1
|
Panda P, Mohanty S, Gouda SR, Mohapatra R. Advances in nanomedicine for retinal drug delivery: overcoming barriers and enhancing therapeutic outcomes. J Drug Target 2025; 33:587-611. [PMID: 39694681 DOI: 10.1080/1061186x.2024.2443144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Nanomedicine offers a promising avenue for improving retinal drug delivery, effectively addressing challenges associated with ocular diseases like age-related macular degeneration and diabetic retinopathy. Nanoparticles, with their submicron size and customisable surface properties, enable enhanced permeability and retention within retinal tissues, supporting sustained drug release and minimising systemic side effects. Nanostructured scaffolds further provide a supportive environment for retinal cell growth and tissue regeneration, crucial for treating degenerative conditions. Additionally, advanced nanodevices facilitate real-time monitoring and controlled drug release, marking significant progress in retinal therapy. This study reviews recent advancements in nanomedicine for retinal drug delivery, critically analysing design innovations, therapeutic benefits, and limitations of these systems. By advancing nanotechnology integration in ocular therapies, this field holds strong potential for overcoming current barriers, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Shreyashree Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Sangita Ranee Gouda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Raîche-Marcoux G, Méthot S, Tchatchouang A, Bettoli C, Maranda C, Loiseau A, Proulx S, Rochette PJ, Genin E, Boisselier É. Localization of fluorescent gold nanoparticles throughout the eye after topical administration. Front Med (Lausanne) 2025; 12:1557611. [PMID: 40177275 PMCID: PMC11961937 DOI: 10.3389/fmed.2025.1557611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
The human eye is a highly intricate sensory organ. When a condition requiring treatment occurs, eyedrops, which represent 90% of all ophthalmic treatments, are most frequently used. However, eyedrops are associated with low bioavailability, with less than 0.02% of therapeutic molecules reaching the anterior chamber. Thus, new delivery systems are required to ensure sufficient drug concentration over time at the target site. Gold nanoparticles are a promising avenue for drug delivery; however, they can be difficult to track in biological systems. Fluorescent gold nanoparticles, which have the same ultrastability and biocompatibility as their nonfluorescent counterpart, could act as an effective imaging tool to study their localization throughout the eye after administration. Thus, this study (1) synthesized and characterized fluorescent gold nanoparticles, (2) validated similar properties between nonfluorescent and fluorescent gold nanoparticles, and (3) determined their localization in the eye after topical application on ex vivo rabbit eyes. The fluorescent gold nanoparticles were synthesized, characterized, and identified in the cornea, iris, lens, and posterior segment of rabbit eyeballs, demonstrating tremendous potential for future drug delivery research.
Collapse
Affiliation(s)
- Gabrielle Raîche-Marcoux
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sébastien Méthot
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ange Tchatchouang
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Camille Bettoli
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Cloé Maranda
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alexis Loiseau
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Proulx
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Patrick J. Rochette
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Emilie Genin
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, France
| | - Élodie Boisselier
- CHU de Québec Research Center-Université Laval and Department of Ophthalmology and Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
de Souza AP, Bastos AP, da Fonseca FN, Pandolfi JR, Costamilan CADVLR, Marques MG. Polyethyleneimine-mediated gene transfection in porcine fetal fibroblasts. Anim Reprod 2024; 21:e20240026. [PMID: 39629009 PMCID: PMC11614137 DOI: 10.1590/1984-3143-ar2024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 12/06/2024] Open
Abstract
Polyethylenimine (PEI) has been explored as an efficient non-viral system for delivering genes to cells; however, there were no protocols for its use in porcine fetal fibroblasts (PFF). Therefore, we compared different concentrations of FITC-PEI (0.625, 1.25, 2.5, 5, 10, 20, 40, or 80 µg/mL) and incubation times (30 min, 1 h, or 2 h). It was observed that the incubation time did not affect the internalization of the PEI-FITC and that 30 min was sufficient to capture the complex. The concentrations higher than 10 µg/mL could reach many marked PFF (>90%). Then, two PEI concentrations were tested, 10 or 40 µg/mL, combined with an N/P of 2 with the pmhyGENIE-5 for 30 min. The percentage of PFF-GFP positive was similar between the PEI concentrations in the evaluation time points (24 h, 48 h, and 72 h). However, 40 µg/mL caused higher membrane damage rates. Thus, it can be concluded that concentrations between 10 - 80 µg/ml of PEI promote high incorporation rates, even in periods as short as 30 minutes. Furthermore, it can be stated that the transfection condition used in Polyplexes 1 (10 µg/mL of PEI and 37.5 µg/mL of pmhyGENIE-5 for 30 min) efficiently produces genetically edited porcine fetal fibroblasts with low cell damage.
Collapse
Affiliation(s)
| | - Ana Paula Bastos
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Suínos e Aves, Concórdia, SC, Brasil
| | | | - José Rodrigo Pandolfi
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Suínos e Aves, Concórdia, SC, Brasil
| | | | - Mariana Groke Marques
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Suínos e Aves, Concórdia, SC, Brasil
- Pós-Graduação em Produção e Sanidade Animal, Instituto Federal Catarinense, Concórdia, SC, Brasil
| |
Collapse
|
4
|
Maurya R, Vikal A, Narang RK, Patel P, Kurmi BD. Recent advancements and applications of ophthalmic gene therapy strategies: A breakthrough in ocular therapeutics. Exp Eye Res 2024; 245:109983. [PMID: 38942133 DOI: 10.1016/j.exer.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Over the past twenty years, ocular gene therapy has primarily focused on addressing diseases linked to various genetic factors. The eye is an ideal candidate for gene therapy due to its unique characteristics, such as easy accessibility and the ability to target both corneal and retinal conditions, including retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), and Stargardt disease. Currently, literature documents 33 clinical trials in this field, with the most promising results emerging from trials focused on LCA. These successes have catalyzed further research into other ocular conditions such as glaucoma, AMD, RP, and choroideremia. The effectiveness of gene therapy relies on the efficient delivery of genetic material to specific cells, ensuring sustained and optimal gene expression over time. Viral vectors have been widely used for this purpose, although concerns about potential risks such as immune reactions and genetic mutations have led to the development of non-viral vector systems. Preliminary laboratory research and clinical investigations have shown a connection between vector dosage and the intensity of immune response and inflammation in the eye. The method of administration significantly influences these reactions, with subretinal delivery resulting in a milder humoral response compared to the intravitreal route. This review discusses various ophthalmic diseases, including both corneal and retinal conditions, and their underlying mechanisms, highlighting recent advances and applications in ocular gene therapies.
Collapse
Affiliation(s)
- Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India; ISF College of Pharmacy & Research, Rattian Road, Moga, 142048, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
5
|
Khan MS, Buzdar SA, Hussain R, Alouffi A, Aleem MT, Farhab M, Javid MA, Akhtar RW, Khan I, Almutairi MM. Cobalt Iron Oxide (CoFe 2O 4) Nanoparticles Induced Toxicity in Rabbits. Vet Sci 2023; 10:514. [PMID: 37624302 PMCID: PMC10459303 DOI: 10.3390/vetsci10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The market for nanoparticles has grown significantly over the past few decades due to a number of unique qualities, including antibacterial capabilities. It is still unclear how nanoparticle toxicity works. In order to ascertain the toxicity of synthetic cobalt iron oxide (CoFe2O4) nanoparticles (CIONPs) in rabbits, this study was carried out. Sixteen rabbits in total were purchased from the neighborhood market and divided into two groups (A and B), each of which contained eight rabbits. The CIONPs were synthesized by the co-precipitation method. Crystallinity and phase identification were confirmed by X-ray diffraction (XRD). The average size of the nanoparticles (13.2 nm) was calculated by Scherrer formula (Dhkl = 0.9 λ/β cos θ) and confirmed by TEM images. The saturation magnetization, 50.1 emug-1, was measured by vibrating sample magnetometer (VSM). CIONPs were investigated as contrast agents (CA) for magnetic resonance images (MRI). The relaxivity (r = 1/T) of the MRI was also investigated at a field strength of 0.35 T (Tesla), and the ratio r2/r1 for the CIONPs contrast agent was 6.63. The CIONPs were administrated intravenously into the rabbits through the ear vein. Blood was collected at days 5 and 10 post-exposure for hematological and serum biochemistry analyses. The intensities of the signal experienced by CA with CIONPs were 1427 for the liver and 1702 for the spleen. The treated group showed significantly lower hematological parameters, but significantly higher total white blood cell counts and neutrophils. The results of the serum biochemistry analyses showed significantly higher and lower quantities of different serum biochemical parameters in the treated rabbits at day 10 of the trial. At the microscopic level, different histological ailments were observed in the visceral organs of treated rabbits, including the liver, kidneys, spleen, heart, and brain. In conclusion, the results revealed that cobalt iron oxide (CoFe2O4) nanoparticles induced toxicity via alterations in multiple tissues of rabbits.
