modified by biomolecules and discusses the further research directions to promote the clinical transformation of PEEK implants.
Collapse
|
17
|
Flexural Properties of Polyetheretherketone Composites Containing Hydroxyapatite, Graphene Oxide, and Carbon Fiber for Spinal Implant Materials. Macromol Res 2022. [DOI: 10.1007/s13233-022-0036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Mechanical Properties of Polyetheretherketone Composites with Surface-Modified Hydroxyapatite Nanofibers and Carbon Fibers. Macromol Res 2022. [DOI: 10.1007/s13233-022-0028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Shuai C, Yu L, Feng P, Peng S, Pan H, Bai X. Construction of a stereocomplex between poly(D-lactide) grafted hydroxyapatite and poly(L-lactide): toward a bioactive composite scaffold with enhanced interfacial bonding. J Mater Chem B 2021; 10:214-223. [PMID: 34927656 DOI: 10.1039/d1tb02111g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The poly(L-lactide) (PLLA)/hydroxyapatite (HAP) composite scaffold is expected to combine the favorable compatibility and processability of PLLA with the excellent bioactivity and osteoconductivity of HAP. Unfortunately, the poor interfacial bonding between PLLA and HAP leads to a deterioration in mechanical properties. In this study, poly(D-lactide) (PDLA) was grafted onto the surface of HAP nanoparticles (g-HAP), and then g-HAP was incorporated into PLLA to improve interfacial bonding by stereocomplexation in a scaffold fabricated via selective laser sintering (SLS). The results showed that HAP nanoparticles were grafted with PDLA at a grafting rate of 8.72% by ring-opening polymerization through chemical bonding in the presence of the hydroxyl groups of HAP. The grafted PDLA formed an interfacial stereocomplex with PLLA via an intertwined spiral structure ascribed to their antiparallel and complementary configuration under the action of hydrogen bonding. Consequently, the tensile strength and modulus of the PLLA/g-HAP scaffold increased by 86% and 69%, respectively, compared to those of the PLLA/HAP scaffold. In addition, the scaffold displayed good bioactivity by inducing apatite nucleation and deposition and possessed good cytocompatibility for cell adhesion, growth and proliferation.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. .,School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Li Yu
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Shuping Peng
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital, Central South University, Changsha 410013, China
| | - Xinna Bai
- Department of Conservative Dentistry & Endodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology Central South University, Changsha 410013, China
| |
Collapse
|
20
|
Genistein loaded into microporous surface of nano tantalum/PEEK composite with antibacterial effect regulating cellular response in vitro, and promoting osseointegration in vivo. J Mech Behav Biomed Mater 2021; 125:104972. [PMID: 34794044 DOI: 10.1016/j.jmbbm.2021.104972] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Poly(ether-ether-ketone) (PEEK) with good biocompatibility exhibits high mechanical strengths but bioinert. In addition, tantalum (Ta) possesses outstanding osteogenesis but high density and elastic modulus, and cost. In this study, by blending Ta nanoparticles with PEEK, Ta/PEEK composite (TP) was prepared, which was then treated by concentrated sulfuric acid to form a microporous surface containing Ta particles on TP (TPS). Moreover, genistein (GS) with antibacterial property was loaded into the microporous surface of TPS (TPSG). Compared with TP, the surface properties (e.g., surface roughness and hydrophilicity) of TPS was obviously improved because of the microporous surface including Ta nanoparticles. Moreover, TPS showed low antibacterial properties because of presence of sulfonic group while TPSG exhibited excellent antibacterial properties due to GS loaded into the microporous surface. Furthermore, compared with TP, TPS obviously promoted attachment and proliferation of MG63 cells, while TPSG with GS remarkably inducing osteogenic differentiation of the cells compared with TPS in vitro. Moreover, in comparison with TP, TPS with optimized surface properties promoted new bone regeneration and osseointegration, while TPSG loading GS further enhanced bone regeneration as well as osseointegration in vivo. In summary, the GS loaded into microporous surface including Ta nanoparticles of TPSG exhibited antibacterial and osteogenic activity, which would have great potential for bone tissue repair.
