1
|
Gaertner Z, Oram C, Schneeweis A, Schonfeld E, Bolduc C, Chen C, Dombeck D, Parisiadou L, Poulin JF, Awatramani R. Molecular and spatial transcriptomic classification of midbrain dopamine neurons and their alterations in a LRRK2 G2019S model of Parkinson's disease. eLife 2025; 13:RP101035. [PMID: 40353820 PMCID: PMC12068872 DOI: 10.7554/elife.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Several studies have revealed that midbrain dopamine (DA) neurons, even within a single neuroanatomical area, display heterogeneous properties. In parallel, studies using singlecell profiling techniques have begun to cluster DA neurons into subtypes based on their molecular signatures. Recent work has shown that molecularly defined DA subtypes within the substantia nigra (SNc) display distinctive anatomic and functional properties, and differential vulnerability in Parkinson's disease (PD). Based on these provocative results, a granular understanding of these putative subtypes and their alterations in PD models, is imperative. We developed an optimized pipeline for single-nuclear RNA sequencing (snRNA-seq) and generated a high-resolution hierarchically organized map revealing 20 molecularly distinct DA neuron subtypes belonging to three main families. We integrated this data with spatial MERFISH technology to map, with high definition, the location of these subtypes in the mouse midbrain, revealing heterogeneity even within neuroanatomical sub-structures. Finally, we demonstrate that in the preclinical LRRK2G2019S knock-in mouse model of PD, subtype organization and proportions are preserved. Transcriptional alterations occur in many subtypes including those localized to the ventral tier SNc, where differential expression is observed in synaptic pathways, which might account for previously described DA release deficits in this model. Our work provides an advancement of current taxonomic schemes of the mouse midbrain DA neuron subtypes, a high-resolution view of their spatial locations, and their alterations in a prodromal mouse model of PD.
Collapse
Affiliation(s)
- Zachary Gaertner
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
- Northwestern University, Dept of NeurobiologyEvanstonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Cameron Oram
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and NeurosurgeryMontrealCanada
| | - Amanda Schneeweis
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Elan Schonfeld
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
| | - Cyril Bolduc
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and NeurosurgeryMontrealCanada
| | - Chuyu Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Northwestern University Feinberg School of Medicine, Dept of PharmacologyChicagoUnited States
| | - Daniel Dombeck
- Northwestern University, Dept of NeurobiologyEvanstonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Loukia Parisiadou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Jean-Francois Poulin
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and NeurosurgeryMontrealCanada
| | - Rajeshwar Awatramani
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
2
|
Filippini A, Carini G, Barbon A, Gennarelli M, Russo I. Astrocytes carrying LRRK2 G2019S exhibit increased levels of clusterin chaperone via miR-22-5p and reduced ability to take up α-synuclein fibrils. Acta Neuropathol Commun 2025; 13:98. [PMID: 40355981 PMCID: PMC12067912 DOI: 10.1186/s40478-025-02015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Accumulating evidence highlights that dysfunction of astrocyte biology might contribute to Parkinson's disease (PD) onset and progression. Leucine-rich repeat kinase 2 (LRRK2), a gene linked to genetic and familial PD, has been reported to affect astrocytic-related functions, including the ingestion of alpha-synuclein (α-syn) aggregates. In this context, we recently showed that the extracellular chaperone clusterin (Clu) binds to and limits the uptake of alpha-syn fibrils by astrocytes. Thus, starting from these premises, we explored whether LRRK2 G2019S affects aggregated α-syn ingestion through the Clu-related pathway and the underlying molecular mechanisms. We first validated in our LRRK2 G2019S knock-in (KI) mouse strain that primary astrocytes exhibited an impaired ability to ingest fibrillary α-syn. Then, we investigated whether LRRK2 G2019S affects this pathway through the modulation of Clu. In this regard, we collected several results showing that LRRK2 regulates Clu levels in astrocytes. Specifically, brain slices and primary astrocytes from KI mice with the LRRK2 G2019S pathological mutation exhibit increased levels of Clu protein compared to their respective wild-type (WT). Accordingly, we observed an opposite effect in brain slices and primary astrocytes from LRRK2 knock-out (KO) mice in comparison to their respective WT. To gain insights into the molecular mechanism underlying LRRK2-dependent Clu modulation, we found that LRRK2 controls Clu expression at the translation level through the action of miR-22-5p. In addition, we demonstrated that treatment with miR-22-5p mimic improves the ability of LRRK2 G2019S-KI astrocytes to take up α-syn pffs. Taken together, our findings indicate that the LRRK2-Clu pathway is involved in the ingestion of a-syn fibrils and that the impairment of α-syn uptake in LRRK2 G2019S-KI astrocytes is associated to Clu levels. Future studies will allow us to understand whether the modulation of astrocytic LRRK2 G2019S-Clu pathway might attenuate the neuronal spreading of α-syn pathology in PD.
Collapse
Affiliation(s)
- Alice Filippini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giulia Carini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Isabella Russo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Lucchesi M, Biso L, Bonaso M, Longoni B, Buchignani B, Battini R, Santorelli FM, Doccini S, Scarselli M. Mitochondrial Dysfunction in Genetic and Non-Genetic Parkinson's Disease. Int J Mol Sci 2025; 26:4451. [PMID: 40362688 PMCID: PMC12072996 DOI: 10.3390/ijms26094451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial dysfunction is a hallmark of Parkinson's disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations-accounting for ~10% of PD cases-that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence.
Collapse
Affiliation(s)
| | - Letizia Biso
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Marco Bonaso
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Biancamaria Longoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| | - Bianca Buchignani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Marco Scarselli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.B.); (B.L.); (B.B.); (M.S.)
| |
Collapse
|
4
|
Delgado-Goñi T, Connor-Robson N, Cioroch M, Paisey S, Marshall C, Lane EL, Hauton D, McCullagh J, Magill PJ, Cragg SJ, Mackay CE, Wade-Martins R, Klein JC. Dopamine D2 receptor upregulation in dorsal striatum in the LRRK2-R1441C rat model of early Parkinson's disease revealed by in vivo PET imaging. Sci Rep 2025; 15:15943. [PMID: 40335575 PMCID: PMC12059153 DOI: 10.1038/s41598-025-99580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
We conducted PET imaging with [18F]FDOPA and dopamine D2/3 receptor ligand [18F]fallypride in aged transgenic rats carrying human pathogenic LRRK2 R1441C or G2019S mutations. These rats have mild age-dependent deficits in dopamine release restricted to dorsal striatum despite no overt loss of dopamine neurons or dopamine content and demonstrate L-DOPA-responsive movement deficits.LRRK2 mutant rats displayed no deficit in [18F]FDOPA uptake, consistent with intact dopamine synthesis in striatal axons. However, LRRK2-R1441C rats demonstrated greater binding of [18F]fallypride than LRRK2-G2019S or non-transgenic controls, from a regionally selective increase in dorsal striatum. Immunocytochemical labelling post-mortem confirmed a greater density of D2 receptors in LRRK2-R1441C than other genotypes restricted to dorsal striatum, consistent with upregulation of D2-receptors as a compensatory response to the greater dopamine release deficit previously demonstrated in this genotype.These results show that [18F]fallypride PET imaging is sensitive to dysregulation of dopamine signalling in the LRRK2-R1441C rat, revealing upregulation of D2 receptors that parallels observations in human putamen in early sporadic PD. Future studies of candidate therapies could exploit this non-invasive approach to assess treatment efficacy.
