1
|
Todesco M, Lezziero G, Gerosa G, Bagno A. Polymeric Heart Valves: Do They Represent a Reliable Alternative to Current Prosthetic Devices? Polymers (Basel) 2025; 17:557. [PMID: 40076051 PMCID: PMC11902043 DOI: 10.3390/polym17050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
With the increasing number of people suffering from heart valve diseases (e.g., stenosis and/or insufficiency), the attention paid to prosthetic heart valves has grown significantly. Developing a prosthetic device that fully replaces the functionality of the native valve remains a huge challenge. Polymeric heart valves (PHVs) represent an appealing option, offering the potential to combine the robustness of mechanical valves with the enhanced biocompatibility of bioprosthetic ones. Over the years, novel biomaterials (such as promising new polymers and nanocomposites) and innovative designs have been explored for possible applications in manufacturing PHVs. This work provides a comprehensive overview of PHVs' evolution in terms of materials, design, and fabrication techniques, including in vitro and in vivo studies. Moreover, it addresses the drawbacks associated with PHV implementation, such as their limited biocompatibility and propensity for sudden failure in vivo. Future directions for further development are presented. Notably, PHVs can be particularly relevant for transcatheter application, the most recent minimally invasive approach for heart valve replacement. Despite current challenges, PHVs represent a promising area of research with the potential to revolutionize the treatment of heart valve diseases, offering more durable and less invasive solutions for patients.
Collapse
Affiliation(s)
- Martina Todesco
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| | - Gianluca Lezziero
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| | - Gino Gerosa
- Department of Cardiac, Thoracic Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| |
Collapse
|
2
|
Evangelista RAA, Pires ALR, Nogueira BV. A chronological history of heart valve prostheses to offer perspectives of their limitations. Front Bioeng Biotechnol 2025; 13:1533421. [PMID: 40028289 PMCID: PMC11868121 DOI: 10.3389/fbioe.2025.1533421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Prosthetic heart valves (PHV) have been studied for around 70 years. They are the best alternative to save the life of patients with cardiac valve diseases. However, current PHVs may still cause significant disadvantages to patients. In general, native heart valves show complex structures and reproducing their functions challenges scientists. Valve repair and replacement are the options to heal heart valve diseases (VHDs), such as stenosis and regurgitation, which show high morbidity and mortality worldwide. Valve repair contributes to the performance of cardiac cycles. However, it fails to restore valve anatomy to its normal condition. On the other hand, replacement is the only alternative to treat valve degeneration. It may do so by mechanical or bioprosthetic valves. Although prostheses may restructure patients' cardiac cycle, both prostheses may show limitations and potential disadvantages, such as mechanical valves causing thrombogenicity or bioprosthetic valves, calcification. Thus, prostheses require constant improvements to remedy these limitations. Although the design of mechanical valve structures has improved, their raw materials cause great disadvantages, and alternatives for this problem remain scarce. Cardiac valve tissue engineering emerged 30 years ago and has improved over time, e.g., xenografts and fabricated heart valves serving as scaffolds for cell seeding. Thus, this review describes cardiac valve substitutes, starting with the history of valvular prosthesis transplants and ending with some perspectives to alleviate the limitations of artificial valves.
Collapse
Affiliation(s)
| | - Ana Luiza Resende Pires
- Graduate Program in Biotechnology, Federal University of Espírito Santo. Av. Marechal Campos, Vitória, Brazil
| | - Breno Valentim Nogueira
- Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Espírito Santo (UFES), Vitória, Brazil
- Graduate Program in Biotechnology, Federal University of Espírito Santo. Av. Marechal Campos, Vitória, Brazil
| |
Collapse
|
3
|
Chakraborty S, Simon MG, Bellofiore A. Rethinking mechanical heart valves in the aortic position: new paradigms in design and testing. Front Cardiovasc Med 2025; 11:1458809. [PMID: 39949724 PMCID: PMC11822478 DOI: 10.3389/fcvm.2024.1458809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/31/2024] [Indexed: 02/16/2025] Open
Abstract
Bileaflet mechanical heart valves (MHV) remain a viable option for aortic valve replacement, particularly for younger patients and patients from low- and middle-income countries and underserved communities. Despite their exceptional durability, MHV recipients are at increased risk of thromboembolic complications. As such, the development of the next generation of MHVs must prioritize improved thromboresistance and aim for independence from anticoagulant therapy. However, innovation in MHV design faces several challenges: strict performance and biocompatibility requirements, limited understanding of the mechanisms underlying MHV thrombosis, and a lack of effective testing methodologies to assess how design variations impact both hemodynamic performance and thrombogenicity of MHVs. This paper reviews the emerging paradigms in MHV design, materials and surface modifications that may inspire the development of a new generation of MHVs for aortic valve replacement. We also discuss challenges and opportunities in developing experimental and numerical approaches to achieve a more comprehensive understanding of MHV flow features and the mechanisms of flow-induced blood clotting.
Collapse
Affiliation(s)
| | | | - Alessandro Bellofiore
- Biomedical Engineering Department, San José State University, San Jose, CA, United States
| |
Collapse
|
4
|
Abadie BQ, Wang TKM. Contemporary Multi-modality Imaging of Prosthetic Aortic Valves. Rev Cardiovasc Med 2025; 26:25339. [PMID: 39867176 PMCID: PMC11759978 DOI: 10.31083/rcm25339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 01/28/2025] Open
Abstract
With the aging of the general population and the rise in surgical and transcatheter aortic valve replacement, there will be an increase in the prevalence of prosthetic aortic valves. Patients with prosthetic aortic valves can develop a wide range of unique pathologies compared to the general population. Accurate diagnosis is necessary in this population to generate a comprehensive treatment plan. Transthoracic echocardiography is often insufficient alone to diagnose many prosthetic valve pathologies. The integration of many imaging modalities, including transthoracic echocardiography, transesophageal echocardiography, cardiac computed tomography, cardiac magnetic resonance imaging, and nuclear imaging, is necessary to care for patients with prosthetic valves. The purpose of this review is to describe the strengths, limitations, and contemporary use of the different imaging modalities necessary to diagnose prosthetic valve dysfunction.
Collapse
Affiliation(s)
- Bryan Q Abadie
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tom Kai Ming Wang
- Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Hedayati R, Shokrnia M, Alavi M, Sadighi M, Aghdam MM. Viscoelastic Behavior of Cellular Biomaterials Based on Octet-Truss and Tetrahedron Topologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5865. [PMID: 39685301 DOI: 10.3390/ma17235865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Cellular biomaterials offer unique properties for diverse biomedical applications. However, their complex viscoelastic behavior requires careful consideration for design optimization. This study explores the effective viscoelastic response of two promising unit cell designs (tetrahedron-based and octet-truss) suitable for high porosity and strong mechanics. The asymptotic homogenization (AH) method was employed to determine effective longitudinal and shear moduli, as well as Poisson's ratio, across various relative densities. Finite element simulations (ABAQUS) validated the AH results, demonstrating good agreement (<10% discrepancies). Additionally, analytical models and compression tests on 3D-printed lattice structures supported the theoretical predictions. The study revealed a strong correlation between relative density and the effective modulus of both designs. Notably, the tetrahedron-based design exhibited superior modulus, making it favorable for high loading levels, particularly when used as a high-density configuration. Both designs demonstrated minimal time-dependent elastic modulus changes and a near-constant Poisson's ratio (0.34-0.349 for octet-truss, 0.316-0.326 for tetrahedron) across a 5-50% relative density range. While minimal, time-dependent modulus reduction needs to be considered in longer-term simulations (t>107 s). This study provides valuable insights into the viscoelastic behavior of these unit cells using the homogenization method, with potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Reza Hedayati
- Aerospace Materials and Structures Department, Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands
| | - Mohammad Shokrnia
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 15916-34311, Iran
| | - Melikasadat Alavi
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 15916-34311, Iran
| | - Mojtaba Sadighi
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 15916-34311, Iran
| | - Mohammad Mohammadi Aghdam
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 15916-34311, Iran
| |
Collapse
|
6
|
Wang Y, Duan H, Zhang Z, Chen L, Li J. Research Progress on the Application of Natural Medicines in Biomaterial Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5607. [PMID: 39597430 PMCID: PMC11595593 DOI: 10.3390/ma17225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
With the continuous progress of biomedical technology, biomaterial coatings play an important role in improving the performance of medical devices and promoting tissue repair and regeneration. The application of natural medicine to biological materials has become a hot topic due to its diverse biological activity, low toxicity, and wide range of sources. This article introduces the definition and classification of natural medicines, lists some common natural medicines, such as curcumin, allicin, chitosan, tea polyphenols, etc., and lists some biological activities of some common natural medicines, such as antibacterial, antioxidant, antitumor, and other properties. According to the different characteristics of natural medicines, physical adsorption, chemical grafting, layer-by-layer self-assembly, sol-gel and other methods are combined with biomaterials, which can be used for orthopedic implants, cardiovascular and cerebrovascular stents, wound dressings, drug delivery systems, etc., to exert their biological activity. For example, improving antibacterial properties, promoting tissue regeneration, and improving biocompatibility promote the development of medical health. Although the development of biomaterials has been greatly expanded, it still faces some major challenges, such as whether the combination between the coating and the substrate is firm, whether the drug load is released sustainably, whether the dynamic balance will be disrupted, and so on; a series of problems affects the application of natural drugs in biomaterial coatings. In view of these problems, this paper summarizes some suggestions by evaluating the literature, such as optimizing the binding method and release system; carrying out more clinical application research; carrying out multidisciplinary cooperation; broadening the application of natural medicine in biomaterial coatings; and developing safer, more effective and multi-functional natural medicine coatings through continuous research and innovation, so as to contribute to the development of the biomedical field.
