1
|
Lyu R, Wang T, Li C, Cai J, Yang X, Wang J, Shuai Y, Mao C, Jiang T, Yang M. Preparation of ion-doped nano-hydroxyapatite Bombyx Mori silk fibroin composite membrane by electrochemical deposition for enhancing osteogenic differentiation in vitro and in vivo. Int J Biol Macromol 2025:144603. [PMID: 40414390 DOI: 10.1016/j.ijbiomac.2025.144603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 05/03/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
The composite material composed of hydroxyapatite (HAp) and silk fibroin (SF) has gradually become the research focus in bone tissue engineering. Here, a gentle, simple, and controllable way of electrochemical deposition is used to prepare a SF/HAp membrane with the incorporation of zinc and magnesium. The controlled accumulation process makes it possible to form the desired surface topological structure of the composite membrane for realistically mimicking a truly physiological context. The pro-osteogenic effect of the mineralized composite membrane is confirmed by in vitro and in vivo tests. This membrane can enhance the proliferation of human bone marrow-derived mesenchymal stem cells and promote osteogenic differentiation using only the basic medium. Moreover, the ion-doped mineralized membrane has the tendency of promoting the recruitment and formation of bone-like tissue in subcutaneous ectopic osteoinduction experiments. This electrochemical deposition method provides a good reference template for the subsequent manufacture of bone tissue engineering materials.
Collapse
Affiliation(s)
- Ruyin Lyu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, PR China
| | - Tianyun Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, PR China
| | - Chenlin Li
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, PR China
| | - Jiangfeng Cai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, PR China
| | - Xiao Yang
- Yiwu Hospital Affiliated to Wenzhou Medical University, Yiwu 322000, PR China
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, PR China
| | - Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, PR China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, PR China.
| | - Tao Jiang
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, PR China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
2
|
Liao Z, Zhang L, Li J, Zhou Y, Cao Y, Wei Y, Du J, Lu L, Huang D. Near-infrared smart responsive orthopedic implants with synergistic antimicrobial and bone integration-promoting properties. J Orthop Translat 2025; 52:55-69. [PMID: 40248127 PMCID: PMC12005338 DOI: 10.1016/j.jot.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
Background The decline in antibiotic use has made the treatment of post-implant infections increasingly challenging, especially the problem of bacterial invasion caused by inadequate tissue fusion with the implant in the early stages of the implant. Developing multiple methods to reduce bacterial infections through synergies will be superior to a single model of antimicrobial means. Methods The composite coating composed of titanium phosphate (TiP)/copper oxide nanoparticles (CuO)/nano-hydroxyapatite (n-HA) named TiP-ua was used to kill Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) under near infrared (NIR) irradiation by means of photothermal therapy (PTT) and photodynamic therapy (PDT) synergism. Results The TiP-ua composite coating can reach about 60 °C and produce a certain amount of reactive oxygen species after 15 min irradiation with 980 nm near infrared light with 0.9 W/cm2 power. Under the NIR irradiation of 0.9 W/cm2 power for 10 min, the composite coating can achieve about 90% killing effect on S. aureus and more than 90% killing effect on E. coli. In terms of mouse pre-osteoblasts (MC3T3-E1), TiP-ua showed more superiority in promoting osteogenic differentiation ability. In the mouse infection model, it also showed good antibacterial effect, and could significantly reduce the expression of inflammatory factors and accelerate wound healing. In the bone defect model, the intervention significantly accelerated the regeneration of neobone tissue and enhanced osseointegration capacity. Conclusions The experimental results show that TiP-ua coating not only has good photothermal conversion ability, but also has good biosafety, which can accelerate the regeneration and repair of bone tissue around the implant, including accelerating the osteogenic differentiation of cells, and reduce the activity of bacteria to effectively reduce the inflammatory response. The translational potential of this article The collaborative antibacterial and bone repair coating in this study has a simple preparation process, high repeatability, high biosafety and positive effect on bone tissue repair, and has great clinical application potential in orthopedics and dental implants.
