1
|
Gavrilova A, Korabel N, Allan VJ, Fedotov S. Heterogeneous model for superdiffusive movement of dense core vesicles in C. elegans. Sci Rep 2025; 15:6996. [PMID: 40016327 PMCID: PMC11868511 DOI: 10.1038/s41598-024-83602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
Transport of dense core vesicles (DCVs) in neurons is crucial for distributing molecules like neuropeptides and growth factors. We studied the experimental trajectories of dynein-driven directed movement of DCVs in the ALA neuron in C. elegans over a duration of up to 6 seconds. We analysed the DCV movement in three strains of C. elegans: (1) with normal kinesin-1 function, (2) with reduced function in kinesin light chain 2 (KLC-2), and (3) a null mutation in kinesin light chain 1 (KLC-1). We find that DCVs move superdiffusively with displacement variance [Formula: see text] in all three strains with low reversal rates and frequent immobilization of DCVs. The distribution of DCV displacements fits a beta-binomial distribution with the mean and the variance following linear and quadratic growth patterns, respectively. We propose a simple heterogeneous random walk model to explain the observed superdiffusive retrograde transport behaviour of DCV movement. This model involves a random probability with the beta density for a DCV to resume its movement or remain in the same position. To validate our model further, we measure the first passage time for a DCV to reach a certain threshold for the first time. According to the model, the first passage time distribution should follow a beta-negative binomial distribution with the same parameters as the DCV displacement distributions. Our experimental data confirm this prediction.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester, M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester, M13 9PT, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
2
|
Brüll M, Multrus S, Schäfer M, Celardo I, Karreman C, Leist M. Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD + metabolism. Cell Death Dis 2025; 16:24. [PMID: 39824831 PMCID: PMC11742042 DOI: 10.1038/s41419-024-07326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism. Axotomy lead to a loss of the NAD+ synthesis enzyme NMNAT2 within 2 h and a depletion of NAD+ within 4-6 h. This process appeared specific, as isolated neurites maintained ATP levels and a coupled mitochondrial respiration for at least 6 h. In the peripheral nervous system (PNS) many studies observed that NAD+ metabolism, in particular by the NADase SARM1, plays a major role in the ND occurring after axotomy. Since neither ferroptosis nor necroptosis, nor caspase-dependent apoptosis seemed to be involved in neurite loss, we investigated SARM1 as potential executioner (or controller). Knock-down or expression of a dominant-negative isoform of SARM1 indeed drastically delayed ND. Various modifications of NAD+ metabolism known to modulate SARM1 activity showed the corresponding effects on ND. Moreover, supplementation with NAD+ attenuated ND. As a third approach to investigate the role of altered NAD+ metabolism, we made use of the WLD(s) protein, which has been found in a mutant mouse to inhibit Wallerian degeneration of axons. This protein, which has a stable NMNAT activity, and thus can buffer the loss of NMNAT2, protected the neurites by stabilizing neurite NAD+ levels. Thus CNS-type ND was tightly linked to neurite metabolism in multiple experimental setups. Based on this knowledge, several new strategies for treating neurodegenerative diseases can be envisaged.
Collapse
Affiliation(s)
- Markus Brüll
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Selina Multrus
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Schäfer
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Ivana Celardo
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.
- CAAT-Europe, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
3
|
Bayansan O, Bhan P, Chang CY, Barmaver SN, Shen CP, Wagner OI. UNC-10/SYD-2 links kinesin-3 to RAB-3-containing vesicles in the absence of the motor's PH domain. Neurobiol Dis 2025; 204:106766. [PMID: 39662532 DOI: 10.1016/j.nbd.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Kinesin-3 KIF1A (UNC-104 in C. elegans) is the major axonal transporter of synaptic vesicles and mutations in this molecular motor are linked to KIF1A-associated neurological disorders (KAND), encompassing Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis and hereditary spastic paraplegia. UNC-104 binds to lipid bilayers of synaptic vesicles via its C-terminal PH (pleckstrin homology) domain. Since this interaction is relatively weak and non-specific, we hypothesize that other, more specific, interaction schemes exist. From the literature, it is evident that UNC-104 regulator SYD-2 interacts with UNC-10 and that UNC-10 itself interacts with RAB-3 bound to synaptic vesicles. RT-PCR and Western blot experiments expose genetic relationships between unc-10 and syd-2, but not between unc-10 and rab-3. Also, neither unc-10 nor rab-3 affects UNC-104 expression. However, co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays reveal functional interactions between UNC-104, SYD-2, UNC-10 and RAB-3. Though both SNB-1 and RAB-3 are actively transported by UNC-104, motility of RAB-3 is facilitated in the presence of SYD-2 and UNC-10. Deletion of UNC-104's PH domain did not affect UNC-104/RAB-3 colocalization, but significantly affected UNC-104/SNB-1 colocalization. Similarly, motility of RAB-3-labeled vesicles is only slightly altered in nematodes carrying a point mutation in the PH domain, whereas movement of SNB-1 is significantly reduced in this mutant. Western blots from purified fractions of synaptic vesicles reveal strong reduction of UNC-104 in rab-3/unc-10 double mutants. Our findings suggest that the UNC-10/SYD-2 complex acts as a functional linker to connect UNC-104 to RAB-3-containing vesicles. Thus, this linker complex contributes to the specificity of motor/cargo interactions.
Collapse
Affiliation(s)
- Odvogmed Bayansan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu 30013, Taiwan, ROC
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu 30013, Taiwan, ROC
| | - Chien-Yu Chang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu 30013, Taiwan, ROC
| | - Syed Nooruzuha Barmaver
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu 30013, Taiwan, ROC
| | - Che-Piao Shen
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu 30013, Taiwan, ROC
| | - Oliver Ingvar Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu 30013, Taiwan, ROC.
| |
Collapse
|
4
|
Bayam E, Tilly P, Collins SC, Rivera Alvarez J, Kannan M, Tonneau L, Brivio E, Rinaldi B, Lecat R, Schwaller N, Cotellessa L, Maddirevula S, Monteiro F, Guardia CM, Kitajima JP, Kok F, Kato M, Hamed AAA, Salih MA, Al Tala S, Hashem MO, Tada H, Saitsu H, Stabile M, Giacobini P, Friant S, Yüksel Z, Nakashima M, Alkuraya FS, Yalcin B, Godin JD. Bi-allelic variants in WDR47 cause a complex neurodevelopmental syndrome. EMBO Mol Med 2025; 17:129-168. [PMID: 39609633 PMCID: PMC11730659 DOI: 10.1038/s44321-024-00178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Brain development requires the coordinated growth of structures and cues that are essential for forming neural circuits and cognitive functions. The corpus callosum, the largest interhemispheric connection, is formed by the axons of callosal projection neurons through a series of tightly regulated cellular events, including neuronal specification, migration, axon extension and branching. Defects in any of those steps can lead to a range of disorders known as syndromic corpus callosum dysgenesis (CCD). We report five unrelated families carrying bi-allelic variants in WDR47 presenting with CCD together with other neuroanatomical phenotypes such as microcephaly and enlarged ventricles. Using in vitro and in vivo mouse models and complementation assays, we show that WDR47 is required for survival of callosal neurons by contributing to the maintenance of mitochondrial and microtubule homeostasis. We further propose that severity of the CCD phenotype is determined by the degree of the loss of function caused by the human variants. Taken together, we identify WDR47 as a causative gene of a new neurodevelopmental syndrome characterized by corpus callosum abnormalities and other neuroanatomical malformations.