Collapse
Affiliation(s)
| | | | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| |
Collapse
|
7
|
El-Nashar H, Sabry M, Tseng YT, Francis N, Latif N, Parker KH, Moore JE, Yacoub MH. Multiscale structure and function of the aortic valve apparatus. Physiol Rev 2024; 104:1487-1532. [PMID: 37732828 PMCID: PMC11495199 DOI: 10.1152/physrev.00038.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.
Collapse
Affiliation(s)
- Hussam El-Nashar
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Malak Sabry
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nadine Francis
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kim H Parker
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdi H Yacoub
- Aswan Heart Research Centre, Magdi Yacoub Foundation, Cairo, Egypt
- Heart Science Centre, Magdi Yacoub Institute, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Ternacle J, Hecht S, Eltchaninoff H, Salaun E, Clavel MA, Côté N, Pibarot P. Durability of transcatheter aortic valve implantation. EUROINTERVENTION 2024; 20:e845-e864. [PMID: 39007831 PMCID: PMC11228542 DOI: 10.4244/eij-d-23-01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
Transcatheter aortic valve implantation (TAVI) is now utilised as a less invasive alternative to surgical aortic valve replacement (SAVR) across the whole spectrum of surgical risk. Long-term durability of the bioprosthetic valves has become a key goal of TAVI as this procedure is now considered for younger and lower-risk populations. The purpose of this article is to present a state-of-the-art overview on the definition, aetiology, risk factors, mechanisms, diagnosis, clinical impact, and management of bioprosthetic valve dysfunction (BVD) and failure (BVF) following TAVI with a comparative perspective versus SAVR. Structural valve deterioration (SVD) is the main factor limiting the durability of the bioprosthetic valves used for TAVI or SAVR, but non-structural BVD, such as prosthesis-patient mismatch and paravalvular regurgitation, as well as valve thrombosis or endocarditis may also lead to BVF. The incidence of BVF related to SVD or other causes is low (<5%) at midterm (5- to 8-year) follow-up and compares favourably with that of SAVR. The long-term follow-up data of randomised trials conducted with the first generations of transcatheter heart valves also suggest similar valve durability in TAVI versus SAVR at 10 years, but these trials suffer from major survivorship bias, and the long-term durability of TAVI will need to be confirmed by the analysis of the low-risk TAVI versus SAVR trials at 10 years.
Collapse
Affiliation(s)
- Julien Ternacle
- Unité Médico-Chirurgicale des Valvulopathies, Hôpital Haut-Leveque, CHU Bordeaux, Pessac, France
| | - Sébastien Hecht
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Hélène Eltchaninoff
- Department of Cardiology, University of Rouen Normandie, Inserm U1096, CHU Rouen, Rouen, France
| | - Erwan Salaun
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Marie-Annick Clavel
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Nancy Côté
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Philippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| |
Collapse
|
9
|
Xu C, Yang K, Xu Y, Meng X, Zhou Y, Xu Y, Li X, Qiao W, Shi J, Zhang D, Wang J, Xu W, Yang H, Luo Z, Dong N. Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering. J Nanobiotechnology 2024; 22:378. [PMID: 38943185 PMCID: PMC11212200 DOI: 10.1186/s12951-024-02656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.
Collapse
Affiliation(s)
- Chao Xu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China
| | - Kun Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Yin Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Yanping Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Xueyao Li
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jianglin Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| | - Weilin Xu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China
| | - Hongjun Yang
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, No.1 Sunshine Avenue, Jiangxia District, Wuhan, 430200, China.
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China.
| |
Collapse
|
10
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Melo SF, Nondonfaz A, Aqil A, Pierrard A, Hulin A, Delierneux C, Ditkowski B, Gustin M, Legrand M, Tullemans BME, Brouns SLN, Nchimi A, Carrus R, Dejosé A, Heemskerk JWM, Kuijpers MJE, Ritter J, Steinseifer U, Clauser JC, Jérôme C, Lancellotti P, Oury C. Design, manufacturing and testing of a green non-isocyanate polyurethane prosthetic heart valve. Biomater Sci 2024; 12:2149-2164. [PMID: 38487997 DOI: 10.1039/d3bm01911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sole effective treatment for most patients with heart valve disease is valve replacement by implantation of mechanical or biological prostheses. However, mechanical valves represent high risk of thromboembolism, and biological prostheses are prone to early degeneration. In this work, we aim to determine the potential of novel environmentally-friendly non-isocyanate polyurethanes (NIPUs) for manufacturing synthetic prosthetic heart valves. Polyhydroxyurethane (PHU) NIPUs are synthesized via an isocyanate-free route, tested in vitro, and used to produce aortic valves. PHU elastomers reinforced with a polyester mesh show mechanical properties similar to native valve leaflets. These NIPUs do not cause hemolysis. Interestingly, both platelet adhesion and contact activation-induced coagulation are strongly reduced on NIPU surfaces, indicating low thrombogenicity. Fibroblasts and endothelial cells maintain normal growth and shape after indirect contact with NIPUs. Fluid-structure interaction (FSI) allows modeling of the ideal valve design, with minimal shear stress on the leaflets. Injection-molded valves are tested in a pulse duplicator and show ISO-compliant hydrodynamic performance, comparable to clinically-used bioprostheses. Poly(tetrahydrofuran) (PTHF)-NIPU patches do not show any evidence of calcification over a period of 8 weeks. NIPUs are promising sustainable biomaterials for the manufacturing of improved prosthetic valves with low thrombogenicity.
Collapse
Affiliation(s)
- Sofia F Melo
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Alicia Nondonfaz
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Abdelhafid Aqil
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Alexia Hulin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Céline Delierneux
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Bartosz Ditkowski
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Maxime Gustin
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Maxime Legrand
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Bibian M E Tullemans
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Sanne L N Brouns
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Alain Nchimi
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Raoul Carrus
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Astrid Dejosé
- Sirris, Liège Science Park, Rue du Bois Saint-Jean 12, 4102 Seraing, Belgium
| | - Johan W M Heemskerk
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Jan Ritter
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Johanna C Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, B6a, 4000 Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| | - Cécile Oury
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, University of Liège, Avenue de l'Hôpital 11, B34, 4000 Liège, Belgium.