Collapse
Affiliation(s)
- Muhammad Shahid Khan
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Muhammad Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Farhab
- Key Laboratory of Animal Genetic Engineering, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Arshad Javid
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Rana Waseem Akhtar
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan;
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang Sub-Campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Çağdaş Tunalı B, Çelik E, Budak Yıldıran FA, Türk M. Delivery of
siRNA
using hyaluronic acid‐guided nanoparticles for downregulation of
CXCR4. Biopolymers 2023; 114:e23535. [PMID: 36972328 DOI: 10.1002/bip.23535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
In this study, effective transport of small interfering RNAs (siRNAs) via hyaluronic acid (HA) receptor was carried out with biodegradable HA and low-molecular weight polyethyleneimine (PEI)-based transport systems. Gold nanoparticles (AuNPs) capable of giving photothermal response, and their conjugates with PEI and HA, were also added to the structure. Thus, a combination of gene silencing, photothermal therapy and chemotherapy, has been accomplished. The synthesized transport systems ranged in size, between 25 and 690 nm. When the particles were applied at a concentration of 100 μg mL-1 (except AuPEI NPs) in vitro, cell viability was above 50%. Applying radiation after the conjugate/siRNA complex (especially those containing AuNP) treatment, increased the cytotoxic effect (decrease in cell viability of 37%, 54%, 13%, and 15% for AuNP, AuPEI NP, AuPEI-HA, and AuPEI-HA-DOX, respectively) on the MDA-MB-231 cell line. CXCR4 gene silencing via the synthesized complexes, especially AuPEI-HA-DOX/siRNA was more efficient in MDA-MB-231 cells (25-fold decrease in gene expression) than in CAPAN-1 cells. All these results demonstrated that the synthesized PEI-HA and AuPEI-HA-DOX conjugates can be used as siRNA carriers that are particularly effective, especially in the treatment of breast cancer.
Collapse
Affiliation(s)
- Beste Çağdaş Tunalı
- Division of Bioengineering, Institute of Science, Hacettepe University, Ankara, Turkey
- Department of Bioengineering, Engineering Faculty, Kırıkkale University, Kırıkkale, Turkey
| | - Eda Çelik
- Division of Bioengineering, Institute of Science, Hacettepe University, Ankara, Turkey
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Ankara, Turkey
| | | | - Mustafa Türk
- Department of Bioengineering, Engineering Faculty, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
7
|
Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The existing diagnosis and treatment modalities have major limitations related to their precision and capability to understand several stages of disease development. A superior therapeutic system consists of a multifunctional approach in early diagnosis of the disease with a simultaneous progressive cure, using a precise medical approach towards complex treatment. These challenges can be addressed via nanotheranostics and explore suitable approaches to improve health care. Nanotechnology in combination with theranostics as an unconventional platform paved the way for developing novel strategies and modalities leading to diagnosis and therapy for complex disease conditions, ranging from acute to chronic levels. Among the metal nanoparticles, gold nanoparticles are being widely used for theranostics due to their inherent non-toxic nature and plasmonic properties. The unique optical and chemical properties of plasmonic metal nanoparticles along with theranostics have led to a promising era of plausible early detection of disease conditions, and they enable real-time monitoring with enhanced non-invasive or minimally invasive imaging of several ailments. This review aims to highlight the improvement and advancement brought to nanotheranostics by gold nanoparticles in the past decade. The clinical use of the metal nanoparticles in nanotheranostics is explained, along with the future perspectives on addressing the key applications related to diagnostics and therapeutics, respectively. The scope of gold nanoparticles and their realistic potential to design a sophisticated theranostic system is discussed in detail, along with their implications in clinical advancements which are the needs of the hour. The review concluded with the challenges, opportunities, and implications on translational potential of using gold nanoparticles in nanotheranostics.
Collapse
|
8
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
9
|
Craciun BF, Clima L, Bostiog DI, Silion M, Calin M, Peptanariu D, Pinteala M. Multilayer gold nanoparticles as non-viral vectors for targeting MCF-7 cancer cells. BIOMATERIALS ADVANCES 2022; 144:213201. [PMID: 36436432 DOI: 10.1016/j.bioadv.2022.213201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Cargocomplexes play a vital role in non-viral delivery methods due to their capacity to target certain cells (or cells through the cell-division cycle) and inject their (macro)molecular "cargo" into them. The development of gene carriers that can efficiently transport and deliver genetic material into human-targeted cells with minimal toxicity is an important challenge in the field. The present study reports the straightforward preparation and testing of a modular non-viral gene carrier based on AuNPs. The design, synthesis, and in vitro evaluation of multilayer gold nanoparticles (AuNPs) as non-viral gene carriers with high transfection efficiency, reduced cytotoxicity for targeted therapeutic delivery of nucleic acids to MCF-7 cancer cells are presented. The developed non-viral vector is based on supramolecular "host-guest" inclusion complexes of β-cyclodextrin, positioned on the AuNPs surface over a layer of polyethyleneimine, and adamantyl moiety from polyethylene glycol conjugated decapeptide (WXEAAYQRFL). First, the β-CD functionalized PEI was utilized as the template for the synthesis of AuNPs of controlled sizes. The reaction produced small AuNPs with a cationic layer which is known for efficient condensation of genetic material and β-CD suitable for the decoration of the carrier with targeting moieties using "host-guest" inclusion complexation. Subsequently, adamantine-polyethylene glycol conjugated decapeptide was attached to the AuNPs. The in vitro results have validated the ability of the proposed systems to selectively target tumor cells with high efficacy and low toxicity due to the unique affinity of the aptamer-functionalized nanoparticles toward breast cancer cells. The findings of this work demonstrated that the proposed modular system may represent a very promising platform for the AuNP-based non-viral vectors mainly due to the versatility of the system, which allows for the facile exchange of several types of ligands for improving the targeting properties and transfection efficiency, or for providing better protection from the endocytotic systems.
Collapse
Affiliation(s)
- Bogdan Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Lilia Clima
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Denisse-Iulia Bostiog
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Mihaela Silion
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Manuela Calin
- Medical and Pharmaceutical BioNanoTechnologies Laboratory (BioNanoMed), "Nicolae Simionescu" Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| |
Collapse
|
10
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
11
|
Mohan RR, Kempuraj D, D'Souza S, Ghosh A. Corneal stromal repair and regeneration. Prog Retin Eye Res 2022; 91:101090. [PMID: 35649962 PMCID: PMC11926992 DOI: 10.1016/j.preteyeres.2022.101090] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023]
Abstract
The cornea is a specialized, transparent, avascular, immune-privileged, and heavily innervated tissue that affords 2/3rd of refraction to the eye. Ocular injuries, infections, and genetic factors affect corneal function and cause vision impairment. Presently, a variety of laser/non-laser surgeries, immunosuppressants, and/or corneal transplants are predominantly used to revive sight in human patients. The development of novel, precision-guided, and tissue-targeted non-surgical therapies promoting corneal repair and regeneration based on mechanistic understanding is of paramount importance to reduce the impact of global blindness. Research over the past decade revealed that modulation of pathological signaling pathways and factors by a variety of therapeutic delivery methods effectively treats corneal disorders including corneal scar/haze, inflammation, and angiogenesis in various pre-clinical animal models and are primed for human translation. This review discusses recent advances in the areas of corneal repair, restoration, and regeneration. Herein, we provide an overview of evolving approaches and therapeutic modalities that have shown great promise in reviving corneal transparency and function through the use of small drug molecules, gene therapy, nanomedicine, stem cells, trophic factors, exosomes, stromal equivalents, bioengineered stromal scaffolds, tissue adhesives, and 3D bioprinting.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, Karnatka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnatka, India
| |
Collapse
|
12
|
Recent Advancements in Molecular Therapeutics for Corneal Scar Treatment. Cells 2022; 11:cells11203310. [PMID: 36291182 PMCID: PMC9600986 DOI: 10.3390/cells11203310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The process of corneal wound healing is complex and induces scar formation. Corneal scarring is a leading cause of blindness worldwide. The fibrotic healing of a major ocular wound disrupts the highly organized fibrillar collagen arrangement of the corneal stroma, rendering it opaque. The process of regaining this organized extracellular matrix (ECM) arrangement of the stromal layer to restore corneal transparency is complicated. The surface retention capacity of ocular drugs is poor, and there is a large gap between suitable corneal donors and clinical requirements. Therefore, a more efficient way of treating corneal scarring is needed. The eight major classes of interventions targeted as therapeutic tools for healing scarred corneas include those based on exosomes, targeted gene therapy, microRNAs, recombinant viral vectors, histone deacetylase inhibitors, bioactive molecules, growth factors, and nanotechnology. This review highlights the recent advancements in molecular therapeutics to restore a cornea without scarring. It also provides a scope to overcome the limitations of present studies and perform robust clinical research using these strategies.