Collapse
Affiliation(s)
- Efil Bayam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
| | - Peggy Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Stephan C Collins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Université de Bourgogne, INSERM UMR1231, 21000, Dijon, France
| | - José Rivera Alvarez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Meghna Kannan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Lucile Tonneau
- Université de Bourgogne, INSERM UMR1231, 21000, Dijon, France
| | - Elena Brivio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Bruno Rinaldi
- Université de Strasbourg, CNRS, GMGM UMR7156, F-67000, Strasbourg, France
- INSERM, U1112, CRBS (Centre de recherche en biomédecine de Strasbourg), Université de Strasbourg, Strasbourg, F-67000, France
| | - Romain Lecat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Noémie Schwaller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Ludovica Cotellessa
- Université de Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, Lille, France
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Carlos M Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | | | - Fernando Kok
- Mendelics Análise Genomica SA, CEP 02511-000, Sao Paulo, Brazil
- Department of Neurology, University of Sao Paulo School of Medicine, 01246-903, Sao Paulo, Brazil
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Ahlam A A Hamed
- Department of Pediatric and Child Health, Faculty of Medicine University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics, Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hiroko Tada
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-0057, Japan
- Division of Pediatrics, Chibaken Saiseikai Narashino Hospital, Chiba, 275-8580, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuuo-ku, Hamamatsu, 431-3192, Japan
| | - Mariano Stabile
- Center of Genetics and Prenatal Diagnosis "Zygote", 84131, Salerno, Italy
| | - Paolo Giacobini
- Université de Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, Lille, France
| | - Sylvie Friant
- Université de Strasbourg, CNRS, GMGM UMR7156, F-67000, Strasbourg, France
- PCBIS-IMPReSs, Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Zafer Yüksel
- Human Genetics, Bioscientia GmbH, Ingelheim, Germany
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuuo-ku, Hamamatsu, 431-3192, Japan
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
- INSERM UMR1231, Université de Bourgogne, 21000, Dijon, France.
| | - Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
| |
Collapse
|
5
|
Tosolini AP, Abatecola F, Negro S, Sleigh JN, Schiavo G. The node of Ranvier influences the in vivo axonal transport of mitochondria and signaling endosomes. iScience 2024; 27:111158. [PMID: 39524336 PMCID: PMC11544082 DOI: 10.1016/j.isci.2024.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient long-range axonal transport is essential for maintaining neuronal function, and perturbations in this process underlie severe neurological diseases. Nodes of Ranvier (NoR) are short, specialized unmyelinated axonal domains with a unique molecular and structural composition. Currently, it remains unresolved how the distinct molecular structures of the NoR impact axonal transport dynamics. Using intravital time-lapse microscopy of sciatic nerves in live, anesthetized mice, we reveal (1) similar morphologies of the NoR in fast and slow motor axons, (2) signaling endosomes and mitochondria accumulate specifically at the distal node, and (3) unique axonal transport profiles of signaling endosomes and mitochondria transiting through the NoR. Collectively, these findings provide important insights into the fundamental physiology of peripheral nerve axons, motor neuron subtypes, and diverse organelle dynamics at the NoR. Furthermore, this work has relevance for several pathologies affecting peripheral nerves and the NoR.
Collapse
Affiliation(s)
- Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Federico Abatecola
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- U.O.C. Clinica Neurologica, Azienda Ospedale, University of Padua, 35128 Padua, Italy
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
8
|
Halder R, Chu ZT, Ti R, Zhu L, Warshel A. On the Control of Directionality of Myosin. J Am Chem Soc 2024. [PMID: 39367841 DOI: 10.1021/jacs.4c09528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The origin of the unique directionality of myosin has been a problem of fundamental and practical importance. This work establishes in a conclusive way that the directionality is controlled by tuning the barrier for the rate-determining step, namely, the ADP release step. This conclusion is based on exploring the molecular origin behind the reverse directionality of myosins V and VI and the determination of the origin of the change in the barriers of the ADP release for the forward and backward motions. Our investigation is performed by combining different simulation methods such as steer molecular dynamics (SMD), umbrella sampling, renormalization method, and automated path searching method. It is found that in the case of myosin V, the ADP release from the postrigor (trailing head) state overcomes a lower barrier than the prepowerstroke (leading head) state, which is also evident from experimental observation. In the case of myosin VI, we noticed a different trend when compared to myosin V. Since the directionality of myosins V and VI follows a reverse trend, we conclude that such differences in the directionality are controlled by the free energy barrier for the ADP release. Overall, the proof that the directionality of myosin is determined by the activation barrier of the rate-determining step in the cycle, rather than by some unspecified dynamical effects, has general importance.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Rujuan Ti
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
9
|
Dafinca R, Tosat-Bitrian C, Carroll E, Vahsen BF, Gilbert-Jaramillo J, Scaber J, Feneberg E, Johnson E, Talbot K. Dynactin-1 mediates rescue of impaired axonal transport due to reduced mitochondrial bioenergetics in amyotrophic lateral sclerosis motor neurons. Brain Commun 2024; 6:fcae350. [PMID: 39440303 PMCID: PMC11495216 DOI: 10.1093/braincomms/fcae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/07/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. A key pathological signature of ALS is the cytoplasmic mislocalization and aggregation of TDP-43 in affected motor neurons, which is found in 97% of cases. Recent reports have shown that mitochondrial dysfunction plays a significant role in motor neuron degeneration in ALS, and TDP-43 modulates several mitochondrial transcripts. In this study, we used induced pluripotent stem cell-derived motor neurons from ALS patients with TDP-43 mutations and a transgenic TDP-43M337V mouse model to determine how TDP-43 mutations alter mitochondrial function and axonal transport. We detected significantly reduced mitochondrial respiration and ATP production in patient induced pluripotent stem cell-derived motor neurons, linked to an interaction between TDP-43M337V with ATPB and COX5A. A downstream reduction in speed of retrograde axonal transport in patient induced pluripotent stem cell-derived motor neurons was detected, which correlated with downregulation of the motor protein complex, DCTN1/dynein. Overexpression of DCTN1 in patient induced pluripotent stem cell-derived motor neurons significantly increased the percentage of retrograde travelling mitochondria and reduced the percentage of stationary mitochondria. This study shows that ALS induced pluripotent stem cell-derived motor neurons with mutations in TDP-43 have deficiencies in essential mitochondrial functions with downstream effects on retrograde axonal transport, which can be partially rescued by DCTN1 overexpression.