Collapse
Affiliation(s)
- Teresa Delgado-Goñi
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Natalie Connor-Robson
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Milena Cioroch
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephen Paisey
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Heath Park, Cardiff University, Cardiff, Wales, UK
| | - Christopher Marshall
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Heath Park, Cardiff University, Cardiff, Wales, UK
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Peter J Magill
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Stephanie J Cragg
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Clare E Mackay
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Nguyen APT, Nguyen LTN, Stokke BA, Quinn CC. Roles of LRRK2 and its orthologs in protecting against neurodegeneration and neurodevelopmental defects. Front Cell Dev Biol 2025; 13:1569733. [PMID: 40371391 PMCID: PMC12076734 DOI: 10.3389/fcell.2025.1569733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
In humans, variants in the LRRK2 gene are the most prevalent risk factors for Parkinson's disease (PD). Whereas studies in model organisms have long indicated that the orthologs of the wild-type LRRK proteins protect against neurodegeneration, newer findings indicate that they also protect against neurodevelopmental defects. This normal role of the LRRK proteins can be disrupted by either gain-of-function (GOF) or loss-of-function (LOF) mutations, leading to neurodegeneration and neurodevelopmental defects. Here, we review the roles of the LRRK proteins and their orthologs in these processes, with a focus on autophagy as a common factor that may mediate both of these roles. We also highlight the potential for experiments in vertebrate and invertebrate model systems to synergistically inform our understanding of the role of LRRK proteins in protecting against neurological disorders.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | | | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
6
|
Wang S, Baumert R, Séjourné G, Sivadasan Bindu D, Dimond K, Sakers K, Vazquez L, Moore JL, Tan CX, Takano T, Rodriguez MP, Brose N, Bradley L, Lessing R, Soderling SH, La Spada AR, Eroglu C. PD-linked LRRK2 G2019S mutation impairs astrocyte morphology and synapse maintenance via ERM hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes are highly complex cells that mediate critical roles in synapse formation and maintenance by establishing thousands of direct contacts with synapses through their perisynaptic processes. Here, we found that the most common Parkinsonism gene mutation, LRRK2 G2019S, enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), components of the perisynaptic astrocyte processes in a subset of cortical astrocytes. The ERM hyperphosphorylation was accompanied by decreased astrocyte morphological complexity and reduced excitatory synapse density and function. Dampening ERM phosphorylation levels in LRRK2 G2019S mouse astrocytes restored both their morphology and the excitatory synapse density in the anterior cingulate cortex. To determine how LRRK2 mutation impacts Ezrin interactome, we used an in vivo BioID proteomic approach, and we found that astrocytic Ezrin interacts with Atg7, a master regulator of autophagy. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in LRRK2 G2019S astrocytes. Importantly, the Atg7 function is required to maintain proper astrocyte morphology. Our data provide a molecular pathway through which the LRRK2 G2019S mutation alters astrocyte morphology and synaptic density in a brain-region-specific manner.
Collapse
|
7
|
Chen C, Masotti M, Shepard N, Promes V, Tombesi G, Arango D, Manzoni C, Greggio E, Hilfiker S, Kozorovitskiy Y, Parisiadou L. LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. Mol Psychiatry 2025:10.1038/s41380-025-03030-z. [PMID: 40269187 DOI: 10.1038/s41380-025-03030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Haloperidol is used to manage psychotic symptoms in several neurological disorders through mechanisms that involve antagonism of dopamine D2 receptors that are highly expressed in the striatum. Significant side effects of haloperidol, known as extrapyramidal symptoms, lead to motor deficits similar to those seen in Parkinson's disease and present a major challenge in clinical settings. The underlying molecular mechanisms responsible for these side effects remain poorly understood. Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) has an essential role in striatal physiology and a known link to dopamine D2 receptor signaling. Here, we systematically explore convergent signaling of haloperidol and LRRK2 through pharmacological or genetic inhibition of LRRK2 kinase, as well as knock-in mouse models expressing pathogenic mutant LRRK2 with increased kinase activity. Behavioral assays show that LRRK2 kinase inhibition ameliorates haloperidol-induced motor changes in mice. A combination of electrophysiological and anatomical approaches reveals that LRRK2 kinase inhibition interferes with haloperidol-induced changes, specifically in striatal neurons of the indirect pathway. Proteomic studies and targeted intracellular pathway analyses demonstrate that haloperidol induces a similar pattern of intracellular signaling as increased LRRK2 kinase activity. Our study suggests that LRRK2 kinase plays a key role in striatal dopamine D2 receptor signaling underlying the undesirable motor side effects of haloperidol. This work opens up new therapeutic avenues for dopamine-related disorders, such as psychosis, also furthering our understanding of Parkinson's disease pathophysiology.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Meghan Masotti
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nathaniel Shepard
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Vanessa Promes
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Giulia Tombesi
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | | | - Loukia Parisiadou
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Mishra R, Upadhyay A. An update on mammalian and non-mammalian animal models for biomarker development in neurodegenerative disorders. Cell Mol Life Sci 2025; 82:147. [PMID: 40192808 PMCID: PMC11977071 DOI: 10.1007/s00018-025-05668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Neurodegeneration is one of the leading factor for death globally, affecting millions of people. Developing animal models are critical to understand biological processes and comprehend pathological hallmarks of neurodegenerative diseases. For decades, many animal models have served as excellent tools to determine the disease progression, develop diagnostic methods and design novel therapies against distinct pathologies. Here, we provide a comprehensive overview of both, mammalian and non-mammalian animal models, with a focus on three most common and aggressive neurodegenerative disorders: Alzheimer's disease, Parkinson's disease and Spinocerebellar ataxia-1. We highlight various approaches including transgene, gene transfer, and chemically-induced methods used to develop disease models. In particular, we discuss applications of both non-mammalian and mammalian contributions in research on neurodegeneration. It is exciting to learn the roles of animal models in disease pathomechanisms, identifying biomarkers and hence devising novel interventions to treat neuropathological conditions.
Collapse
Affiliation(s)
- Ribhav Mishra
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, 491002, India
| |
Collapse
|
9
|
Gan LH, Sun YM, Zhou XY, Qi ZY, Liu FT, Tang YL, Yu WB, Xiao BG, Wang J, Wu JJ. The homozygous LRRK2.p.N1437D point mutation mouse is a novel model of parkinsonism. NPJ Parkinsons Dis 2025; 11:61. [PMID: 40155632 PMCID: PMC11953335 DOI: 10.1038/s41531-025-00905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/26/2025] [Indexed: 04/01/2025] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2) gene is one of the most common genetic causes of autosomal dominant Parkinson's disease (PD) and a common genetic risk factor for sporadic PD. However, aged mice with common LRRK2 point mutations fail to exhibit age-related PD-associated behavioral and pathological impairments. We generated a novel mouse model harboring the LRRK2.p.N1437D point mutation (c.4309 A > G; NM_98578). Here, the homozygous N1437D mutation, but not the heterozygous mutation, led to an increase in the autophosphorylation, substrate phosphorylation, and GTP-binding capacity of LRRK2. Heterozygous N1437D mice also showed unaffected behavior and pathology while the homozygous mice exhibited PD-associated behavioral change at 25-26 months, dopamine system damage, lipofuscin accumulation, and lipid peroxidation in substantia nigra dopaminergic neurons at 26-27 months. The new N1437D point mutation mouse does not require LRRK2 overexpression and may better mimic the pathological characteristics of LRRK2 mutation in the ROC-COR region.
Collapse
Affiliation(s)
- Lin-Hua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yuan Qi
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Bo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bao-Guo Xiao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Ngo HKC, Srivastava A, Le H, Ayer SJ, Crotty GF, Schwarzschild MA, Bakshi R. Short-term lipopolysaccharide treatment leads to astrocyte activation in LRRK2 G2019S knock-in mice without loss of dopaminergic neurons. BMC Neurosci 2025; 26:19. [PMID: 40038582 PMCID: PMC11877714 DOI: 10.1186/s12868-025-00939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The G2019S mutation of LRRK2, which enhances kinase activity of the protein, confers a substantial risk of developing Parkinson's disease (PD). However, the mutation demonstrates incomplete penetrance, suggesting the involvement of other genetic or environmental modulating factors. Here, we investigated whether LRRK2 G2019S knock-in (KI) mice treated with the inflammogen lipopolysaccharide (LPS) could model LRRK2 PD. RESULTS We found that short-term (2 weeks) treatment with LPS did not result in the loss of dopaminergic neurons in either LRRK2 G2019S KI or wild-type (WT) mice. Compared with WT mice, LRRK2 G2019S-KI mice showed incomplete recovery from LPS-induced weight loss. In LRRK2 G2019S KI mice, LPS treatment led to upregulated phosphorylation of LRRK2 at the autophosphorylation site Serine 1292, which is known as a direct readout of LRRK2 kinase activity. LPS treatment caused a greater increase in the activated astrocyte marker glial fibrillary acidic protein (GFAP) in the striatum and substantia nigra of LRRK2 G2019S mice than in those of WT mice. The administration of caffeine, which was recently identified as a biomarker of resistance to developing PD in individuals with LRRK2 mutations, attenuated LPS-induced astrocyte activation specifically in LRRK2 G2019S KI mice. CONCLUSIONS Our findings suggest that 2 weeks of exposure to LPS is not sufficient to cause dopaminergic neuronal loss in LRRK2 G2019S KI mice but rather results in increased astrocyte activation, which can be ameliorated by caffeine.