Collapse
|
13
|
Krishnaswami V, Sugumaran A, Perumal V, Manavalan M, Kondeti DP, Basha SK, Ahmed MA, Kumar M, Vijayaraghavalu S. Nanoformulations - Insights Towards Characterization Techniques. Curr Drug Targets 2022; 23:1330-1344. [PMID: 35996238 DOI: 10.2174/1389450123666220822094248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Drug-loaded novel nanoformulations are gaining importance due to their versatile properties compared to conventional pharmaceutical formulations. Nanomaterials, apart from their multifactorial benefits, have a wider scope in the prevention, treatment, and diagnosis of cancer. Understanding the chemistry of drug-loaded nano-formulations to elicit its behaviour both at molecular and systemic levels is critical in the present scenario. Drug-loaded nanoformulations are controlled by their size, shape, surface chemistry, and release behavior. The major pharmaceutical drug loaded nanocarriers reported for anticancer drug delivery for the treatment of various forms of cancers such as lung cancer, liver cancer, breast cancer, colon cancer, etc include nanoparticles, nanospheres, nanodispersions, nanocapsules, nanomicelles, cubosomes, nanoemulsions, liposomes and niosomes. The major objectives in designing anticancer drug-loaded nanoformulations are to manage the particle size/morphology correlating with the drug release to fulfil the specific objectives. Hence, nano characterizations are very critical both at in vitro and in vivo levels. OBJECTIVE The main objective of this review paper is to summarise the major characterization techniques used for the characterization of drug-loaded nanoformulations. Even though information on characterization techniques of various nano-formulations is available in the literature, it is scattered. The proposed review will provide a comprehensive understanding of nanocharacterization techniques. CONCLUSION To conclude, the proposed review will provide insights towards the different nano characterization techniques along with their recent updates, such as particle size, zeta potential, entrapment efficiency, in vitro release studies (chromatographic HPLC, HPTLC, and LC-MS/MS analysis), EPR analysis, X-ray diffraction analysis, thermal analysis, rheometric, morphological analysis etc. Additionally, the challenges encountered by the nano characterization techniques will also be discussed.
Collapse
Affiliation(s)
- Venkateshwaran Krishnaswami
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Venkatesan Perumal
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Murugan Manavalan
- Department of Biomedical Engineering, Noorul Islam Center for Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - Durga Prasad Kondeti
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Shaik Kamil Basha
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Mohammed Akmal Ahmed
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | | |
Collapse
|
14
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
15
|
Wang Y, Wang C. Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye. Pharmaceutics 2022; 14:pharmaceutics14061150. [PMID: 35745723 PMCID: PMC9229693 DOI: 10.3390/pharmaceutics14061150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good biocompatibility, adhesion, and propermeation properties and have shown superior performance and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically present the research progress on novel eye drop delivery systems and provide a reference for the development of dosage form, clinical application, and commercial transformation of eye drops.
Collapse
|
16
|
Cosert KM, Kim S, Jalilian I, Chang M, Gates BL, Pinkerton KE, Van Winkle LS, Raghunathan VK, Leonard BC, Thomasy SM. Metallic Engineered Nanomaterials and Ocular Toxicity: A Current Perspective. Pharmaceutics 2022; 14:pharmaceutics14050981. [PMID: 35631569 PMCID: PMC9145553 DOI: 10.3390/pharmaceutics14050981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The ocular surface, comprised of the transparent cornea, conjunctiva, and protective tear film, forms a protective barrier defending deeper structures of the eye from particulate matter and mechanical trauma. This barrier is routinely exposed to a multitude of naturally occurring and engineered nanomaterials (ENM). Metallic ENMs are particularly ubiquitous in commercial products with a high risk of ocular exposure, such as cosmetics and sunscreens. Additionally, there are several therapeutic uses for metallic ENMs owing to their attractive magnetic, antimicrobial, and functionalization properties. The increasing commercial and therapeutic applications of metallic ENMs come with a high risk of ocular exposure with poorly understood consequences to the health of the eye. While the toxicity of metallic ENMs exposure has been rigorously studied in other tissues and organs, further studies are necessary to understand the potential for adverse effects and inform product usage for individuals whose ocular health may be compromised by injury, disease, or surgical intervention. This review provides an update of current literature on the ocular toxicity of metallic ENMs in vitro and in vivo, as well as the risks and benefits of therapeutic applications of metallic ENMs in ophthalmology.
Collapse
Affiliation(s)
- Krista M. Cosert
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Maggie Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Brooke L. Gates
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA; (K.E.P.); (L.S.V.W.)
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Laura S. Van Winkle
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA; (K.E.P.); (L.S.V.W.)
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX 77004, USA;
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX 77004, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (K.M.C.); (S.K.); (I.J.); (M.C.); (B.L.G.); (B.C.L.)
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-752-0926
| |
Collapse
|
17
|
Rotov AY, Romanov IS, Tarakanchikova YV, Astakhova LA. Application Prospects for Synthetic Nanoparticles in Optogenetic Retinal Prosthetics. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Karthik V, Poornima S, Vigneshwaran A, Raj DPRDD, Subbaiya R, Manikandan S, Saravanan M. Nanoarchitectonics is an emerging drug/gene delivery and targeting strategy -a critical review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Gupta S, Sinha NR, Martin LM, Keele LM, Sinha PR, Rodier JT, Landreneau JR, Hesemann NP, Mohan RR. Long-Term Safety and Tolerability of BMP7 and HGF Gene Overexpression in Rabbit Cornea. Transl Vis Sci Technol 2021; 10:6. [PMID: 34383876 PMCID: PMC8362627 DOI: 10.1167/tvst.10.10.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Tissue-targeted localized BMP7+HGF genes delivered into the stroma via nanoparticle effectively treats corneal fibrosis and rehabilitates transparency in vivo without acute toxicity. This study evaluated the long-term safety and tolerability of BMP7+HGF nanomedicine for the eye in vivo. Methods One eye each of 36 rabbits received balanced salt solution (group 1, naïve; n = 12), naked vector with polyethylenimine-conjugated gold nanoparticles (PEI2-GNP; group 2, naked-vector; n = 12), or BMP7+HGF genes with PEI2-GNP (group 3, BMP7+HGF; n = 12) via a topical delivery technique. Safety and tolerability measurements were performed by clinical biomicroscopy in live rabbits at predetermined time intervals up to 7 months. Corneal tissues were collected at 2 months and 7 months after treatment and subjected to histology, immunofluorescence, and quantitative real-time PCR analyses. Results Clinical ophthalmic examinations and modified MacDonald-Shadduck scores showed no significant changes in corneal thickness (P = 0.3389), tear flow (P = 0.2121), intraocular pressure (P = 0.9958), epithelial abrasion, or ocular abnormality. Slit-lamp, stereo, confocal, and specular biomicroscopy showed no signs of blepharospasm chemosis, erythema, epiphora, abnormal ocular discharge, or changes in epithelium, stroma, and endothelium after BMP7+HGF therapy for up to 7 months, as compared with control groups. Throughout the 7-month period, no significant changes were recorded in endothelial density (P = 0.9581). Histological and molecular data were well corroborated with the subjective clinical analyses and showed no differences in the naïve, naked-vector, and BMP7+HGF groups. Conclusions Localized BMP7+HGF therapy is a safe, tolerable, and innovative modality for the treatment of corneal fibrosis. Translational Relevance Nanoparticle-mediated BMP7+HGF combination gene therapy has the potential to treat corneal fibrosis in vivo without short- or long-term toxicity.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Landon M Keele
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jason T Rodier
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - James R Landreneau
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.,One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
20
|
Qian Y, Zhang J, Xu R, Li Q, Shen Q, Zhu G. Nanoparticles based on polymers modified with pH-sensitive molecular switch and low molecular weight heparin carrying Celastrol and ferrocene for breast cancer treatment. Int J Biol Macromol 2021; 183:2215-2226. [PMID: 34097964 DOI: 10.1016/j.ijbiomac.2021.05.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Triple negative breast cancer (TNBC) metastasis is still one of the obstacles in clinical treatment, while highly-effective cancer drugs usually cannot be used for their hydrophobicity and comprehensive system toxicity. This study built a kind of pH-sensitive nanoparticles (PP/H NPs) constructed by poly (lactic-co-glycolic acid) modified with β-cyclodextrin (PLGA-β-CD), polyethyleneimine grafted with benzimidazole (PEI-BM) and low molecular weight heparin (LMWH) to delivery Celastrol (Cela) and ferrocene (Fc) for breast cancer therapy. PLGA-β-CD and PEI-BM were synthesized by amidation reaction, the amphipathic polymer nanoparticles with 108.37 ± 1.02 nm were self-assembled in water. After PP/H NPs treatment, the half maximal inhibitory concentration (IC50) decreased by 91% compared with Cela, and ROS level was also elevated. PP/H NPs led to substantial tumor inhibiting rate (TIR, 65.86%), utilized LMWH to strengthen the anti-metastasis effect of PP/H NPs. PP/H NPs took advantage of exogenous chemotherapeutics and endogenous ROS to inhibit tumor growth, and combined with LMWH to hinder breast cancer metastasis.