Collapse
Affiliation(s)
- Ziming Liao
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Luyao Zhang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Jingxuan Li
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Yujie Zhou
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Yu Cao
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Jingjing Du
- Analytical & Testing Center, Hainan University, Haikou, 570228, PR China
| | - Li Lu
- Department of Orthopaedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| |
Collapse
|
3
|
Tardelli JDC, Schiavon MA, Dos Reis AC. Chitosan coatings on titanium-based implants - From development to characterization and behavior: A systematic review. Carbohydr Polym 2024; 344:122496. [PMID: 39218539 DOI: 10.1016/j.carbpol.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Chitosan is a promising natural polymer for coatings, it combines intrinsic antibacterial and pro-osteoblastic properties, but the literature still has a gap from the development to behavior of these coatings, so this systematic review aimed to answer, "What is the relationship between the physical and chemical properties of polymeric chitosan coatings on titanium implants on antibacterial activity and osteoblast viability?". PRISMA guidelines was followed, the search was applied into 4 databases and grey literature, without the restriction of time and language. The selection process occurred in 2 blinded steps by the authors. The criteria of eligibility were in vitro studies that evaluated the physical, chemical, microbiological, and biological properties of chitosan coatings on titanium surfaces. The risk of bias was analyzed by the specific tool. Of 734 potential articles 10 were included; all had low risk of bias. The coating was assessed according to the technique of fabrication, FT-IR, thickness, adhesion, roughness, wettability, antibacterial activity, and osteoblast viability. The analyzed coatings showed efficacy on antibacterial activity and cytocompatibility dependent on the class of material incorporated. Thus, this review motivates the development of time-dependent studies to optimize manufacturing and allow for an increase in patents and availability on the market.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marco Antônio Schiavon
- Department of Natural Sciences, Federal University of São João del-Rei (UFSJ), São João del-Rei, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
5
|
Yi J, Li M, Zhu J, Wang Z, Li X. Recent development and applications of electrodeposition biocoatings on medical titanium for bone repair. J Mater Chem B 2024; 12:9863-9893. [PMID: 39268681 DOI: 10.1039/d4tb01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bioactive coatings play a crucial role in enhancing the osseointegration of titanium implants for bone repair. Electrodeposition offers a versatile and efficient technique to deposit uniform coatings onto titanium surfaces, endowing implants with antibacterial properties, controlled drug release, enhanced osteoblast adhesion, and even smart responsiveness. This review summarizes the recent advancements in bioactive coatings for titanium implants used in bone repair, focusing on various electrodeposition strategies based on material-structure synergy. Firstly, it outlines different titanium implant materials and bioactive coating materials suitable for bone repair. Then, it introduces various electrodeposition methods, including electrophoretic deposition, anodization, micro-arc oxidation, electrochemical etching, electrochemical polymerization, and electrochemical deposition, discussing their applications in antibacterial, osteogenic, drug delivery, and smart responsiveness. Finally, it discusses the challenges encountered in the electrodeposition of coatings for titanium implants in bone repair and potential solutions.
Collapse
Affiliation(s)
- Jialong Yi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ming Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jixiang Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - ZuHang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
6
|
Mahmood A, Maher N, Amin F, Alqutaibi AY, Kumar N, Zafar MS. Chitosan-based materials for dental implantology: A comprehensive review. Int J Biol Macromol 2024; 268:131823. [PMID: 38677667 DOI: 10.1016/j.ijbiomac.2024.131823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Chitosan, a versatile biopolymer, has gained recognition in the discipline of dental implantology due to possessing salient properties. This comprehensive review explores the potential of chitosan in dental implants, focusing on its biocompatibility, bioactivity, and the various chitosan-based materials that have been utilized for dental implant therapy. The review also highlights the importance of surface treatment in dental implants to enhance osseointegration and inhibit bacterial biofilm formation. Additionally, the chemical structure, properties, and sources of chitosan are described, along with its different structural forms. The characteristics of chitosan particularly color, molecular weight, viscosity, and degree of deacetylation are discussed about their influence on its applications. This review provides valuable insights into the promising utilization of polymeric chitosan in enhancing the success and functionality of dental implants. This study highlights the potential applications of chitosan in oral implantology. Chitosan possesses various advantageous properties, including muco-adhesiveness, hemostatic action, biocompatibility, biodegradability, bioactivity, and antibacterial and antifungal activities, which enhance its uses in dental implantology. However, it has limited aqueous solubility at the physiological pH, which sometimes restricts its biological application, but this problem can be overcome by using modified chitosan or chitosan derivatives, which have also shown encouraging results. Recent research suggests that chitosan may act as a promising material for coating titanium-based implants, improving osteointegration together with antibacterial properties.