Collapse
|
21
|
Chen C, Meng L, Hu Y, Su Z, Zhang T, Ouyang Z, Li W, Wan J, Wu Q. Graphene oxide-reinforced poly (ether-ether-ketone)/silica composites with improved mechanical performance and surface bioactivity. J Mech Behav Biomed Mater 2021; 124:104811. [PMID: 34500354 DOI: 10.1016/j.jmbbm.2021.104811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
The control of interfacial interaction between polymers and fillers is essential for the fabrication of high-performance polymer composites. In this work, poly(ether-ether-ketone)/silica (PEEK/SiO2) and PEEK/SiO2/graphene oxide (GO) composite were prepared by ball milling-ultrasonic dispersion combined with melt extrusion injection molding. GO nanosheets were introduced as the interfacial enhancer to improve interfacial binding between SiO2 and PEEK. Mechanical tests showed that the incorporation of SiO2 and GO greatly optimized the modulus, strength, and fracture toughness of the composites. The tensile strength and Young's modulus of the PEEK/SiO2 composites increases with the increase of SiO2 content. The maximum tensile strength and Young's modulus of the PEEK/SiO2 composites are approximate 95.9 ± 0.6 MPa and 4.007 ± 0.005 GPa at 30 wt% of SiO2, an increase of 6.4% and 21.2% than that of pure PEEK. The maximum tensile strength and Young's modulus of the PEEK/SiO2/GO composite are further improved to approximate 101.5 ± 0.7 MPa and 4.62 ± 0.08 GPa at a GO content of 1.5% wt, which is 12.6% and 39.4% higher than that of pure PEEK. In addition, SEM images show that numerous HA formed on the surface of the PEEK/SiO2/GO composite after immersion in SBF for 7 days, and the HA layer becomes gradually thicker after 14 days, implying the good osteogenic activity of PEEK/SiO2/GO composites. Therefore, these results suggest that the use of GO as a novel filler surface modifier for the preparation of high-performance composites may become a novel interfacial design strategy for the development of high-performance composites.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhengnan Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Tiantian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhiyuan Ouyang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
22
|
Lu Y, Wan Y, Gan D, Zhang Q, Luo H, Deng X, Li Z, Yang Z. Enwrapping Polydopamine on Doxorubicin-Loaded Lamellar Hydroxyapatite/Poly(lactic- co-glycolic acid) Composite Fibers for Inhibiting Bone Tumor Recurrence and Enhancing Bone Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:6036-6045. [PMID: 35006872 DOI: 10.1021/acsabm.1c00297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simultaneous prevention of bone tumor recurrence and promotion of repairing bone defects resulting from tumorectomy remain a challenge. Herein, we report a polydopamine (PDA)-coated composite scaffold consisting of doxorubicin (DOX)-loaded lamellar hydroxyapatite (LHAp) and poly(lactic-co-glycolic acid) (PLGA) in an attempt to reach dual functions of tumor inhibition and bone repair. The DOX was intercalated into LHAp, and the DOX-loaded LHAp was incorporated into PLGA solution to prepare a DOX-intercalated LHAp/PLGA (labeled as DH/PLGA) scaffold that was coated with PDA to obtain a PDA@DH/PLGA scaffold. The morphology, structure, wettability, mechanical properties, drug release, biocompatibility, and in vitro and in vivo bioactivities of the PDA@DH/PLGA scaffold were evaluated. It is found that PDA coating not only improves hydrophilicity and mechanical properties, but also leads to more sustainable drug release. More importantly, the PDA@DH/PLGA scaffold shows significantly inhibited growth of tumor cells initially and subsequent improved adhesion and proliferation of osteoblasts. In addition, the PDA coating improves the bioactivity of the DH/PLGA scaffold as suggested by the in vitro biomineralization. Further in vivo study demonstrates the improved bone growth around PDA@DH/PLGA over DH/PLGA after 20 days of drug release. The dual functional PDA@DH/PLGA scaffold shows great promise in the treatment of bone tumor.
Collapse
Affiliation(s)
- Ying Lu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.,School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Deqiang Gan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Zhen Li
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
23
|
|
24
|
Jeon IS, Lee MH, Choi HH, Lee S, Chon JW, Chung DJ, Park JH, Jho JY. Mechanical Properties and Bioactivity of Polyetheretherketone/Hydroxyapatite/Carbon Fiber Composite Prepared by the Mechanofusion Process. Polymers (Basel) 2021; 13:polym13121978. [PMID: 34208634 PMCID: PMC8235454 DOI: 10.3390/polym13121978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
The main obstacles in the melt-processing of hydroxyapatite (HA) and carbon fiber (CF) reinforced polyetheretherketone (PEEK) composite are the high melting temperature of PEEK, poor dispersion of HA nanofillers, and poor processability due to high filler content. In this study, we prepared PEEK/HA/CF ternary composite using two different non-melt blending methods; suspension blending (SUS) in ethanol and mechanofusion process (MF) in dry condition. We compared the mechanical properties and bioactivity of the composite in a spinal cage application in the orthopedic field. Results showed that the PEEK/HA/CF composite made by the MF method exhibited higher flexural and compressive strengths than the composite prepared by the SUS method due to the enhanced dispersibility of HA nanofiller. On the basis of in vitro cell compatibility and cell attachment tests, PEEK/HA/CF composite by mechanofusion process showed an improvement in in vitro bioactivity and osteo-compatibility.
