1
|
Hemati S, Ghiasi M, Salimi A. Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Composite Polymeric Scaffolds: A Review. Curr Stem Cell Res Ther 2025; 20:33-49. [PMID: 38315659 DOI: 10.2174/011574888x263333231218065453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024; 25:7543-7562. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
3
|
Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 2023; 11:1269223. [PMID: 38033819 PMCID: PMC10686101 DOI: 10.3389/fbioe.2023.1269223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 12/02/2023] Open
Abstract
Bioactive glasses (BGs) are ideal biomaterials in the field of bio-restoration due to their excellent biocompatibility. Titanium alloys are widely used as a bone graft substitute material because of their excellent corrosion resistance and mechanical properties; however, their biological inertness makes them prone to clinical failure. Surface modification of titanium alloys with bioactive glass can effectively combine the superior mechanical properties of the substrate with the biological properties of the coating material. In this review, the relevant articles published from 2013 to the present were searched in four databases, namely, Web of Science, PubMed, Embase, and Scopus, and after screening, 49 studies were included. We systematically reviewed the basic information and the study types of the included studies, which comprise in vitro experiments, animal tests, and clinical trials. In addition, we summarized the applied coating technologies, which include pulsed laser deposition (PLD), electrophoretic deposition, dip coating, and magnetron sputtering deposition. The superior biocompatibility of the materials in terms of cytotoxicity, cell activity, hemocompatibility, anti-inflammatory properties, bioactivity, and their good bioactivity in terms of osseointegration, osteogenesis, angiogenesis, and soft tissue adhesion are discussed. We also analyzed the advantages of the existing materials and the prospects for further research. Even though the current research status is not extensive enough, it is still believed that BG-coated Ti implants have great clinical application prospects.
Collapse
Affiliation(s)
- Jin Liang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinYue Lu
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinRu Zheng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XiaoYu Geng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - KeXin Sun
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Kai Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Moazeni N, Hesaraki S, Behnamghader A, Esmaeilzadeh J, Orive G, Dolatshahi-Pirouz A, Borhan S. Design and Manufacture of Bone Cements Based on Calcium Sulfate Hemihydrate and Mg, Sr-Doped Bioactive Glass. Biomedicines 2023; 11:2833. [PMID: 37893206 PMCID: PMC10604917 DOI: 10.3390/biomedicines11102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
In the present study, a novel composite bone cement based on calcium sulfate hemihydrate (CSH) and Mg, Sr-containing bioactive glass (BG) as solid phase, and solution of chitosan as liquid phase were developed. The phase composition, morphology, setting time, injectability, viscosity, and cellular responses of the composites with various contents of BG (0, 10, 20, and 30 wt.%) were investigated. The pure calcium sulfate cement was set at approximately 180 min, whereas the setting time was drastically decreased to 6 min by replacing 30 wt.% glass powder for CSH in the cement solid phase. BG changed the microscopic morphology of the set cement and decreased the size and compaction of the precipitated gypsum phase. Replacing the CSH phase with BG increased injection force of the produced cement; however, all the cements were injected at a nearly constant force, lower than 20 N. The viscosity measurements in oscillatory mode determined the shear-thinning behavior of the pastes. Although the viscosity of the pastes increased with increasing BG content, it was influenced by the frequency extent. Pure calcium sulfate cement exhibited some transient cytotoxicity on human-derived bone mesenchymal stem cells and it was compensated by introducing BG phase. Moreover, BG improved the cell proliferation and mineralization of extracellular matrix as shown by calcein measurements. The results indicate the injectable composite cement comprising 70 wt.% CSH and 30 wt.% Mg, Sr-doped BG has better setting, mechanical and cellular behaviors and hence, is a potential candidate for bone repair, however more animal and human clinical evaluations are essential.
Collapse
Affiliation(s)
- Nazanin Moazeni
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj 31779-83634, Alborz, Iran; (N.M.); (A.B.)
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj 31779-83634, Alborz, Iran; (N.M.); (A.B.)
| | - Aliasghar Behnamghader
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj 31779-83634, Alborz, Iran; (N.M.); (A.B.)
| | - Javad Esmaeilzadeh
- Department of Materials and Chemical Engineering, Esfarayen University of Technology, Esfarayen 96619-98195, North Khorasan, Iran;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | | | - Shokoufeh Borhan
- Department of Materials, Chemical and Polymer Engineering, Buein Zahra Technical University, Buein Zahra 34518-66391, Qazvin, Iran;
| |
Collapse
|
5
|
Motavallian P, Rabiee SM, Jamshidi Aval H. Fabrication of a gradient AZ91-bioactive glass composite with good biodegradability. J Mech Behav Biomed Mater 2023; 144:105977. [PMID: 37343358 DOI: 10.1016/j.jmbbm.2023.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
This study used friction stir-back extrusion to fabricate the AZ91 + 3 wt% bioactive glass gradient composite wire. The microstructure, mechanical properties, and corrosion resistance of a material in a simulated body fluid were investigated. Three 2-mm diameter holes with varying hole patterns were drilled in the cross-section of the AZ91 rod to apply 3 wt % bioactive glass to the AZ91 matrix. The results demonstrated that the hole pattern strongly influenced the material's flow in the extruded wire's cross-section. By increasing the distance between the center of the initial rod and the center of the holes, a higher temperature and more uniform distribution of plastic strain are formed during friction stir back extrusion, resulting in uniform distribution of bioactive glass particles and α + β eutectic structure near the surface of composite wires. Introducing bioactive glass particles into the zone near the surface of the AZ91 rod results in the formation of a uniform distribution of bioactive glass particles near the surface and their absence in the central zone of the composite wire. A higher amount of discontinuous β-Mg17Al12 phase and α + β eutectic formed at the grain boundaries by increasing the temperature and plastic strain during friction stir-back extrusion. The crystallographic texture of the AZ91 rod changed from prismatic to basal and pyramidal due to the friction stir-back extrusion method. A gradient AZ91-bioactive glass composite wire with ultimate tensile strength, yield strength, elongation, and corrosion resistance 58, 64, 62, and 34%, respectively, greater than AZ91 as-cat rod can be produced by inserting bioactive glass powder using a hole drilling method and applying a friction stir back extrusion process.