Collapse
Affiliation(s)
- Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Ahmed Yaseen Alqutaibi
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman, Jordan; Department of Dental Materials, Islamic International College, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
7
|
Han X, Ma J, Tian A, Wang Y, Li Y, Dong B, Tong X, Ma X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B Biointerfaces 2023; 227:113339. [PMID: 37182380 DOI: 10.1016/j.colsurfb.2023.113339] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Biomedical alloys have an important share in orthopedic applications. Among them, titanium and its titanium alloys are widely used as implant materials because of their excellent mechanical properties and non-cytotoxicity. However, its disadvantages such as its biological inertness and poor antibacterial properties inhibit its further development. Therefore, the surface properties of titanium are crucial in the implantation process and determine the success of the implant. The main purpose of this review is to provide a comprehensive and detailed description of the modification techniques used for the surface modification of titanium implants. In this paper, the corresponding technical methods are introduced systematically from four aspects: mechanical method, physical surface modification, chemical surface modification and electrochemical technique to understand the experimental mechanism of each modification technique, and the above methods can indeed improve the various properties of titanium and its alloys. With the increasing demand for implants in the future, the requirements for surface properties will also increase. Therefore, the development of new coating materials with higher performance by combining various advantages of existing modification technologies is the main trend of future research on surface modification of titanium alloys.
Collapse
Affiliation(s)
- Xiao Han
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Aixian Tian
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Benchao Dong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Xue Tong
- Tianjin Hospital, Tianjin University, Tianjin 300211, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinlong Ma
- Tianjin Hospital, Tianjin University, Tianjin 300211, China.
| |
Collapse
|
8
|
Qiu P, Feng L, Fu Q, Dai T, Liu M, Wang P, Lan Y. Dual-Functional Polyetheretherketone Surface with an Enhanced Osteogenic Capability and an Antibacterial Adhesion Property In Vitro by Chitosan Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14712-14724. [PMID: 36420594 DOI: 10.1021/acs.langmuir.2c02267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A chitosan layer was covalently bonded to a polyetheretherketone (PEEK) surface using a simple facile self-assembly method to address inadequate biological activity and infection around the implant. The surface characterization, layer degradation, biological activity, and antibacterial adhesion properties of chitosan-modified PEEK (PEEK-CS) were studied. Through chitosan grafting, the surface morphology changed, the surface roughness increased, and the contact angle decreased significantly. PEEK-CS boosted cell adhesion, proliferation, increased alkaline phosphate activity, extracellular matrix mineralization, and expression of osteogenic genes. PEEK-CS demonstrated less adhesion to Porphyromonas gingivalis as well as less bacterial adhesion to P. gingivalis and Streptococcus mutans. According to our findings, chitosan modification significantly improved the osteogenic ability and antibacterial adhesion of PEEK in vitro.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Le Feng
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Qilin Fu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Tao Dai
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Min Liu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Pin Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Yuyan Lan
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| |
Collapse
|
9
|
Wang J, Huang D, Yu H, Ren H, Shang L. Biohybrid Response Microparticles Decorated with Trained-MSCs for Acute Liver Failure Recovery. Adv Healthc Mater 2022; 11:e2201085. [PMID: 36028466 DOI: 10.1002/adhm.202201085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Microcarrier-based mesenchymal stem cells (MSCs) delivery have attracted increasing attention in acute liver failure (ALF) therapy, while there is still room for improvement in terms of improving cell loading efficiency, enhancing anti-inflammatory features, and controlling cell release. Here, novel lipopolysaccharide (LPS)-composited magnetic-thermal responsive inverse opal particles (MIOPs) are presented for the delivery of MSCs. The MIOPs are composed of a chitosan inverse opal skeleton filled with a hydrogel containing LPS, poly(N-isopropylacrylamide), and Fe3 O4 nanoparticles. Benefitting from the biocompatible chitosan component and the huge specific surface area, the resultant MIOPs can capture MSCs in a nondestructive way. Furthermore, LPS can be released from the MIOPs under the stimulation of an alternating magnetic field, by which the MSCs are activated to gain the feature of "trained immunity." Moreover, this process can be monitored in real-time by the structural color change of the MIOPs. With that, the MSCs-laden MIOPs are employed in rats with ALF, and they exhibit obvious anti-inflammatory and therapeutic efficacy superior to untrained MSCs. These performances make the MIOPs a distinctive cell delivery platform for clinical tissue recovery applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, P. R. China
| | - Danqing Huang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, P. R. China
| | - Hang Yu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, P. R. China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, P. R. China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
10
|