Collapse
Affiliation(s)
- In Sung Jeon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (I.S.J.); (S.L.)
| | - Moon Hyun Lee
- Department of Polymer Science & Engineering, Sungkyunkwan University Suwon, Suwon 16419, Korea; (M.H.L.); (J.W.C.)
| | - Han-Hyeong Choi
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.-H.C.); (J.H.P.)
| | - Sangwoon Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (I.S.J.); (S.L.)
| | - Joon Woo Chon
- Department of Polymer Science & Engineering, Sungkyunkwan University Suwon, Suwon 16419, Korea; (M.H.L.); (J.W.C.)
| | - Dong June Chung
- Department of Polymer Science & Engineering, Sungkyunkwan University Suwon, Suwon 16419, Korea; (M.H.L.); (J.W.C.)
- Correspondence: (D.J.C.); (J.Y.J.)
| | - Jong Hyuk Park
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.-H.C.); (J.H.P.)
| | - Jae Young Jho
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (I.S.J.); (S.L.)
- Correspondence: (D.J.C.); (J.Y.J.)
| |
Collapse
|
25
|
Huang Z, Wan Y, Zhu X, Zhang P, Yang Z, Yao F, Luo H. Simultaneous engineering of nanofillers and patterned surface macropores of graphene/hydroxyapatite/polyetheretherketone ternary composites for potential bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111967. [PMID: 33812595 DOI: 10.1016/j.msec.2021.111967] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Incorporating bioactive nanofillers and creating porous surfaces are two common strategies used to improve the tissue integration of polyetheretherketone (PEEK) material. However, few studies have reported the combined use of both strategies to modify PEEK. Herein, for the first time, dual nanoparticles of graphene oxide (GO) and hydroxyapatite (HAp) were incorporated into PEEK matrix to obtain ternary composites that were laser machined to create macropores with diameters ranging from 200 μm to 600 μm on the surfaces. The surface morphology and chemistry, mechanical properties, and cellular responses of the composites were investigated. The results show that micropatterned pores with a depth of 50 μm were created on the surfaces of the composites, which do not significantly affect the mechanical properties of the resultant composites. More importantly, the incorporation of GO and HAp significantly improves the cell adhesion and proliferation on the surface of PEEK. Compared to the smooth surface composite, the composites with macroporous surface exhibit markedly enhanced cell viability. The combined use of nanofillers and surface macropores may be a promising way of improving tissue integration of PEEK for bone implants.
Collapse
Affiliation(s)
- Zhihuan Huang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Peibiao Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Fanglian Yao
- Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
26
|
Jiang X, Yao Y, Tang W, Han D, Zhang L, Zhao K, Wang S, Meng Y. Both Phosphonic Acid- and Fluorine-Containing Poly(aryl ether)-hydroxyapatite Biocomposites: Toward Enhanced Biocompatibility and Bonelike Elastic Modulus. ACS APPLIED BIO MATERIALS 2020; 3:9019-9030. [PMID: 35019579 DOI: 10.1021/acsabm.0c01254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-based implants possess excellent mechanical strength, corrosion resistance, and biocompatibility and can deliver favorable performances in clinic treatments. However, modulus mismatching is considered a common defect for metal-based materials, while polymer-based materials with a bonelike elastic modulus have been regarded as one of the most promising candidates for bone replacement implants. In this work, a phosphonic acid- and fluorine-containing poly(aryl ether) (PAE) resin is designed and synthesized, which is determined to be an amorphous polymer with excellent thermostability. The elastic modulus of composites is improved to 15.7 GPa by reinforcing with 60 wt % hydroxyapatite (HA), which demonstrates admirable protein adsorption and hydrophilicity. After 14 days of immersion in simulated body fluid, a layer of HA deposition can be observed, indicating favorable bioactivity in advance, and the preliminary in vitro cell experiments also suggest that PAE-HA composites possess favorable cell responses on adhesion, proliferation, and differentiation, which reveal the feasibility of synthesized polymers to be employed as bone replacement materials, while the adjustability in molecular chains also leaves room for further investigations.