Collapse
Affiliation(s)
- Yun Qian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guofu Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
21
|
Almowalad J, Somani S, Laskar P, Meewan J, Tate RJ, Mullin M, Dufès C. Lactoferrin-Bearing Gold Nanocages for Gene Delivery in Prostate Cancer Cells in vitro. Int J Nanomedicine 2021; 16:4391-4407. [PMID: 34234433 PMCID: PMC8256823 DOI: 10.2147/ijn.s316830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gold nanocages have been widely used as multifunctional platforms for drug and gene delivery, as well as photothermal agents for cancer therapy. However, their potential as gene delivery systems for cancer treatment has been reported in combination with chemotherapeutics and photothermal therapy, but not in isolation so far. The purpose of this work was to investigate whether the conjugation of gold nanocages with the cancer targeting ligand lactoferrin, polyethylene glycol and polyethylenimine could lead to enhanced transfection efficiency on prostate cancer cells in vitro, without assistance of external stimulation. METHODS Novel lactoferrin-bearing gold nanocages conjugated to polyethylenimine and polyethylene glycol have been synthesized and characterized. Their transfection efficacy and cytotoxicity were assessed on PC-3 prostate cancer cell line following complexation with a plasmid DNA. RESULTS Lactoferrin-bearing gold nanocages, alone or conjugated with polyethylenimine and polyethylene glycol, were able to condense DNA at conjugate:DNA weight ratios 5:1 and higher. Among all gold conjugates, the highest gene expression was obtained following treatment with gold complex conjugated with polyethylenimine and lactoferrin, at weight ratio 40:1, which was 1.71-fold higher than with polyethylenimine. This might be due to the increased DNA cellular uptake observed with this conjugate, by up to 8.65-fold in comparison with naked DNA. CONCLUSION Lactoferrin-bearing gold nanocages conjugates are highly promising gene delivery systems to prostate cancer cells.
Collapse
Affiliation(s)
- Jamal Almowalad
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Margaret Mullin
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
22
|
Zhou Y, Zhang Y, Lin W, Kesseli SJ, Huang L, Zhao Y, Yao X, Huang K, Han G. Wavelength-Selective Light-Controlled Stepwise Photolysis from Single Gold Nanoparticles. Adv Healthc Mater 2021; 10:e2000321. [PMID: 33034955 DOI: 10.1002/adhm.202000321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Indexed: 11/09/2022]
Abstract
Light-controlled sequential photolysis from a single nanoparticle is a challenge for controlled release. A wavelength-selective sequential photolysis from single gold nanoparticles is reported for the first time. In particular, it is also demonstrated that such nanoparticle can be used to sequentially release two payloads in living cells. In principle, this system can be extended to sequential release of multiple different types of payloads by rational design of diverse photocleavable linkers. It is expected that this work can provide a new tool for better orderly controlling cellular events that request high spatiotemporal manners.
Collapse
Affiliation(s)
- Yekui Zhou
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Yuanwei Zhang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Samuel J. Kesseli
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Yang Zhao
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Xikuang Yao
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
23
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
24
|
Mohan RR, Martin LM, Sinha NR. Novel insights into gene therapy in the cornea. Exp Eye Res 2021; 202:108361. [PMID: 33212142 PMCID: PMC9205187 DOI: 10.1016/j.exer.2020.108361] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Corneal disease remains a leading cause of impaired vision world-wide, and advancements in gene therapy continue to develop with promising success to prevent, treat and cure blindness. Ideally, gene therapy requires a vector and gene delivery method that targets treatment of specific cells or tissues and results in a safe and non-immunogenic response. The cornea is a model tissue for gene therapy due to its ease of clinician access and immune-privileged state. Improvements in the past 5-10 years have begun to revolutionize the approach to gene therapy in the cornea with a focus on adeno-associated virus and nanoparticle delivery of single and combination gene therapies. In addition, the potential applications of gene editing (zinc finger nucleases [ZNFs], transcription activator-like effector nucleases [TALENs], Clustered Regularly Interspaced Short Palindromic Repeats/Associated Systems [CRISPR/Cas9]) are rapidly expanding. This review focuses on recent developments in gene therapy for corneal diseases, including promising multiple gene therapy, while outlining a practical approach to the development of such therapies and potential impediments to successful delivery of genes to the cornea.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-health Vision Research Center, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
25
|
Mobaraki M, Soltani M, Zare Harofte S, L. Zoudani E, Daliri R, Aghamirsalim M, Raahemifar K. Biodegradable Nanoparticle for Cornea Drug Delivery: Focus Review. Pharmaceutics 2020; 12:E1232. [PMID: 33353013 PMCID: PMC7765989 DOI: 10.3390/pharmaceutics12121232] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
During recent decades, researchers all around the world have focused on the characteristic pros and cons of the different drug delivery systems for cornea tissue change for sense organs. The delivery of various drugs for cornea tissue is one of the most attractive and challenging activities for researchers in biomaterials, pharmacology, and ophthalmology. This method is so important for cornea wound healing because of the controllable release rate and enhancement in drug bioavailability. It should be noted that the delivery of various kinds of drugs into the different parts of the eye, especially the cornea, is so difficult because of the unique anatomy and various barriers in the eye. Nanoparticles are investigated to improve drug delivery systems for corneal disease. Biodegradable nanocarriers for repeated corneal drug delivery is one of the most attractive and challenging methods for corneal drug delivery because they have shown acceptable ability for this purpose. On the other hand, by using these kinds of nanoparticles, a drug could reside in various part of the cornea for longer. In this review, we summarized all approaches for corneal drug delivery with emphasis on the biodegradable nanoparticles, such as liposomes, dendrimers, polymeric nanoparticles, niosomes, microemulsions, nanosuspensions, and hydrogels. Moreover, we discuss the anatomy of the cornea at first and gene therapy at the end.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875‐4413, Iran;
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Madjid Soltani
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
- Computational Medicine Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
| | - Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Elham L. Zoudani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Roshanak Daliri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Mohamadreza Aghamirsalim
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Kaamran Raahemifar
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, Pennsylvania, PA 16801, USA
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
- Electrical and Computer Engineering Department, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
26
|
Pandey P, Pandey G, Narayan R. Polyethylenimine-mediated controlled synthesis of Prussian blue-gold nanohybrids for biomedical applications. J Biomater Appl 2020; 36:26-35. [PMID: 33297833 DOI: 10.1177/0885328220975575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report on polyethylenimine (PEI)-mediated synthesis of Prussian blue nanoparticles (PBNPs) and gold nanoparticles (AuNPs); the formation of PBNP-AuNP nanohybrids with a remarkable change in Prussian blue character as a function of gold cation concentration was also considered. It was shown that PEI-protected polycrystalline PBNPs can be synthesized in an acidic medium from the precursor potassium ferricyanide [K3Fe(CN)6] at 60 °C. Since PEI also enables the controlled formation of gold nanoparticles (AuNPs) in the presence of formaldehyde under ambient conditions, nanohybrids of PBNPs and AuNPs were prepared. The formation of AuNPs was recorded over a wide range of PEI concentrations, which allowed control over polymeric cation capping of the AuNPs. PEI concentration-dependent enhancement/quenching of fluorescence/resonance Rayleigh scattering was useful for non-enzymatic detection of serum glucose levels. The resonance Rayleigh scattering intensity of PBNPs was several-fold higher than that of AuNPs and acted as a potent quencher of fluorescence. At an optimal concentration of PEI, AuNPs allowed an increase in the fluorescence signal as function of glucose concentration; the quenching ability of PB was demonstrated to be a function of the glucose concentration. This method is efficient for fast glucose sensing and offers a wider linear dynamic range, 0-10 mM, which is useful for non-enzymatic detection of serum glucose levels.