Collapse
Affiliation(s)
- Pourya Motavallian
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol, 47148-71167, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol, 47148-71167, Iran
| | - Hamed Jamshidi Aval
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol, 47148-71167, Iran.
| |
Collapse
|
6
|
Abdu MT, Khattab TA, Abdelrahman MS. Development of Photoluminescent and Photochromic Polyester Nanocomposite Reinforced with Electrospun Glass Nanofibers. Polymers (Basel) 2023; 15:polym15030761. [PMID: 36772063 PMCID: PMC9922016 DOI: 10.3390/polym15030761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A polyester resin was strengthened with electrospun glass nanofibers to create long-lasting photochromic and photoluminescent products, such as smart windows and concrete, as well as anti-counterfeiting patterns. A transparent glass@polyester (GLS@PET) sheet was created by physically immobilizing lanthanide-doped aluminate (LA) nanoparticles (NPs). The spectral analysis using the CIE Lab and luminescence revealed that the transparent GLS@PET samples turned green under ultraviolet light and greenish-yellow in the dark. The detected photochromism can be quickly reversed in the photoluminescent GLS@PET hybrids at low concentrations of LANPs. Conversely, the GLS@PET substrates with the highest phosphor concentrations exhibited sustained luminosity with slow reversibility. Transmission electron microscopic analysis (TEM) and scanning electron microscopy (SEM) were utilized to examine the morphological features of lanthanide-doped aluminate nanoparticles (LANPs) and glass nanofibers to display diameters of 7-15 nm and 90-140 nm, respectively. SEM, energy-dispersive X-ray spectroscopy (EDXA), and X-ray fluorescence (XRF) were used to analyze the luminous GLS@PET substrates for their morphology and elemental composition. The glass nanofibers were reinforced into the polyester resin as a roughening agent to improve its mechanical properties. Scratch resistance was found to be significantly increased in the created photoluminescent GLS@PET substrates when compared with the LANPs-free substrate. When excited at 368 nm, the observed photoluminescence spectra showed an emission peak at 518 nm. The results demonstrated improved hydrophobicity and UV blocking properties in the luminescent colorless GLS@PET hybrids.
Collapse
Affiliation(s)
- Mahmoud T. Abdu
- Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
- Mechanical Engineering Department, College of Engineering, University of Bisha, P.O. Box 421, Bisha 61922, Saudi Arabia
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: or
| | - Maiada S. Abdelrahman
- Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell Tissue Res 2022; 390:399-411. [PMID: 36152061 DOI: 10.1007/s00441-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Since scaffolds are engineered to support functional tissue formation, their design and materials play an essential role in medical fields by providing different mechanical function. The aim of this study was to investigate the synthesis and structural characterization of collagen-gelatin (COL-GEL) composite scaffolds containing fluorapatite (FA) nanoparticles as well as evaluation of the osteogenic differentiation of human adipose-derived stem cells (hADSCs). First, the composite scaffolds were evaluated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The cytotoxicity of scaffolds and various concentrations of FA nanoparticles was studied through MTT assay and acridine orange/ethidium bromide staining. Next, the differentiated hADSCs were analyzed using Alizarin red and von Kossa staining, calcium content assay, alkaline phosphatase (ALP) activity, real-time RT-PCR, and immunocytochemical analyses. According to the characterization analyses, the composite scaffolds were properly integrated. The results also illustrated that COL-GEL composite scaffolds in the presence of FA nanoparticles not only showed no cytotoxicity but also increased ALP activity and calcium deposition as well as the expression of osteogenic genes, including Runx2, Col-I, ALP, and osteocalcin and the synthesis of proteins such as osteocalcin and osteopontin in vitro. The obtained data were confirmed by Alizarin red and von Kossa staining. These results are very promising for further tissue engineering experiments, in which FA nanoparticle incorporation into COL-GEL composite scaffolds is a novel approach that improves the surface COL-GEL composite scaffolds for tissue engineering application in vitro.
Collapse
|
8
|
Doustdar F, Olad A, Ghorbani M. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. Int J Biol Macromol 2022; 208:912-924. [PMID: 35367272 DOI: 10.1016/j.ijbiomac.2022.03.193] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022]
Abstract
The effect of glutaraldehyde and calcium cations as covalent and ionic crosslinkers was investigated on the main characteristics of scaffolds based on chitosan and cellulose nanocrystals. Therefore, four different scaffolds based on chitosan/cellulose nanocrystals with different crosslinking methods were fabricated using the freeze-drying method for potential use in bone tissue engineering. The structural and chemical features of prepared scaffolds were studied by the FTIR technique. FESEM images revealed that all scaffold samples are porous three-dimensional networks in which the pores are connected. TGA analysis showed that the thermal stability of scaffolds based on chitosan/cellulose nanocrystals has not been changed significantly by using different crosslinking methods. The chitosan/cellulose nanocrystals scaffold crosslinked by glutaraldehyde represented the highest compressive strength and the uncrosslinked scaffold showed the highest swelling ratio in comparison to the other scaffolds. The fastest degradation rate belonged to the scaffold crosslinked by calcium cations. FESEM images and EDX analysis confirmed that fabricated scaffolds have good biomineralization ability. The cell viability and cell attachment results indicated that all four scaffolds support cell proliferation and cell adhesion. However, the viability of NIH3T3 fibroblast cells in the presence of glutaraldehyde-containing scaffolds was lower than that of other scaffolds.