Collapse
Affiliation(s)
- Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Carlota Tosat-Bitrian
- Margarita Salas Center for Biological Research, University of Madrid, Madrid 28040, Spain
| | - Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Björn F Vahsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Javier Gilbert-Jaramillo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Oxford OX1 3QU, UK
| |
Collapse
|
10
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
11
|
Gavrilova A, Boström A, Korabel N, Fedotov S, Poulin GB, Allan VJ. The role of kinesin-1 in neuronal dense core vesicle transport, locomotion and lifespan regulation in C. elegans. J Cell Sci 2024; 137:jcs262148. [PMID: 39171448 PMCID: PMC11423817 DOI: 10.1242/jcs.262148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Astrid Boström
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Gino B Poulin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
13
|
Brady ST, Mesnard-Hoaglin NA, Mays S, Priego M, Dziechciowska J, Morris S, Kang M, Tsai MY, Purks JL, Klein A, Gaona A, Melloni A, Connors T, Hyman B, Song Y, Morfini GA. Toxic effects of mutant huntingtin in axons are mediated by its proline-rich domain. Brain 2024; 147:2098-2113. [PMID: 37633260 PMCID: PMC11146425 DOI: 10.1093/brain/awad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/13/2023] [Accepted: 07/17/2023] [Indexed: 08/28/2023] Open
Abstract
Huntington's disease results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mHTT to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by c-Jun N-terminal kinases (JNKs) and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNKs. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem Huntington's disease patients. Together, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in Huntington's disease.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Sarah Mays
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joanna Dziechciowska
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ming Ying Tsai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Alison Klein
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Angelica Gaona
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Alexandra Melloni
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Theresa Connors
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
14
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Kudryavtseva N. Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model. Int J Mol Sci 2024; 25:2882. [PMID: 38474132 DOI: 10.3390/ijms25052882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The analysis of RNA-Sec data from murine bulk tissue samples taken from five brain regions associated with behavior and stress response was conducted. The focus was on the most contrasting brain region-specific genes (BRSG) sets in terms of their expression rates. These BRSGs are identified as genes with a distinct outlying (high) expression rate in a specific region compared to others used in the study. The analysis suggested that BRSG sets form non-randomly connected compact gene networks, which correspond to the major neuron-mediated functional processes or pathways in each brain region. The number of BRSGs and the connection rate were found to depend on the heterogeneity and coordinated firing rate of neuron types in each brain region. The most connected pathways, along with the highest BRSG number, were observed in the Striatum, referred to as Medium Spiny Neurons (MSNs), which make up 95% of neurons and exhibit synchronous firing upon dopamine influx. However, the Ventral Tegmental Area/Medial Raphe Nucleus (VTA/MRN) regions, although primarily composed of monoaminergic neurons, do not fire synchronously, leading to a smaller BRSG number. The Hippocampus (HPC) region, on the other hand, displays significant neuronal heterogeneity, with glutamatergic neurons being the most numerous and synchronized. Interestingly, the two monoaminergic regions involved in the study displayed a common BRSG subnetwork architecture, emphasizing their proximity in terms of axonal throughput specifics and high-energy metabolism rates. This finding suggests the concerted evolution of monoaminergic neurons, leading to unique adaptations at the genic repertoire scale. With BRSG sets, we were able to highlight the contrasting features of the three groups: control, depressive, and aggressive mice in the animal chronic stress model. Specifically, we observed a decrease in serotonergic turnover in both the depressed and aggressive groups, while dopaminergic emission was high in both groups. There was also a notable absence of dopaminoceptive receptors on the postsynaptic membranes in the striatum in the depressed group. Additionally, we confirmed that neurogenesis BRSGs are specific to HPC, with the aggressive group showing attenuated neurogenesis rates compared to the control/depressive groups. We also confirmed that immune-competent cells like microglia and astrocytes play a crucial role in depressed phenotypes, including mitophagy-related gene Prkcd. Based on this analysis, we propose the use of BRSG sets as a suitable framework for evaluating case-control group-wise assessments of specific brain region gene pathway responses.
Collapse
Affiliation(s)
- Vladimir Babenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry Smagin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Irina Kovalenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna Galyamina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalia Kudryavtseva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
15
|
Tziortzouda P, Steyaert J, Scheveneels W, Sicart A, Stoklund Dittlau K, Barbosa Correia AM, Burg T, Pal A, Hermann A, Van Damme P, Moens TG, Van Den Bosch L. PP2A and GSK3 act as modifiers of FUS-ALS by modulating mitochondrial transport. Acta Neuropathol 2024; 147:41. [PMID: 38363426 PMCID: PMC10873455 DOI: 10.1007/s00401-024-02689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Jolien Steyaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Wendy Scheveneels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adriana Margarida Barbosa Correia
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Thibaut Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Arun Pal
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden Rossendorf, 01328, Dresden, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum Fur Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas G Moens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
16
|
Nambiar A, Manjithaya R. Driving autophagy - the role of molecular motors. J Cell Sci 2024; 137:jcs260481. [PMID: 38329417 DOI: 10.1242/jcs.260481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Most of the vesicular transport pathways inside the cell are facilitated by molecular motors that move along cytoskeletal networks. Autophagy is a well-explored catabolic pathway that is initiated by the formation of an isolation membrane known as the phagophore, which expands to form a double-membraned structure that captures its cargo and eventually moves towards the lysosomes for fusion. Molecular motors and cytoskeletal elements have been suggested to participate at different stages of the process as the autophagic vesicles move along cytoskeletal tracks. Dynein and kinesins govern autophagosome trafficking on microtubules through the sequential recruitment of their effector proteins, post-translational modifications and interactions with LC3-interacting regions (LIRs). In contrast, myosins are actin-based motors that participate in various stages of the autophagic flux, as well as in selective autophagy pathways. However, several outstanding questions remain with regard to how the dominance of a particular motor protein over another is controlled, and to the molecular mechanisms that underlie specific disease variants in motor proteins. In this Review, we aim to provide an overview of the role of molecular motors in autophagic flux, as well as highlight their dysregulation in diseases, such as neurodegenerative disorders and pathogenic infections, and ageing.
Collapse
Affiliation(s)
- Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
17
|
Mueller RL, Kanaan NM, Combs B. Using Live-Cell Imaging to Measure the Effects of Pathological Proteins on Axonal Transport in Primary Hippocampal Neurons. J Vis Exp 2023:10.3791/66156. [PMID: 38189521 PMCID: PMC11017230 DOI: 10.3791/66156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Bidirectional transport of cargos along the axon is critical for maintaining functional synapses, neural connectivity, and healthy neurons. Axonal transport is disrupted in multiple neurodegenerative diseases, and projection neurons are particularly vulnerable because of the need to transport cellular materials over long distances and sustain substantial axonal mass. Pathological modifications of several disease-related proteins negatively affect transport, including tau, amyloid-β, α-synuclein, superoxide dismutase, and huntingtin, providing a potential common mechanism by which pathological proteins exert toxicity in disease. Methods to study these toxic mechanisms are necessary to understand neurodegenerative disorders and identify potential therapeutic interventions. Here, cultured primary rodent hippocampal neurons are co-transfected with multiple plasmids to study the effects of pathological proteins on fast axonal transport using live-cell confocal imaging of fluorescently-tagged cargo proteins. We begin with the harvest, dissociation, and culturing of primary hippocampal neurons from rodents. Then, we co-transfect the neurons with plasmid DNA constructs to express fluorescent-tagged cargo protein and wild-type or mutant tau (used as an exemplar of pathological proteins). Axons are identified in live cells using an antibody that binds an extracellular domain of neurofascin, an axon initial segment protein, and an axonal region of interest is imaged to measure fluorescent cargo transport. Using KymoAnalyzer, a freely available ImageJ macro, we extensively characterize the velocity, pause frequency, and directional cargo density of axonal transport, all of which may be affected by the presence of pathological proteins. Through this method, we identify a phenotype of increased cargo pause frequency associated with the expression of pathological tau protein. Additionally, gene-silencing shRNA constructs can be added to the transfection mix to test the role of other proteins in mediating transport disruption. This protocol is easily adaptable for use with other neurodegenerative disease-related proteins and is a reproducible method to study the mechanisms of how those proteins disrupt axonal transport.