Collapse
Affiliation(s)
- Hoang Kieu Chi Ngo
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Akriti Srivastava
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Hoang Le
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Samuel J Ayer
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Grace F Crotty
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Michael A Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02114, USA
| | - Rachit Bakshi
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran‐Laforet V, Elyaman W, Evans EE, Fitzgerald‐Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin‐Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2025; 21:e14291. [PMID: 39692624 PMCID: PMC11772715 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
|
12
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
13
|
Gaertner Z, Oram C, Schneeweis A, Schonfeld E, Bolduc C, Chen C, Dombeck D, Parisiadou L, Poulin JF, Awatramani R. Molecular and spatial transcriptomic classification of midbrain dopamine neurons and their alterations in a LRRK2 G2019S model of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597807. [PMID: 38895448 PMCID: PMC11185743 DOI: 10.1101/2024.06.06.597807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Several studies have revealed that midbrain dopamine (DA) neurons, even within a single neuroanatomical area, display heterogeneous properties. In parallel, studies using single cell profiling techniques have begun to cluster DA neurons into subtypes based on their molecular signatures. Recent work has shown that molecularly defined DA subtypes within the substantia nigra (SNc) display distinctive anatomic and functional properties, and differential vulnerability in Parkinson's disease (PD). Based on these provocative results, a granular understanding of these putative subtypes and their alterations in PD models, is imperative. We developed an optimized pipeline for single-nuclear RNA sequencing (snRNA-seq) and generated a high-resolution hierarchically organized map revealing 20 molecularly distinct DA neuron subtypes belonging to three main families. We integrated this data with spatial MERFISH technology to map, with high definition, the location of these subtypes in the mouse midbrain, revealing heterogeneity even within neuroanatomical sub-structures. Finally, we demonstrate that in the preclinical LRRK2G2019S knock-in mouse model of PD, subtype organization and proportions are preserved. Transcriptional alterations occur in many subtypes including those localized to the ventral tier SNc, where differential expression is observed in synaptic pathways, which might account for previously described DA release deficits in this model. Our work provides an advancement of current taxonomic schemes of the mouse midbrain DA neuron subtypes, a high-resolution view of their spatial locations, and their alterations in a prodromal mouse model of PD.
Collapse
Affiliation(s)
- Zachary Gaertner
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cameron Oram
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Amanda Schneeweis
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elan Schonfeld
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
| | - Cyril Bolduc
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Chuyu Chen
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Dombeck
- Northwestern University, Dept of Neurobiology, Evanston, IL 60201
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Loukia Parisiadou
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jean-Francois Poulin
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Rajeshwar Awatramani
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
14
|
Eo H, Kim S, Jung UJ, Kim SR. Alpha-Synuclein and Microglia in Parkinson's Disease: From Pathogenesis to Therapeutic Prospects. J Clin Med 2024; 13:7243. [PMID: 39685702 DOI: 10.3390/jcm13237243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor symptoms and non-motor features. A hallmark of PD is the misfolding and accumulation of alpha-synuclein (α-syn), which triggers neuroinflammation and drives neurodegeneration. Microglia, brain cells that play a central role in neuroinflammatory responses and help clear various unnecessary molecules within the brain, thus maintaining the brain's internal environment, respond to α-syn through mechanisms involving inflammation, propagation, and clearance. This review delves into the complex interplay between α-syn and microglia, elucidating how these interactions drive PD pathogenesis. Furthermore, we discuss emerging therapeutic strategies targeting the α-syn-microglia axis, with a focus on modulating microglial functions to mitigate neuroinflammation, enhance clearance, and prevent α-syn propagation, emphasizing their potential to slow PD progression.
Collapse
Affiliation(s)
- Hyemi Eo
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sehwan Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
15
|
Pattanayak R, Ekkatine R, Petit CM, Yacoubian TA. 14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity and toxicity. Hum Mol Genet 2024; 33:2071-2083. [PMID: 39324210 DOI: 10.1093/hmg/ddae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.
Collapse
Affiliation(s)
- Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, 720 20th Street South, Kaul 452, Birmingham, AL 35294, United States
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| |
Collapse
|
16
|
Torrecillas-Lopez M, Rivero-Pino F, Trigo P, Toscano-Sanchez R, Gonzalez-de la Rosa T, Villanueva A, Millan-Linares MC, Montserrat-de la Paz S, Claro-Cala CM. Immunomodulatory properties of hempseed oligopeptides in an LRRK2-associated Parkinson's disease animal model. Food Funct 2024; 15:11115-11128. [PMID: 39435853 DOI: 10.1039/d4fo03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with genetic factors like mutations in the LRRK2 gene being a key cause of late-onset autosomal dominant parkinsonism. Nutritional strategies, such as using bioactive peptides with anti-inflammatory properties from sources like hemp protein, are gaining interest as an alternative to pharmacological therapies. In this study, we used an LRRK2-associated PD mouse model to test the efficacy of a hempseed protein hydrolysate (HPH60A + 15F) with antioxidant and anti-inflammatory properties. Mice were given HPH60A + 15F (10 mg kg-1 day-1) orally for 7 days. After treatment, brain tissue and macrophages were analyzed to assess neuroinflammation markers. Additionally, the neuroavailable peptidome was characterized using an in vitro model simulating the intestinal and blood-brain barriers. The oral treatment has been shown to reduce protein aggregates of α-syn, CD68, iNOS, and COX2 in the brain. The treatment also significantly lowered TNF-α gene expression in the striatum, with a notable reduction in the gene expression of other pro-inflammatory cytokines in bone marrow-derived macrophages (BMDMs), such as IL-1β or IL-6. The peptide TVTAMNVVYALK was proposed as a potential highly active peptide, able to exert anti-inflammatory effects in the brain. The results have shown that HPH60A + 15F is capable of alleviating neuroinflammation by reducing the expression of pro-inflammatory cytokines, which could have promising effects in PD.
Collapse
Affiliation(s)
- Maria Torrecillas-Lopez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy
| | - Paula Trigo
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Rocio Toscano-Sanchez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Alvaro Villanueva
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - M Carmen Millan-Linares
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Carmen M Claro-Cala
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| |
Collapse
|
17
|
Xiong Y, Yu J. LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting. Trends Mol Med 2024; 30:982-996. [PMID: 39153957 PMCID: PMC11466701 DOI: 10.1016/j.molmed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of Parkinson's disease (PD) to date. Dysfunction in LRRK2 enzymatic activities and elevated protein levels are associated with the disease. How is LRRK2 activated, and what downstream molecular and cellular processes does LRRK2 regulate? Addressing these questions is crucial to decipher the disease mechanisms. In this review we focus on the upstream regulations and briefly discuss downstream substrates of LRRK2 as well as the cellular consequences caused by these regulations. Building on these basic findings, we discuss therapeutic strategies targeting LRRK2 and highlight the challenges in clinical trials. We further highlight the important questions that remains to be answered in the LRRK2 field.