Collapse
Affiliation(s)
- Fatemeh Doustdar
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Saberi A, Behnamghader A, Aghabarari B, Yousefi A, Majda D, Huerta MVM, Mozafari M. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles. Int J Biol Macromol 2022; 207:9-22. [PMID: 35181332 DOI: 10.1016/j.ijbiomac.2022.02.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/20/2023]
Abstract
In this study, a three-dimensional composite scaffold is proposed consisting of polylactic acid and spray dried glass-ceramic microparticles (SGCMs). The compositional and structural characterization showed that the obtained spray dried powder formed as glass-ceramic (GC) with a completely interconnected porosity structure. Before direct printing of scaffolds, the rheological behavior of polylactic acid (PLA) and PLA-GC (PLA matrix containing SGCMs) inks were investigated. The PLA-GC composite ink represents sharper shear-thinning behavior and higher loss and storage modulus comparable to that of pure PLA. Microscopic observations and elemental mapping elements showed that 3D scaffolds had well-defined interconnected porosity and uniform distribution of the glass-ceramic particles. Mechanical tests indicated that compression strength is dependent on the scaffold porosity and the presence of SGCMs. Apatite formation evaluation besides ion release study showed better biomineralization capacity of PLA-GC scaffolds, as larger and denser sediments formed on the PLA-GC scaffolds after 7- and 14-day soaking. The preliminary cell response was studied with primary human mesenchymal stem cells (hMSCs) and revealed that SGCMs improved cell adhesion and viability and ALP activity. The appropriate combination of the biomaterials/methods to fabricate 3D porous constructs and their available bioactivity and biocompatibility, both being important characteristics for bone tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran.
| | - Behzad Aghabarari
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
| | - Aliakbar Yousefi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Dorota Majda
- Department of Chemical technology, Jagiellonian University, Kraków, Poland
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Duarte ACA, Pereira RDFC, Carvalho SMD, Silva AGD, Araújo CTPD, Galo R, Dumont VC. Enhancing glass ionomer cement features by using the calcium phosphate nanocomposite. Braz Dent J 2022; 33:99-108. [PMID: 35766723 PMCID: PMC9645200 DOI: 10.1590/0103-6440202204887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
This study showed the synthesis of Glass ionomer cements (GIC) modified with
calcium phosphate nanoparticles (nCaP). The nCaP/GIC were submitted to
mechanical compression and diametral tensile tests. The biocomposite were
characterized by scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDX), X-ray diffraction (XRD) and Fourier-transform infrared
spectroscopy (FTIR). Cytotoxicity and cell viability tests were performed on the
human bone marrow mesenchymal stem cells using a
3-(4,5-dimethylthiazol-2yl)2,5-diphenyl- tetrazolium-bromide assay and LIVE/DEAD
assays. Statistically significant differences were observed for mechanical
properties (Kruskal-Wallis, p<0.001), nCaP/GIC showed higher resistance to
compression and diametral traction. The SEM analyses revealed a uniform
distribution nCaP in the ionomer matrix. The EDX and XRD results indicated that
hydroxyapatite and calcium β-triphosphate phases. The FTIR spectra revealed the
asymmetric band of ν3PO43- between 1100-1030cm-1 and the vibration band
associated with ν1PO43- in 963cm-1 associated with nCaP. The nCaP/GIC presented
response to adequate cell viability and non-cytotoxic behavior. Therefore, the
new nCaP/GIC composite showed great mechanical properties, non-cytotoxic
behavior, and adequate response to cell viability with promising dental
applications.
Collapse
Affiliation(s)
- Ana Caroline Alves Duarte
- Department of Pediatric Clinics, Federal University of the Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina-MG, Brasil
| | | | | | | | | | - Rodrigo Galo
- Department of Prosthodontics and Dental Materials, School of Dentistry of Ribeirão Preto, University of São Paulo Ribeirão Preto-SP, Brasil
| | | |
Collapse
|
11
|
Mesgari M, Aalami AH, Sathyapalan T, Sahebkar A. A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers' mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets' quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
Affiliation(s)
- Mohammad Mesgari
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01774-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Sol-Gel Synthesis, in vitro Behavior, and Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation and Proliferation of Bioactive Glass 58S. IRANIAN BIOMEDICAL JOURNAL 2021. [PMID: 33639637 PMCID: PMC8183389 DOI: 10.52547/ibj.25.3.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Bioactive glasses 58S, are silicate-based materials containing calcium and phosphate, which dissolved in body fluid and bond to the bone tissue. This type of bioactive glass is highly biocompatible and has a wide range of clinical applications. Methods: The 58S glass powders were synthesized via sol-gel methods, using tetraethyl orthosilicate, triethyl phosphate, and calcium nitrate, as precursors. Upon the analyses of phase and chemical structures of bioactive glass in different gelation times (12, 48, and 100 h), the appropriate heat treatment (at 525, 575, and 625 °C) was performed to eliminate nitrate compounds and stabilize the glass powder samples. The in vitro assay in SBF solution revealed the bioactivity of the synthesized 58S glass through the morphological (SEM), chemical structure (FTIR), release of calcium, phosphorous and silicon elements, pH variations, and weight loss measurements. The behavior of MSCs in the presence of bioactive glass powders was studied by MTT cytotoxicity, cell staining, ALP activity and biomineralization tests, as well as by the evaluation of ALP, osteocalcin, osteonectin, collagenI, and RUNX2 gene expression. Results: The results confirmed a gelation time of 100 h and a calcination temperature of 575 °C at optimal conditions for the synthesis of nitrate-free bioactive glass powders. Conclusion: The glass spherical nanoparticles in the range of 20-30 nm possess the improved bioactivity and osteogenic properties as demanded for bone tissue engineering.