Kim SK, Murugan SS, Dalavi PA, Gupta S, Anil S, Seong GH, Venkatesan J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1051-1067. [PMID: 36247529 PMCID: PMC9531556 DOI: 10.3762/bjnano.13.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Biomimetic materials for better bone graft substitutes are a thrust area of research among researchers and clinicians. Autografts, allografts, and synthetic grafts are often utilized to repair and regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for tissue engineering applications.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| |
Collapse
|
11
|
Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res 2022; 26:26. [PMID: 35725501 PMCID: PMC9208209 DOI: 10.1186/s40824-022-00269-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
The use of orthopedic implants in surgical technology has fostered restoration of physiological functions. Along with successful treatment, orthopedic implants suffer from various complications and fail to offer functions correspondent to native physiology. The major problems include aseptic and septic loosening due to bone nonunion and implant site infection due to bacterial colonization. Crucial advances in material selection in the design and development of coating matrixes an opportunity for the prevention of implant failure. However, many coating materials are limited in in-vitro testing and few of them thrive in clinical tests. The rate of implant failure has surged with the increasing rates of revision surgery creating physical and sensitive discomfort as well as economic burdens. To overcome critical pathogenic activities several systematic coating techniques have been developed offering excellent results that combat infection and enhance bone integration. This review article includes some more common implant coating matrixes with excellent in vitro and in vivo results focusing on infection rates, causes, complications, coating materials, host immune responses and significant research gaps. This study provides a comprehensive overview of potential coating technology, with functional combination coatings which are focused on ultimate clinical practice with substantial improvement on in-vivo tests. This includes the development of rapidly growing hydrogel coating techniques with the potential to generate several accurate and precise coating procedures.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
12
|
Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1259. [PMID: 34532396 PMCID: PMC8421948 DOI: 10.21037/atm-20-8175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Owing to their excellent biocompatibility and corrosion-resistant properties, titanium (Ti) (and its alloy) are essential artificial substitute biomaterials for orthopedics. However, flaws, such as weak osteogenic induction ability and higher Young's modulus, have been observed during clinical application. As a result, short- and long-term postoperative follow-up has found that several complications have occurred. For decades, scientists have exerted efforts to compensate for these deficiencies. Different modification methods have been investigated, including changing alloy contents, surface structure transformation, three-dimensional (3D) structure transformation, coating, and surface functionalization technologies. The cell-surface interaction effect and imitation of the natural 3D bone structure are the two main mechanisms of these improved methods. In recent years, significant progress has been made in materials science research methods, including thorough research of titanium alloys of different compositions, precise surface pattern control technology, controllable 3D structure construction technology, improvement of coating technologies, and novel concepts of surface functionalization. These improvements facilitate the possibility for further research in the field of bone tissue engineering. Although the underlying mechanism is still not fully understood, these studies still have some implications for clinical practice. Therefore, for the direction of further research, it is beneficial to summarize these studies according to the basal method used. This literature review aimed to classify these technologies, thereby providing beginners with a preliminary understanding of the field.
Collapse
Affiliation(s)
- Weiyang Zuo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jisheng Lin
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.
Collapse
|
15
|
Lactoferrin/Calcium Phosphate-Modified Porous Ti by Biomimetic Mineralization: Effective Infection Prevention and Excellent Osteoinduction. MATERIALS 2021; 14:ma14040992. [PMID: 33669904 PMCID: PMC7923298 DOI: 10.3390/ma14040992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/05/2023]
Abstract
The surface modification of titanium (Ti) can enhance the osseointegration and antibacterial properties of implants. In this study, we modified porous Ti discs with calcium phosphate (CaP) and different concentrations of Lactoferrin (LF) by biomimetic mineralization and examined their antibacterial effects and osteogenic bioactivity. Firstly, scanning electron microscopy (SEM), the fluorescent tracing method, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and the releasing kinetics of LF were utilized to characterize the modified Ti surface. Then, the antibacterial properties against S. sanguis and S. aureus were investigated. Finally, in vitro cytological examination was performed, including evaluations of cell adhesion, cell differentiation, extracellular matrix mineralization, and cytotoxicity. The results showed that the porous Ti discs were successfully modified with CaP and LF, and that the LF-M group (200 μg/mL LF in simulated body fluid) could mildly release LF under control. Further, the LF-M group could effectively inhibit the adhesion and proliferation of S. sanguis and S. aureus and enhance the osteogenic differentiation in vitro with a good biocompatibility. Consequently, LF-M-modified Ti may have potential applications in the field of dental implants to promote osseointegration and prevent the occurrence of peri-implantitis.