| |
Collapse
|
12
|
Robinson A, Nkansah A, Bhat S, Karnik S, Jones S, Fairley A, Leung J, Wancura M, Sacks MS, Dasi LP, Cosgriff-Hernandez E. Hydrogel-polyurethane fiber composites with enhanced microarchitectural control for heart valve replacement. J Biomed Mater Res A 2024; 112:586-599. [PMID: 38018452 DOI: 10.1002/jbm.a.37641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023]
Abstract
Polymeric heart valves offer the potential to overcome the limited durability of tissue based bioprosthetic valves and the need for anticoagulant therapy of mechanical valve replacement options. However, developing a single-phase material with requisite biological properties and target mechanical properties remains a challenge. In this study, a composite heart valve material was developed where an electrospun mesh provides tunable mechanical properties and a hydrogel coating confers an antifouling surface for thromboresistance. Key biological responses were evaluated in comparison to glutaraldehyde-fixed pericardium. Platelet and bacterial attachment were reduced by 38% and 98%, respectively, as compared to pericardium that demonstrated the antifouling nature of the hydrogel coating. There was also a notable reduction (59%) in the calcification of the composite material as compared to pericardium. A custom 3D-printed hydrogel coating setup was developed to make valve composites for device-level hemodynamic testing. Regurgitation fraction (9.6 ± 1.8%) and effective orifice area (1.52 ± 0.34 cm2 ) met ISO 5840-2:2021 requirements. Additionally, the mean pressure gradient was comparable to current clinical bioprosthetic heart valves demonstrating preliminary efficacy. Although the hemodynamic properties are promising, it is anticipated that the random microarchitecture will result in suboptimal strain fields and peak stresses that may accelerate leaflet fatigue and degeneration. Previous computational work has demonstrated that bioinspired fiber microarchitectures can improve strain homogeneity of valve materials toward improving durability. To this end, we developed advanced electrospinning methodologies to achieve polyurethane fiber microarchitectures that mimic or exceed the physiological ranges of alignment, tortuosity, and curvilinearity present in the native valve. Control of fiber alignment from a random fiber orientation at a normalized orientation index (NOI) 14.2 ± 6.9% to highly aligned fibers at a NOI of 85.1 ± 1.4%. was achieved through increasing mandrel rotational velocity. Fiber tortuosity and curvilinearity in the range of native valve features were introduced through a post-spinning annealing process and fiber collection on a conical mandrel geometry, respectively. Overall, these studies demonstrate the potential of hydrogel-polyurethane fiber composite as a heart valve material. Future studies will utilize the developed advanced electrospinning methodologies in combination with model-directed fabrication toward optimizing durability as a function of fiber microarchitecture.
Collapse
Affiliation(s)
- Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Sanchita Bhat
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shweta Karnik
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Ashauntee Fairley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jonathan Leung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Austin, Texas, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
13
|
Ciobotaru V, Batistella M, De Oliveira Emmer E, Clari L, Masson A, Decante B, Le Bret E, Lopez-Cuesta JM, Hascoet S. Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes. Polymers (Basel) 2024; 16:900. [PMID: 38611158 PMCID: PMC11013727 DOI: 10.3390/polym16070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Synthetic biomaterials play a crucial role in developing tissue-engineered heart valves (TEHVs) due to their versatile mechanical properties. Achieving the right balance between mechanical strength and manufacturability is essential. Thermoplastic polyurethanes (TPUs) and elastomers (TPEs) garner significant attention for TEHV applications due to their notable stability, fatigue resistance, and customizable properties such as shear strength and elasticity. This study explores the additive manufacturing technique of selective laser sintering (SLS) for TPUs and TPEs to optimize process parameters to balance flexibility and strength, mimicking aortic valve tissue properties. Additionally, it aims to assess the feasibility of printing aortic valve models with submillimeter membranes. The results demonstrate that the SLS-TPU/TPE technique can produce micrometric valve structures with soft shape memory properties, resembling aortic tissue in strength, flexibility, and fineness. These models show promise for surgical training and manipulation, display intriguing echogenicity properties, and can potentially be personalized to shape biocompatible valve substitutes.
Collapse
Affiliation(s)
- Vlad Ciobotaru
- Centre Hospitalier Universitaire de Nîmes, Service de Radiologie, Imagerie Cardiovasculaire, 4 Rue du Professeur Robert Debré, 30900 Nîmes, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
- 3DHeartModeling, 30132 Caissargues, France
| | - Marcos Batistella
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Emily De Oliveira Emmer
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Louis Clari
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Arthur Masson
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Benoit Decante
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| | - Emmanuel Le Bret
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| | - José-Marie Lopez-Cuesta
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Sebastien Hascoet
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| |
Collapse
|
14
|
Zawidlak-Węgrzyńska B, Rydz J, Musioł M, Radziwon-Balicka A. Polymer-Drug Anti-Thrombogenic and Hemocompatible Coatings as Surface Modifications. Pharmaceutics 2024; 16:432. [PMID: 38543326 PMCID: PMC10974185 DOI: 10.3390/pharmaceutics16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
Since the 1960s, efforts have been made to develop new technologies to eliminate the risk of thrombosis in medical devices that come into contact with blood. Preventing thrombosis resulting from the contact of a medical device, such as an implant, with blood is a challenge due to the high mortality rate of patients and the high cost of medical care. To this end, various types of biomaterials coated with polymer-drug layers are being designed to reduce their thrombogenicity and improve their hemocompatibility. This review presents the latest developments in the use of polymer-drug systems to produce anti-thrombogenic surfaces in medical devices in contact with blood, such as stents, catheters, blood pumps, heart valves, artificial lungs, blood vessels, blood oxygenators, and various types of tubing (such as for hemodialysis) as well as microfluidic devices. This paper presents research directions and potential clinical applications, emphasizing the importance of continued progress and innovation in the field.
Collapse
Affiliation(s)
- Barbara Zawidlak-Węgrzyńska
- Department of Chemistry, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 40-555 Katowice, Poland
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (J.R.); (M.M.)
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (J.R.); (M.M.)
| | - Aneta Radziwon-Balicka
- Department of Respiratory and Infectious Diseases, Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, 1172 København, Denmark;
| |
Collapse
|
15
|
Zhou H, Wu Q, Wu L, Zhao Y. In vitro hemodynamics of fabric composite membrane for cardiac valve prosthesis replacement. J Biomech 2024; 163:111956. [PMID: 38266534 DOI: 10.1016/j.jbiomech.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
This study aimed to investigate the hemodynamics of a novel fabric composite that can be used as a substitute for bovine pericardium. The structure is composed of ultrahigh molecular weight polyethylene (UHMWPE) fabric coated with thermoplastic polyurethane (TPU) membranes on both sides. In vitro experiments were carried out on two composite valve samples with different specifications and a bovine pericardial one with the same dimension and structure. Hemodynamic properties including the effective orifice area (EOA) and regurgitant fraction (RF) were obtained and compared through pulsatile-flow testing in a pulse duplicator. Using the particle image velocimetry (PIV) technique, frames of the downstream velocity field in the aortic valve chamber were captured during cardiac cycles. Then, the field of Reynolds shear stress (RSS), viscous shear stress (VSS), and turbulent kinetic energy (TKE) at peak systole were calculated. A fluid-structure interaction (FSI) model has also been used to verify the pulsatile-flow testing. Compared with the bovine pericardial valve, composite valves have nosuperiority regarding EOA and RF due to their slightly higher rigidity. However, shear stresses of composite valves were lower than those of the bovine pericardial valve indicating more stable blood flows, which means that composite leaflets have the potential to reduce the risks of thrombosis and hemolysis induced by the mechanical contact between the blood flow and leaflets of valve prostheses.
Collapse
Affiliation(s)
- Han Zhou
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Qianqian Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China.
| | - Linzhi Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Advanced Ship Materials and Mechanics, Harbin Engineering University, Harbin 150001, China
| | - Yang Zhao
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
16
|
Chen Q, Wang C, Wang H, Xiao J, Zhou Y, Gu S, Xu W, Yang H. Strengthened Decellularized Porcine Valves via Polyvinyl Alcohol as a Template Improving Processability. Polymers (Basel) 2023; 16:16. [PMID: 38201681 PMCID: PMC10780456 DOI: 10.3390/polym16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
The heart valve is crucial for the human body, which directly affects the efficiency of blood transport and the normal functioning of all organs. Generally, decellularization is one method of tissue-engineered heart valve (TEHV), which can deteriorate the mechanical properties and eliminate allograft immunogenicity. In this study, removable polyvinyl alcohol (PVA) is used to encapsulate decellularized porcine heart valves (DHVs) as a dynamic template to improve the processability of DHVs, such as suturing. Mechanical tests show that the strength and elastic modulus of DHVs treated with different concentrations of PVA significantly improve. Without the PVA layer, the valve would shift during suture puncture and not achieve the desired suture result. The in vitro results indicate that decellularized valves treated with PVA can sustain the adhesion and growth of human umbilical vein endothelial cells (HUVECs). All results above show that the DHVs treated with water-soluble PVA have good mechanical properties and cytocompatibility to ensure post-treatment. On this basis, the improved processability of DHV treated with PVA enables a new paradigm for the manufacturing of scaffolds, making it easy to apply.
Collapse
Affiliation(s)
- Qingqing Chen
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Chaorong Wang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Han Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Jinfeng Xiao
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| | - Yingshan Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Shaojin Gu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| | - Hongjun Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (Q.C.); (C.W.); (Y.Z.); (S.G.)
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China (J.X.); (W.X.)
| |
Collapse
|
17
|
Tsolaki E, Corso P, Zboray R, Avaro J, Appel C, Liebi M, Bertazzo S, Heinisch PP, Carrel T, Obrist D, Herrmann IK. Multiscale multimodal characterization and simulation of structural alterations in failed bioprosthetic heart valves. Acta Biomater 2023; 169:138-154. [PMID: 37517619 DOI: 10.1016/j.actbio.2023.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context and correlation to hemodynamic and biomechanical indicators, hence providing design cues for improved bioprosthetic valve alternatives.