Collapse
Affiliation(s)
- Xunyuan Jiang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yitong Yao
- Hospital of Stomotology, Guanghua School of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Weiming Tang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dongmei Han
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ke Zhao
- Hospital of Stomotology, Guanghua School of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
27
|
Yuan B, Wang L, Zhao R, Yang X, Yang X, Zhu X, Liu L, Zhang K, Song Y, Zhang X. A biomimetically hierarchical polyetherketoneketone scaffold for osteoporotic bone repair. SCIENCE ADVANCES 2020; 6:eabc4704. [PMID: 33310848 PMCID: PMC7732183 DOI: 10.1126/sciadv.abc4704] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023]
Abstract
Osteoporotic fractures are prevalent in society, and their incidence appears to be increasing as the worldwide population ages. However, conventional bone repair materials hardly satisfy the requirements for the repair of pathological fractures. Here, we developed a biomimetic polyetherketoneketone scaffold with a functionalized strontium-doped nanohydroxyapatite coating for osteoporotic bone defect applications. The scaffold has a hierarchically porous architecture and mechanical strength similar to that of osteoporotic trabecular bone. In vitro and in vivo studies demonstrated that the scaffold could promote osteoporotic bone regeneration and delay adjacent bone loss via regulating both osteoblasts and osteoclasts. In addition, the correlations between multiple preimplantation and postimplantation parameters were evaluated to determine the potential predictors of in vivo performance of the material. The current work not only develops a promising candidate for osteoporotic bone repair but also provides a viable approach for designing other functional biomaterials and predicting their translational value.
Collapse
Affiliation(s)
- Bo Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Linnan Wang
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rui Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xi Yang
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Limin Liu
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yueming Song
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Yu X, Yao S, Chen C, Wang J, Li Y, Wang Y, Khademhosseini A, Wan J, Wu Q. Preparation of Poly(ether-ether-ketone)/Nanohydroxyapatite Composites with Improved Mechanical Performance and Biointerfacial Affinity. ACS OMEGA 2020; 5:29398-29406. [PMID: 33225171 PMCID: PMC7676340 DOI: 10.1021/acsomega.0c04257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Poly(ether-ether-ketone) (PEEK) displays promising potential in hard tissue repair and orthopedic surgery due to its adaptable mechanical performance, good chemical resistance, and bioinertness. However, the low biointerfacial affinity of pure PEEK implants and the decrease of mechanical strength after processing greatly limit their clinical applications. In this work, the influences on mechanical performance and biointerfacial affinity of the PEEK/nanohydroxyapatite (nHA) composites are systematically investigated. Results show that the mechanical performance of PEEK/nHA composites was improved by adjusting the nHA content. The maximum values of the tensile, compressive, bending, and impact strength of the composites were increased by approximately 16.2, 25, 54, and 21%, respectively, when compared with that of pure PEEK. Studies in vitro show that PEEK/nHA composites display good cytocompatibility and promote the biomimic formation of HA, adhesion, and proliferation of L929 cells on the surface. Studies in vivo demonstrate that, compared to the pure PEEK, PEEK/nHA composites exhibit higher biointerfacial affinity, including the adhesion and encapsulation of muscle tissues on the surface of the implants and the suppression of inflammatory reaction around the implants. Our findings could pave the way for extensive applications of PEEK/nHA composites in hard tissue repair, particularly orthopedic surgery.