Collapse
|
16
|
Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C, Xie K, Yao J, Wang L, Liu C, Tang Y. Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties. Front Bioeng Biotechnol 2020; 8:576969. [PMID: 33330415 PMCID: PMC7719827 DOI: 10.3389/fbioe.2020.576969] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable corrosion resistance. These exceptional properties lead to its wide use as a medical implant material. Titanium itself does not have antibacterial properties, so bacteria can gather and adhere to its surface resulting in infection issues. The infection is among the main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of the good options, has the potential to induce different degrees of antibacterial effect on the surface of implant materials. At the same time, the nano-modification procedure and the produced nanostructures should not adversely affect the osteogenic activity, and it should simultaneously lead to favorable antibacterial properties on the surface of the implant. This article scrutinizes and deals with the surface nano-modification of titanium implant materials from three aspects: nanostructures formation procedures, nanomaterials loading, and nano-morphology. In this regard, the research progress on the antibacterial properties of various surface nano-modification of titanium implant materials and the related procedures are introduced, and the new trends will be discussed in order to improve the related materials and methods.
Collapse
Affiliation(s)
- Jianqiao Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinguang Yao
- Youjiang Medical University for Nationalities, Baise, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, Division of Surgery & Orthopaedic Science, University College London, The Royal National National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
17
|
Liu F, Cheng X, Xiao L, Wang Q, Yan K, Su Z, Wang L, Ma C, Wang Y. Inside-outside Ag nanoparticles-loaded polylactic acid electrospun fiber for long-term antibacterial and bone regeneration. Int J Biol Macromol 2020; 167:1338-1348. [PMID: 33232699 DOI: 10.1016/j.ijbiomac.2020.11.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bone infections caused by bacteria during bone graft implantations can impair the ability of bone tissue repair, which is currently a clinical problem. In this study, the electrospinning technique was used to prepare a polylactic acid (PLLA)/silver (Ag) composite fiber, in which the silver nanoparticles (Ag-NPs) were uniformly distributed on the inner surface of PLLA fibers; dopamine (DA) was self-polymerized on the composite fiber surface to construct the adhesive polydopamine (PDA) film and chitosan (CS) was used to regulate Ag+ in situ through pulse electrochemical deposition for the construction of a stable Ag-NPs coating (CS/Ag), achieving the steady and slow release of Ag-NPs, therefore accomplishing the construction of a "inside-outside" Ag-NPs-loaded PLLA/Ag@PDA@CS/Ag composite fiber with dual functions of long-lasting antibacterial effect as well as bone regeneration promotion ability. The study results showed that the composite fiber has an excellent antibacterial effect against E. coli and S. aureus, and good osteoinductive and angiogenic properties. In summary, under the dual regulations of the strong adhesion of PDA and CS chelation, the "inside-outside" Ag-NPs-loaded composite fiber was endowed with good physiological stability, long-term antibacterial effect and bone infection inhibition ability, making it a promising bone implant material.
Collapse
Affiliation(s)
- Feifei Liu
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Xuewei Cheng
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lu Xiao
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China
| | - Kun Yan
- Traumatic Orthopedics, The 6th affiliated hospital of Xinjiang Medical University, 39 Wuxin Road, Urumqi 830001, PR China
| | - Zhi Su
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, PR China.
| | - Chuang Ma
- Department of Orthopedics Center, the First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China.
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China.
| |
Collapse
|
18
|
Zhu W, Nie X, Tao Q, Yao H, Wang DA. Interactions at engineered graft-tissue interfaces: A review. APL Bioeng 2020; 4:031502. [PMID: 32844138 PMCID: PMC7443169 DOI: 10.1063/5.0014519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions at the graft-tissue interfaces are critical for the results of engraftments post-implantation. To improve the success rate of the implantations, as well as the quality of the patients' life, understanding the possible reactions between artificial materials and the host tissues is helpful in designing new generations of material-based grafts aiming at inducing specific responses from surrounding tissues for their own reparation and regeneration. To help researchers understand the complicated interactions that occur after implantations and to promote the development of better-designed grafts with improved biocompatibility and patient responses, in this review, the topics will be discussed from the basic reactions that occur chronologically at the graft-tissue interfaces after implantations to the existing and potential applications of the mechanisms of such reactions in designing of grafts. It offers a chance to bring up-to-date advances in the field and new strategies of controlling the graft-tissue interfaces.