Collapse
Affiliation(s)
- Elena Tsolaki
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Pascal Corso
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | - Jonathan Avaro
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | | | - Marianne Liebi
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland; Paul Scherrer Institute, PSI, Villigen 5232, Switzerland; Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT, UK; London Centre for Nanotechnology, University College London, WC1E 6BT, UK
| | - Paul Philipp Heinisch
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technische Universität München, Germany
| | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Cardiac Surgery, University Hospital Zurich (USZ), Rämistrasse 101, Zürich 8091, Switzerland.
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland.
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
18
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Lee A, Liu X, Giaretta JE, Hoang TP, Crago M, Farajikhah S, Mosse L, Fletcher DF, Dehghani F, Winlaw DS, Naficy S. Bioinspired polymeric heart valves: A combined in vitro and in silico approach. JTCVS OPEN 2023; 15:113-124. [PMID: 37808055 PMCID: PMC10556942 DOI: 10.1016/j.xjon.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 10/10/2023]
Abstract
Background Polymeric heart valves (PHVs) may address the limitations of mechanical and tissue valves in the treatment of valvular heart disease. In this study, a bioinspired valve was designed, assessed in silico, and validated by an in vitro model to develop a valve with optimum function for pediatric applications. Methods A bioinspired heart valve was created computationally with leaflet curvature derived from native valve anatomies. A valve diameter of 18 mm was chosen to approach sizes suitable for younger patients. Valves of different thicknesses were fabricated via dip-coating with siloxane-based polyurethane and tested in a pulse duplicator for their hydrodynamic function. The same valves were tested computationally using an arbitrary Lagrangian-Eulerian plus immersed solid approach, in which the fluid-structure interaction between the valves and fluid passing through them was studied and compared with experimental data. Results Computational analysis showed that valves of 110 to 200 μm thickness had effective orifice areas (EOAs) of 1.20 to 1.30 cm2, with thinner valves exhibiting larger openings. In vitro tests demonstrated that PHVs of similar thickness had EOAs of 1.05 to 1.35 cm2 and regurgitant fractions (RFs) <7%. Valves with thinner leaflets exhibited optimal systolic performance, whereas thicker valves had lower RFs. Conclusions Bioinspired PHVs demonstrated good hydrodynamic performance that exceeded ISO 5840-2 standards. Both methods of analysis showed similar correlations between leaflet thickness and valve systolic function. Further development of this PHV may lead to enhanced durability and thus a more reliable heart valve replacement than contemporary options.
Collapse
Affiliation(s)
- Aeryne Lee
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
- School of Medicine, The University of Sydney, Camperdown, Australia
| | - Xinying Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
| | - Jacopo Emilio Giaretta
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
| | - Thanh Phuong Hoang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
| | - Matthew Crago
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
| | - Syamak Farajikhah
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, Australia
| | - Luke Mosse
- Leap Australia, Clayton North, Australia
| | - David Frederick Fletcher
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, Australia
| | - David Scott Winlaw
- School of Medicine, The University of Sydney, Camperdown, Australia
- Department of Cardiothoracic Surgery, Heart Institute, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
- School of Medicine, The University of Sydney, Camperdown, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, Australia
| |
Collapse
|
20
|
Snyder Y, Jana S. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering. ACS Biomater Sci Eng 2023; 9:1570-1584. [PMID: 36802499 DOI: 10.1021/acsbiomaterials.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
21
|
Zeng L, Liu F, Yu Q, Jin C, Yang J, Suo Z, Tang J. Flaw-insensitive fatigue resistance of chemically fixed collagenous soft tissues. SCIENCE ADVANCES 2023; 9:eade7375. [PMID: 36867693 PMCID: PMC9984180 DOI: 10.1126/sciadv.ade7375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Bovine pericardium (BP) has been used as leaflets of prosthetic heart valves. The leaflets are sutured on metallic stents and can survive 400 million flaps (~10-year life span), unaffected by the suture holes. This flaw-insensitive fatigue resistance is unmatched by synthetic leaflets. We show that the endurance strength of BP under cyclic stretch is insensitive to cuts as long as 1 centimeter, about two orders of magnitude longer than that of a thermoplastic polyurethane (TPU). The flaw-insensitive fatigue resistance of BP results from the high strength of collagen fibers and soft matrix between them. When BP is stretched, the soft matrix enables a collagen fiber to transmit tension over a long length. The energy in the long length dissipates when the fiber breaks. We demonstrate that a BP leaflet greatly outperforms a TPU leaflet. It is hoped that these findings will aid the development of soft materials for flaw-insensitive fatigue resistance.
Collapse
Affiliation(s)
- Liangsong Zeng
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Fengkai Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Qifeng Yu
- Shanghai NewMed Medical Corporation, Shanghai, China
| | - Chenyu Jin
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA
| | - Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
22
|
Rezvova MA, Klyshnikov KY, Gritskevich AA, Ovcharenko EA. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int J Mol Sci 2023; 24:3963. [PMID: 36835389 PMCID: PMC9967268 DOI: 10.3390/ijms24043963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The development of a novel artificial heart valve with outstanding durability and safety has remained a challenge since the first mechanical heart valve entered the market 65 years ago. Recent progress in high-molecular compounds opened new horizons in overcoming major drawbacks of mechanical and tissue heart valves (dysfunction and failure, tissue degradation, calcification, high immunogenic potential, and high risk of thrombosis), providing new insights into the development of an ideal artificial heart valve. Polymeric heart valves can best mimic the tissue-level mechanical behavior of the native valves. This review summarizes the evolution of polymeric heart valves and the state-of-the-art approaches to their development, fabrication, and manufacturing. The review discusses the biocompatibility and durability testing of previously investigated polymeric materials and presents the most recent developments, including the first human clinical trials of LifePolymer. New promising functional polymers, nanocomposite biomaterials, and valve designs are discussed in terms of their potential application in the development of an ideal polymeric heart valve. The superiority and inferiority of nanocomposite and hybrid materials to non-modified polymers are reported. The review proposes several concepts potentially suitable to address the above-mentioned challenges arising in the R&D of polymeric heart valves from the properties, structure, and surface of polymeric materials. Additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools have given the green light to set new directions for polymeric heart valves.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Kirill Y. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | | | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| |
Collapse
|
23
|
Snyder Y, Jana S. Anisotropicity and flexibility in trilayered microfibrous substrates promote heart valve leaflet tissue engineering. Biomed Mater 2022; 17:10.1088/1748-605X/ac94ae. [PMID: 36150373 PMCID: PMC9629372 DOI: 10.1088/1748-605x/ac94ae] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Heart valve leaflet substrates with native trilayer and anisotropic structures are crucial for successful heart valve tissue engineering. In this study, we used the electrospinning technique to produce trilayer microfibrous leaflet substrates using two biocompatible and biodegradable polymers-poly (L-lactic acid) (PLLA) and polycaprolactone (PCL), separately. Different polymer concentrations for each layer were applied to bring a high degree of mechanical and structural anisotropy to the substrates. PCL leaflet substrates exhibited lower unidirectional tensile properties than PLLA leaflet substrates. However, the PLLA substrates exhibited a lower flexural modulus than the PCL substrates. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for one month in static conditions. Both substrates exhibited cellular adhesion and proliferation, resulting in the production of tissue-engineered constructs. The PLLA tissue-engineered constructs had more cellular growth than the PCL tissue-engineered constructs. The PLLA substrates showed higher hydrophilicity, lower crystallinity, and more significant anisotropy than PCL substrates, which may have enhanced their interactions with PVICs. Analysis of gene expression showed higherα-smooth muscle actin and collagen type 1 expression in PLLA tissue-engineered constructs than in PCL tissue-engineered constructs. The differences in anisotropic and flexural properties may have accounted for the different cellular behaviors in these two individual polymer substrates.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Bui HT, Ishrat A, James SP, Dasi LP. Design consideration of a novel polymeric transcatheter heart valve through computational modeling. J Mech Behav Biomed Mater 2022; 135:105434. [PMID: 36116342 DOI: 10.1016/j.jmbbm.2022.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
Transcatheter heart valve replacement is becoming a more routine procedure, and this is further supported by positive outcomes from studies involving low-risk patients. Nevertheless, the lack of long-term transcatheter heart valve (TAV) durability is still one of the primary concerns. As a result, more research has been focused on improving durability through various methods such as valve design, computational modeling, and material selection. Recent advancements in polymeric valve fabrication showed that linear low-density polyethylene (LLDPE) could be used as leaflet material for transcatheter heart valves. In this paper, a parametric study of computational simulations showed stress distribution on the leaflets of LLDPE-TAV under diastolic load, and the results were used to improve the stent design. The in silico experiment also tested the effect of shock absorbers in terms of valve durability. The results demonstrated that altering specific stent angles can significantly lower peak stress on the leaflets (13.8 vs. 6.07 MPa). Implementing two layers of shock absorbers further reduces the stress value to 4.28 MPa. The pinwheeling index was assessed, which seems to correlate with peak stress. Overall, the parametric study and the computational method can be used to analyze and improve valve durability.