Collapse
Affiliation(s)
- Xunzhi Yu
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shun Yao
- Center
for Pituitary Tumor Surgery, Department of Neurosurgery, The First
Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Chang Chen
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jin Wang
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yaomin Li
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Youfa Wang
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ali Khademhosseini
- Center
for Minimally Invasive Therapeutics (C-MIT), Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jiangling Wan
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, P. R. China
| | - Qingzhi Wu
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
29
|
Hu X, Mei S, Wang F, Qian J, Xie D, Zhao J, Yang L, Wu Z, Wei J. Implantable PEKK/tantalum microparticles composite with improved surface performances for regulating cell behaviors, promoting bone formation and osseointegration. Bioact Mater 2020; 6:928-940. [PMID: 33102936 PMCID: PMC7560583 DOI: 10.1016/j.bioactmat.2020.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Polyetherketoneketone (PEKK) exhibits admirable biocompatibility and mechanical performances but bioinert while tantalum (Ta) possesses excellent osteogenesis and osseointegration but high elastic modulus and density, and processing is too difficult and expensive. In the present study, combining of the advantages of both PEKK and Ta, implantable composites of PEKK/Ta were fabricated by blending PEKK with Ta microparticles of 20 v% (PT20) and 40 v% (PT40) content. In comparison with PT20 and PEKK, the surface hydrophilicity, surface energy, roughness and proteins adsorption as well as mechanical performances of PT40 significantly increased because of the higher Ta particles content in PEKK. Furthermore, PT40 exhibited the mechanical performances (e.g., compressive strength and modulus of elasticity) close to the cortical bone of human. Compared with PT20 and PEKK, PT40 with higher Ta content remarkably enhanced the responses (including adhesion, proliferation and osteogenic differentiation) of MC3T3-E1 cells in vitro. Moreover, PT40 markedly improved bone formation as well as osseointegration in vivo. In short, incorporation of Ta microparticles into PEKK created implantable composites with improved surface performances, which played key roles in stimulating cell responses/bone formation as well as promoting osseointegration. PT40 might have great potential for bear-loading bone substitute.
Collapse
Affiliation(s)
- Xinglong Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jun Zhao
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Orthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
30
|
RhBMP-2 immobilized on poly(phthalazinone ether nitrile ketone) via chemical and physical modification for promoting in vitro osteogenic differentiation. Colloids Surf B Biointerfaces 2020; 194:111173. [DOI: 10.1016/j.colsurfb.2020.111173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
31
|
Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent. Colloids Surf B Biointerfaces 2020; 193:111083. [DOI: 10.1016/j.colsurfb.2020.111083] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
|
32
|
Park PJ, Lehman RA. Optimizing the Spinal Interbody Implant: Current Advances in Material Modification and Surface Treatment Technologies. Curr Rev Musculoskelet Med 2020; 13:688-695. [PMID: 32816234 DOI: 10.1007/s12178-020-09673-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Interbody implants allow for fusion of the anterior column of the spine between vertebral body endplates. As rates of spinal fusion surgery have increased over the past several years, significant research has been devoted to optimizing both the mechanical and biologic properties of the interbody implant in order to promote bony fusion. The first interbody implants used decades ago were fashioned from cortical autograft. Currently, titanium alloy and polyetheretherketone (PEEK) are the most widely used and studied materials for this purpose. This review focuses on recent innovations in material modification and surface treatment techniques for both titanium and PEEK implants to maximize fusion rates in spinal surgery. RECENT FINDINGS Titanium has an elastic modulus much higher than native bone and however has better osseointegrative properties than PEEK. PEEK, however, has an elastic modulus closer to that of bone without any of the advantageous biologic properties that titanium has. Increasing porosity and surface roughness of titanium implants have been shown to improve the mechanical properties of titanium implants, while the biologic properties of PEEK have been enhanced using surface coating technology, either with titanium or with hydroxyapatite (HA). Techniques such as increasing porosity, surface roughening, and surface coating are just some of the recent innovations aimed at optimizing both mechanical and biologic properties of interbody implants to promote spinal fusion. The future of interbody implant design will rely on continued improvements of PEEK and titanium implants as well as exploring new implant materials altogether.
Collapse
Affiliation(s)
- Paul J Park
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA.
| | - Ronald A Lehman
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA
| |
Collapse
|
33
|
Fabrication and Biological Analysis of Highly Porous PEEK Bionanocomposites Incorporated with Carbon and Hydroxyapatite Nanoparticles for Biological Applications. Molecules 2020; 25:molecules25163572. [PMID: 32781588 PMCID: PMC7466140 DOI: 10.3390/molecules25163572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 01/30/2023] Open
Abstract
Bone regeneration for replacing and repairing damaged and defective bones in the human body has attracted much attention over the last decade. In this research, highly porous polyetheretherketone (PEEK)/hydroxyapatite (HA) bionanocomposite scaffolds reinforced with carbon fiber (CF) and carbon nanotubes (CNTs) were fabricated, and their structural, mechanical, and biological properties were studied in detail. Salt porogen (200-500 µm size) leaching methods were adapted to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. In biological tests, nanocomposites proved to be non-toxic and have very good cell viability. In addition, bone marrow cell growth was observed, and PEEK/HA biocomposites with carbon particles showed increased cell attachment over the neat PEEK/HA composites. In cell viability tests, bionanocomposites with 0.5 wt% CNTs established good attachment of cells on disks compared to neat PEEK/HA biocomposites. A similar performance was seen in culture tests of bone marrow cells (osteoblasts and osteoclasts). The 0.5 wt% CF for osteoblasts and 1 wt% CNTs for osteoclasts showed higher cell attachment. The addition of carbon-based nanomaterials into PEEK/HA has been identified as an effective approach to improve cell attachment as well as mechanical and biological properties. With confirmed cell attachment and sustained viability and proliferation of the fabricated PEEK/HA/CNTs, CF bionanocomposites were confirmed to possess excellent biocompatibility and will have potential uses in bone scaffolding and other biomedical applications.