Collapse
Affiliation(s)
- Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
18
|
Guevara CA, Alloo K, Gupta S, Thomas R, del Valle P, Magee AR, Benson DL, Huntley GW. Parkinson's LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress. Front Behav Neurosci 2024; 18:1445184. [PMID: 39328984 PMCID: PMC11425082 DOI: 10.3389/fnbeh.2024.1445184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Anxiety is a psychiatric non-motor symptom of Parkinson's that can appear in the prodromal period, prior to significant loss of midbrain dopamine neurons and motor symptoms. Parkinson's-related anxiety affects females more than males, despite the greater prevalence of Parkinson's in males. How stress, anxiety and Parkinson's are related and the basis for a sex-specific impact of stress in Parkinson's are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 (Lrrk2 G2019S) and Lrrk2 WT control mice. In humans, LRRK2 G2019S significantly elevates the risk of late-onset Parkinson's. To assess within-sex differences between Lrrk2 G2019S and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby Lrrk2 G2019S and Lrrk2 WT control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male Lrrk2 G2019S mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on Lrrk2 G2019S mice while significantly increasing latency to feed in Lrrk2 WT control mice. Female Lrrk2 G2019S mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female Lrrk2 G2019S mice was generally lower compared to stressed Lrrk2 WT mice, except for the nucleus accumbens of male Lrrk2 G2019S mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the Lrrk2 G2019S mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in some, but not all stress-related brain regions.
Collapse
Affiliation(s)
- Christopher A. Guevara
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kumayl Alloo
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Swati Gupta
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
| | - Romario Thomas
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
| | - Pamela del Valle
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George W. Huntley
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Afsheen S, Rehman AS, Jamal A, Khan N, Parvez S. Understanding role of pesticides in development of Parkinson's disease: Insights from Drosophila and rodent models. Ageing Res Rev 2024; 98:102340. [PMID: 38759892 DOI: 10.1016/j.arr.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.
Collapse
Affiliation(s)
- Saba Afsheen
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Shaney Rehman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
20
|
An J, Yang H, Park SM, Chwae YJ, Joe EH. The LRRK2-G2019S mutation attenuates repair of brain injury partially by reducing the release of osteopontin-containing monocytic exosome-like vesicles. Neurobiol Dis 2024; 197:106528. [PMID: 38740348 DOI: 10.1016/j.nbd.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Brain injury has been suggested as a risk factor for neurodegenerative diseases. Accordingly, defects in the brain's intrinsic capacity to repair injury may result in the accumulation of damage and a progressive loss of brain function. The G2019S (GS) mutation in LRRK2 (leucine rich repeat kinase 2) is the most prevalent genetic alteration in Parkinson's disease (PD). Here, we sought to investigate how this LRRK2-GS mutation affects repair of the injured brain. METHODS Brain injury was induced by stereotaxic injection of ATP, a damage-associated molecular pattern (DAMP) component, into the striatum of wild-type (WT) and LRRK2-GS mice. Effects of the LRRK2-GS mutation on brain injury and the recovery from injury were examined by analyzing the molecular and cellular behavior of neurons, astrocytes, and monocytes. RESULTS Damaged neurons express osteopontin (OPN), a factor associated with brain repair. Following ATP-induced damage, monocytes entered injured brains, phagocytosing damaged neurons and producing exosome-like vesicles (EVs) containing OPN through activation of the inflammasome and subsequent pyroptosis. Following EV production, neurons and astrocytes processes elongated towards injured cores. In LRRK2-GS mice, OPN expression and monocytic pyroptosis were decreased compared with that in WT mice, resulting in diminished release of OPN-containing EVs and attenuated elongation of neuron and astrocyte processes. In addition, exosomes prepared from injured LRRK2-GS brains induced neurite outgrowth less efficiently than those from injured WT brains. CONCLUSIONS The LRRK2-GS mutation delays repair of injured brains through reduced expression of OPN and diminished release of OPN-containing EVs from monocytes. These findings suggest that the LRRK2-GS mutation may promote the development of PD by delaying the repair of brain injury.
Collapse
Affiliation(s)
- Jiawei An
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Haijie Yang
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Sang Myun Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Yong-Joon Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Kyunggi-do 16499, Republic of Korea.
| |
Collapse
|
21
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell-autonomous role of leucine-rich repeat kinase in the protection of dopaminergic neuron survival. eLife 2024; 12:RP92673. [PMID: 38856715 PMCID: PMC11164531 DOI: 10.7554/elife.92673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Long Ma
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Youren Tong
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Jie Shen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
22
|
Guevara CA, Alloo K, Gupta S, Thomas R, Del Valle P, Magee AR, Benson DL, Huntley GW. Parkinson's LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597647. [PMID: 38895277 PMCID: PMC11185622 DOI: 10.1101/2024.06.05.597647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Anxiety is a psychiatric non-motor symptom of Parkinson's that can appear in the prodromal period, prior to significant loss of brainstem dopamine neurons and motor symptoms. Parkinson's-related anxiety affects females more than males, despite the greater prevalence of Parkinson's in males. How stress, anxiety and Parkinson's are related and the basis for a sex-specific impact of stress in Parkinson's are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 ( Lrrk2 G2019S ) and Lrrk2 WT control mice. In humans, LRRK2 G2019S significantly elevates the risk of late-onset Parkinson's. To assess within-sex differences between Lrrk2 G2019S and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby Lrrk2 G2019S and Lrrk2 WT control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male Lrrk2 G2019S mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on Lrrk2 G2019S mice while significantly increasing latency to feed in Lrrk2 WT control mice. Female Lrrk2 G2019S mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female Lrrk2 G2019S mice was generally lower compared to stressed Lrrk2 WT mice, except for the nucleus accumbens of male Lrrk2 G2019S mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the Lrrk2 G2019S mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in stress-related brain regions.
Collapse
|
23
|
Chen C, Masotti M, Shepard N, Promes V, Tombesi G, Arango D, Manzoni C, Greggio E, Hilfiker S, Kozorovitskiy Y, Parisiadou L. LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597594. [PMID: 38895420 PMCID: PMC11185612 DOI: 10.1101/2024.06.06.597594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Haloperidol is used to manage psychotic symptoms in several neurological disorders through mechanisms that involve antagonism of dopamine D2 receptors that are highly expressed in the striatum. Significant side effects of haloperidol, known as extrapyramidal symptoms, lead to motor deficits similar to those seen in Parkinson's disease and present a major challenge in clinical settings. The underlying molecular mechanisms responsible for these side effects remain poorly understood. Parkinson's disease-associated LRRK2 kinase has an important role in striatal physiology and a known link to dopamine D2 receptor signaling. Here, we systematically explore convergent signaling of haloperidol and LRRK2 through pharmacological or genetic inhibition of LRRK2 kinase, as well as knock-in mouse models expressing pathogenic mutant LRRK2 with increased kinase activity. Behavioral assays show that LRRK2 kinase inhibition ameliorates haloperidol-induced motor changes in mice. A combination of electrophysiological and anatomical approaches reveals that LRRK2 kinase inhibition interferes with haloperidol-induced changes, specifically in striatal neurons of the indirect pathway. Proteomic studies and targeted intracellular pathway analyses demonstrate that haloperidol induces a similar pattern of intracellular signaling as increased LRRK2 kinase activity. Our study suggests that LRRK2 kinase plays a key role in striatal dopamine D2 receptor signaling underlying the undesirable motor side effects of haloperidol. This work opens up new therapeutic avenues for dopamine-related disorders, such as psychosis, also furthering our understanding of Parkinson's disease pathophysiology.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Meghan Masotti
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nathaniel Shepard
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Vanessa Promes
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Giulia Tombesi
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | | | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers, New Jersey Medical School, NJ, USA
| | | | - Loukia Parisiadou
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
24
|
Wetzel A, Lei SH, Liu T, Hughes MP, Peng Y, McKay T, Waddington SN, Grannò S, Rahim AA, Harvey K. Dysregulated Wnt and NFAT signaling in a Parkinson's disease LRRK2 G2019S knock-in model. Sci Rep 2024; 14:12393. [PMID: 38811759 PMCID: PMC11137013 DOI: 10.1038/s41598-024-63130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Parkinson's disease (PD) is a progressive late-onset neurodegenerative disease leading to physical and cognitive decline. Mutations of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. LRRK2 is a complex scaffolding protein with known regulatory roles in multiple molecular pathways. Two prominent examples of LRRK2-modulated pathways are Wingless/Int (Wnt) and nuclear factor of activated T-cells (NFAT) signaling. Both are well described key regulators of immune and nervous system development as well as maturation. The aim of this study was to establish the physiological and pathogenic role of LRRK2 in Wnt and NFAT signaling in the brain, as well as the potential contribution of the non-canonical Wnt/Calcium pathway. In vivo cerebral Wnt and NFATc1 signaling activity was quantified in LRRK2 G2019S mutant knock-in (KI) and LRRK2 knockout (KO) male and female mice with repeated measures over 28 weeks, employing lentiviral luciferase biosensors, and analyzed using a mixed-effect model. To establish spatial resolution, we investigated tissues, and primary neuronal cell cultures from different brain regions combining luciferase signaling activity, immunohistochemistry, qPCR and western blot assays. Results were analyzed by unpaired t-test with Welch's correction or 2-way ANOVA with post hoc corrections. In vivo Wnt signaling activity in LRRK2 KO and LRRK2 G2019S KI mice was increased significantly ~ threefold, with a more pronounced effect in males (~ fourfold) than females (~ twofold). NFATc1 signaling was reduced ~ 0.5-fold in LRRK2 G2019S KI mice. Brain tissue analysis showed region-specific expression changes in Wnt and NFAT signaling components. These effects were predominantly observed at the protein level in the striatum and cerebral cortex of LRRK2 KI mice. Primary neuronal cell culture analysis showed significant genotype-dependent alterations in Wnt and NFATc1 signaling under basal and stimulated conditions. Wnt and NFATc1 signaling was primarily dysregulated in cortical and hippocampal neurons respectively. Our study further built on knowledge of LRRK2 as a Wnt and NFAT signaling protein. We identified complex changes in neuronal models of LRRK2 PD, suggesting a role for mutant LRRK2 in the dysregulation of NFAT, and canonical and non-canonical Wnt signaling.