Collapse
Affiliation(s)
- Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dong-An Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
19
|
Chen W, Chen H, Zheng D, Zhang H, Deng L, Cui W, Zhang Y, Santos HA, Shen H. Gene-Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902099. [PMID: 31921568 PMCID: PMC6947697 DOI: 10.1002/advs.201902099] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Indexed: 05/17/2023]
Abstract
Gene therapy provides an ideal potential treatment for intervertebral disk degeneration by delivering synthetic microRNAs (miRNAs) to regulate the gene expression levels. However, it is very challenging to deliver miRNAs directly, which leads to inactivation, low transfection efficiency, and short half-life. Here, Agomir is loaded in hydrogel to construct a gene-hydrogel microenvironment for regulating the synthesis/catabolism balance of the tissue extracellular matrix (ECM) to treat degenerative diseases. Agomir is a cholesterol-, methylation-, and phosphorothioate-modified miRNA, which can mimic the function of miRNA to regulate the expression of the target gene. Agomir874 that mimics miRNA874 is synthesized to down regulate the expression of matrix metalloproteinases (MMPs) in nucleus pulposus (NP). At the same time, a polyethylene glycol (PEG) hydrogel is synthesized through Ag-S coordination of 4-arm PEG-SH and silver ion solution, which has injectable, self-healing, antimicrobial, degradable, and superabsorbent properties and matches perfectly with the mechanism of intervertebral disk. By delivering Agomir-loaded PEG-hydrogel to a degenerative intervertebral disk, a gene-hydrogel microenvironment is constructed in situ, which reduces the expression of MMPs, regulates the synthesis/catabolism balance of ECM in the NP of the intervertebral disk, and improves the tissue microenvironment regeneration.
Collapse
Affiliation(s)
- Wei Chen
- Department of Spine SurgeryRenji HospitalShanghai JiaoTong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Hao Chen
- Department of Spine SurgeryRenji HospitalShanghai JiaoTong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Dandan Zheng
- Department of Spine SurgeryRenji HospitalShanghai JiaoTong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Pharmaceutical Sciences Laboratory and Turku Bioscience CenterÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yuhui Zhang
- Department of Spine SurgeryRenji HospitalShanghai JiaoTong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Hongxing Shen
- Department of Spine SurgeryRenji HospitalShanghai JiaoTong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| |
Collapse
|
20
|
Cui Y, Zhu T, Li D, Li Z, Leng Y, Ji X, Liu H, Wu D, Ding J. Bisphosphonate-Functionalized Scaffolds for Enhanced Bone Regeneration. Adv Healthc Mater 2019; 8:e1901073. [PMID: 31693315 DOI: 10.1002/adhm.201901073] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/28/2019] [Indexed: 12/11/2022]
Abstract
The local sustained release of bioactive substances are attracting increasing attention in bone tissue engineering, which is beneficial to bone tissue formation and helps to improve the bone ingrowth ability of a scaffold. Bisphosphonates (BPs), as a representative kind of osteoclast inhibitors, are proven to possess excellent osteogenic induction capability. Accordingly, various physical and chemical strategies are developed to functionalize bone tissue scaffolds with BPs to achieve controlled release profiles. Compared with traditional treatment modalities, local release of BPs from these composite scaffolds will contribute to continuous bone integration without the risk of many complications. This review explores the molecular mechanisms of BPs on bone metabolism and analyzes the appropriate concentrations of BPs that promote bone regeneration. The advanced BP loading strategies, implant modification technologies, and BP-loaded composite scaffolds based on different matrices are summarized. Finally, the latest advances and the future development of BP-modified scaffolds for enhanced bone regeneration are discussed. This article provides leading-edge design strategies of the BP-functionalized bone engineering scaffolds for improved bone repairability.
Collapse
Affiliation(s)
- Yutao Cui
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Tongtong Zhu
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin University Changchun 130033 P. R. China
| | - Di Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Zuhao Li
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yi Leng
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Xuan Ji
- Department of StomatologyThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - He Liu
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Dankai Wu
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|