Collapse
|
34
|
Li X, Chen M, Wang P, Yao Y, Han X, Liang J, Jiang Q, Sun Y, Fan Y, Zhang X. A highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel enhances osteoinductivity and mineralization. NANOSCALE 2020; 12:12869-12882. [PMID: 32520065 DOI: 10.1039/d0nr01824d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of bioactive hydroxyapatite (HAp) with biomimetic bone matrix biomaterials as bone filling scaffolds is a promising strategy for bone regeneration, but the undesirable dispersion of HAp and its interfacial interaction result in inefficient mineralization, mechanical instability, incomplete osteointegration, and even repair failure. Herein, the size dispersion and stabilization of nano-hydroxyapatite (nHAp) in aqueous media were obviously improved by hydrophilic solubilisation and strong negatively charged thiolated hyaluronic acid (HA-SH). Furthermore, the highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel exhibited significantly improved mechanical properties and structural stability due to its thickened and densified interweaved fiber network, which ensured the homogeneous dispersion of nHAp in the matrix materials and its integration with the hydrogel network structure completely by covalent self-crosslinking among the sulfhydryl groups derived from the free HA-SH polymer and the mercapto functional groups on the surface of nHAp. Compared with the physically combined micro-hydroxyapatite (μHAp) (d≤25 μm) and nHAp (∼530 nm) with injectable bionic HA-SH and collagen type I biopolymers, HA-SS-nHAp/collagen achieved the maximum efficiency in facilitating rabbit bone marrow stromal cell (rBMSC) adhesion, proliferation and osteogenic differentiation in vitro. The in vivo murine dorsal subcutaneous implantation results further confirmed that the interweaved fiber network structure in HA-SS-nHAp/collagen significantly promoted osteoinductivity and mineralization. This work provides novel insights for the development of new low invasive bone filling biomaterials.
Collapse
Affiliation(s)
- Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang X, Yao Y, Tang W, Han D, Zhang L, Zhao K, Wang S, Meng Y. Design of dental implants at materials level: An overview. J Biomed Mater Res A 2020; 108:1634-1661. [PMID: 32196913 DOI: 10.1002/jbm.a.36931] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Due to the excellent restoration of masticatory function, satisfaction on aesthetics and other superiorities, dental implants represent an effective method to resolve tooth losing and damaging. Current dental implant systems still have problems waiting to be addressed, and problems are centralized on the materials of implant bodies. This review aims to summarize major developments in the field of dental implant materials, starting with an overview on structures, procedures of dental implants and challenges of implant materials. Next, implant materials are examined in three categories, that is, metals, ceramics, and polymers, their mechanical properties, biocompatibility, and bioactivity are summarized. And as an important aspect, strategies of surface modification are also reviewed, along with some finite element analysis to guiding the research direction of implant materials. Finally, the conclusive remarks are outlined to provide an outlook on the future research directions and prospects of dental implants.
Collapse
Affiliation(s)
- Xunyuan Jiang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yitong Yao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiming Tang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ke Zhao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
36
|
Baştan FE. Fabrication and characterization of an electrostatically bonded PEEK- hydroxyapatite composites for biomedical applications. J Biomed Mater Res B Appl Biomater 2020; 108:2513-2527. [PMID: 32052943 DOI: 10.1002/jbm.b.34583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Abstract
In this study, it was aimed to produce electrostatically induced polyetheretherketone (PEEK) and strontium substituted hydroxyapatite (SrHA) composites. SrHA nanoparticles (5 and 10 vol%) were introduced in the PEEK matrix to increase its mechanical properties and osseointegration. In order to disperse and homogeneously distribute the nanoparticles within the matrix, an electrostatic bond was developed between the PEEK and nanoparticles by wet processing through the attraction of the oppositely charged particles. Particles were pressed and sintered according to the Taguchi Design of experiments (DoE) array. The effects of SrHA reinforcement, sintering temperature and time on the density, crystallinity and crystallite sizes were determined with density test, DSC and XRD, respectively. The disks were also analyzed via SEM, FTIR, compression, microhardness, and nanoindentation tests and were immersed into the simulated body fluid (SBF). The composites produced from electrostatically induced powders presented a homogenous microstructure as SEM analysis illustrated the homogenous dispersion and distribution of the SrHA nanoparticles. The SrHA nanoparticles decreased the relative density and crystallinity of the composite, whereas, the rise in the sintering temperature and time enhanced the relative density, according to the DoE results. SrHA reinforcement improved the reduced modulus and nanoindentation hardness of the PEEK (348.47 MPa, 5.97 GPa) to 392.02 MPa and 6.65 GPa, respectively. SrHA promoted the bioactivity of the composite: an apatite layer covered the surface of PEEK/10SrHA composite after 14 days incubation. These promising results suggest that the electrostatically bonded composite powders would be used to produce homogenous PEEK based bioactive composites.