Collapse
Affiliation(s)
- Rebecca L Mueller
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University; Neuroscience Program, Michigan State University
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University; Neuroscience Program, Michigan State University; Hauenstein Neuroscience Center, Mercy Health Saint Mary's
| | - Benjamin Combs
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University;
| |
Collapse
|
18
|
Labastide JA, Quint DA, Cullen RK, Maelfeyt B, Ross JL, Gopinathan A. Non-specific cargo-filament interactions slow down motor-driven transport. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:134. [PMID: 38127202 DOI: 10.1140/epje/s10189-023-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Active, motor-based cargo transport is important for many cellular functions and cellular development. However, the cell interior is complex and crowded and could have many weak, non-specific interactions with the cargo being transported. To understand how cargo-environment interactions will affect single motor cargo transport and multi-motor cargo transport, we use an artificial quantum dot cargo bound with few (~ 1) to many (~ 5-10) motors allowed to move in a dense microtubule network. We find that kinesin-driven quantum dot cargo is slower than single kinesin-1 motors. Excitingly, there is some recovery of the speed when multiple motors are attached to the cargo. To determine the possible mechanisms of both the slow down and recovery of speed, we have developed a computational model that explicitly incorporates multi-motor cargos interacting non-specifically with nearby microtubules, including, and predominantly with the microtubule on which the cargo is being transported. Our model has recovered the experimentally measured average cargo speed distribution for cargo-motor configurations with few and many motors, implying that numerous, weak, non-specific interactions can slow down cargo transport and multiple motors can reduce these interactions thereby increasing velocity.
Collapse
Affiliation(s)
- Joelle A Labastide
- Department of Physics, University of Massachusetts, 710 North Pleasant Street, Amherst, MA, 01003-9337, USA
| | - David A Quint
- Department of Physics, University of California, Merced, 5200 North Lake Rd, Merced, CA, 95343, USA
- NSF-CREST: Center for Cellular and Biomolecular Machines (CCBM), University of California Merced, Merced, USA
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Reilly K Cullen
- Department of Physics, University of Massachusetts, 710 North Pleasant Street, Amherst, MA, 01003-9337, USA
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Bryan Maelfeyt
- Department of Physics, University of California, Merced, 5200 North Lake Rd, Merced, CA, 95343, USA
- NSF-CREST: Center for Cellular and Biomolecular Machines (CCBM), University of California Merced, Merced, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts, 710 North Pleasant Street, Amherst, MA, 01003-9337, USA.
- Department of Physics, Syracuse University, Crouse Drive, Syracuse, NY 13104, USA.
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, 5200 North Lake Rd, Merced, CA, 95343, USA.
- NSF-CREST: Center for Cellular and Biomolecular Machines (CCBM), University of California Merced, Merced, USA.
| |
Collapse
|
19
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
20
|
Rani N, Alam MM, Jamal A, Bin Ghaffar U, Parvez S. Caenorhabditis elegans: A transgenic model for studying age-associated neurodegenerative diseases. Ageing Res Rev 2023; 91:102036. [PMID: 37598759 DOI: 10.1016/j.arr.2023.102036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated ailments characterized by interrupting cellular proteostasic machinery and the misfolding of distinct proteins to form toxic aggregates in neurons. Neurodegenerative diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and others, are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Over the past decades, Caenorhabditis eleganshas beenwidely used as a transgenic model to investigate biological processes related to health and disease. The nematode Caenorhabditis elegans (C. elegans) has developed as a powerful tool for studying disease mechanisms due to its ease of genetic handling and instant cultivation while providing a whole-animal system amendable to several molecular and biochemical techniques. In this review, we elucidate the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Usama Bin Ghaffar
- Department of Basic Science, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
21
|
König S, Schmidt N, Bechberger K, Morris S, Priego M, Zaky H, Song Y, Pielage J, Brunholz S, Brady ST, Kins S, Morfini G. Axon-Autonomous Effects of the Amyloid Precursor Protein Intracellular Domain (AICD) on Kinase Signaling and Fast Axonal Transport. Cells 2023; 12:2403. [PMID: 37830617 PMCID: PMC10572015 DOI: 10.3390/cells12192403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The amyloid precursor protein (APP) is a key molecular component of Alzheimer's disease (AD) pathogenesis. Proteolytic APP processing generates various cleavage products, including extracellular amyloid beta (Aβ) and the cytoplasmic APP intracellular domain (AICD). Although the role of AICD in the activation of kinase signaling pathways is well established in the context of full-length APP, little is known about intracellular effects of the AICD fragment, particularly within discrete neuronal compartments. Deficits in fast axonal transport (FAT) and axonopathy documented in AD-affected neurons prompted us to evaluate potential axon-autonomous effects of the AICD fragment for the first time. Vesicle motility assays using the isolated squid axoplasm preparation revealed inhibition of FAT by AICD. Biochemical experiments linked this effect to aberrant activation of selected axonal kinases and heightened phosphorylation of the anterograde motor protein conventional kinesin, consistent with precedents showing phosphorylation-dependent regulation of motors proteins powering FAT. Pharmacological inhibitors of these kinases alleviated the AICD inhibitory effect on FAT. Deletion experiments indicated this effect requires a sequence encompassing the NPTY motif in AICD and interacting axonal proteins containing a phosphotyrosine-binding domain. Collectively, these results provide a proof of principle for axon-specific effects of AICD, further suggesting a potential mechanistic framework linking alterations in APP processing, FAT deficits, and axonal pathology in AD.