Collapse
|
14
|
Rastegar Ramsheh M, Behnamghader A, Khanlarkhani A. Sol-Gel Synthesis, in vitro Behavior, and Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation and Proliferation of Bioactive Glass 58S. IRANIAN BIOMEDICAL JOURNAL 2021; 25:180-92. [PMID: 33639637 DOI: 10.29252/ibj.25.3.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Bioactive glasses 58S, are silicate-based materials containing calcium and phosphate, which dissolved in body fluid and bond to the bone tissue. This type of bioactive glass is highly biocompatible and has a wide range of clinical applications. Methods The 58S glass powders were synthesized via sol-gel methods, using tetraethyl orthosilicate, triethyl phosphate, and calcium nitrate, as precursors. Upon the analyses of phase and chemical structures of bioactive glass in different gelation times (12, 48, and 100 h), the appropriate heat treatment (at 525, 575, and 625 °C) was performed to eliminate nitrate compounds and stabilize the glass powder samples. The in vitro assay in SBF solution revealed the bioactivity of the synthesized 58S glass through the morphological (SEM), chemical structure (FTIR), release of calcium, phosphorous and silicon elements, pH variations, and weight loss measurements. The behavior of MSCs in the presence of bioactive glass powders was studied by MTT cytotoxicity, cell staining, ALP activity and biomineralization tests, as well as by the evaluation of ALP, osteocalcin, osteonectin, collagen I, and RUNX2 gene expression. Results The results confirmed a gelation time of 100 h and a calcination temperature of 575 °C at optimal conditions for the synthesis of nitrate-free bioactive glass powders. Conclusion The glass spherical nanoparticles in the range of 20-30 nm possess the improved bioactivity and osteogenic properties as demanded for bone tissue engineering.
Collapse
Affiliation(s)
- Majid Rastegar Ramsheh
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Ali Khanlarkhani
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
15
|
Amini Z, Rudsary SS, Shahraeini SS, Dizaji BF, Goleij P, Bakhtiari A, Irani M, Sharifianjazi F. Magnetic bioactive glasses/Cisplatin loaded-chitosan (CS)-grafted- poly (ε-caprolactone) nanofibers against bone cancer treatment. Carbohydr Polym 2021; 258:117680. [DOI: 10.1016/j.carbpol.2021.117680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/31/2020] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
|
16
|
Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021; 123:123-153. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
Collapse
Affiliation(s)
- Léa Dejob
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Solène Tadier
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Laurent Grémillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Claire Gaillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
| |
Collapse
|
17
|
Ferreira FV, Otoni CG, Lopes JH, de Souza LP, Mei LHI, Lona LMF, Lozano K, Lobo AO, Mattoso LHC. Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111853. [PMID: 33812570 DOI: 10.1016/j.msec.2020.111853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Caio G Otoni
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Lucas P de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - Lucia H I Mei
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karen Lozano
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Anderson O Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina, PI, Brazil.
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Soltanyzadeh M, Ghollasi M, Halabian R, Shams M. A comparative study of hBM-MSCs' differentiation toward osteogenic lineage in the presence of progesterone and estrogen hormones separately and concurrently in vitro. Cell Biol Int 2020; 44:1701-1713. [PMID: 32339349 DOI: 10.1002/cbin.11364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/12/2020] [Accepted: 04/25/2020] [Indexed: 11/09/2022]
Abstract
Promising cell sources for tissue engineering comprise bone marrow derived-mesenchymal stem cells (BM-MSCs) that have multiple differentiation potentials. Also, sex hormones act as important elements in bone development and maintenance, and the roles of two female sex steroid hormones known as estrogen (17-β estradiol) and progesterone in osteogenic differentiation of human BM-MSCs (hBM-MSCs) are studied. For this purpose, hBM-MSCs were treated with a 1 × 10-6 M concentration of 17-β estradiol and progesterone separately and simultaneously while the optimum concentrations were obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Osteogenic differentiation tests including measurement of alkaline phosphatase (ALP) enzyme activity, the content of total mineral calcium, mineralized matrix staining by Alizarin Red and Von Kossa solutions, real-time reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence staining were carried out on Days 7 and 14 of differentiation. To exhibit the morphology of the cells, the BM-MSCs were stained with acridine orange (AO) solution. In this study, the results of ALP activity assay, calcium content and real-time RT-PCR assay and also all tests of differentiation staining have shown that 17-β estradiol has been recognized as an enhancing factor of osteogenic differentiation. Furthermore, MTT assay and AO staining revealed progesterone as a factor that seriously improved the proliferation of hBM-MSCs. Generally, the 17-β estradiol individually or in the presence of progesterone has more effects on BM-MSCs' osteogenic differentiation compared to progesterone alone. In this study, it is indicated that the effect of the 17-β estradiol and progesterone concurrently was the same as individual 17-β estradiol on the differentiation of hBM-MSCs.
Collapse
Affiliation(s)
- Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Shams
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
20
|
The synergistic effects of SrF 2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110592. [PMID: 32228986 DOI: 10.1016/j.msec.2019.110592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 11/23/2022]
Abstract
Resin-based pit-and-fissure sealants (flowable resin composites) were formulated using bisphenol-A-glycerolatedimethacrylate (Bis-GMA)-triethylene glycol dimethacrylate-(TEGDMA)-diurethanedimethacrylate (UDMA) mixed monomers and multiple fillers, including synthetic strontium fluoride (SrF2) nanoparticles as a fluoride-releasing and antibacterial agent, yttria-stabilized zirconia (YSZ) nanoparticles as an auxiliary filler, and poly-ε-l-lysin (ε-PL) as an auxiliary antibacterial agent. Based on the physical, mechanical and initial antibacterial properties, the formulated nano-sealant containing 5 wt% SrF2, 5 wt% YSZ and 0.5 wt% ε-PL was selected as the optimal specimen and examined for ion release and cytotoxicity. The results showed an average release rate of 0.87 μg·cm-2·day-1 in the aqueous medium (pH 6.9) and 1.58 μg·cm-2·day-1 in acidic medium (pH 4.0). The maximum cytotoxicity of 20% toward human bone marrow mesenchymal stem cells (hMSCs) was observed according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) cytotoxicity assay and acridine orange staining test. A synergy between SrF2 nanoparticles and ε-PL exhibited a better antibacterial activity in terms of colony reduction compared to the other samples. However, the inclusion of SrF2 and ε-PL caused mechanically weakening of the sealants that was partly compensated by incorporation of YSZ nanoparticles (up to 10 wt%).