Collapse
Affiliation(s)
- Andrea Wetzel
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Si Hang Lei
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tiansheng Liu
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Michael P Hughes
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yunan Peng
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tristan McKay
- Department of Life Sciences, Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, University College London, 86-96 Chenies Mews, London, WC1E 6HXZ, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone Grannò
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Rue Gabrielle-Perret Gentil 4, 1205, Geneva, Switzerland
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
25
|
Fang P, Yu LW, Espey H, Agirman G, Kazmi SA, Li K, Deng Y, Lee J, Hrncir H, Romero-Lopez A, Arnold AP, Hsiao EY. Sex-dependent interactions between prodromal intestinal inflammation and LRRK2 G2019S in mice promote endophenotypes of Parkinson's disease. Commun Biol 2024; 7:570. [PMID: 38750146 PMCID: PMC11096388 DOI: 10.1038/s42003-024-06256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.
Collapse
Affiliation(s)
- Ping Fang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lewis W Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hannah Espey
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulistan Agirman
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeen A Kazmi
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Li
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yongning Deng
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jamie Lee
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Arlene Romero-Lopez
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
26
|
Wang Y, Gao JZ, Sakaguchi T, Maretzky T, Gurung P, Narayanan NS, Short S, Xiong Y, Kang Z. LRRK2 G2019S Promotes Colon Cancer Potentially via LRRK2-GSDMD Axis-Mediated Gut Inflammation. Cells 2024; 13:565. [PMID: 38607004 PMCID: PMC11011703 DOI: 10.3390/cells13070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a serine-threonine protein kinase belonging to the ROCO protein family. Within the kinase domain of LRRK2, a point mutation known as LRRK2 G2019S has emerged as the most prevalent variant associated with Parkinson's disease. Recent clinical studies have indicated that G2019S carriers have an elevated risk of cancers, including colon cancer. Despite this observation, the underlying mechanisms linking LRRK2 G2019S to colon cancer remain elusive. In this study, employing a colitis-associated cancer (CAC) model and LRRK2 G2019S knock-in (KI) mouse model, we demonstrate that LRRK2 G2019S promotes the pathogenesis of colon cancer, characterized by increased tumor number and size in KI mice. Furthermore, LRRK2 G2019S enhances intestinal epithelial cell proliferation and inflammation within the tumor microenvironment. Mechanistically, KI mice exhibit heightened susceptibility to DSS-induced colitis, with inhibition of LRRK2 kinase activity ameliorating colitis severity and CAC progression. Our investigation also reveals that LRRK2 G2019S promotes inflammasome activation and exacerbates gut epithelium necrosis in the colitis model. Notably, GSDMD inhibitors attenuate colitis in LRRK2 G2019S KI mice. Taken together, our findings offer experimental evidence indicating that the gain-of-kinase activity in LRRK2 promotes colorectal tumorigenesis, suggesting LRRK2 as a potential therapeutic target in colon cancer patients exhibiting hyper LRRK2 kinase activity.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Joyce Z. Gao
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Taylor Sakaguchi
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Thorsten Maretzky
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Prajwal Gurung
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nandakumar S. Narayanan
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Short
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Ngo HKC, Le H, Ayer SJ, Crotty GF, Schwarzschild MA, Bakshi R. Short-term lipopolysaccharide treatment leads to astrocyte activation in LRRK2 G2019S knock-in mice without loss of dopaminergic neurons. RESEARCH SQUARE 2024:rs.3.rs-4076333. [PMID: 38562908 PMCID: PMC10984011 DOI: 10.21203/rs.3.rs-4076333/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The G2019S mutation of LRRK2, which enhances kinase activity of the protein, confers a substantial risk of developing Parkinson's disease (PD). However, the mutation demonstrates incomplete penetrance, suggesting the involvement of other genetic or environmental modulating factors. Here, we investigated whether LRRK2 G2019S knock-in (KI) mice treated with the inflammogen lipopolysaccharide (LPS) could model LRRK2 PD. Results We found that short-term (2 weeks) treatment with LPS did not result in the loss of dopaminergic neurons in either LRRK2 G2019S KI or wild-type (WT) mice. Compared with WT mice, LRRK2 G2019S-KI mice showed incomplete recovery from LPS-induced weight loss. In LRRK2 G2019S KI mice, LPS treatment led to upregulated phosphorylation of LRRK2 at the autophosphorylation site Serine 1292, which is known as a direct readout of LRRK2 kinase activity. LPS treatment caused a greater increase in the activated astrocyte marker glial fibrillary acidic protein (GFAP) in the striatum and substantia nigra of LRRK2 G2019S mice than in those of WT mice. The administration of caffeine, which was recently identified as a biomarker of resistance to developing PD in individuals with LRRK2 mutations, attenuated LPS-induced astrocyte activation specifically in LRRK2 G2019S KI mice. Conclusions Our findings suggest that 2 weeks of exposure to LPS is not sufficient to cause dopaminergic neuronal loss in LRRK2 G2019S KI mice but rather results in increased astrocyte activation, which can be ameliorated by caffeine.
Collapse
|
28
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561293. [PMID: 37873418 PMCID: PMC10592668 DOI: 10.1101/2023.10.06.561293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), which is the leading neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). However, whether LRRK2 mutations cause PD and degeneration of DA neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether LRRK2 and its functional homologue LRRK1 play an essential, intrinsic role in DA neuron survival through the development of DA neuron-specific LRRK conditional double knockout (cDKO) mice. We first generated and characterized floxed LRRK1 and LRRK2 mice and then confirmed that germline deletions of the floxed LRRK1 and LRRK2 alleles result in null mutations, as evidenced by the absence of LRRK1 and LRRK2 mRNA and protein in the respective homozygous deleted mutant mice. We further examined the specificity of Cre-mediated recombination driven by the dopamine transporter-Cre (DAT-Cre) knockin (KI) allele using a GFP reporter line and confirmed that DAT-Cre-mediated recombination is restricted to DA neurons in the SNpc. Crossing these validated floxed LRRK1 and LRRK2 mice with DAT-Cre KI mice, we then generated DA neuron-restricted LRRK cDKO mice and further showed that levels of LRRK1 and LRRK2 are reduced in dissected ventral midbrains of LRRK cDKO mice. While DA neuron-restricted LRRK cDKO mice of both sexes exhibit normal mortality and body weight, they develop age-dependent loss of DA neurons in the SNpc, as demonstrated by the progressive reduction of DA neurons in the SNpc of LRRK cDKO mice at the ages of 20 and 24 months but the unaffected number of DA neurons at the age of 15 months. Moreover, DA neurodegeneration is accompanied with increases of apoptosis and elevated microgliosis in the SNpc as well as decreases of DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the importance of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Long Ma
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Youren Tong
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
29
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
30
|
Gupta S, Guevara CA, Tielemans A, Huntley GW, Benson DL. Parkinson's-linked LRRK2-G2019S derails AMPAR trafficking, mobility and composition in striatum with cell-type and subunit specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562231. [PMID: 37905106 PMCID: PMC10614818 DOI: 10.1101/2023.10.13.562231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Parkinson's (PD) is a multi-factorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal based cognitive function are common, appear early and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of AMPA-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2 G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs to favor incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D 1 R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD. SIGNIFICANCE STATEMENT Mutations in LRRK2 are common genetic risks for PD. Lrrk2 G2019S mice fail to exhibit long-term potentiation at corticostriatal synapses and show significant deficits in frontal-striatal based cognitive tasks. While LRRK2 has been implicated generally in protein trafficking, whether G2019S derails AMPAR trafficking at synapses on striatal neurons (SPNs) is unknown. We show that surface GluA1-AMPARs fail to internalize and instead accumulate excessively within and outside synapses. This effect is selective to D 1 R SPNs and negatively impacts synapse strengthening as GluA1-AMPARs fail to increase at the surface in response to potentiation and show limited surface mobility. Thus, LRRK2-G2019S narrows the effective range of plasticity mechanisms, supporting the idea that cognitive symptoms reflect an imbalance in AMPAR trafficking mechanisms within cell-type specific projections.