Collapse
Affiliation(s)
- Svenja König
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Nadine Schmidt
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Karin Bechberger
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Hannah Zaky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jan Pielage
- Department of Zoology, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany;
| | - Silke Brunholz
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Stefan Kins
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
22
|
Sokol DK, Lahiri DK. Neurodevelopmental disorders and microcephaly: how apoptosis, the cell cycle, tau and amyloid-β precursor protein APPly. Front Mol Neurosci 2023; 16:1201723. [PMID: 37808474 PMCID: PMC10556256 DOI: 10.3389/fnmol.2023.1201723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Recent studies promote new interest in the intersectionality between autism spectrum disorder (ASD) and Alzheimer's Disease. We have reported high levels of Amyloid-β Precursor Protein (APP) and secreted APP-alpha (sAPPa ) and low levels of amyloid-beta (Aβ) peptides 1-40 and 1-42 (Aβ40, Aβ42) in plasma and brain tissue from children with ASD. A higher incidence of microcephaly (head circumference less than the 3rd percentile) associates with ASD compared to head size in individuals with typical development. The role of Aβ peptides as contributors to acquired microcephaly in ASD is proposed. Aβ may lead to microcephaly via disruption of neurogenesis, elongation of the G1/S cell cycle, and arrested cell cycle promoting apoptosis. As the APP gene exists on Chromosome 21, excess Aβ peptides occur in Trisomy 21-T21 (Down's Syndrome). Microcephaly and some forms of ASD associate with T21, and therefore potential mechanisms underlying these associations will be examined in this review. Aβ peptides' role in other neurodevelopmental disorders that feature ASD and acquired microcephaly are reviewed, including dup 15q11.2-q13, Angelman and Rett syndrome.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Section of Pediatrics, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
23
|
Petzoldt AG. Presynaptic Precursor Vesicles-Cargo, Biogenesis, and Kinesin-Based Transport across Species. Cells 2023; 12:2248. [PMID: 37759474 PMCID: PMC10527734 DOI: 10.3390/cells12182248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The faithful formation and, consequently, function of a synapse requires continuous and tightly controlled delivery of synaptic material. At the presynapse, a variety of proteins with unequal molecular properties are indispensable to compose and control the molecular machinery concerting neurotransmitter release through synaptic vesicle fusion with the presynaptic membrane. As presynaptic proteins are produced mainly in the neuronal soma, they are obliged to traffic along microtubules through the axon to reach the consuming presynapse. This anterograde transport is performed by highly specialised and diverse presynaptic precursor vesicles, membranous organelles able to transport as different proteins such as synaptic vesicle membrane and membrane-associated proteins, cytosolic active zone proteins, ion-channels, and presynaptic membrane proteins, coordinating synaptic vesicle exo- and endocytosis. This review aims to summarise and categorise the diverse and numerous findings describing presynaptic precursor cargo, mode of trafficking, kinesin-based axonal transport and the molecular mechanisms of presynaptic precursor vesicles biogenesis in both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Institute for Biology and Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
24
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
25
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
26
|
Kuznetsov IA, Kuznetsov AV. Dynein Dysfunction Prevents Maintenance of High Concentrations of Slow Axonal Transport Cargos at the Axon Terminal: A Computational Study. J Biomech Eng 2023; 145:071001. [PMID: 36795013 PMCID: PMC10158974 DOI: 10.1115/1.4056915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol. As dynein is a retrograde motor, its dysfunction should not directly influence anterograde transport. However, our modeling results unexpectedly predict that slow axonal transport fails to transport cargos against their concentration gradient without dynein. The reason is the lack of a physical mechanism for the reverse information flow from the axon terminal, which is required so that the cargo concentration at the terminal could influence the cargo concentration distribution in the axon. Mathematically speaking, to achieve a prescribed concentration at the terminal, equations governing cargo transport must allow for the imposition of a boundary condition postulating the cargo concentration at the terminal. Perturbation analysis for the case when the retrograde motor velocity becomes close to zero predicts uniform cargo distributions along the axon. The obtained results explain why slow axonal transport must be bidirectional to allow for the maintenance of concentration gradients along the axon length. Our result is limited to small cargo diffusivity, which is a reasonable assumption for many slow axonal transport cargos (such as cytosolic and cytoskeletal proteins, neurofilaments, actin, and microtubules) which are transported as large multiprotein complexes or polymers.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrey V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
27
|
Abstract
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Collapse
|
28
|
Wei M, Feng D, Lu Z, Hu Z, Wu H, Lian Y, Li D, Yan Z, Li Y, Wang X, Zhang H. Neurod1 mediates the reprogramming of NG2 glial into neurons in vitro. Gene Expr Patterns 2023; 47:119305. [PMID: 36682427 DOI: 10.1016/j.gep.2023.119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Neuronal defect and loss are the main pathological processes of many central nervous system diseases. Cellular reprogramming is a promising method to supplement lost neurons. However, study on cellular reprogramming is still limited and its mechanism remains unclear. Herein, the effect of Neurod1 expression on differentiation of NG2 glia into neurons was investigated. In this study, we successfully isolated NG2 glial cells from mice prior to identification with immunofluorescence. Afterwards, AAV-Neurod1 virus was used to construct Neurod1 overexpression vectors in NG2 glia. Later, we detected neuronal markers expression with immunofluorescence and real time quantitative polymerase-chain reaction (qRT-PCR). Besides, expression of MAPK-signaling-pathway-related proteins were detected by western blotting technique. Through immunofluorescence and qRT-PCR techniques, we observed that Neurod1 overexpression contributed to NG2 cells differentiated into neurons. Further experiments also showed that Neurod1 overexpression induced the activation of MAPK pathway, but PD98059 (a selective inhibitor of MAPK pathway) partly inhibited the neuronal differentiation induced by Neurod1 overexpression. These findings suggest that Neurod1 could promote NG2 glia cells differentiating into neurons, wherein the mechanism under the differentiation is related to activation of MAPK pathway.
Collapse
Affiliation(s)
- Min Wei
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Dengfeng Feng
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhenggang Lu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengwei Hu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Hao Wu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Yingli Lian
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Dongsheng Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengcun Yan
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China.
| |
Collapse
|
29
|
Morfini G, Kins S. Editorial: Kinase/phosphatase signaling and axonal function in health and disease. Front Cell Neurosci 2023; 17:1172836. [PMID: 37032835 PMCID: PMC10080091 DOI: 10.3389/fncel.2023.1172836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Gerardo Morfini
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern - Landau (RPTU), Kaiserslautern, Germany
| |
Collapse
|
30
|
O'Hagan R, Avrutis A, Ramicevic E. Functions of the tubulin code in the C. elegans nervous system. Mol Cell Neurosci 2022; 123:103790. [PMID: 36368428 DOI: 10.1016/j.mcn.2022.103790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Due to their elongated and polarized morphology, neurons rely on the microtubule (MT) cytoskeleton for their shape, as well as for efficient intracellular transport that maintains neuronal function, survival, and connectivity. Although all MTs are constructed from α- and β-tubulins that are highly conserved throughout eukaryotes, different MT networks within neurons exhibit different dynamics and functions. For example, molecular motors must be able to differentially recognize the axonal and dendritic MTs to deliver appropriate cargos to sensory endings and synaptic regions. The Tubulin Code hypothesis proposes that MTs can be specialized in form and function by chemical differences in their composition by inclusion of different α- and β-tubulins into the MT lattice, as well as differences in post-translational enzymatic modifications. The chemical differences encode information that allow MTs to regulate interactions with various microtubule-based molecular motors such as kinesins and dyneins as well as with structural microtubule-associated proteins (MAPs), which can, in turn, modify the function or stability of MTs. Here, we review studies involving C. elegans, a model organism with a relatively simple nervous system that is amenable to genetic analysis, that have contributed to our understanding of how the Tubulin Code can specialize neuronal MT networks to establish differences in neuronal morphology and function. Such studies have revealed molecules and mechanisms that are conserved in vertebrates and have the potential to inform our understanding of neurological diseases involving defects in the cytoskeleton and intracellular transport.
Collapse
Affiliation(s)
- Robert O'Hagan
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America.
| | - Alexandra Avrutis
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| | - Ema Ramicevic
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| |
Collapse
|
31
|
Sabui A, Biswas M, Somvanshi PR, Kandagiri P, Gorla M, Mohammed F, Tammineni P. Decreased anterograde transport coupled with sustained retrograde transport contributes to reduced axonal mitochondrial density in tauopathy neurons. Front Mol Neurosci 2022; 15:927195. [PMID: 36245925 PMCID: PMC9561864 DOI: 10.3389/fnmol.2022.927195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are essential organelle required for neuronal homeostasis. Mitochondria supply ATP and buffer calcium at synaptic terminals. However, the complex structural geometry of neurons poses a unique challenge in transporting mitochondria to synaptic terminals. Kinesin motors supply mitochondria to the axonal compartments, while cytoplasmic dynein is required for retrograde transport. Despite the importance of presynaptic mitochondria, how and whether axonal mitochondrial transport and distribution are altered in tauopathy neurons remain poorly studied. In the current study, we have shown that anterograde transport of mitochondria is reduced in P301L neurons, while there is no change in the retrograde transport. Consistently, axonal mitochondrial abundance is reduced in P301L neurons. We further studied the possible role of two opposing motor proteins on mitochondrial transport and found that mitochondrial association of kinesin is decreased significantly in P301L cells. Interestingly, fitting our experimental data into mathematical equations suggested a possible rise in dynein activity to maintain retrograde flux in P301L cells. Our data indicate that decreased kinesin-mediated transport coupled with sustained retrograde transport might reduce axonal mitochondria in tauopathy neurons, thus contributing to the synaptic deficits in Alzheimer’s disease (AD) and other tauopathies.