Collapse
Affiliation(s)
- Hieu T Bui
- Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Cir NW, Atlanta, GA, 30313, USA
| | - Amina Ishrat
- Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Cir NW, Atlanta, GA, 30313, USA
| | - Susan P James
- School of Advanced Materials Discovery, Colorado State University, 700 Meridian Ave, Fort Collins, CO, 80523, USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Cir NW, Atlanta, GA, 30313, USA.
| |
Collapse
|
25
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
26
|
Lu Y, Yang Y, Liu S, Ge S. Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery—a promising method for tissue regeneration. Front Cell Dev Biol 2022; 10:898394. [PMID: 36092710 PMCID: PMC9454000 DOI: 10.3389/fcell.2022.898394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become the preferred seed cells for tissue regeneration. Nevertheless, due to their immunogenicity and tumorigenicity, MSC transplantation remains questionable. Extracellular vesicles (EVs) derived from MSCs are becoming a promising substitute for MSCs. As a route of the MSC paracrine, EVs have a nano-sized and bilayer lipid-enclosed structure, which can guarantee the integrity of their cargoes, but EVs cannot obtain full function in vivo because of the rapid biodegradation and clearance by phagocytosis. To improve the efficacy and targeting of EVs, methods have been proposed and put into practice, especially engineered vesicles and EV-controlled release systems. In particular, EVs can be cell or tissue targeting because they have cell-specific ligands on their surfaces, but their targeting ability may be eliminated by the biodegradation of the phagocytic system during circulation. Novel application strategies have been proposed beyond direct injecting. EV carriers such as biodegradable hydrogels and other loading systems have been applied in tissue regeneration, and EV engineering is also a brand-new method for higher efficacy. In this review, we distinctively summarize EV engineering and loading system construction methods, emphasizing targeting modification methods and controlled release systems for EVs, which few literature reviews have involved.
Collapse
Affiliation(s)
- Yu Lu
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Yang
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shaohua Ge
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Shaohua Ge,
| |
Collapse
|
27
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
28
|
Toma M, Singh-Gryzbon S, Frankini E, Wei Z(A, Yoganathan AP. Clinical Impact of Computational Heart Valve Models. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3302. [PMID: 35591636 PMCID: PMC9101262 DOI: 10.3390/ma15093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
This paper provides a review of engineering applications and computational methods used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid-structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
Collapse
Affiliation(s)
- Milan Toma
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| | - Elisabeth Frankini
- Department of Osteopathic Manipulative Medicine, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, NY 11568, USA;
| | - Zhenglun (Alan) Wei
- Department of Biomedical Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.-G.); (A.P.Y.)
| |
Collapse
|
29
|
Wu S, Li Y, Zhang C, Tao L, Kuss M, Lim JY, Butcher J, Duan B. Tri-Layered and Gel-Like Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets. Adv Healthc Mater 2022; 11:e2200053. [PMID: 35289986 PMCID: PMC10976923 DOI: 10.1002/adhm.202200053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Indexed: 12/17/2022]
Abstract
3D heterogeneous and anisotropic scaffolds that approximate native heart valve tissues are indispensable for the successful construction of tissue engineered heart valves (TEHVs). In this study, novel tri-layered and gel-like nanofibrous scaffolds, consisting of poly(lactic-co-glycolic) acid (PLGA) and poly(aspartic acid) (PASP), are fabricated by a combination of positive/negative conjugate electrospinning and bioactive hydrogel post-processing. The nanofibrous PLGA-PASP scaffolds present tri-layered structures, resulting in anisotropic mechanical properties that are comparable with native heart valve leaflets. Biological tests show that nanofibrous PLGA-PASP scaffolds with high PASP ratios significantly promote the proliferation and collagen and glycosaminoglycans (GAGs) secretions of human aortic valvular interstitial cells (HAVICs), compared to PLGA scaffolds. Importantly, the nanofibrous PLGA-PASP scaffolds are found to effectively inhibit the osteogenic differentiation of HAVICs. Two types of porcine VICs, from young and adult age groups, are further seeded onto the PLGA-PASP scaffolds. The adult VICs secrete higher amounts of collagens and GAGs and undergo a significantly higher level of osteogenic differentiation than young VICs. RNA sequencing analysis indicates that age has a pivotal effect on the VIC behaviors. This study provides important guidance and a reference for the design and development of 3D tri-layered, gel-like nanofibrous PLGA-PASP scaffolds for TEHV applications.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yiran Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Caidan Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Litao Tao
- Department of Biomedical Science, Creighton University, Omaha, NE, 68178, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jonathan Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
30
|
Chen Y, Lu X, Luo H, Kassab GS. Aortic Leaflet Stresses Are Substantially Lower Using Pulmonary Visceral Pleura Than Pericardial Tissue. Front Bioeng Biotechnol 2022; 10:869095. [PMID: 35557866 PMCID: PMC9086238 DOI: 10.3389/fbioe.2022.869095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Porcine heart and bovine pericardium valves, which are collagen-based with relatively little elastin, have been broadly utilized to construct bioprosthetic heart valves (BHVs). With a larger proportion of elastin, the pulmonary visceral pleura (PVP) has greater elasticity and could potentially serve as an advantageous biomaterial for the construction/repair of BHVs. The question of how the aortic valve’s performance is affected by its bending rigidity has not been well studied. Methods: Based on the stress–strain relationships of the pericardium and PVP determined by planar uni-axial tests, a three-dimensional (3D) computational fluid–structure interaction (FSI) framework is employed to numerically investigate the aortic valve’s performance by considering three different cases with Young’s modulus as follows: E=375, 750, and 1500 kPa, respectively. Results: The stroke volumes are 112, 99.6, and 91.4 ml as Young’s modulus increases from 375 to 750 and 1500 kPa, respectively. Peak geometric opening area (GOA) values are 2.3, 2.2, and 2.0 cm2 for E=375, 750, and 1500 kPa, respectively. The maximum value of the aortic leaflet stress is about 271 kPa for E=375 kPa, and it increases to about 383 and 540 kPa for E=750 and 1500 kPa in the belly region at the peak systole, while it reduces from 550 kPa to 450 and 400 kPa for E=375, 750, and 1500 kPa, respectively, at the instant of peak “water-hammer”. Conclusion: A more compliant PVP aortic leaflet valve with a smaller Young’s modulus, E, has a higher cardiac output, larger GOA, and lower hemodynamic resistance. Most importantly, the aortic leaflet stresses are substantially lower in the belly region within the higher compliance PVP aortic valve tissue during the systole phase, even though some stress increase is also found during the fast-closing phase due to the “water-hammer” effect similar to that in the pericardial tissue. Future clinical studies will be conducted to test the hypothesis that the PVP-based valve leaflets with higher compliance will have lower fatigue or calcification rates due to the overall lower stress.