Collapse
Affiliation(s)
- Fatih Erdem Baştan
- Sakarya University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Thermal Spray Research and Development Laboratory, Esentepe-Sakarya, Turkey
| |
Collapse
|
37
|
Oai K, Inoue Y, Nakao A, Fukazawa K, Ishihara K. Antibacterial effect of nanometer‐size grafted layer of quaternary ammonium polymer on poly(ether ether ketone) substrate. J Appl Polym Sci 2020. [DOI: 10.1002/app.49088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keiko Oai
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| | | | - Kyoko Fukazawa
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of EngineeringThe University of Tokyo Tokyo Japan
| |
Collapse
|
38
|
Fukuda N, Kanazawa M, Tsuru K, Tsuchiya A, Sunarso, Toita R, Mori Y, Nakashima Y, Ishikawa K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Sci Rep 2018; 8:16887. [PMID: 30442906 PMCID: PMC6237893 DOI: 10.1038/s41598-018-35313-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/02/2018] [Indexed: 01/04/2023] Open
Abstract
This study was aimed to investigate the osseointegration ability of poly(ether ether ketone) (PEEK) implants with modified surface roughness and/or surface chemistry. The roughened surface was prepared by a sandblast method, and the phosphate groups on the substrates were modified by a two-step chemical reaction. The in vitro osteogenic activity of rat mesenchymal stem cells (MSCs) on the developed substrates was assessed by measuring cell proliferation, alkaline phosphatase activity, osteocalcin expression, and bone-like nodule formation. Surface roughening alone did not improve MSC responses. However, phosphorylation of smooth substrates increased cell responses, which were further elevated in combination with surface roughening. Moreover, in a rabbit tibia implantation model, this combined surface modification significantly enhanced the bone-to-implant contact ratio and corresponding bone-to-implant bonding strength at 4 and 8 weeks post-implantation, whereas modification of surface roughness or surface chemistry alone did not. This study demonstrates that combination of surface roughness and chemical modification on PEEK significantly promotes cell responses and osseointegration ability in a synergistic manner both in vitro and in vivo. Therefore, this is a simple and promising technique for improving the poor osseointegration ability of PEEK-based orthopedic/dental implants.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Masayuki Kanazawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka, 814-0193, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Sunarso
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Dental Materials, Faculty of Dentistry, University of Indonesia, Jalan Salemba Raya No. 4, Jakarta, Pusat, 10430, Indonesia
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
39
|
Luo Y, Li D, Zhao J, Yang Z, Kang P. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect. Biomed Mater Eng 2018; 29:699-721. [DOI: 10.3233/bme-181018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yue Luo
- , , Sichuan University, , People’s Republic of China
| | - Donghai Li
- , , Sichuan University, , People’s Republic of China
| | - Jinhai Zhao
- , , Sichuan University, , People’s Republic of China
| | - Zhouyuan Yang
- , , Sichuan University, , People’s Republic of China
| | - PengDe Kang
- , , Sichuan University, , People’s Republic of China
| |
Collapse
|
40
|
Li D, Huifang L, Zhao J, Yang Z, Xie X, Wei Z, Li D, Kang P. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration. ACTA ACUST UNITED AC 2018; 13:055002. [PMID: 29775181 DOI: 10.1088/1748-605x/aac627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) is a commonly used biomaterial in bone-tissue engineering, but pure HA is deficient in osteoinduction. In this study, we fabricated scaffolds of lithium-doped HA (Li-HA) and assess the bone generation enhancement of Li-HA scaffolds seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells (BMMSCs). We found that 1.5%Li-HA obtained optimal cell proliferation activity in vitro. In an in vivo study, Li-HA/BMSCs enhanced new bone formation, reducing the GSK-3β and increasing the β-catenin, but the angiogenic effect was not modified significantly. However, when the seeded BMMSCs had been preconditioned in hypoxia condition, the new bone formation was increased, with lower GSK-3β and higher β-catenin amounts detected. The HIF-1α secretion was up-regulated, and the vascular endothelial growth factor and CD31 expression increased. In conclusion, the bone scaffold developed from Li-doped HA seeded with hypoxia-preconditioned BMMSCs exerted positive effect on activating the Wnt and HIF-1α signal pathway, and showed good osteogenesis and angiogenesis potential. The composited scaffold contributed to an encouraging result in bone regeneration.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Johansson P, Barkarmo S, Hawthan M, Peruzzi N, Kjellin P, Wennerberg A. Biomechanical, histological, and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit. J Biomed Mater Res A 2018; 106:1440-1447. [PMID: 29341426 DOI: 10.1002/jbm.a.36345] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022]