Collapse
Affiliation(s)
- Anusruti Sabui
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mitali Biswas
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Preethi Kandagiri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Madhavi Gorla
- Centre for Biotechnology, Institute of Science and Technology (IST), Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | - Fareed Mohammed
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Prasad Tammineni,
| |
Collapse
|
32
|
Berth SH, Rich DJ, Lloyd TE. The role of autophagic kinases in regulation of axonal function. Front Cell Neurosci 2022; 16:996593. [PMID: 36226074 PMCID: PMC9548526 DOI: 10.3389/fncel.2022.996593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Autophagy is an essential process for maintaining cellular homeostasis. Highlighting the importance of proper functioning of autophagy in neurons, disruption of autophagy is a common finding in neurodegenerative diseases. In recent years, evidence has emerged for the role of autophagy in regulating critical axonal functions. In this review, we discuss kinase regulation of autophagy in neurons, and provide an overview of how autophagic kinases regulate axonal processes, including axonal transport and axonal degeneration and regeneration. We also examine mechanisms for disruption of this process leading to neurodegeneration, focusing on the role of TBK1 in pathogenesis of Amyotrophic Lateral Sclerosis.
Collapse
|
33
|
Toodle V, Lee MH, Bachani M, Ruffin A, Vivekanandhan S, Malik N, Wang T, Johnson TP, Nath A, Steiner JP. Fluconazole Is Neuroprotective via Interactions with the IGF-1 Receptor. Neurotherapeutics 2022; 19:1313-1328. [PMID: 35831747 PMCID: PMC9587198 DOI: 10.1007/s13311-022-01265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2022] [Indexed: 10/17/2022] Open
Abstract
There is a continuing unmet medical need to develop neuroprotective strategies to treat neurodegenerative disorders. To address this need, we screened over 2000 compounds for potential neuroprotective activity in a model of oxidative stress and found that numerous antifungal agents were neuroprotective. Of the identified compounds, fluconazole was further characterized. Fluconazole was able to prevent neurite retraction and cell death in in vitro and in vivo models of toxicity. Fluconazole protected neurons in a concentration-dependent manner and exhibited efficacy against several toxic agents, including 3-nitropropionic acid, N-methyl D-aspartate, 6-hydroxydopamine, and the HIV proteins Tat and gp120. In vivo studies indicated that systemically administered fluconazole was neuroprotective in animals treated with 3-nitropropionic acid and prevented gp120-mediated neuronal loss. In addition to neuroprotection, fluconazole also induced proliferation of neural progenitor cells in vitro and in vivo. Fluconazole mediates these effects through upregulation and signaling via the insulin growth factor-1 receptor which results in decreased cAMP production and increased phosphorylation of Akt. Blockade of the insulin growth factor-1 receptor signaling with the selective inhibitor AG1024 abrogated the effects of fluconazole. Our studies suggest that fluconazole may be an attractive candidate for treatment of neurodegenerative diseases due to its protective properties against several categories of neuronal insults and its ability to spur neural progenitor cell proliferation.
Collapse
Affiliation(s)
- Valerie Toodle
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Muzna Bachani
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - April Ruffin
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Sneha Vivekanandhan
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Nasir Malik
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Hou M, Shao Z, Zhang S, Liu X, Fan P, Jiang M, Zhao Y, Xiao R, Yuan H. Age-related visual impairments and retinal ganglion cells axonal degeneration in a mouse model harboring OPTN (E50K) mutation. Cell Death Dis 2022; 13:362. [PMID: 35436991 PMCID: PMC9016082 DOI: 10.1038/s41419-022-04836-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Retinal ganglion cells (RGCs) axons are the signal carriers of visual information between retina and brain. Therefore, they play one of the important roles affected in many optic neurodegenerative diseases like glaucoma. Among the genetic risks associated with glaucoma, the E50K mutation in the Optineurin (OPTN) gene are known to result in glaucoma in the absence of increased intraocular pressure (IOP), whereas the relevant pathological mechanism and neurological issues remain to be further investigated. In this study, the OPTN (E50K) mutant mouse model was established through CRISPR/Cas9-mediated genome editing, and aging-related RGCs loss and the visual dysfunction were identified. In E50K mice 16 months old, the axonal transport decreased comparing to wild-type (WT) mice at the same age. Furthermore, results of electron microscopy demonstrated significant morphological anomaly of mitochondria in RGCs axons of young E50K mice 3 months old, and these changes were aggravated with age. These indicated that the damaged mitochondria-associated dysfunction of RGCs axon should play an etiological role in glaucoma as an age-related outcome of OPTN (E50K) mutation. The findings of this study have potential implications for the targeted prevention and treatment of NTG.
Collapse
|
35
|
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. Int J Mol Sci 2022; 23:ijms23073935. [PMID: 35409291 PMCID: PMC8999615 DOI: 10.3390/ijms23073935] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been related to several neurodegenerative conditions. Studies on axonal transport in glaucoma include analysis in different animal models and in humans, and indicate that its failure happens mainly in the ONH and early in disease progression, preceding axonal and somal degeneration. Thus, a better understanding of the role of axonal transport in glaucoma is not only pivotal to decipher disease mechanisms but could also enable early therapies that might prevent irreversible neuronal damage at an early time point. In this review we present the current evidence of axonal transport impairment in glaucomatous neurodegeneration and summarize the methods employed to evaluate transport in this disease.
Collapse
Affiliation(s)
- Mariana Santana Dias
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Xiaoyue Luo
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Vinicius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
- Correspondence:
| |
Collapse
|
36
|
Hoerndli FJ, Brockie PJ, Wang R, Mellem JE, Kallarackal A, Doser RL, Pierce DM, Madsen DM, Maricq AV. MAPK signaling and a mobile scaffold complex regulate AMPA receptor transport to modulate synaptic strength. Cell Rep 2022; 38:110577. [PMID: 35354038 PMCID: PMC9965202 DOI: 10.1016/j.celrep.2022.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Synaptic plasticity depends on rapid experience-dependent changes in the number of neurotransmitter receptors. Previously, we demonstrated that motor-mediated transport of AMPA receptors (AMPARs) to and from synapses is a critical determinant of synaptic strength. Here, we describe two convergent signaling pathways that coordinate the loading of synaptic AMPARs onto scaffolds, and scaffolds onto motors, thus providing a mechanism for experience-dependent changes in synaptic strength. We find that an evolutionarily conserved JIP-protein scaffold complex and two classes of mitogen-activated protein kinase (MAPK) proteins mediate AMPAR transport by kinesin-1 motors. Genetic analysis combined with in vivo, real-time imaging in Caenorhabditis elegans revealed that CaMKII is required for loading AMPARs onto the scaffold, and MAPK signaling is required for loading the scaffold complex onto motors. Our data support a model where CaMKII signaling and a MAPK-signaling pathway cooperate to facilitate the rapid exchange of AMPARs required for early stages of synaptic plasticity.