Collapse
|
31
|
Bustamante-Barrientos FA, Luque-Campos N, Araya MJ, Lara-Barba E, de Solminihac J, Pradenas C, Molina L, Herrera-Luna Y, Utreras-Mendoza Y, Elizondo-Vega R, Vega-Letter AM, Luz-Crawford P. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J Transl Med 2023; 21:613. [PMID: 37689642 PMCID: PMC10493034 DOI: 10.1186/s12967-023-04493-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Mitochondrial dysfunction is reiteratively involved in the pathogenesis of diverse neurodegenerative diseases. Current in vitro and in vivo approaches support that mitochondrial dysfunction is branded by several molecular and cellular defects, whose impact at different levels including the calcium and iron homeostasis, energetic balance and/or oxidative stress, makes it difficult to resolve them collectively given their multifactorial nature. Mitochondrial transfer offers an overall solution since it contains the replacement of damage mitochondria by healthy units. Therefore, this review provides an introducing view on the structure and energy-related functions of mitochondria as well as their dynamics. In turn, we summarize current knowledge on how these features are deregulated in different neurodegenerative diseases, including frontotemporal dementia, multiple sclerosis, amyotrophic lateral sclerosis, Friedreich ataxia, Alzheimer´s disease, Parkinson´s disease, and Huntington's disease. Finally, we analyzed current advances in mitochondrial transfer between diverse cell types that actively participate in neurodegenerative processes, and how they might be projected toward developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Javiera de Solminihac
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
32
|
Domenicale C, Magnabosco S, Morari M. Modeling Parkinson's disease in LRRK2 rodents. Neuronal Signal 2023; 7:NS20220040. [PMID: 37601008 PMCID: PMC10432857 DOI: 10.1042/ns20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD). Sporadic PD and LRRK2 PD share main clinical and neuropathological features, namely hypokinesia, degeneration of nigro-striatal dopamine neurons and α-synuclein aggregates in the form of Lewy bodies. Animals harboring the most common LRRK2 mutations, i.e. p.G2019S and p.R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathogenic mechanisms. Disappointingly, however, LRRK2 rodents did not consistently phenocopy hypokinesia and nigro-striatal degeneration, or showed Lewy body-like aggregates. Instead, LRRK2 rodents manifested non-motor signs and dysregulated transmission at dopaminergic and non-dopaminergic synapses that are reminiscent of behavioral and functional network changes observed in the prodromal phase of the disease. LRRK2 rodents also manifested greater susceptibility to different parkinsonian toxins or stressors when subjected to dual-hit or multiple-hit protocols, confirming LRRK2 mutations as genetic risk factors. In conclusion, LRRK2 rodents represent a unique tool to identify the molecular mechanisms through which LRRK2 modulates the course and clinical presentations of PD and to study the interplay between genetic, intrinsic and environmental protective/risk factors in PD pathogenesis.
Collapse
Affiliation(s)
- Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Magnabosco
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
33
|
Qi R, Sammler E, Gonzalez-Hunt CP, Barraza I, Pena N, Rouanet JP, Naaldijk Y, Goodson S, Fuzzati M, Blandini F, Erickson KI, Weinstein AM, Lutz MW, Kwok JB, Halliday GM, Dzamko N, Padmanabhan S, Alcalay RN, Waters C, Hogarth P, Simuni T, Smith D, Marras C, Tonelli F, Alessi DR, West AB, Shiva S, Hilfiker S, Sanders LH. A blood-based marker of mitochondrial DNA damage in Parkinson's disease. Sci Transl Med 2023; 15:eabo1557. [PMID: 37647388 PMCID: PMC11135133 DOI: 10.1126/scitranslmed.abo1557] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and neuroprotective or disease-modifying interventions remain elusive. High-throughput markers aimed at stratifying patients on the basis of shared etiology are required to ensure the success of disease-modifying therapies in clinical trials. Mitochondrial dysfunction plays a prominent role in the pathogenesis of PD. Previously, we found brain region-specific accumulation of mitochondrial DNA (mtDNA) damage in PD neuronal culture and animal models, as well as in human PD postmortem brain tissue. To investigate mtDNA damage as a potential blood-based marker for PD, we describe herein a PCR-based assay (Mito DNADX) that allows for the accurate real-time quantification of mtDNA damage in a scalable platform. We found that mtDNA damage was increased in peripheral blood mononuclear cells derived from patients with idiopathic PD and those harboring the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation in comparison with age-matched controls. In addition, mtDNA damage was elevated in non-disease-manifesting LRRK2 mutation carriers, demonstrating that mtDNA damage can occur irrespective of a PD diagnosis. We further established that Lrrk2 G2019S knock-in mice displayed increased mtDNA damage, whereas Lrrk2 knockout mice showed fewer mtDNA lesions in the ventral midbrain, compared with wild-type control mice. Furthermore, a small-molecule kinase inhibitor of LRRK2 mitigated mtDNA damage in a rotenone PD rat midbrain neuron model and in idiopathic PD patient-derived lymphoblastoid cell lines. Quantifying mtDNA damage using the Mito DNADX assay may have utility as a candidate marker of PD and for measuring the pharmacodynamic response to LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- Rui Qi
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH UK
| | - Claudia P. Gonzalez-Hunt
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Ivana Barraza
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Nicholas Pena
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Jeremy P. Rouanet
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yahaira Naaldijk
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Steven Goodson
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| | - Marie Fuzzati
- IRCCS Mondino Foundation, National Institute of Neurology, Pavia 27100, Italy
| | - Fabio Blandini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL 32804, USA
| | - Andrea M. Weinstein
- Department of Psychiatry, School of Medicine, University of Pittsburgh, PA 15213, USA
| | - Michael W. Lutz
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John B. Kwok
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Glenda M. Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Shalini Padmanabhan
- Michael J. Fox Foundation for Parkinson’s Research, Grand Central Station, P.O. Box 4777, New York, NY 10120, USA
| | - Roy N. Alcalay
- Columbia University Irving Medical Center, New York, NY 10032, USA
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Cheryl Waters
- Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Penelope Hogarth
- Departments of Molecular and Medical Genetics and Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Danielle Smith
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH UK
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH UK
| | - Andrew B. West
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sabine Hilfiker
- Department of Anesthesiology and Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Laurie H. Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
34
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
35
|
Cabezudo D, Tsafaras G, Van Acker E, Van den Haute C, Baekelandt V. Mutant LRRK2 exacerbates immune response and neurodegeneration in a chronic model of experimental colitis. Acta Neuropathol 2023; 146:245-261. [PMID: 37289222 PMCID: PMC10328902 DOI: 10.1007/s00401-023-02595-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
The link between the gut and the brain in Parkinson's disease (PD) pathogenesis is currently a subject of intense research. Indeed, gastrointestinal dysfunction is known as an early symptom in PD and inflammatory bowel disease (IBD) has recently been recognised as a risk factor for PD. The leucine-rich repeat kinase 2 (LRRK2) is a PD- and IBD-related protein with highest expression in immune cells. In this study, we provide evidence for a central role of LRRK2 in gut inflammation and PD. The presence of the gain-of-function G2019S mutation significantly increases the disease phenotype and inflammatory response in a mouse model of experimental colitis based on chronic dextran sulphate sodium (DSS) administration. Bone marrow transplantation of wild-type cells into G2019S knock-in mice fully rescued this exacerbated response, proving the key role of mutant LRRK2 in immune cells in this experimental colitis model. Furthermore, partial pharmacological inhibition of LRRK2 kinase activity also reduced the colitis phenotype and inflammation. Moreover, chronic experimental colitis also induced neuroinflammation and infiltration of peripheral immune cells into the brain of G2019S knock-in mice. Finally, combination of experimental colitis with overexpression of α-synuclein in the substantia nigra aggravated motor deficits and dopaminergic neurodegeneration in G2019S knock-in mice. Taken together, our results link LRRK2 with the immune response in colitis and provide evidence that gut inflammation can impact brain homeostasis and contribute to neurodegeneration in PD.