Abstract
A nanosized hydroxyapatite (HA) modification on polyetheretherketone (PEEK) using a novel spin coating technique was investigated in a rabbit model. Spin coating technique creates a 20-40 nm thick layer of nanosized HA particles with similar shape, size, and crystallinity as human bone. Some implants were designed with a perforating hole in the apical region to mimic a fusion chamber of a spinal implant. The coating nano-structures were assessed using a scanning electron microscope. The in vivo response to HA-PEEK was compared to untreated PEEK with respect to removal torque, histomorphometry, and computed microtomography. The HA-coated and pure PEEK implants were inserted in the tibia and femur bone according to simple randomization. The rabbits were sacrificed 20 weeks after implantation. Removal torque analysis showed significantly higher values for HA-PEEK. Qualitative histological evaluation revealed an intimate contact between PEEK and the bone at the threads and perforated hole. Histomorphometric assessment showed higher bone-implant and bone area values for HA-PEEK but without statistical significance. The effect of the HA coating showed most prominent effect in the removal torque which may be correlated to an alteration in the bone quality around the HA-PEEK implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1440-1447, 2018.
Collapse
Affiliation(s)
- Pär Johansson
- Department of Prosthodontics Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Sargon Barkarmo
- Department of Prosthodontics/Dental Materials Science, The Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Göteborg, Sweden
| | - Mohammed Hawthan
- Prosthodontic Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Niccolò Peruzzi
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Per Kjellin
- AstraZeneca Bioventure Hub, Promimic AB, Mölndal, Sweden
| | - Ann Wennerberg
- Department of Prosthodontics/Dental Materials Science, The Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
42
|
Shuai C, Shuai C, Feng P, Yang Y, Xu Y, Qin T, Yang S, Gao C, Peng S. Silane Modified Diopside for Improved Interfacial Adhesion and Bioactivity of Composite Scaffolds. Molecules 2017; 22:E511. [PMID: 28333113 PMCID: PMC6153932 DOI: 10.3390/molecules22040511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Diopside (DIOP) was introduced into polyetheretherketone/polyglycolicacid (PEEK/PGA) scaffolds fabricated via selective laser sintering to improve bioactivity. The DIOP surface was then modified using a silane coupling agent, 3-glycidoxypropyltrimethoxysilane (KH570), to reinforce interfacial adhesion. The results showed that the tensile properties and thermal stability of the scaffolds were significantly enhanced. It could be explained that, on the one hand, the hydrophilic group of KH570 formed an organic covalent bond with the hydroxy group on DIOP surface. On the other hand, there existed relatively high compatibility between its hydrophobic group and the biopolymer matrix. Thus, the ameliorated interface interaction led to a homogeneous state of DIOP dispersion in the matrix. More importantly, an in vitro bioactivity study demonstrated that the scaffolds with KH570-modified DIOP (KDIOP) exhibited the capability of forming a layer of apatite. In addition, cell culture experiments revealed that they had good biocompatibility compared to the scaffolds without KDIOP. It indicated that the scaffolds with KDIOP possess potential application in tissue engineering.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- The State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, China.
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Chenying Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- The State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Youwen Yang
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong Xu
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Tian Qin
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Sheng Yang
- Human Reproduction Center, Shenzhen Hospital of Hongkong University, Shenzhen 518053, China.
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
- The State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China.
| |
Collapse
|