Collapse
Affiliation(s)
- Prem Pandey
- Department of Chemistry, Indian Institute of Technology BHU Varanasi, Varanasi, India
| | - Govind Pandey
- Department of Pediatrics, King George Medical University, Lucknow, India
| | - Roger Narayan
- Biomedical Engineering, North Carolina State University, Raleigh, USA
| |
Collapse
|
27
|
Fu DJ, Allen EHA, Hickerson RP, Leslie Pedrioli DM, McLean WHI. Development of a Corneal Bioluminescence Mouse for Real-Time In Vivo Evaluation of Gene Therapies. Transl Vis Sci Technol 2020; 9:44. [PMID: 33442498 PMCID: PMC7774114 DOI: 10.1167/tvst.9.13.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose The purpose of this study was to develop and characterize a novel bioluminescence transgenic mouse model that facilitates rapid evaluation of genetic medicine delivery methods for inherited and acquired corneal diseases. Methods Corneal expression of the firefly luciferase transgene (luc2) was achieved via insertion into the Krt12 locus, a type I intermediate filament keratin that is exclusively expressed in the cornea, to generate the Krt12luc2 mouse. The transgene includes a multiple target cassette with human pathogenic mutations in K3 and K12. Results The Krt12luc2 mouse exclusively expresses luc2 in the corneal epithelium under control of the keratin K12 promoter. The luc2 protein is enzymatically active, can be readily visualized, and exhibits a symmetrically consistent readout. Moreover, structural integrity of the corneal epithelium is preserved in mice that are heterozygous for the luc2 transgene (Krt12+/luc2). Conclusions This novel Krt12luc2 mouse model represents a potentially ideal in vivo system for evaluating the efficacies of cornea-targeting gene therapies and for establishing and/or validating new delivery modalities. Importantly, the multiple targeting cassette that is included in the Luc2 transgene will greatly reduce mouse numbers required for in vivo therapy evaluation.
Collapse
Affiliation(s)
- Dun Jack Fu
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Edwin H. A. Allen
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Robyn P. Hickerson
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Deena M. Leslie Pedrioli
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Department of Molecular Mechanisms of Disease, University of Zürich Hospital, Zürich, Switzerland
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
28
|
Rodier JT, Tripathi R, Fink MK, Sharma A, Korampally M, Gangopadhyay S, Giuliano EA, Sinha PR, Mohan RR. Linear Polyethylenimine-DNA Nanoconstruct for Corneal Gene Delivery. J Ocul Pharmacol Ther 2020; 35:23-31. [PMID: 30699061 DOI: 10.1089/jop.2018.0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE This study investigated the efficiency and potential toxicity of a linear 22-kDa polyethylenimine (PEI)-DNA nanoconstruct for delivering genes to corneal cells and the effects of PEI nitrogen-to-DNA phosphate (N:P) ratio on gene transfer efficiency in vitro and in vivo. METHODS A gel retardation assay, zeta potential measurement, bright-field microscopy, transfection with green fluorescent protein (GFP), immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were used to characterize the physicochemical and biological properties and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and reactive oxygen species (ROS) assay for cytotoxicity of the linear PEI-DNA nanoconstruct using in vitro cultured primary human corneal fibroblast and in vivo mouse models. RESULTS Of the several evaluated N:P ratios, the highest gene transfection efficiency achieved without any notable cytotoxicity was observed at an N:P ratio of 30:1 (N:P 30). In vivo gene transfer studies revealed substantial GFP gene delivery into the corneas of mice 3 days after a single 5-min topical application without any significant adverse ocular effects. Slit-lamp biomicroscope ophthalmic examination of the mouse exposed to the linear PEI-DNA nanoconstruct showed no evidence of hyperemia (redness), corneal edema, ocular inflammation, or epiphora (excessive tearing). CONCLUSIONS The 22-kDa linear PEI-DNA nanoconstruct is an efficient and well-tolerated vector for corneal gene therapy in vitro and in vivo and could be used as a platform for developing novel gene-based nanomedicine approaches for corneal diseases.
Collapse
Affiliation(s)
- Jason T Rodier
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 2 Mason Eye Institute, School of Medicine & Vision, University of Missouri, Columbia, Missouri
| | - Ratnakar Tripathi
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Michael K Fink
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Ajay Sharma
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Madhuri Korampally
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 4 Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri
| | - Shubhra Gangopadhyay
- 4 Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri
| | - Elizabeth A Giuliano
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Prashant R Sinha
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| | - Rajiv R Mohan
- 1 Research Divison, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- 2 Mason Eye Institute, School of Medicine & Vision, University of Missouri, Columbia, Missouri
- 3 One-Health One-Medicine Ophthalmology Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
29
|
Vicente-Pascual M, Gómez-Aguado I, Rodríguez-Castejón J, Rodríguez-Gascón A, Muntoni E, Battaglia L, del Pozo-Rodríguez A, Solinís Aspiazu MÁ. Topical Administration of SLN-Based Gene Therapy for the Treatment of Corneal Inflammation by De Novo IL-10 Production. Pharmaceutics 2020; 12:pharmaceutics12060584. [PMID: 32586018 PMCID: PMC7355708 DOI: 10.3390/pharmaceutics12060584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 01/13/2023] Open
Abstract
One of the main challenges in gene therapy is the issue of delivery, and it is especially relevant for the success of gene therapy in the cornea. In the present work, eye drops containing biocompatible non-viral vectors based on solid lipid nanoparticles (SLNs) as gene delivery systems to induce the expression of interleukin 10 (IL-10) were designed to address the treatment of corneal inflammation. Two kinds of SLNs combined with different ligands (protamine, dextran, or hyaluronic acid (HA)) and formulated with polyvinyl alcohol (PVA) were prepared. SLN-based vectors were characterized in terms of size, adhesiveness, viscosity, and pH, before topical administration to wild type and IL-10 knock out (KO) mice. The formulations showed a homogenous particle size below 400 nm and a positive surface charge to favor bioadhesion; the incorporation of PVA improved the corneal penetration. After three days of treatment by topical instillation, SLN-based vectors mainly transfected corneal epithelial cells, HA-formulations being the most effective ones. IL-10 was capable of reaching even the endothelial layer. Corneal sections showed no histological change and formulations seemed to be well tolerated after repeated topical administration. These promising results highlight the possible contribution of non-viral gene augmentation therapy to the future clinical approach of corneal gene therapy.
Collapse
Affiliation(s)
- Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
| | - Elisabetta Muntoni
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy; (E.M.); (L.B.)
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy; (E.M.); (L.B.)
| | - Ana del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
- Correspondence: (A.d.P.-R.); (M.Á.S.A.)
| | - María Ángeles Solinís Aspiazu
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.V.-P.); (I.G.-A.); (J.R.-C.); (A.R.-G.)