Collapse
|
21
|
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110698. [PMID: 32204012 DOI: 10.1016/j.msec.2020.110698] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
22
|
Zhang M, Pu X, Chen X, Yin G. In-vivo performance of plasma-sprayed CaO-MgO-SiO 2-based bioactive glass-ceramic coating on Ti-6Al-4V alloy for bone regeneration. Heliyon 2019; 5:e02824. [PMID: 31763479 PMCID: PMC6861571 DOI: 10.1016/j.heliyon.2019.e02824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The CaO-MgO-SiO2-based bioactive glass-ceramic coating (named M2) on Ti-6Al-4V alloy has been proven to behave well in vitro. But how to make full sense of its performances in terms of osteogenesis and osseointegration in vivo matters very much. For this, the M2-coated Ti-6Al-4V cylinders were prepared by atmospheric plasma spraying (APS) and implanted into New Zealand rabbit for 1, 2 and 3 months, respectively, by setting commercial HA-coated Ti-6Al-4V as the control. It is encouraging that, the two groups bonded with the surrounding tissues stably and newly formed bone grew towards or around the implants after 3-month implantation according to radiographic images. From the histological sections, it is obvious that, compared to the control, the M2-coated implant was more favorable for the osteogenesis and neo-vascularisation in the whole experimental process and demonstrated a better osseointegration with the host bone, indicating the former possessed better osteoconductivity, osteoinductivity and osteogenic ability. The study indicated that the M2-coated Ti-6Al-4V implant exerted a great potential to substitute the commercial HA-coated Ti-6Al-4V implant in repairing load-bearing bone defects.
Collapse
Affiliation(s)
- Mengjiao Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
23
|
Ghaffari-Bohlouli P, Hamidzadeh F, Zahedi P, Shahrousvand M, Fallah-Darrehchi M. Antibacterial nanofibers based on poly(l-lactide-co-d,l-lactide) and poly(vinyl alcohol) used in wound dressings potentially: a comparison between hybrid and blend properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:219-243. [DOI: 10.1080/09205063.2019.1683265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Hamidzadeh
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, Iran
| | - Mahshid Fallah-Darrehchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak M, Goh B, Shokouhimehr M, Vali H, Presley J, Zadpoor A, Harris M, Abadi P, Mahmoudi M. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019; 14:2987-3006. [DOI: 10.2217/nnm-2018-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Joint replacement and bone reconstructive surgeries are on the rise globally. Current strategies for implants and bone regeneration are associated with poor integration and healing resulting in repeated surgeries. A multidisciplinary approach involving basic biological sciences, tissue engineering, regenerative medicine and clinical research is required to overcome this problem. Considering the nanostructured nature of bone, expertise and resources available through recent advancements in nanobiotechnology enable researchers to design and fabricate devices and drug delivery systems at the nanoscale to be more compatible with the bone tissue environment. The focus of this review is to present the recent progress made in the rationale and design of nanomaterials for tissue engineering and drug delivery relevant to bone regeneration.
Collapse
Affiliation(s)
- Michael J Hill
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Baowen Qi
- Center for Nanomedicine & Department of Anesthesiology, Brigham & Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Rasoul Bayaniahangar
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Vida Araban
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Zahra Bakhtiary
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian C Goh
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammadreza Shokouhimehr
- Department of Materials Science & Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - John F Presley
- Department of Anatomy & Cell Biology & Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands
| | - Mitchel B Harris
- Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parisa PSS Abadi
- Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Mahmoudi
- Precision Health Program & Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Preparation and characterization of semi-IPNs of polycaprolactone/poly (acrylic acid)/cellulosic nanowhisker as artificial articular cartilage. Int J Biol Macromol 2019; 142:298-310. [PMID: 31593724 DOI: 10.1016/j.ijbiomac.2019.09.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/15/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Cartilage is a semi-solid resilient and smooth elastic connective tissue and upon damage, its repair is almost impossible or occurs with a very slow recovery process. Polycaprolactone (PCL), used as a biocompatible polymer, withholds all required mechanical properties, except suitable cell adhesion due to its hydrophobicity. In order to resolve this issue, we sought to introduce appropriate semi-IPNs into the system to regain its hydrophilicity base on increasing of the hydrophilic polymer. PCL and Cellulose nanowhiskers (CNWs) were entrapped in a network of poly (acrylic acid) that had been crosslinked via a novel acrylic-urethane crosslinker. The influential synthetic parameters on the preparation of artificial articular cartilages were investigated based on the Taguchi test design. The prepared CNW, acrylic-urethane crosslinker and semi-IPNs were studied via 1H NMR, FTIR, SEM, TEM, TGA, water swelling, water contact angle, tensile, and MTT analyses. According to the results, the optimal amount of monomer was about 46%. Incorporation of an optimized amount of CNW, which was 0.5%, improved the mechanical properties of artificial cartilage. After a 30 h time period, semi-IPNs showed the water absorption of about 30%. MTT on days 1, 3 and 5, as well as cell attachment, confirmed the biocompatibility of the semi-IPNs.