Collapse
Affiliation(s)
- Frédéric J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Penelope J Brockie
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Rui Wang
- Pathology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jerry E Mellem
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Angy Kallarackal
- Department of Psychology, Mount Saint Mary's University, Emmitsburg, MD 21727, USA
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Dayton M Pierce
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - David M Madsen
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Andres V Maricq
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA.
| |
Collapse
|
37
|
Fertuzinhos S, Legué E, Li D, Liem KF. A dominant tubulin mutation causes cerebellar neurodegeneration in a genetic model of tubulinopathy. SCIENCE ADVANCES 2022; 8:eabf7262. [PMID: 35171680 PMCID: PMC8849301 DOI: 10.1126/sciadv.abf7262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Mutations in tubulins cause distinct neurodevelopmental and degenerative diseases termed "tubulinopathies"; however, little is known about the functional requirements of tubulins or how mutations cause cell-specific pathologies. Here, we identify a mutation in the gene Tubb4a that causes degeneration of cerebellar granule neurons and myelination defects. We show that the neural phenotypes result from a cell type-specific enrichment of a dominant mutant form of Tubb4a relative to the expression other β-tubulin isotypes. Loss of Tubb4a function does not underlie cellular pathology but is compensated by the transcriptional up-regulation of related tubulin genes in a cell type-specific manner. This work establishes that the expression of a primary tubulin mutation in mature neurons is sufficient to promote cell-autonomous cell death, consistent with a causative association of microtubule dysfunction with neurodegenerative diseases. These studies provide evidence that mutations in tubulins cause specific phenotypes based on expression ratios of tubulin isotype genes.
Collapse
Affiliation(s)
- Sofia Fertuzinhos
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Davis Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karel F. Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
38
|
Robinson W, Godenschwege TA. Live Imaging of Axonal Transport in the Adult Drosophila Central Nervous System. Methods Mol Biol 2022; 2431:417-428. [PMID: 35412290 DOI: 10.1007/978-1-0716-1990-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Live imaging of axons allows for the determination of motility and directionality of proteins or organelles. In Drosophila, axonal transport has been predominantly characterized in peripheral neurons, such as larval motor neurons and sensory neurons of the adult wing. As peripheral neurons and central nervous system (CNS) neurons are inherently different, we provide a method to live-image axonal transport of CNS neurons in the cervical connective using an upright or inverted microscope. The method involves dissecting and mounting an entire CNS in a glass bottom petri dish, which is suitable for imaging of nearly any axon in cervical connective. Here, we show an example for simultaneous imaging of both giant fiber axons, which are part of the fly's escape response circuitry, and due to their large diameter provide outstanding resolution.
Collapse
Affiliation(s)
- Wayne Robinson
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
39
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
40
|
New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl Neurodegener 2021; 10:46. [PMID: 34789332 PMCID: PMC8597313 DOI: 10.1186/s40035-021-00272-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective, early degeneration of motor neurons in the brain and spinal cord. Motor neurons have long axonal projections, which rely on the integrity of neuronal cytoskeleton and mitochondria to regulate energy requirements for maintaining axonal stability, anterograde and retrograde transport, and signaling between neurons. The formation of protein aggregates which contain cytoskeletal proteins, and mitochondrial dysfunction both have devastating effects on the function of neurons and are shared pathological features across several neurodegenerative conditions, including ALS, Alzheimer's disease, Parkinson's disease, Huntington's disease and Charcot-Marie-Tooth disease. Furthermore, it is becoming increasingly clear that cytoskeletal integrity and mitochondrial function are intricately linked. Therefore, dysregulations of the cytoskeletal network and mitochondrial homeostasis and localization, may be common pathways in the initial steps of neurodegeneration. Here we review and discuss known contributors, including variants in genetic loci and aberrant protein activities, which modify cytoskeletal integrity, axonal transport and mitochondrial localization in ALS and have overlapping features with other neurodegenerative diseases. Additionally, we explore some emerging pathways that may contribute to this disruption in ALS.
Collapse
|
41
|
Frontotemporal Lobar Dementia Mutant Tau Impairs Axonal Transport through a Protein Phosphatase 1γ-Dependent Mechanism. J Neurosci 2021; 41:9431-9451. [PMID: 34607969 PMCID: PMC8580143 DOI: 10.1523/jneurosci.1914-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, β, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1β, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons. SIGNIFICANCE STATEMENT Tau pathology is closely associated with neurodegeneration in Alzheimer's disease and other tauopathies, but the toxic mechanisms remain a debated topic. We previously proposed that pathologic tau forms induce dysfunction and degeneration through aberrant activation of a PP1-dependent pathway that disrupts axonal transport. Here, we show that tau directly interacts with specific PP1 isoforms, increasing levels of active PP1. Pathogenic tau mutations enhance this interaction, further increasing active PP1 levels and impairing axonal transport in isolated squid axoplasm and primary hippocampal neurons. Mutant-tau-mediated impairment of axonal transport was mediated by PP1γ and a phosphatase-activating domain located at the amino terminus of tau. This work has important implications for understanding and potentially mitigating tau-mediated neurotoxicity in tauopathies.
Collapse
|
42
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|
43
|
Bodakuntla S, Yuan X, Genova M, Gadadhar S, Leboucher S, Birling M, Klein D, Martini R, Janke C, Magiera MM. Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J 2021; 40:e108498. [PMID: 34309047 PMCID: PMC8408597 DOI: 10.15252/embj.2021108498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tubulin polyglutamylation is a post-translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The "tubulin code" hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation-specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α-tubulin, while TTLL7 modifies β-tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
- Present address:
National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Xidi Yuan
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Mariya Genova
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Sudarshan Gadadhar
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Sophie Leboucher
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Marie‐Christine Birling
- CELPHEDIA, PHENOMINInstitut Clinique de la Souris (ICS), CNRS, INSERMUniversity of StrasbourgIllkirchFrance
| | - Dennis Klein
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Rudolf Martini
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Carsten Janke
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Maria M Magiera
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| |
Collapse
|
44
|
Zglejc-Waszak K, Mukherjee K, Juranek JK. The cross-talk between RAGE and DIAPH1 in neurological complications of diabetes: A review. Eur J Neurosci 2021; 54:5982-5999. [PMID: 34449932 DOI: 10.1111/ejn.15433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
Neuropathy, or dysfunction of peripheral nerve, is one of the most common neurological manifestation in patients with diabetes mellitus (DM). DM is typically associated with a hyperglycaemic milieu, which promotes non-enzymatic glycation of proteins. Proteins with advanced glycation are known to engage a cell-surface receptor called the receptor for advanced glycation end products (RAGE). Thus, it is reasonable to assume that RAGE and its associated molecule-mediated cellular signalling may contribute to DM-induced symmetrical axonal (length-dependent) neuropathy. Of particular interest is diaphanous related formin 1 (DIAPH1), a cytoskeletal organizing molecule, which interacts with the cytosolic domain of RAGE and whose dysfunction may precipitate axonopathy/neuropathy. Indeed, it has been demonstrated that both RAGE and DIAPH1 are expressed in the motor and sensory fibres of nerve harvested from DM animal models. Although the detailed molecular role of RAGE and DIAPH1 in diabetic neurological complications remains unclear, here we will discuss available evidence of their involvement in peripheral diabetic neuropathy. Specifically, we will discuss how a hyperglycaemic environment is not only likely to elevate advanced glycation end products (ligands of RAGE) and induce a pro-inflammatory environment but also alter signalling via RAGE and DIAPH1. Further, hyperglycaemia may regulate epigenetic mechanisms that interacts with RAGE signalling. We suggest the cumulative effect of hyperglycaemia on RAGE-DIAPH1-mediated signalling may be disruptive to axonal cytoskeletal organization and transport and is therefore likely to play a key role in pathogenesis of diabetic symmetrical axonal neuropathy.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech Roanoke, Roanoke, Virginia, USA
| | - Judyta Karolina Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
45
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
46
|
Unique dynamics and exocytosis properties of GABAergic synaptic vesicles revealed by three-dimensional single vesicle tracking. Proc Natl Acad Sci U S A 2021; 118:2022133118. [PMID: 33622785 DOI: 10.1073/pnas.2022133118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining the balance between neuronal excitation and inhibition is essential for proper function of the central nervous system. Inhibitory synaptic transmission plays an important role in maintaining this balance. Although inhibitory transmission has higher kinetic demands compared to excitatory transmission, its properties are poorly understood. In particular, the dynamics and exocytosis of single inhibitory vesicles have not been investigated, due largely to both technical and practical limitations. Using a combination of quantum dots (QDs) conjugated to antibodies against the luminal domain of the vesicular GABA transporter to selectively label GABAergic (i.e., predominantly inhibitory) vesicles together with dual-focus imaging optics, we tracked the real-time three-dimensional position of single GABAergic vesicles up to the moment of exocytosis (i.e., fusion). Using three-dimensional trajectories, we found that GABAergic synaptic vesicles traveled a shorter distance prior to fusion and had a shorter time to fusion compared to synaptotagmin-1 (Syt1)-labeled vesicles, which were mostly from excitatory neurons. Moreover, our analysis revealed that GABAergic synaptic vesicles move more straightly to their release sites than Syt1-labeled vesicles. Finally, we found that GABAergic vesicles have a higher prevalence of kiss-and-run fusion than Syt1-labeled vesicles. These results indicate that inhibitory synaptic vesicles have a unique set of dynamics and exocytosis properties to support rapid synaptic inhibition, thereby maintaining a tightly regulated coordination between excitation and inhibition in the central nervous system.