- Correspondence: (A.d.P.-R.); (M.Á.S.A.)
| |
Collapse
|
30
|
Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. NANOMATERIALS 2020; 10:nano10061183. [PMID: 32560474 PMCID: PMC7353451 DOI: 10.3390/nano10061183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
Abstract
Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70–80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer.
Collapse
|
31
|
Tripathi R, Giuliano EA, Gafen HB, Gupta S, Martin LM, Sinha PR, Rodier JT, Fink MK, Hesemann NP, Chaurasia SS, Mohan RR. Is sex a biological variable in corneal wound healing? Exp Eye Res 2019; 187:107705. [PMID: 31226339 PMCID: PMC9250696 DOI: 10.1016/j.exer.2019.107705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023]
Abstract
Wound healing differs significantly between men and women in a tissue-dependent manner. Dermal wounds heal faster in women whereas mucosal wounds heal faster in men. However, the effect of sex as a variable in corneal wound healing is largely unknown. The primary objective of this study was to test whether sex is a biological variable in corneal wound healing activated by the trauma or injury using an established in vivo rabbit model with male and female New Zealand White rabbits. Corneal wounds in rabbits were produced by a single topical alkali (0.5N Sodium hydroxide) application. Serial slit-lamp, stereo biomicroscopy, and applanation tonometry evaluated corneal opacity, anterior segment ocular health, and intraocular pressure (IOP), respectively, at various times during the study. Fourteen days after alkali-wound, corneal tissues were collected after humane euthanasia to examine cellular and molecular wound healing parameters. Quantitative PCR (qPCR) and immunofluorescence were used to quantify changes in the extracellular modeling protein levels of alpha-smooth muscle actin (α-SMA), Fibronectin (FN), Collagen-I (Col-I), and Transforming growth factor beta 1 (TGFβ1) involved in corneal healing. Hematoxylin and Eosin (H&E) staining was used to study histopathological changes in morphology and TUNEL assay to evaluate levels of apoptotic cell death. Male and female rabbits showed no significant differences in corneal opacity (Fantes score) or intraocular pressure (IOP) values (9.5 ± 0.5 mm Hg) in live animals. Likewise, no statistically significant sex-based differences in the mRNA levels of α-SMA (male = 5.95 ± 0.21 fold vs. female = 5.32 ± 0.043), FN (male = 3.02 ± 0.24 fold vs. female = 3.23 ± 0.27), Col-I (male = 3.12 ± 0.37 fold vs. female = 3.31 ± 0.24), TGFβ1 (male = 1.65 ± 0.06 fold vs. female = 1.59 ± 0.053); and protein levels of α-SMA (male = 74.16 ± 4.6 vs. female = 71.58 ± 7.1), FN (male = 60.11 ± 4.6 vs. female = 57.41 ± 8.3), Col-I (male = 84.11 ± 2.8 vs. female = 84.55 ± 3.6), TGFβ1 (male = 11.61 ± 2.8 vs. female = 9.5 ± 3.04) were observed. Furthermore, H&E and TUNEL analyses found no statistically significant differences in cellular structures and apoptosis, respectively, in male vs. female corneas. Consistent with earlier reports, wounded corneas showed significantly increased levels of these parameters compared to the unwounded corneas. Our data suggest that sex is not a major biological variable during active early stages of corneal wound healing in rabbits in vivo.
Collapse
Affiliation(s)
- Ratnakar Tripathi
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Elizabeth A Giuliano
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| | - Hannah B Gafen
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Suneel Gupta
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Lynn M Martin
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Prashant R Sinha
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Jason T Rodier
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Mason Eye Institute, University of Missouri, Columbia, MO, United States
| | - Michael K Fink
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Nathan P Hesemann
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Mason Eye Institute, University of Missouri, Columbia, MO, United States
| | - Shyam S Chaurasia
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Center, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Mason Eye Institute, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
32
|
Gote V, Sikder S, Sicotte J, Pal D. Ocular Drug Delivery: Present Innovations and Future Challenges. J Pharmacol Exp Ther 2019; 370:602-624. [PMID: 31072813 DOI: 10.1124/jpet.119.256933] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 03/08/2025] Open
Abstract
Ocular drug delivery has always been a challenge for ophthalmologists and drug-delivery scientists due to the presence of various anatomic and physiologic barriers. Inimitable static and dynamic ocular barriers not only exclude the entry of xenobiotics but also discourage the active absorption of therapeutic agents. Designing an ideal delivery scheme should include enhanced drug bioavailability and controlled release of drug at the site of action, which can overcome various ocular barriers. Conventional ophthalmic medications include the use of topical eye drops and intravitreal injections of anti-vascular endothelial growth factor agent for treatment of anterior and posterior segment disorders, respectively. Current inventions for anterior ocular segment disorders such as punctum plugs, ocular implants, drug-eluting contact lenses, and ocular iontophoresis represent state-of-the-art inventions for sustained and controlled drug release. Parallel efforts for ocular drug delivery technologies for back of the eye disorders have resulted in the approval of various intravitreal implants. Novel drug-delivery technologies, including nanoparticles, nanomicelles, dendrimers, microneedles, liposomes, and nanowafers, are increasingly studied for anterior and posterior disorders. To achieve patient compliance for back of the eye disorders, novel approaches for noninvasive delivery of potent therapeutic agents are on the rise. In this review article, we discuss past successes, present inventions, and future challenges in ocular drug-delivery technologies. This expert opinion also discusses the future challenges for ocular drug-delivery systems and the clinical translatable potential of nanotechnology from benchtop to bedside.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Sadia Sikder
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Jeff Sicotte
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
33
|
Adewale OB, Davids H, Cairncross L, Roux S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int J Toxicol 2019; 38:357-384. [PMID: 31462100 DOI: 10.1177/1091581819863130] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Potential applications of gold nanoparticles in biomedicine have increasingly been reported on account of the ease of synthesis, bioinert characteristics, optical properties, chemical stability, high biocompatibility, and specificity. The safety of these particles remains a great concern, as there are differences among toxicity study protocols used. This article focuses on integrating results of research on the toxicological behavior of gold nanoparticles. This can be influenced by the physicochemical properties, including size, shape, surface charge, and other factors, such as methods used in the synthesis of gold nanoparticles, models used, dose, in vivo route of administration, and interference of gold nanoparticles with in vitro toxicity assay systems. Several researchers have reported toxicological studies with regard to gold nanoparticles, using various in vitro, in vivo, and in ovo models. The conflicting results concerning the toxicity of gold nanoparticles should thus be addressed to justify the safe use of gold nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Olusola B Adewale
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa.,Department of Chemical Sciences, Biochemistry program, Afe Babalola University, Ado Ekiti, Nigeria
| | - Hajierah Davids
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Lynn Cairncross
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
34
|
Ocular gene therapies in clinical practice: viral vectors and nonviral alternatives. Drug Discov Today 2019; 24:1685-1693. [PMID: 31173914 DOI: 10.1016/j.drudis.2019.05.038] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/17/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Ocular gene therapy has entered into clinical practice. Although viral vectors are currently the best option to replace and/or correct genes, the optimal method to deliver these treatments to the retinal pigment epithelial (RPE) cells and/or photoreceptor cells remains to be improved to increase transduction efficacy and reduce iatrogenic risks. Beyond viral-mediated gene replacement therapies, nonviral gene delivery approaches offer the promise of sustained fine-tuned expression of secreted therapeutic proteins that can be adapted to the evolving stage of the disease course and can address more common nongenetic retinal diseases, such as age-related macular degeneration (AMD). Here, we review current gene therapy strategies for ocular diseases, with a focus on clinical stage products.