Collapse
|
26
|
Intelligent superabsorbents based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. Int J Biol Macromol 2019; 139:509-520. [DOI: 10.1016/j.ijbiomac.2019.07.221] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|
27
|
Norouz F, Halabian R, Salimi A, Ghollasi M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109857. [DOI: 10.1016/j.msec.2019.109857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 05/12/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
|
28
|
Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds. Int J Biol Macromol 2019; 138:262-271. [PMID: 31302125 DOI: 10.1016/j.ijbiomac.2019.07.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
Poly (2‑hydroxyethyl methacrylate) (PHEMA) was crosslinked in the presence of biocompatible and biodegradable poly(caprolactone) (PCL) based polyurethanes (PUs) and cellulose nanowhiskers (CNWs). The CNWs were obtained from wastepaper. In order to crosslink PHEMA (10 wt%), a novel acrylic-urethane cross-linker was produced by a condensation reaction of PHEMA and hexamethylene diisocyanate (HDI). The PU-PHEMA-CNWs scaffolds were prepared by solvent casting/particulate leaching method in different weight percentages of CNWs (i.e., 0, 0.1, 0.5, and 1 wt%). The structural, mechanical, and in vitro biological properties of bio-nanocomposites were evaluated via FTIR, SEM, tensile, and MTT assay. The tensile strength of PU-PHEMA-0, PU-PHEMA-0.1, PU-PHEMA-0.5, and PU-PHEMA-1 were 76.2, 95.8, 98.1, and 89.8 kPa, respectively. Incorporation of CNWs also resulted in improved cell proliferation on PU-PHEMA-CNWs scaffolds. The bone marrow derived human mesenchymal stem cells (hMSCs) were seeded on the prepared porous scaffolds and incubated in osteogenic medium. Based on the results including calcium content assay, alkaline phosphatase assay, and mineralization staining, PU-PHEMA-CNW scaffolds were introduced as a suitable election for imitating the behavior of cellular niche. Bone mineralization and osteogenesis differentiation of hMSCs on PU-PHEMA-CNW scaffolds were significantly more than control after 14 days.
Collapse
|
29
|
Synthesis and characterization of a novel freeze‐dried silanated chitosan bone tissue engineering scaffold reinforced with electrospun hydroxyapatite nanofiber. POLYM INT 2019. [DOI: 10.1002/pi.5833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Naruphontjirakul P, Tsigkou O, Li S, Porter AE, Jones JR. Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. Acta Biomater 2019; 90:373-392. [PMID: 30910622 DOI: 10.1016/j.actbio.2019.03.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
Abstract
While bioactive glass and ions released during its dissolution are known to stimulate osteoblast cells, the effect bioactive glass has on human stem cells is not clear. Here, we show that spherical monodispersed strontium containing bioactive nanoparticles (Sr-BGNPs) of composition 90.6 mol% SiO2, 5.0 mol% CaO, 4.4% mol% SrO (4.4%Sr-BGNPs) and 88.8 mol% SiO2, 1.8 mol% CaO, and 9.4 mol% SrO (9.4%Sr-BGNPs) stimulate bone marrow derived human stem cell (hMSC) differentiation down an osteogenic pathway without osteogenic supplements. The particles were synthesised using a modified Stӧber process and had diameters of 90 ± 10 nm. Previous work on similar particles that did not contain Sr (80 mol% SiO2, 20 mol% CaO) showed stem cells did not differentiate when exposed to the particles. Here, both compositions of the Sr-BGNPs (up to concentration of 250 μg/mL) stimulated the early-, mid-, and late-stage markers of osteogenic differentiation and accelerated mineralisation in the absence of osteogenic supplements. Sr ions play a key role in osteogenic stem cell differentiation. Sr-BGNP dissolution products did not adversely affect hMSC viability and no significant differences in viability were measured between each particle composition. Confocal and transmission electron microscopy (TEM) demonstrated that monodispersed Sr-BGNPs were internalised and localised within vesicles in the cytoplasm of hMSCs. Degradation of particles inside the cells was observed, whilst maintaining effective cations (Ca and Sr) in their silica network after 24 h in culture. The uptake of Sr-BGNPs by hMSCs was reduced by inhibitors of specific routes of endocytosis, indicating that the Sr-BGNPs uptake by hMSCs was probably via mixed endocytosis mechanisms. Sr-BGNPs have potential as injectable therapeutic devices for bone regeneration or treatment of conditions such as osteoporosis, because of their ability deliver a sustained release of osteogenic inorganic cations, e.g. calcium (Ca) or and strontium (Sr), through particle degradation locally to cells. STATEMENT OF SIGNIFICANCE: Here, we show that 90 nm spherical strontium containing bioactive nanoparticles of stimulate bone marrow derived human stem cell (hMSC) differentiation down an osteogenic pathway without the use of osteogenic supplements. While bioactive glass and its dissolution products are known to promote excellent bone regeneration in vivo and to stimulate osteoblast cells to produce bone matrix in vitro, their effect on human stem cells is not clear. Previously our nanoparticles that contained only SiO2 and CaO did not provoke human bone marrow or adipose derived stem cell differentiation.
Collapse
|
31
|
Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A. Effect of synthetic amorphous calcium phosphate nanoparticles on the physicochemical and biological properties of resin-modified glass ionomer cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:227-240. [DOI: 10.1016/j.msec.2018.12.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/05/2018] [Accepted: 12/28/2018] [Indexed: 01/31/2023]
|
32
|
Koliakou I, Gounari E, Nerantzaki M, Pavlidou E, Bikiaris D, Kaloyianni M, Koliakos G. Differentiation Capacity of Monocyte-Derived Multipotential Cells on Nanocomposite Poly(e-caprolactone)-Based Thin Films. Tissue Eng Regen Med 2019; 16:161-175. [PMID: 30989043 PMCID: PMC6439045 DOI: 10.1007/s13770-019-00185-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 11/28/2022] Open
Abstract
Background Μonocyte-derived multipotential cells (MOMCs) include progenitors capable of differentiation into multiple cell lineages and thus represent an ideal autologous transplantable cell source for regenerative medicine. In this study, we cultured MOMCs, generated from mononuclear cells of peripheral blood, on the surface of nanocomposite thin films. Methods For this purpose, nanocomposite Poly(e-caprolactone) (PCL)-based thin films containing either 2.5 wt% silica nanotubes (SiO2ntbs) or strontium hydroxyapatite nanorods (SrHAnrds), were prepared using the spin-coating method. The induced differentiation capacity of MOMCs, towards bone and endothelium, was estimated using flow cytometry, real-time polymerase chain reaction, scanning electron microscopy and fluorescence microscopy after cells' genetic modification using the Sleeping Beauty Transposon System aiming their observation onto the scaffolds. Moreover, Wharton's Jelly Mesenchymal Stromal Cells were cultivated as a control cell line, while Human Umbilical Vein Endothelial Cells were used to strengthen and accelerate the differentiation procedure in semi-permeable culture systems. Finally, the cytotoxicity of the studied materials was checked with MTT assay. Results The highest differentiation capacity of MOMCs was observed on PCL/SiO2ntbs 2.5 wt% nanocomposite film, as they progressively lost their native markers and gained endothelial lineage, in both protein and transcriptional level. In addition, the presence of SrHAnrds in the PCL matrix triggered processes related to osteoblast bone formation. Conclusion To conclude, the differentiation of MOMCs was selectively guided by incorporating SiO2ntbs or SrHAnrds into a polymeric matrix, for the first time.