Collapse
Affiliation(s)
- Diego Cabezudo
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, box 1023, 3000, Leuven, Belgium
| | - George Tsafaras
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, box 1023, 3000, Leuven, Belgium
| | - Eva Van Acker
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, box 1023, 3000, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, box 1023, 3000, Leuven, Belgium
- Leuven Viral Vector Core, Herestraat 49, box 1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49, box 1023, 3000, Leuven, Belgium.
| |
Collapse
|
36
|
Yadavalli N, Ferguson SM. LRRK2 suppresses lysosome degradative activity in macrophages and microglia through MiT-TFE transcription factor inhibition. Proc Natl Acad Sci U S A 2023; 120:e2303789120. [PMID: 37487100 PMCID: PMC10400961 DOI: 10.1073/pnas.2303789120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/12/2023] [Indexed: 07/26/2023] Open
Abstract
Cells maintain optimal levels of lysosome degradative activity to protect against pathogens, clear waste, and generate nutrients. Here, we show that LRRK2, a protein that is tightly linked to Parkinson's disease, negatively regulates lysosome degradative activity in macrophages and microglia via a transcriptional mechanism. Depletion of LRRK2 and inhibition of LRRK2 kinase activity enhanced lysosomal proteolytic activity and increased the expression of multiple lysosomal hydrolases. Conversely, the kinase hyperactive LRRK2 G2019S Parkinson's disease mutant suppressed lysosomal degradative activity and gene expression. We identified MiT-TFE transcription factors (TFE3, TFEB, and MITF) as mediators of LRRK2-dependent control of lysosomal gene expression. LRRK2 negatively regulated the abundance and nuclear localization of these transcription factors and their depletion prevented LRRK2-dependent changes in lysosome protein levels. These observations define a role for LRRK2 in controlling lysosome degradative activity and support a model wherein LRRK2 hyperactivity may increase Parkinson's disease risk by suppressing lysosome degradative activity.
Collapse
Affiliation(s)
- Narayana Yadavalli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Shawn M. Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
37
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
38
|
Luque-Campos N, Riquelme R, Molina L, Canedo-Marroquín G, Vega-Letter AM, Luz-Crawford P, Bustamante-Barrientos FA. Exploring the therapeutic potential of the mitochondrial transfer-associated enzymatic machinery in brain degeneration. Front Physiol 2023; 14:1217815. [PMID: 37576343 PMCID: PMC10416799 DOI: 10.3389/fphys.2023.1217815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction is a central event in the pathogenesis of several degenerative brain disorders. It entails fission and fusion dynamics disruption, progressive decline in mitochondrial clearance, and uncontrolled oxidative stress. Many therapeutic strategies have been formulated to reverse these alterations, including replacing damaged mitochondria with healthy ones. Spontaneous mitochondrial transfer is a naturally occurring process with different biological functions. It comprises mitochondrial donation from one cell to another, carried out through different pathways, such as the formation and stabilization of tunneling nanotubules and Gap junctions and the release of extracellular vesicles with mitochondrial cargoes. Even though many aspects of regulating these mechanisms still need to be discovered, some key enzymatic regulators have been identified. This review summarizes the current knowledge on mitochondrial dysfunction in different neurodegenerative disorders. Besides, we analyzed the usage of mitochondrial transfer as an endogenous revitalization tool, emphasizing the enzyme regulators that govern this mechanism. Going deeper into this matter would be helpful to take advantage of the therapeutic potential of mitochondrial transfer.
Collapse
Affiliation(s)
- Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ricardo Riquelme
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Gisela Canedo-Marroquín
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A. Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
39
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
40
|
Pajarillo E, Kim S, Digman A, Dutton M, Son DS, Aschner M, Lee E. The role of microglial LRRK2 kinase in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. J Biol Chem 2023; 299:104879. [PMID: 37269951 PMCID: PMC10331485 DOI: 10.1016/j.jbc.2023.104879] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
Chronic manganese (Mn) exposure can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1β, and TNF-α in the striatum and midbrain of WT mice, and these effects were more pronounced in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 μM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1β, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was elevated further in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated G2019S-expressing BV2 microglia caused greater toxicity to the cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10 which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Matthew Dutton
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
41
|
Wang Y, Gao JZ, Sakaguchi T, Maretzky T, Gurung P, Short S, Xiong Y, Kang Z. LRRK2 G2019S promotes the development of colon cancer via modulating intestinal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546897. [PMID: 37425755 PMCID: PMC10326997 DOI: 10.1101/2023.06.28.546897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
LRRK2 G2019S is the most prevalent variant associated with Parkinson's disease (PD), found in 1-3% of sporadic and 4-8% of familial PD cases. Intriguingly, emerging clinical studies have suggested that LRRK2 G2019S carriers have an increased risk of cancers including colorectal cancer. However, the underlying mechanisms of the positive correlation between LRRK2-G2019S and colorectal cancer remain unknown. Using a mouse model of colitis-associated cancer (CAC) and LRRK2 G2019S knockin (KI) mice, here we report that LRRK2 G2019S promotes the pathogenesis of colon cancer as evidenced by increased tumor number and tumor size in LRRK2 G2019S KI mice. LRRK2 G2019S promoted intestinal epithelial cell proliferation and inflammation within the tumor microenvironment. Mechanistically, we found that LRRK2 G2019S KI mice are more susceptible to dextran sulfate sodium (DSS)-induced colitis. Suppressing the kinase activity of LRRK2 ameliorated the severity of colitis in both LRRK2 G2019S KI and WT mice. At the molecular level, our investigation unveiled that LRRK2 G2019S promotes the production of reactive oxygen species, triggers inflammasome activation, and induces cell necrosis in the gut epithelium in a mouse model of colitis. Collectively, our data provide direct evidence that gain-of-kinase activity in LRRK2 promotes colorectal tumorigenesis, implicating LRRK2 as a potential target in colon cancer patients with hyper LRRK2 kinase activity.
Collapse
|
42
|
Themistokleous C, Bagnoli E, Parulekar R, M K Muqit M. Role of autophagy pathway in Parkinson's disease and related Genetic Neurological disorders. J Mol Biol 2023:168144. [PMID: 37182812 DOI: 10.1016/j.jmb.2023.168144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson's disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson's disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.