Collapse
|
35
|
Li Z, Liu Y, Huang X, Hu C, Wang H, Yuan L, Brash JL, Chen H. One-step preparation of gold nanovectors using folate modified polyethylenimine and their use in target-specific gene transfection. Colloids Surf B Biointerfaces 2019; 177:306-312. [DOI: 10.1016/j.colsurfb.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 11/28/2022]
|
36
|
Rai M, Grupenmacher A, Ingle AP, Paralikar P, Gupta I, Alves M. Evolving nanotechnological trends in the management of mycotic keratitis. IET Nanobiotechnol 2019; 13:464-470. [PMCID: PMC8676592 DOI: 10.1049/iet-nbt.2018.5416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 09/11/2023] Open
Abstract
The alarming increase in global burden of various corneal diseases in general and mycotic keratitis in particular has raised up a major concern for its treatment. Mycotic keratitis is one of the most serious infections among the various ocular diseases. The proper diagnosis and effective treatment strategies remain a great challenge for ophthalmologists. The inefficacy and failure of conventional treatments have generated need to develop alternative approaches for the treatment of mycotic keratitis. Considering the promising applications of nanotechnology in biomedical area, it is believed that various nanomaterials can be effectively used in the management of mycotic keratitis. This review focuses on worldwide burden of various corneal diseases including mycotic keratitis and the role of nanotechnology in its treatment. In addition, safety and toxicological issues are also discussed.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravati444602MaharashtraIndia
| | | | - Avinash P. Ingle
- Department of BiotechnologyEngineering School of LorenaUniversity of Sao PauloLorenaSPBrazil
| | - Priti Paralikar
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravati444602MaharashtraIndia
| | - Indarchand Gupta
- Nanobiotechnology LaboratoryDepartment of BiotechnologySant Gadge Baba Amravati UniversityAmravati444602MaharashtraIndia
- Department of BiotechnologyInstitute of ScienceAurangabad431004MaharashtraIndia
| | - Monica Alves
- Department of OphthalmologyUniversity of CampinasSPBrazil
| |
Collapse
|
37
|
Maulvi FA, Patil RJ, Desai AR, Shukla MR, Vaidya RJ, Ranch KM, Vyas BA, Shah SA, Shah DO. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. Acta Biomater 2019; 86:350-362. [PMID: 30625414 DOI: 10.1016/j.actbio.2019.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/09/2018] [Accepted: 01/03/2019] [Indexed: 01/03/2023]
Abstract
Contact lenses are ideally suited for extended drug delivery to the ocular tissues, but incorporation of any particulate system affects the critical properties of the contact lens. Timolol loading by the conventional soaking method does not significantly alter the critical properties of the contact lens. However, there are challenges of low drug loading and high burst release. This research work aimed to investigate the effect of gold nanoparticles (GNPs) on loading and its release kinetics from the contact lens using the soaking method. In one approach, GNPs were loaded into the timolol soaking solution (GNPs-SS), and in another approach, GNPs were incorporated into the contact lenses (GNPs-CL) during fabrication. The contact lenses were soaked at two different concentrations of timolol (i.e., 2 mg/ml and 4 mg/ml). Swelling and optical transmittance were not significantly affected by the presence of GNPs in the contact lenses. A significant uptake/loading of timolol using the GNPs in both the approaches was observed. The in vitro flux data showed no significant improvement in the release rate profiles of timolol when using both approaches. However, the in vivo study in the rabbit tear fluid showed high timolol concentration with the GNPs-laden contact lens at all timepoints in comparison to the soaked contact lenses without GNPs. The in vivo pharmacodynamic study in rabbits showed a 2 mmHg average fall in intraocular pressure (72 h) using the GNPs-laden contact lenses, while the soaked contact lenses without GNPs and eye drops solution (0.5 %w/v) showed 2 mmHg. The drug distribution study in the ocular tissue showed a significant improvement in the drug deposition with the GNPs-laden contact lenses in the ciliary muscle and conjunctiva. This study successfully demonstrated the potential of GNPs to enhance the uptake of drug from the drug soaking solution to treat glaucoma without compromising the critical properties of contact lens. STATEMENT OF SIGNIFICANCE: In this study, we have overcome the limitation of the conventional soaking method of low drug loading and high burst release from the contact lenses. We have investigated the effect of gold nanoparticles (GNPs) on the timolol loading and its release kinetics from the contact lenses. The study revealed the potential of GNPs to enhance the uptake of timolol from the timolol soaking solution to treat glaucoma without compromising the critical lens properties.
Collapse
|
38
|
Zhao X, Song W, Chen Y, Liu S, Ren L. Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation. Biomater Sci 2019; 7:51-62. [DOI: 10.1039/c8bm01054d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AuNP/miR-133b can be released from cornea regeneration materials and entered into stromal cells to inhibit cornea scar formation.
Collapse
Affiliation(s)
- Xuan Zhao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Wenjing Song
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yawei Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou 510006
- P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education
- South China University of Technology
| | - Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
39
|
Sharma D, Arora S, dos Santos Rodrigues B, Lakkadwala S, Banerjee A, Singh J. Chitosan-Based Systems for Gene Delivery. FUNCTIONAL CHITOSAN 2019:229-267. [DOI: 10.1007/978-981-15-0263-7_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Gupta S, Fink MK, Ghosh A, Tripathi R, Sinha PR, Sharma A, Hesemann NP, Chaurasia SS, Giuliano EA, Mohan RR. Novel Combination BMP7 and HGF Gene Therapy Instigates Selective Myofibroblast Apoptosis and Reduces Corneal Haze In Vivo. Invest Ophthalmol Vis Sci 2018; 59:1045-1057. [PMID: 29490341 PMCID: PMC5822743 DOI: 10.1167/iovs.17-23308] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose We tested the potential of bone morphogenic protein 7 (BMP7) and hepatocyte growth factor (HGF) combination gene therapy to treat preformed corneal fibrosis using established rabbit in vivo and human in vitro models. Methods Eighteen New Zealand White rabbits were used. Corneal fibrosis was produced by alkali injury. Twenty-four hours after scar formation, cornea received topically either balanced salt solution (BSS; n = 6), polyethylenimine-conjugated gold nanoparticle (PEI2-GNP)-naked plasmid (n = 6) or PEI2-GNP plasmids expressing BMP7 and HGF genes (n = 6). Donor human corneas were used to obtain primary human corneal fibroblasts and myofibroblasts for mechanistic studies. Gene therapy effects on corneal fibrosis and ocular safety were evaluated by slit-lamp microscope, stereo microscopes, quantitative real-time PCR, immunofluorescence, TUNEL, modified MacDonald-Shadduck scoring system, and Draize tests. Results PEI2-GNP–mediated BMP7+HGF gene therapy significantly decreased corneal fibrosis in live rabbits in vivo (Fantes scale was 0.6 in BMP7+HGF-treated eyes compared to 3.3 in −therapy group; P < 0.001). Corneas that received BMP7+HGF demonstrated significantly reduced mRNA levels of profibrotic genes: α-SMA (3.2-fold; P < 0.01), fibronectin (2.3-fold, P < 0.01), collagen I (2.1-fold, P < 0.01), collagen III (1.6-fold, P < 0.01), and collagen IV (1.9-fold, P < 0.01) compared to the −therapy corneas. Furthermore, BMP7+HGF-treated corneas showed significantly fewer myofibroblasts compared to the −therapy controls (83%; P < 0.001). The PEI2-GNP introduced >104 gene copies per microgram DNA of BMP7 and HGF genes. The recombinant HGF rendered apoptosis in corneal myofibroblasts but not in fibroblasts. Localized topical BMP7+HGF therapy showed no ocular toxicity. Conclusions Localized topical BMP7+HGF gene therapy treats corneal fibrosis and restores transparency in vivo mitigating excessive healing and rendering selective apoptosis in myofibroblasts.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.,One-Health One-Medicine Ophthalmology and Vision Research Center, University of Missouri Columbia, Missouri, United States
| | - Michael K Fink
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.,One-Health One-Medicine Ophthalmology and Vision Research Center, University of Missouri Columbia, Missouri, United States
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.,One-Health One-Medicine Ophthalmology and Vision Research Center, University of Missouri Columbia, Missouri, United States
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.,One-Health One-Medicine Ophthalmology and Vision Research Center, University of Missouri Columbia, Missouri, United States
| | - Ajay Sharma
- Chapman University School of Pharmacy, Irvine, California, United States
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Shyam S Chaurasia
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.,One-Health One-Medicine Ophthalmology and Vision Research Center, University of Missouri Columbia, Missouri, United States
| | - Elizabeth A Giuliano
- One-Health One-Medicine Ophthalmology and Vision Research Center, University of Missouri Columbia, Missouri, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.,One-Health One-Medicine Ophthalmology and Vision Research Center, University of Missouri Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, United States
| |
Collapse
|
41
|
Hossen MN, Murphy B, García-Hevia L, Bhattacharya R, Mukherjee P. Probing Cellular Processes Using Engineered Nanoparticles. Bioconjug Chem 2018; 29:1793-1808. [PMID: 29742344 PMCID: PMC6893851 DOI: 10.1021/acs.bioconjchem.8b00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticles, the building blocks of nanotechnology, have been widely utilized in various biomedical applications, such as detection, diagnosis, imaging, and therapy. However, another emerging, albeit under-represented, area is the employment of nanoparticles as tools to understand cellular processes (e.g., oxidative stress-induced signaling cascades). Such investigations have enormous potential to characterize a disease from a different perspective and unravel some new features that otherwise would have remained a mystery. In this review, we summarize the intrinsic biological properties of unmodified as well surface modified nanoparticles and discuss how such properties could be utilized to interrogate biological processes and provide a perspective for future evolution of this field.