Collapse
Affiliation(s)
- Iro Koliakou
- Department of Biology, Laboratory of Animal Physiology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
- Biohellenika Biotechnology Company, 65 Leoforos Georgikis Scholis, 57001 Thessaloníki, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, 65 Leoforos Georgikis Scholis, 57001 Thessaloníki, Greece
- Department of Biochemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Maria Nerantzaki
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
- PHysico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, 75005 Paris, France
| | - Eleni Pavlidou
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Dimitrios Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Martha Kaloyianni
- Department of Biology, Laboratory of Animal Physiology, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - George Koliakos
- Biohellenika Biotechnology Company, 65 Leoforos Georgikis Scholis, 57001 Thessaloníki, Greece
- Department of Biochemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| |
Collapse
|
33
|
Matinfar M, Mesgar AS, Mohammadi Z. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:341-353. [PMID: 30948070 DOI: 10.1016/j.msec.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
In this study porous scaffolds of chitosan (CS) and carboxymethyl cellulose (CMC) reinforced with whisker-like biphasic and triphasic calcium phosphate fibers were fabricated by freeze drying method. The effect of addition of CMC, fiber type and content on the mechanical, physicochemical and biological properties of the composite scaffolds was evaluated. The fibers were synthesized by homogenous precipitation method and were characterized. Biphasic fibers contained two phases of hydroxyapatite (HA) and monetite, and triphasic fibers consisted of HA, β-tricalcium phosphate and calcium pyrophosphate and were 20-270 μm and 20-145 μm in length, respectively. The composite scaffolds exhibited desirable microstructures with high porosity (61-75%) and interconnected pores in range of 35-200 μm. Addition of CMC to CS led to a significant improvement in the mechanical properties (up to 150%) but did not affect the water uptake ability and biocompatibility. Both fibers improved the in vitro proliferation, attachment and mineralization of MG63 cells on scaffolds as evidenced by MTT assay, DAPI staining, SEM and Alizarin red staining. Triphasic fibers were more effective in reinforcing the scaffolds and resulted in higher cell viability. Composite scaffolds of CS and CMC reinforced with 50 wt% triphasic fibers were superior in terms of mechanical and biological properties and showed compressive strength and modulus of 150 kPa and 3.08 MPa, respectively, which is up to 300% greater than pure CS scaffolds. The findings indicate that the developed composite scaffolds are potential candidates for bone tissue engineering although they need further enhancement in mechanical properties.
Collapse
Affiliation(s)
- Marzieh Matinfar
- Biomaterials Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran.
| | - Zahra Mohammadi
- Biomaterials Laboratory, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran
| |
Collapse
|
34
|
Ahmadi SM, Behnamghader A, Asefnejaad A. Evaluation of hMSCs Response to Sodium Alginate / Bioactive Glass Composite Paste: Effect of CaO/P2O5, Sodium Alginate Concentration and P/L Ratios. Curr Stem Cell Res Ther 2019; 14:196-210. [DOI: 10.2174/1574888x13666180703141956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/29/2018] [Accepted: 06/12/2018] [Indexed: 11/22/2022]
Abstract
Background:
Bioactive glasses with different compositions have been extensively used as
bone tissue engineering. Preparation, development and characterization of alginate pastes containing
bioglass for bone repair applications were the purposes of this study.
Objective:
The injectable bone pastes were produced from sol-gel derived bioactive glass nanoparticles
with various CaO/P2O5 ratios of 19, 9.5 and 4.75 and sodium alginate solutions with different concentrations
of 1, 2 and 4 wt.%. The effect of CaO/P2O5 and powder to liquid (P/L) ratios and alginate concentration
on injectability, biodegradation, rheological properties, bioactivity and cellular behavior of
the pastes have been studied. The behavior of human mesenchymal stem cells (hMSCs) in the presence
of the pastes was assessed by MTT assay, biomineralization assay, ALP activity, Acridine orange
staining and Alizarin red staining tests.
Results:
By adding sodium alginate, the pastes exhibited a thixotropy behavior. The storage modulus
of all pastes was larger than the loss modulus in the frequency range of 0.1-100 s-1. Cytotoxicity
evaluation results revealed that there was a critical amount of bioactive glass in pastes which are above
the limit; the viability of hMSCs will be at risk. The pastes made of bioactive glass nanoparticles with
CaO/P2O5 = 9.5 and sodium alginate 1% with P/L ratio of 0.8 showed optimum behavior in terms of
mineral carrying capacity, injectability characteristics, accellular bioactivity in SBF, loss weight and
wash out behavior, proliferation and differentiation of hMSCs.
Conclusion:
According to the results, the pastes prepared with sodium alginate solution and bioactive
glass nanoparticles can be beneficial in bone tissue engineering.