Collapse
Affiliation(s)
- Ye Chen
- California Medical Innovations Institute, San Diego, CA, United States
| | - Xiao Lu
- California Medical Innovations Institute, San Diego, CA, United States
| | - Haoxiang Luo
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ghassan S. Kassab
- California Medical Innovations Institute, San Diego, CA, United States
- *Correspondence: Ghassan S. Kassab,
| |
Collapse
|
31
|
Rizzi S, Ragazzini S, Pesce M. Engineering Efforts to Refine Compatibility and Duration of Aortic Valve Replacements: An Overview of Previous Expectations and New Promises. Front Cardiovasc Med 2022; 9:863136. [PMID: 35509271 PMCID: PMC9058060 DOI: 10.3389/fcvm.2022.863136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023] Open
Abstract
The absence of pharmacological treatments to reduce or retard the progression of cardiac valve diseases makes replacement with artificial prostheses (mechanical or bio-prosthetic) essential. Given the increasing incidence of cardiac valve pathologies, there is always a more stringent need for valve replacements that offer enhanced performance and durability. Unfortunately, surgical valve replacement with mechanical or biological substitutes still leads to disadvantages over time. In fact, mechanical valves require a lifetime anticoagulation therapy that leads to a rise in thromboembolic complications, while biological valves are still manufactured with non-living tissue, consisting of aldehyde-treated xenograft material (e.g., bovine pericardium) whose integration into the host fails in the mid- to long-term due to unresolved issues regarding immune-compatibility. While various solutions to these shortcomings are currently under scrutiny, the possibility to implant fully biologically compatible valve replacements remains elusive, at least for large-scale deployment. In this regard, the failure in translation of most of the designed tissue engineered heart valves (TEHVs) to a viable clinical solution has played a major role. In this review, we present a comprehensive overview of the TEHVs developed until now, and critically analyze their strengths and limitations emerging from basic research and clinical trials. Starting from these aspects, we will also discuss strategies currently under investigation to produce valve replacements endowed with a true ability to self-repair, remodel and regenerate. We will discuss these new developments not only considering the scientific/technical framework inherent to the design of novel valve prostheses, but also economical and regulatory aspects, which may be crucial for the success of these novel designs.
Collapse
Affiliation(s)
- Stefano Rizzi
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- Stefano Rizzi
| | - Sara Ragazzini
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
| | - Maurizio Pesce
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
- *Correspondence: Maurizio Pesce
| |
Collapse
|
32
|
Rezvova MA, Nikishau PA, Makarevich MI, Glushkova TV, Klyshnikov KY, Akentieva TN, Efimova OS, Nikitin AP, Malysheva VY, Matveeva VG, Senokosova EA, Khanova MY, Danilov VV, Russakov DM, Ismagilov ZR, Kostjuk SV, Ovcharenko EA. Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene- b-isobutylene- b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:733. [PMID: 35269222 PMCID: PMC8911977 DOI: 10.3390/nano12050733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/27/2023]
Abstract
Nanocomposites based on poly(styrene-block-isobutylene-block-styrene) (SIBS) and single-walled carbon nanotubes (CNTs) were prepared and characterized in terms of tensile strength as well as bio- and hemocompatibility. It was shown that modification of CNTs using dodecylamine (DDA), featured by a long non-polar alkane chain, provided much better dispersion of nanotubes in SIBS as compared to unmodified CNTs. As a result of such modification, the tensile strength of the nanocomposite based on SIBS with low molecular weight (Mn = 40,000 g mol-1) containing 4% of functionalized CNTs was increased up to 5.51 ± 0.50 MPa in comparison with composites with unmodified CNTs (3.81 ± 0.11 MPa). However, the addition of CNTs had no significant effect on SIBS with high molecular weight (Mn~70,000 g mol-1) with ultimate tensile stress of pure polymer of 11.62 MPa and 14.45 MPa in case of its modification with 1 wt% of CNT-DDA. Enhanced biocompatibility of nanocomposites as compared to neat SIBS has been demonstrated in experiment with EA.hy 926 cells. However, the platelet aggregation observed at high CNT concentrations can cause thrombosis. Therefore, SIBS with higher molecular weight (Mn~70,000 g mol-1) reinforced by 1-2 wt% of CNTs is the most promising material for the development of cardiovascular implants such as heart valve prostheses.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
| | - Miraslau I. Makarevich
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
- Department of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Tatiana V. Glushkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Kirill Yu. Klyshnikov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Tatiana N. Akentieva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Olga S. Efimova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Andrey P. Nikitin
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Valentina Yu. Malysheva
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Vera G. Matveeva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Evgeniia A. Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Mariam Yu. Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Viacheslav V. Danilov
- Research Laboratory for Processing and Analysis of Big Data, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Dmitry M. Russakov
- Institute of Fundamental Sciences, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Zinfer R. Ismagilov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
- Department of Chemistry, Belarusian State University, 220006 Minsk, Belarus
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Evgeny A. Ovcharenko
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| |
Collapse
|
33
|
Role of Implantable Drug Delivery Devices with Dual Platform Capabilities in the Prevention and Treatment of Bacterial Osteomyelitis. Bioengineering (Basel) 2022; 9:bioengineering9020065. [PMID: 35200418 PMCID: PMC8869141 DOI: 10.3390/bioengineering9020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
As medicine advances and physicians are able to provide patients with innovative solutions, including placement of temporary or permanent medical devices that drastically improve quality of life of the patient, there is the persistent, recurring problem of chronic bacterial infection, including osteomyelitis. Osteomyelitis can manifest as a result of traumatic or contaminated wounds or implant-associated infections. This bacterial infection can persist as a result of inadequate treatment regimens or the presence of biofilm on implanted medical devices. One strategy to mitigate these concerns is the use of implantable medical devices that simultaneously act as local drug delivery devices (DDDs). This classification of device has the potential to prevent or aid in clearing chronic bacterial infection by delivering effective doses of antibiotics to the area of interest and can be engineered to simultaneously aid in tissue regeneration. This review will provide a background on bacterial infection and current therapies as well as current and prospective implantable DDDs, with a particular emphasis on local DDDs to combat bacterial osteomyelitis.
Collapse
|
34
|
Mangold A, Ondracek AS, Hofbauer TM, Artner T, Nechvile J, Panagiotides NG, Mirna² M, Hammerer M, Fejzic² D, Hoppe² U, Wernly² B, Lauten A, Alushi B, Franz M, Schulze PC, Wohlschläger‐Krenn E, Lang IM, Lichtenauer² M. Deoxyribonuclease is prognostic in patients undergoing transcatheter aortic valve replacement. Eur J Clin Invest 2021; 51:e13595. [PMID: 34101826 PMCID: PMC11475382 DOI: 10.1111/eci.13595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Degenerative aortic valve stenosis is an inflammatory process that resembles atherosclerosis. Neutrophils release their DNA upon activation and form neutrophil extracellular traps (NETs), which are present on degenerated aortic valves. NETs correlate with pressure gradients in severe aortic stenosis. Transcatheter aortic valve replacement (TAVR) is an established treatment option for aortic valve stenosis. Bioprosthetic valve deterioration promoted by inflammatory, fibrotic and thrombotic processes limits outcome. Deoxyribonuclease is a natural counter mechanism to degrade DNA in circulation. In the present observational study, we investigated plasma levels of double-stranded DNA, deoxyribonuclease activity and outcome after TAVR. 345 consecutive patients undergoing TAVR and 100 healthy reference controls were studied. Double-stranded DNA was measured by fluorescence assays in plasma obtained at baseline and after TAVR. Deoxyribonuclease activity was measured at baseline using single radial enzyme diffusion assays. Follow-up was performed at 12 months, and mean aortic pressure gradient and survival were evaluated. Receiver operating characteristic, Kaplan-Meier curves and Cox regression models were calculated. Baseline double-stranded DNA in plasma was significantly higher compared to healthy controls, was increased at 3 and 7 days after TAVR, and declined thereafter. Baseline deoxyribonuclease activity was decreased compared to healthy controls. Interestingly, low deoxyribonuclease activity correlated with higher C-reactive protein and higher mean transaortic gradient after 12 months. Finally, deoxyribonuclease activity was a strong independent predictor of outcome 12 months after TAVR. Deoxyribonuclease activity is a potential biomarker for risk stratification after TAVR. Pathomechanisms of bioprosthetic valve deterioration involving extracellular DNA and deoxyribonuclease merit investigation.
Collapse
Affiliation(s)
- Andreas Mangold
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Anna S. Ondracek
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Thomas M. Hofbauer
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Tyler Artner
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Johanna Nechvile
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Noel G. Panagiotides
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | | | - Matthias Hammerer
- Department of Internal Medicine IIDivision of CardiologyParacelsus Medical University of SalzburgSalzburgAustria
| | | | | | | | - Alexander Lauten
- Department of CardiologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Brunilda Alushi
- Department of CardiologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Marcus Franz
- Department of Internal Medicine I, Division of CardiologyPneumology, and Intensive Medical CareFriedrich‐Schiller‐UniversityJenaGermany
| | - Paul C. Schulze
- Department of Internal Medicine I, Division of CardiologyPneumology, and Intensive Medical CareFriedrich‐Schiller‐UniversityJenaGermany
| | | | - Irene M. Lang
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | | |
Collapse
|
35
|
Singh G, Chanda A. Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 2021; 16. [PMID: 34587593 DOI: 10.1088/1748-605x/ac2b7a] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
The mechanical properties of soft tissues play a key role in studying human injuries and their mitigation strategies. While such properties are indispensable for computational modelling of biological systems, they serve as important references in loading and failure experiments, and also for the development of tissue simulants. To date, experimental studies have measured the mechanical properties of peripheral tissues (e.g. skin)in-vivoand limited internal tissuesex-vivoin cadavers (e.g. brain and the heart). The lack of knowledge on a majority of human tissues inhibit their study for applications ranging from surgical planning, ballistic testing, implantable medical device development, and the assessment of traumatic injuries. The purpose of this work is to overcome such challenges through an extensive review of the literature reporting the mechanical properties of whole-body soft tissues from head to toe. Specifically, the available linear mechanical properties of all human tissues were compiled. Non-linear biomechanical models were also introduced, and the soft human tissues characterized using such models were summarized. The literature gaps identified from this work will help future biomechanical studies on soft human tissue characterization and the development of accurate medical models for the study and mitigation of injuries.