Collapse
Affiliation(s)
- Christos Themistokleous
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Enrico Bagnoli
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ramaa Parulekar
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
43
|
Skiteva O, Yao N, Mantas I, Zhang X, Perlmann T, Svenningsson P, Chergui K. Aberrant somatic calcium channel function in cNurr1 and LRRK2-G2019S mice. NPJ Parkinsons Dis 2023; 9:56. [PMID: 37029193 PMCID: PMC10082048 DOI: 10.1038/s41531-023-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
In Parkinson's disease (PD), axons of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) degenerate before their cell bodies. Calcium influx during pacemaker firing might contribute to neuronal loss, but it is not known if dysfunctions of voltage-gated calcium channels (VGCCs) occur in DA neurons somata and axon terminals. We investigated T-type and L-type VGCCs in SNc-DA neurons of two mouse models of PD: mice with a deletion of the Nurr1 gene in DA neurons from an adult age (cNurr1 mice), and mice bearing the G2019S mutation in the gene coding for LRRK2 (G2019S mice). Adult cNurr1 mice displayed motor and DA deficits, while middle-aged G2019S mice did not. The number and morphology of SNc-DA neurons, most of their intrinsic membrane properties and pacemaker firing were unaltered in cNurr1 and G2019S mice compared to their control and wild-type littermates. L-type VGCCs contributed to the pacemaker firing of SNc-DA neurons in G2019S mice, but not in control, wild-type, and cNurr1 mice. In cNurr1 mice, but not G2019S mice, the contribution of T-type VGCCs to the pacemaker firing of SNc-DA neurons was reduced, and somatic dopamine-D2 autoreceptors desensitized more. Altered contribution of L-type and T-type VGCCs to the pacemaker firing was not observed in the presence of a LRRK2 kinase inhibitor in G2019S mice, and in the presence of a flavonoid with antioxidant activity in G2019S and cNurr1 mice. The role of L-type and T-type VGCCs in controlling dopamine release from axon terminals in the striatum was unaltered in cNurr1 and G2019S mice. Our findings uncover opposite changes, linked to oxidative stress, in the function of two VGCCs in DA neurons somata, but not axon terminals, in two different experimental PD models.
Collapse
Affiliation(s)
- Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
44
|
Pajarillo E, Kim SH, Digman A, Dutton M, Son DS, Aschner M, Lee E. The role of microglial LRRK2 in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535418. [PMID: 37066140 PMCID: PMC10103982 DOI: 10.1101/2023.04.03.535418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chronic exposure to manganese (Mn) can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice, and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1β and TNF-α in the striatum and midbrain of WT mice, and these effects were exacerbated in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 μM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1β, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was exacerbated in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated BV2 microglia expressing G2019S caused greater toxicity to cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10, which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway, and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.
Collapse
|
45
|
Insights into the cellular consequences of LRRK2-mediated Rab protein phosphorylation. Biochem Soc Trans 2023; 51:587-595. [PMID: 36929701 DOI: 10.1042/bst20201145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) which cause Parkinson's disease increase its kinase activity, and a subset of Rab GTPases have been identified as endogenous LRRK2 kinase substrates. Their phosphorylation correlates with a loss-of-function for the membrane trafficking steps they are normally involved in, but it also allows them to bind to a novel set of effector proteins with dominant cellular consequences. In this brief review, we will summarize novel findings related to the LRRK2-mediated phosphorylation of Rab GTPases and its various cellular consequences in vitro and in the intact brain, and we will highlight major outstanding questions in the field.
Collapse
|
46
|
Sarkar A, Rasheed MSU, Singh MP. Redox Modulation of Mitochondrial Proteins in the Neurotoxicant Models of Parkinson's Disease. Antioxid Redox Signal 2023; 38:824-852. [PMID: 36401516 DOI: 10.1089/ars.2022.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significance: Mitochondrial proteins regulate the oxidative phosphorylation, cellular metabolism, and free radical generation. Redox modulation alters the mitochondrial proteins and instigates the damage to dopaminergic neurons. Toxicants contribute to Parkinson's disease (PD) pathogenesis in conjunction with aging and genetic factors. While oxidative modulation of a number of mitochondrial proteins is linked to xenobiotic exposure, little is known about its role in the toxicant-induced PD. Understanding the role of redox modulation of mitochondrial proteins in complex cellular events leading to neurodegeneration is highly relevant. Recent Advances: Many toxicants are shown to inhibit complex I or III and elicit free radical production that alters the redox status of mitochondrial proteins. Implication of redox modulation of the mitochondrial proteins makes them a target to comprehend the underlying mechanism of toxicant-induced PD. Critical Issues: Owing to multifactorial etiology, exploration of onset and progression and treatment outcomes needs a comprehensive approach. The article explains about a few mitochondrial proteins that undergo redox changes along with the promising strategies, which help to alleviate the toxicant-induced redox imbalance leading to neurodegeneration. Future Directions: Although mitochondrial proteins are linked to PD, their role in toxicant-induced parkinsonism is not yet completely known. Preservation of antioxidant defense machinery could alleviate the redox modulation of mitochondrial proteins. Targeted antioxidant delivery, use of metal chelators, and activation of nuclear factor erythroid 2-related factor 2, and combinational therapy that encounters multiple free radicals, could ameliorate the redox modulation of mitochondrial proteins and thereby PD progression.
Collapse
Affiliation(s)
- Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
47
|
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P. Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:73. [PMID: 36810524 PMCID: PMC9944326 DOI: 10.1038/s41392-023-01353-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and its treatment remains a big challenge. The pathogenesis of PD may be related to environmental and genetic factors, and exposure to toxins and gene mutations may be the beginning of brain lesions. The identified mechanisms of PD include α-synuclein aggregation, oxidative stress, ferroptosis, mitochondrial dysfunction, neuroinflammation, and gut dysbiosis. The interactions among these molecular mechanisms complicate the pathogenesis of PD and pose great challenges to drug development. At the same time, the diagnosis and detection of PD are also one of obstacles to the treatment of PD due to its long latency and complex mechanism. Most conventional therapeutic interventions for PD possess limited effects and have serious side effects, heightening the need to develop novel treatments for this disease. In this review, we systematically summarized the pathogenesis, especially the molecular mechanisms of PD, the classical research models, clinical diagnostic criteria, and the reported drug therapy strategies, as well as the newly reported drug candidates in clinical trials. We also shed light on the components derived from medicinal plants that are newly identified for their effects in PD treatment, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for PD therapy.
Collapse
Affiliation(s)
- Xu Dong-Chen
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Chen Yong
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Xu Yang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - ShenTu Chen-Yu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China
| | - Peng Li-Hua
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, P. R. China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China.
| |
Collapse
|
48
|
Bademosi AT, Decet M, Kuenen S, Calatayud C, Swerts J, Gallego SF, Schoovaerts N, Karamanou S, Louros N, Martin E, Sibarita JB, Vints K, Gounko NV, Meunier FA, Economou A, Versées W, Rousseau F, Schymkowitz J, Soukup SF, Verstreken P. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron 2023; 111:1402-1422.e13. [PMID: 36827984 PMCID: PMC10166451 DOI: 10.1016/j.neuron.2023.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ella Martin
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium.
| |
Collapse
|
49
|
Boecker CA. The Role of LRRK2 in Intracellular Organelle Dynamics. J Mol Biol 2023:167998. [PMID: 36764357 DOI: 10.1016/j.jmb.2023.167998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene hyperactivate LRRK2 kinase activity and lead to the development of Parkinson's disease (PD). Membrane recruitment of LRRK2 and the identification of RAB GTPases as bona fide LRRK2 substrates strongly indicate that LRRK2 regulates intracellular trafficking. This review highlights the current literature on the role of LRRK2 in intracellular organelle dynamics. With a focus on the effects of LRRK2 on microtubule function, mitochondrial dynamics, the autophagy-lysosomal pathway, and synaptic vesicle trafficking, it summarizes our current understanding of how intracellular dynamics are altered upon pathogenic LRRK2 hyperactivation.
Collapse
Affiliation(s)
- C Alexander Boecker
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| |
Collapse
|
50
|
Mitochondria in Cell-Based Therapy for Stroke. Antioxidants (Basel) 2023; 12:antiox12010178. [PMID: 36671040 PMCID: PMC9854436 DOI: 10.3390/antiox12010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Despite a relatively developed understanding of the pathophysiology underlying primary and secondary mechanisms of cell death after ischemic injury, there are few established treatments to improve stroke prognoses. A major contributor to secondary cell death is mitochondrial dysfunction. Recent advancements in cell-based therapies suggest that stem cells may be revolutionary for treating stroke, and the reestablishment of mitochondrial integrity may underlie these therapeutic benefits. In fact, functioning mitochondria are imperative for reducing oxidative damage and neuroinflammation following stroke and reperfusion injury. In this review, we will discuss the role of mitochondria in establishing the anti-oxidative effects of stem cell therapies for stroke.
Collapse
|