Collapse
Affiliation(s)
- Md Nazir Hossen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Brennah Murphy
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Lorena García-Hevia
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, and University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
42
|
|
43
|
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev 2018; 39:302-327. [DOI: 10.1002/med.21509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Florence Masse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Mathieu Ouellette
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Guillaume Lamoureux
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Elodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| |
Collapse
|
44
|
Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018; 10:pharmaceutics10010028. [PMID: 29495528 PMCID: PMC5874841 DOI: 10.3390/pharmaceutics10010028] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed.
Collapse
|
45
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
46
|
Singh A, Abd AJ, Al-Mashahedah A, Kanwar JR. Corneal Haze, Refractive Surgery, and Implications for Choroidal Neovascularization. DRUG DELIVERY FOR THE RETINA AND POSTERIOR SEGMENT DISEASE 2018:439-477. [DOI: 10.1007/978-3-319-95807-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
47
|
Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles capped with benzalkonium chloride and poly (ethylene imine) for enhanced loading and skin permeability of 5-fluorouracil. Drug Dev Ind Pharm 2017; 43:1780-1791. [PMID: 28581826 DOI: 10.1080/03639045.2017.1339082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To enhance 5-fluorouracil (5-FU) permeability through the skin by loading onto gold nanoparticles (GNPs) capped with two cationic ligands, benzalkonium chloride (BC) or poly (ethylene imine) (PEI). Whereas 5-FU has excellent efficacy against many cancers, its poor permeability through biological membranes and several adverse effects limit its clinical benefits. BC and PEI were selected to stabilize GNPs and to load 5-FU through ionic interactions. METHODS 5-FU/BC-GNPs and 5-FU/PEI-GNPs were prepared at different 5-FU/ligand molar ratios and different pH values and were evaluated using different techniques. GNPs stability was tested as a function of salt concentration and storage time. 5-FU release from BC- and PEI-GNPs was evaluated as a function of solution pH. Ex vivo permeability studies of different 5-FU preparations were carried out using mice skin. RESULTS 5-FU-loaded GNPs size and surface charge were dependent on the 5-FU/ligand molar ratios. 5-FU entrapment efficiency and loading capacity were dependent on the used ligand, 5-FU/ligand molar ratio and solution pH. Maximum drug entrapment efficiency of 59.0 ± 1.7% and 46.0 ± 1.1% were obtained for 5-FU/BC-GNPs and 5-FU/PEI-GNPs, respectively. 5-FU-loaded GNPs had good stability against salinity and after storage for 4 months at room temperature and at 4 °C. In vitro 5-FU release was pH- and ligand-dependent where slower release was observed at higher pH and for 5-FU/BC-GNPs. 5-FU permeability through mice skin was significantly higher for drug-loaded GNPs compared with drug-ligand complex or drug aqueous solution. CONCLUSION Based on these results, BC- and PEI-GNPs might find applications as effective topical delivery systems of 5-FU.
Collapse
Affiliation(s)
- Mohamed A Safwat
- a Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt.,b Department of Pharmaceutics and Industrial Pharmacy , Deraya University , El-Minia , Egypt
| | - Ghareb M Soliman
- a Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt.,c Department of Pharmaceutics, Faculty of Pharmacy , University of Tabuk , Tabuk , Saudi Arabia
| | - Douaa Sayed
- d Department of Clinical Pathology, South Egypt Cancer Institute , Assiut University , Assiut , Egypt
| | - Mohamed A Attia
- a Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt
| |
Collapse
|
48
|
Bian F, Shin CS, Wang C, Pflugfelder SC, Acharya G, De Paiva CS. Dexamethasone Drug Eluting Nanowafers Control Inflammation in Alkali-Burned Corneas Associated With Dry Eye. Invest Ophthalmol Vis Sci 2017; 57:3222-30. [PMID: 27327581 PMCID: PMC4928693 DOI: 10.1167/iovs.16-19074] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose To evaluate the efficacy of a controlled release dexamethasone delivery system for suppressing inflammation in an ocular burn + desiccating stress (OB+DS) model. Methods Nanowafers (NW) loaded with Dexamethasone (Dex, 10 μg) or vehicles (2.5% Methylcellulose; MC) were fabricated using hydrogel template strategy. C57BL/6 mice were subjected to unilateral alkali ocular burn with concomitant desiccating stress for 2 or 5 days and topically treated either with 2 μL of 0.1% Dex or vehicle four times per day and compared with mice that had MC-NW or Dex-NW placed on their corneas. Clinical parameters were evaluated daily. Mice were euthanized after 2 or 5 days. Quantitative PCR evaluated the expression of inflammatory cytokines IL-1β and IL-6 and matrix metalloproteinases (MMP) in whole cornea lysates. Myeloperoxidase activity (MPO) was measured using a commercial kit in cornea lysates. Results Both Dex drop and Dex-NW groups had significantly lower corneal opacity scores compared with their vehicles. Both Dex drops and Dex-NW significantly decreased expression of IL-1β, IL-6, and MMP-9 RNA transcripts compared with vehicle drops or wafers 2 and 5 days after the initial lesion. A significant lower number of neutrophils was found in both Dex treatment groups and this was accompanied by decreased MPO activity compared with vehicle controls. Conclusions Dex-NW has efficacy equal to Dex drops in preserving corneal clarity and decreasing expression of MMPs and inflammatory cytokines of the corneas of mice subjected to an OB+DS model.
Collapse
|
49
|
Oliveira AV, Rosa da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1275-1289. [PMID: 28532005 DOI: 10.1016/j.msec.2017.04.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
The success of gene therapy relies on efficient gene transfer and stable transgene expression. The in vivo efficiency is determined by the delivery vector, route of administration, therapeutic gene, and target cells. While some requirements are common to several strategies, others depend on the target disease and transgene product. Consequently, it is unlikely that a single system is suitable for all applications. This review examines current gene therapy strategies, focusing on non-viral approaches and the use of natural polymers with the eye, and particularly the retina, as their gene delivery target.
Collapse
Affiliation(s)
- Ana V Oliveira
- Center for Biomedical Research (CBMR), University of Algarve, Faro 8005-139, Portugal
| | - Ana M Rosa da Costa
- Department of Chemistry and Pharmacy, University of Algarve, Faro 8005-139, Portugal; Algarve Chemistry Research Centre (CIQA), University of Algarve, Faro 8005-139, Portugal
| | - Gabriela A Silva
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
50
|
Shahbazi R, Ozcicek I, Ozturk G, Ulubayram K. Functionalized gold nanoparticles manifested as potent carriers for nucleolar targeting. NANOTECHNOLOGY 2017; 28:025103. [PMID: 27924783 DOI: 10.1088/1361-6528/28/2/025103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is generally known that gold nanoparticles are localised in the cytoplasm and, if synthesised in small sizes or functionalized with specific proteins, they enter the cell nucleus. However, there is no report emphasising the importance of surface functionalization in their accumulation in the nucleolus. Here, for the first time in the literature, it is proposed that functionalization of gold nanoparticles with a thin layer of polyethyleneimine (PEI) spearheads them to the nucleolus of hard-to-transfect post-mitotic dorsal root ganglion neurones in a size-independent manner. As a potential for theranostic applications, it was found that functionalization with a thin layer of PEI affected the emission signal intensity of gold nanoparticles so that the cellular biodistribution of nanoparticles was visualised clearly under both confocal and two-photon microscopes.
Collapse
Affiliation(s)
- Reza Shahbazi
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|