Collapse
Affiliation(s)
- Gurpreet Singh
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Arnab Chanda
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), Delhi, India
| |
Collapse
|
36
|
Breul K, Stengelin E, Urschbach M, Mondeshki M, Wüst L, Sirleaf J, Seitel S, Emt T, Pschierer S, Besenius P, Seiffert S. Cell Adhesion on UV-Crosslinked Polyurethane Gels with Adjustable Mechanical Strength and Thermoresponsiveness. Macromol Rapid Commun 2021; 42:e2100505. [PMID: 34562294 DOI: 10.1002/marc.202100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Indexed: 12/22/2022]
Abstract
Temperature-responsive polyurethane (PU) hydrogels represent a versatile material platform for modern tissue engineering and biomedical applications. However, besides intrinsic advantages such as high mechanical strength and a hydrolysable backbone composition, plain PU materials are generally lacking bio-adhesive properties. To overcome this shortcoming, the authors focus on the synthesis of thermoresponsive PU hydrogels with variable mechanical and cell adhesive properties obtained from linear precursor PUs based on poly(ethylene glycol)s (pEG) with different molar masses, isophorone diisocyanate, and a dimerizable dimethylmaleimide (DMMI)-diol. The cloud point temperatures of the dilute, aqueous PU solutions depend linearly on the amphiphilic balance. Rheological gelation experiments under UV-irradiation reveal the dependence of the gelation time on photosensitizer concentration and light intensity, while the finally obtained gel strength is determined by the polymer concentration and spacing of the crosslinks. The swelling ratios of these soft hydrogels show significant changes between 5 and 40 °C whereby the extent of this switch increases with the hydrophobicity of the precursor. Moreover, it is shown that the incorporation of a low amount of catechol groups into the networks through the DMMI dimerization reaction leads to strongly improved cell adhesive properties without significantly weakening the gels.
Collapse
Affiliation(s)
- Katharina Breul
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Elena Stengelin
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Mihail Mondeshki
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Laura Wüst
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Jason Sirleaf
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sebastian Seitel
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Theresa Emt
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sarah Pschierer
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| |
Collapse
|
37
|
Ji Y, Park J, Kang Y, Lee S, Ju H, Choi S, Lee B, Kim M. Scaffold printing using biodegradable poly(1,4-butylene carbonate) ink: printability, in vivo physicochemical properties, and biocompatibility. Mater Today Bio 2021; 12:100129. [PMID: 34604731 PMCID: PMC8463913 DOI: 10.1016/j.mtbio.2021.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
This study is the first to assess the applicability of biodegradable poly(1,4-butylene carbonate) (PBC) as a printing ink for fused deposition modeling (FDM). Here, PBC was successfully prepared via the bulk polycondensation of 1,4-butanediol and dimethyl carbonate. PBC was melted above 150°C in the heating chamber of an FDM printer, after which it flowed from the printing nozzle upon applying pressure and solidified at room temperature to create a three-dimensional (3D) scaffold structure. A 3D scaffold exactly matching the program design was obtained by controlling the temperature and pressure of the FDM printer. The compressive moduli of the printed PBC scaffold decreased as a function of implantation time. The printed PBC scaffold exhibited good in vitro biocompatibility, as well as in vivo neotissue formation and little host tissue response, which was proportional to the gradual biodegradation. Collectively, our findings demonstrated the feasibility of PBC as a suitable printing ink candidate for the creation of scaffolds via FDM printing.
Collapse
Affiliation(s)
- Y.B. Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - J.Y. Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Y. Kang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - S. Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - H.J. Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - S. Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - B.Y. Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - M.S. Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- Research Institute Center, Medipolymers, Research Institute, Suwon 16522, South Korea
| |
Collapse
|
38
|
Bui HT, Khair N, Yeats B, Gooden S, James SP, Dasi LP. Transcatheter Heart Valves: A Biomaterials Perspective. Adv Healthc Mater 2021; 10:e2100115. [PMID: 34038627 DOI: 10.1002/adhm.202100115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Indexed: 11/11/2022]
Abstract
Heart valve disease is prevalent throughout the world, and the number of heart valve replacements is expected to increase rapidly in the coming years. Transcatheter heart valve replacement (THVR) provides a safe and minimally invasive means for heart valve replacement in high-risk patients. The latest clinical data demonstrates that THVR is a practical solution for low-risk patients. Despite these promising results, there is no long-term (>20 years) durability data on transcatheter heart valves (THVs), raising concerns about material degeneration and long-term performance. This review presents a detailed account of the materials development for THVRs. It provides a brief overview of THVR, the native valve properties, the criteria for an ideal THV, and how these devices are tested. A comprehensive review of materials and their applications in THVR, including how these materials are fabricated, prepared, and assembled into THVs is presented, followed by a discussion of current and future THVR biomaterial trends. The field of THVR is proliferating, and this review serves as a guide for understanding the development of THVs from a materials science and engineering perspective.
Collapse
Affiliation(s)
- Hieu T. Bui
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Nipa Khair
- School of Advanced Materials Discovery Colorado State University 700 Meridian Ave Fort Collins CO 80523 USA
| | - Breandan Yeats
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Shelley Gooden
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Susan P. James
- School of Advanced Materials Discovery Colorado State University 700 Meridian Ave Fort Collins CO 80523 USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| |
Collapse
|
39
|
Engineering the aortic valve extracellular matrix through stages of development, aging, and disease. J Mol Cell Cardiol 2021; 161:1-8. [PMID: 34339757 DOI: 10.1016/j.yjmcc.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023]
Abstract
For such a thin tissue, the aortic valve possesses an exquisitely complex, multi-layered extracellular matrix (ECM), and disruptions to this structure constitute one of the earliest hallmarks of fibrocalcific aortic valve disease (CAVD). The native valve structure provides a challenging target for engineers to mimic, but the development of advanced, ECM-based scaffolds may enable mechanistic and therapeutic discoveries that are not feasible in other culture or in vivo platforms. This review first discusses the ECM changes that occur during heart valve development, normal aging, onset of early-stage disease, and progression to late-stage disease. We then provide an overview of the bottom-up tissue engineering strategies that have been used to mimic the valvular ECM, and opportunities for advancement in these areas.
Collapse
|
40
|
Shao Z, Tao T, Xu H, Chen C, Lee I, Chung S, Dong Z, Li W, Ma L, Bai H, Chen Q. Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. VIEW 2021. [DOI: 10.1002/viw.20200142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ziyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Tingting Tao
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Hongfei Xu
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Cen Chen
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
| | - In‐Seop Lee
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
- Institute of Natural Sciences Yonsei University Seoul Republic of Korea
| | - Sungmin Chung
- Biomaterials R&D Center GENOSS Co., Ltd. Suwon‐si Republic of Korea
| | - Zhihui Dong
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Weidong Li
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Liang Ma
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Hao Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| |
Collapse
|
41
|
Ascione G, Denti P. Transcatheter Mitral Valve Replacement and Thrombosis: A Review. Front Cardiovasc Med 2021; 8:621258. [PMID: 34150861 PMCID: PMC8212998 DOI: 10.3389/fcvm.2021.621258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Mitral regurgitation is the most prevalent form of moderate or severe valve disease in developed countries. Surgery represents the standard of care for symptomatic patients with severe mitral regurgitation, but up to 50% of patients are denied surgery because of high surgical risk. In this context, different transcatheter options have been developed to address this unmet need. Transcatheter mitral valve replacement (TMVR) is an emergent field representing an alternative option in high complex contexts when transcatheter mitral valve repair is not feasible or suboptimal due to anatomical issues. However, TMVR is burdened by some device-specific issues (device malposition, migration or embolization, left ventricular outflow tract obstruction, hemolysis, thrombosis, stroke). Here we discuss the thrombotic risk of TMVR and current evidence about anticoagulation therapy after TMVR.