Collapse
|
47
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
48
|
Fabbretti E, Antognolli G, Tongiorgi E. Amyloid-β Impairs Dendritic Trafficking of Golgi-Like Organelles in the Early Phase Preceding Neurite Atrophy: Rescue by Mirtazapine. Front Mol Neurosci 2021; 14:661728. [PMID: 34149353 PMCID: PMC8209480 DOI: 10.3389/fnmol.2021.661728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Neurite atrophy with loss of neuronal polarity is a pathological hallmark of Alzheimer's disease (AD) and other neurological disorders. While there is substantial agreement that disruption of intracellular vesicle trafficking is associated with axonal pathology in AD, comparatively less is known regarding its role in dendritic atrophy. This is a significant gap of knowledge because, unlike axons, dendrites are endowed with the complete endomembrane system comprising endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), Golgi apparatus, post-Golgi vesicles, and a recycling-degradative route. In this study, using live-imaging of pGOLT-expressing vesicles, indicative of Golgi outposts and satellites, we investigate how amyloid-β (Aβ) oligomers affect the trafficking of Golgi-like organelles in the different dendritic compartments of cultured rat hippocampal neurons. We found that short-term (4 h) treatment with Aβ led to a decrease in anterograde trafficking of Golgi vesicles in dendrites of both resting and stimulated (with 50 mM KCl) neurons. We also characterized the ability of mirtazapine, a noradrenergic and specific serotonergic tetracyclic antidepressant (NaSSA), to rescue Golgi dynamics in dendrites. Mirtazapine treatment (10 μM) increased the number and both anterograde and retrograde motility, reducing the percentage of static Golgi vesicles. Finally, mirtazapine reverted the neurite atrophy induced by 24 h treatment with Aβ oligomers, suggesting that this drug is able to counteract the effects of Aβ by improving the dendritic trafficking of Golgi-related vesicles.
Collapse
Affiliation(s)
- Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
49
|
Wilson JO, Zaragoza AD, Xu J. Tuning ensemble-averaged cargo run length via fractional change in mean kinesin number. Phys Biol 2021; 18. [PMID: 33827070 DOI: 10.1088/1478-3975/abf5b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 11/12/2022]
Abstract
The number of motors carrying cargos in biological cells is not well-defined, instead varying from cargo to cargo about a statistical mean. Predictive understanding of motility in cells therefore requires quantitative insights into mixed ensembles of cargos. Toward this goal, here we employed Monte Carlo simulations to investigate statistical ensembles of cargos carried by a Poisson-distributed number of motors. Focusing on the key microtubule-based motor kinesin-1, our simulations utilized experimentally determined single-kinesin characteristics and alterations in kinesin's on- and off-rates caused by cellular factors and/or physical load. We found that a fractional increase in mean kinesin number enhances the ensemble-averaged cargo run length and amplifies run-length sensitivity to changes in single-kinesin on-rate and off-rate. These tuning effects can be further enhanced as solution viscosity increases over the range reported for cells. Together, our data indicate that the physiological range of kinesin number sensitively tunes the motility of mixed cargo populations. These effects have rich implications for quantitative and predictive understanding of cellular motility and its regulation.
Collapse
Affiliation(s)
- John O Wilson
- Physics, University of California, Merced, CA, United States of America
| | - Arturo D Zaragoza
- Mechanical Engineering, University of California, Merced, CA, United States of America
| | - Jing Xu
- Physics, University of California, Merced, CA, United States of America
| |
Collapse
|
50
|
CCP1, a Tubulin Deglutamylase, Increases Survival of Rodent Spinal Cord Neurons following Glutamate-Induced Excitotoxicity. eNeuro 2021; 8:ENEURO.0431-20.2021. [PMID: 33688040 PMCID: PMC8021396 DOI: 10.1523/eneuro.0431-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 01/21/2023] Open
Abstract
Microtubules (MTs) are cytoskeletal elements that provide structural support and act as roadways for intracellular transport in cells. MTs are also needed for neurons to extend and maintain long axons and dendrites that establish connectivity to transmit information through the nervous system. Therefore, in neurons, the ability to independently regulate cytoskeletal stability and MT-based transport in different cellular compartments is essential. Posttranslational modification of MTs is one mechanism by which neurons regulate the cytoskeleton. The carboxypeptidase CCP1 negatively regulates posttranslational polyglutamylation of MTs. In mammals, loss of CCP1, and the resulting hyperglutamylation of MTs, causes neurodegeneration. It has also long been known that CCP1 expression is activated by neuronal injury; however, whether CCP1 plays a neuroprotective role after injury is unknown. Using shRNA-mediated knock-down of CCP1 in embryonic rat spinal cord cultures, we demonstrate that CCP1 protects spinal cord neurons from excitotoxic death. Unexpectedly, excitotoxic injury reduced CCP1 expression in our system. We previously demonstrated that the CCP1 homolog in Caenorhabditis elegans is important for maintenance of neuronal cilia. Although cilia enhance neuronal survival in some contexts, it is not yet clear whether CCP1 maintains cilia in mammalian spinal cord neurons. We found that knock-down of CCP1 did not result in loss or shortening of cilia in cultured spinal cord neurons, suggesting that its effect on survival of excitotoxicity is independent of cilia. Our results support the idea that enzyme regulators of MT polyglutamylation might be therapeutically targeted to prevent excitotoxic death after spinal cord injuries.
Collapse
|