Collapse
Affiliation(s)
- Seyed Mohammad Ahmadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliasghar Behnamghader
- Biomaterials Group, Department of Nanotechnology and Advanced Materials, Materials & Energy Research Center, Karaj, Iran
| | - Azadeh Asefnejaad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Rasti M, Hesaraki S, Nezafati N. Effects of GPTMS concentration and powder to liquid ratio on the flowability and biodegradation behaviors of 45S5 bioglass/tragacanth bioactive composite pastes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahtab Rasti
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| | - Saeed Hesaraki
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| | - Nader Nezafati
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| |
Collapse
|
36
|
Ghaffari-Bohlouli P, Shahrousvand M, Zahedi P, Shahrousvand M. Performance evaluation of poly (l-lactide-co-D, l-lactide)/poly (acrylic acid) blends and their nanofibers for tissue engineering applications. Int J Biol Macromol 2019; 122:1008-1016. [DOI: 10.1016/j.ijbiomac.2018.09.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
|
37
|
Wang L, Han X, Qu G, Su L, Zhao B, Miao J. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res Ther 2018; 9:343. [PMID: 30526663 PMCID: PMC6286523 DOI: 10.1186/s13287-018-1081-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) are gradually getting attention because of its multi-directional differentiation potential, hematopoietic support, and promotion of stem cell implantation. However, cultured BMSCs in vitro possess a very limited proliferation potential, and the presence of stem cell aging has substantially restricted the effect together with the efficiency in clinical treatment. Recently, increasing attention has been paid to the connection between cellular aging and lysosomal acidification as new reports indicated that vacuolar H+-ATPase (v-ATPase) activity was altered and lysosomal pH was dysregulated in the process of cellular aging. Therefore, promoting lysosomal acidification might contribute to inhibition of cell senescence. Our previous studies showed that a novel small molecule, 3-butyl-1-chloro imidazo [1, 5-a] pyridine-7-carboxylic acid (SGJ), could selectively and sensitively respond to acidic pH with fast response (within 3 min), but whether SGJ can promote lysosomal acidification and inhibit senescence in BMSCs is unknown. METHODS Rat BMSCs were cultured based on our system that had been already documented. BMSCs were treated with SGJ and/or Bafilomycin-A1 (Baf-A1). The co-localization between SGJ and lysosomes was assessed by a confocal microscope. Acridine orange (AO) staining and the Lysosensor™ Green DND-189 reagents were used for indicating changes in lysosomal concentration of H+. Changes of senescence were detected by immunoblotting of p21 and senescence-associated beta-galactosidase (SA-β-gal) staining as well as immunofluorescence assay of senescence-associated heterochromatin foci (SAHF). Changes of autophagy were detected by immunoblotting of MAP1LC3 (LC3B) and SQSTM1 (p62). Cell proliferation was determined by flow cytometry. Cell viability was calculated by sulforhodamine B assay (SRB). The V0 proton channel of v-ATPase was knocked down by transfecting with its small interfering RNA (si-ATP6V0C). RESULTS Our work showed that SGJ can promote lysosomal acidification and inhibit senescence in BMSCs. Firstly, SGJ and lysosomes were well co-located in senescent BMSCs with the co-localization coefficient of 0.94. Secondly, SGJ increased the concentration of H+ and the protein expression of lysosome-associated membrane protein 1 (LAMP1) and lysosome-associated membrane protein 2 (LAMP2). Thirdly, SGJ suppressed the expression of p21 in the senescent BMSCs and reduced SA-β-gal positive cells. Fourthly, SGJ promoted senescent BMSCs' proliferation and protein level of LC3B but reduced the p62/SQSTM1 protein level. Furthermore, experimental group pretreated with 20 μM SGJ showed a stronger red fluorescent intensity, thinner cell morphology, less SA-β-gal positive cell, and less p21 protein level as well as higher cell viability in the presence of Baf-A1. Notably, ATP6V0C knockdown decreased the activity of v-ATPase and SGJ increased the concentration of H+. CONCLUSION Our work showed that SGJ could inhibit senescence in BMSCs and protect lysosomes by promoting expression of LAMP1 and LAMP2. Meanwhile, SGJ could promote autophagy. Furthermore, our study also suggested that SGJ was a new Baf-A1 antagonist because SGJ could target and occupy the V0 proton channel of v-ATPase.
Collapse
Affiliation(s)
- Lihong Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Xianjing Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Guojing Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, People's Republic of China.
| |
Collapse
|
38
|
Xu Y, Wu P, Feng P, Guo W, Yang W, Shuai C. Interfacial reinforcement in a poly-l-lactic acid/mesoporous bioactive glass scaffold via polydopamine. Colloids Surf B Biointerfaces 2018; 170:45-53. [DOI: 10.1016/j.colsurfb.2018.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 10/16/2022]
|
39
|
Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 2018; 119:1228-1239. [PMID: 30107161 DOI: 10.1016/j.ijbiomac.2018.08.056] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
In the recent years, a paradigm shift is taking place where metallic/synthetic implants and tissue grafts are being replaced by tissue engineering approach. A well designed three-dimensional scaffold is one of the fundamental tools to guide tissue formation in vitro and in vivo. Bone is a highly dynamic and an integrative tissue, and thus enormous efforts have been invested in bone tissue engineering to design a highly porous scaffold which plays a critical role in guiding bone growth and regeneration. Numerous techniques have been developed to fabricate highly interconnected, porous scaffold for bone tissue engineering applications with the help of biomolecules such as chitosan, collagen, gelatin, silk, etc. We aim, in this review, to provide an overview of different types of fabrication techniques for scaffold preparation in bone tissue engineering using biological macromolecules.
Collapse
Affiliation(s)
- S Preethi Soundarya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Haritha Menon
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Viji Chandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
40
|
Nikpour P, Salimi-Kenari H, Fahimipour F, Rabiee SM, Imani M, Dashtimoghadam E, Tayebi L. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohydr Polym 2018; 190:281-294. [DOI: 10.1016/j.carbpol.2018.02.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022]
|