Collapse
Affiliation(s)
- Guido Ascione
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Denti
- Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
42
|
Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 05/24/2023]
Abstract
Tissue adhesives can form appreciable adhesion with tissues and have found clinical use in a variety of medical settings such as wound closure, surgical sealants, regenerative medicine, and device attachment. The advantages of tissue adhesives include ease of implementation, rapid application, mitigation of tissue damage, and compatibility with minimally invasive procedures. The field of tissue adhesives is rapidly evolving, leading to tissue adhesives with superior mechanical properties and advanced functionality. Such adhesives enable new applications ranging from mobile health to cancer treatment. To provide guidelines for the rational design of tissue adhesives, here, existing strategies for tissue adhesives are synthesized into a multifaceted design, which comprises three design elements: the tissue, the adhesive surface, and the adhesive matrix. The mechanical, chemical, and biological considerations associated with each design element are reviewed. Throughout the report, the limitations of existing tissue adhesives and immediate opportunities for improvement are discussed. The recent progress of tissue adhesives in topical and implantable applications is highlighted, and then future directions toward next-generation tissue adhesives are outlined. The development of tissue adhesives will fuse disciplines and make broad impacts in engineering and medicine.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
43
|
De Backer O, Wong I, Wilkins B, Carranza CL, Søndergaard L. Patient-Tailored Aortic Valve Replacement. Front Cardiovasc Med 2021; 8:658016. [PMID: 33969021 PMCID: PMC8096928 DOI: 10.3389/fcvm.2021.658016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022] Open
Abstract
Contemporary surgical and transcatheter aortic valve interventions offer effective therapy for a broad range of patients with severe symptomatic aortic valve disease. Both approaches have seen significant advances in recent years. Guidelines have previously emphasized ‘surgical risk’ in the decision between surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR), although this delineation becomes increasingly obsolete with more evidence on the effectiveness of TAVR in low surgical risk candidates. More importantly, decisions in tailoring aortic valve interventions should be patient-centered, accounting not only for operative risk, but also anatomy, lifetime management and specific co-morbidities. Aspects to be considered in a patient-tailored aortic valve intervention are discussed in this article.
Collapse
Affiliation(s)
- Ole De Backer
- Department of Cardiology, Rigshospitalet Copenhagen University, Copenhagen, Denmark
| | - Ivan Wong
- Department of Cardiology, Rigshospitalet Copenhagen University, Copenhagen, Denmark
| | - Ben Wilkins
- Department of Cardiology, Rigshospitalet Copenhagen University, Copenhagen, Denmark
| | | | - Lars Søndergaard
- Department of Cardiology, Rigshospitalet Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
44
|
Multiscale Characterization of Isotropic Pyrolytic Carbon Used for Mechanical Heart Valve Production. Processes (Basel) 2021. [DOI: 10.3390/pr9020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Usage of pyrolytic carbon (PyC) to produce mechanical heart valves (MHVs) has led to heart valve replacement being a very successful procedure. Thus, the mechanical properties of employed materials for MHV production are fundamental to obtain the required characteristics of biocompatibility and wear resistance. In this study, two deposition methods of PyC were compared through a multiscale approach, performing three-point bending tests and nanoindentation tests. Adopted deposition processes produced materials that were slightly different. Significant differences were found at the characteristic scale lengths of the deposited layers. Setting changes of the deposition process permitted obtaining PyC characterized by a more uniform microstructure, conferring to the bulk material superior mechanical properties.
Collapse
|
45
|
Gulbulak U, Gecgel O, Ertas A. A deep learning application to approximate the geometric orifice and coaptation areas of the polymeric heart valves under time - varying transvalvular pressure. J Mech Behav Biomed Mater 2021; 117:104371. [PMID: 33610020 DOI: 10.1016/j.jmbbm.2021.104371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/20/2022]
Abstract
Machine learning and deep learning frameworks have been presented as a substitute for lengthy computational analysis, such as finite element analysis, computational fluid dynamics, and fluid-structure interaction. In this study, our objective was to apply a deep learning framework to predict the geometric orifice (GOA) and the coaptation areas (CA) of the polymeric heart valves under the time-varying transvalvular pressure. 377 different valve geometries were generated by changing the control coordinates of the attachment and the belly curve. The GOA and the CA values were obtained at the maximum and the minimum transvalvular pressure, respectively. The results showed that the applied framework can accurately predict the GOA and the CA despite being trained with a relatively smaller data set. The presented framework can reduce the required time of the lengthy FE frameworks.
Collapse
Affiliation(s)
- Utku Gulbulak
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Ozhan Gecgel
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Atila Ertas
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
46
|
Marro M, Kossar AP, Xue Y, Frasca A, Levy RJ, Ferrari G. Noncalcific Mechanisms of Bioprosthetic Structural Valve Degeneration. J Am Heart Assoc 2021; 10:e018921. [PMID: 33494616 PMCID: PMC7955440 DOI: 10.1161/jaha.120.018921] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioprosthetic heart valves (BHVs) largely circumvent the need for long‐term anticoagulation compared with mechanical valves but are increasingly susceptible to deterioration and reduced durability with reoperation rates of ≈10% and 30% at 10 and 15 years, respectively. Structural valve degeneration is a common, unpreventable, and untreatable consequence of BHV implantation and is frequently characterized by leaflet calcification. However, 25% of BHV reoperations attributed to structural valve degeneration occur with minimal leaflet mineralization. This review discusses the noncalcific mechanisms of BHV structural valve degeneration, highlighting the putative roles and pathophysiological relationships between protein infiltration, glycation, oxidative and mechanical stress, and inflammation and the structural consequences for surgical and transcatheter BHVs.
Collapse
Affiliation(s)
- Matteo Marro
- Department of Surgery Columbia University New York NY.,Division of Cardiac Surgery, Department of Surgical Sciences Città della Salute e della Scienza di Torino/University of Turin Italy
| | | | - Yingfei Xue
- Department of Surgery Columbia University New York NY
| | | | - Robert J Levy
- Department of Pediatrics The Children's Hospital of Philadelphia PA
| | | |
Collapse
|
47
|
Bartoli-Leonard F, Aikawa E. Heart Valve Disease: Challenges and New Opportunities. Front Cardiovasc Med 2020; 7:602271. [PMID: 33195488 PMCID: PMC7642276 DOI: 10.3389/fcvm.2020.602271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023] Open
Affiliation(s)
- Francesca Bartoli-Leonard
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
48
|
Burkert J, Kochová P, Tonar Z, Cimrman R, Blassová T, Jashari R, Fiala R, Špatenka J. The time has come to extend the expiration limit of cryopreserved allograft heart valves. Cell Tissue Bank 2020; 22:161-184. [PMID: 32583302 DOI: 10.1007/s10561-020-09843-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Despite the wide choice of commercial heart valve prostheses, cryopreserved semilunar allograft heart valves (C-AHV) are required, and successfully transplanted in selected groups of patients. The expiration limit (EL) criteria have not been defined yet. Most Tissue Establishments (TE) use the EL of 5 years. From physiological, functional, and surgical point of view, the morphology and mechanical properties of aortic and pulmonary roots represent basic features limiting the EL of C-AHV. The aim of this work was to review methods of AHV tissue structural analysis and mechanical testing from the perspective of suitability for EL validation studies. Microscopic structure analysis of great arterial wall and semilunar leaflets tissue should clearly demonstrate cells as well as the extracellular matrix components by highly reproducible and specific histological staining procedures. Quantitative morphometry using stereological grids has proved to be effective, as the exact statistics was feasible. From mechanical testing methods, tensile test was the most suitable. Young's moduli of elasticity, ultimate stress and strain were shown to represent most important AHV tissue mechanical characteristics, suitable for exact statistical analysis. C-AHV are prepared by many different protocols, so as each TE has to work out own EL for C-AHV.
Collapse
Affiliation(s)
- Jan Burkert
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Petra Kochová
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic. .,NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Technická 8, Pilsen, Czech Republic.
| | - Zbyněk Tonar
- NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Technická 8, Pilsen, Czech Republic.,Department of Histology and Embryology, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Karlovarská 48, 301 66, Pilsen, Czech Republic
| | - Robert Cimrman
- NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Technická 8, Pilsen, Czech Republic
| | - Tereza Blassová
- Department of Histology and Embryology, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Karlovarská 48, 301 66, Pilsen, Czech Republic
| | - Ramadan Jashari
- European Homograft Bank, Saint-Jean Clinic, Rue du Meridien 100, 1210, Brussels, Belgium
| | - Radovan Fiala
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Jaroslav Špatenka
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|