1
|
Naeem A, Waseem A, Khan MA, Robertson AA, Raza SS. Therapeutic Potential of MCC950 in Restoring Autophagy and Cognitive Function in STZ-Induced Rat Model of Alzheimer's Disease. Mol Neurobiol 2025; 62:6041-6058. [PMID: 39702834 DOI: 10.1007/s12035-024-04662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Alzheimer's disease (AD) is currently the seventh leading cause of death worldwide. In this study, we explored the critical role of autophagy in AD pathology using a streptozotocin (STZ)-induced AD model in Wistar rats. The experimental groups included sham, STZ-induced AD, and STZ + MCC950-treated animals. Our findings revealed that administering two doses of STZ (3 mg/kg) intracerebroventricular at the interval of 48 h (on days 0 and 2), triggered autophagy, as evidenced by elevated levels of autophagy markers such as LC3II, ULK1, Beclin1, Ambra1, Cathepsin B, and a reduction in p62 levels. Behavioral assessments, including the water maze and novel object recognition tests, confirmed cognitive deficits and memory impairment, while the open-field test indicated increased anxiety in STZ-induced AD rats. In particular, treating the STZ-induced AD group with MCC950 (50 mg/kg) decreased the overexpression of autophagy-related proteins, which was consistent with better behavioral outcomes and lower anxiety. Overall, this study highlights new insights into AD pathophysiology and suggests potential therapeutic avenues.
Collapse
Affiliation(s)
- Abdul Naeem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India.
| |
Collapse
|
2
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
3
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
4
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024; 327:8-32. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Jha D, Bakker ENTP, Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer's disease. J Neurochem 2024; 168:3574-3598. [PMID: 36802053 DOI: 10.1111/jnc.15788] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1β and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Dhanshree Jha
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
7
|
Li C, Zhang X, Wang Y, Cheng L, Li C, Xiang Y. The role of IL-1 family of cytokines in the pathogenesis and therapy of Alzheimer's disease. Inflammopharmacology 2024:10.1007/s10787-024-01534-8. [PMID: 39126573 DOI: 10.1007/s10787-024-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurological condition that occurs with age and poses a significant global public health concern, is distinguished by the degeneration of neurons and synapses in various regions of the brain. While the exact processes behind the neurodegeneration in AD are not completely known, it is now acknowledged that inflammation may have a significant impact on the beginning and advancement of AD neurodegeneration. The severity of many neurological illnesses can be influenced by the equilibrium between pro-inflammatory and anti-inflammatory mediators. The IL-1 family of cytokines is linked to innate immune responses, which are present in both acute inflammation and chronic inflammatory diseases. Research on the role of the IL-1 family in chronic neurological disease has been concentrated on AD. In this context, there is indirect evidence suggesting its involvement in the development of the disease. This review aims to provide a summary of the contribution of every IL-1 family member in AD pathogenesis, current immunotherapies in AD disease, and present treatment possibilities for either targeting or boosting these cytokines.
Collapse
Affiliation(s)
- ChangQing Li
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Xun Zhang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Yunqian Wang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Le Cheng
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - ChangBao Li
- Urology Department, Huili People's Hospital, Huili615100, Guangyuan, Sichuan, China
| | - Yu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Chagas LDS, Serfaty CA. The Influence of Microglia on Neuroplasticity and Long-Term Cognitive Sequelae in Long COVID: Impacts on Brain Development and Beyond. Int J Mol Sci 2024; 25:3819. [PMID: 38612629 PMCID: PMC11011312 DOI: 10.3390/ijms25073819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Microglial cells, the immune cells of the central nervous system, are key elements regulating brain development and brain health. These cells are fully responsive to stressors, microenvironmental alterations and are actively involved in the construction of neural circuits in children and the ability to undergo full experience-dependent plasticity in adults. Since neuroinflammation is a known key element in the pathogenesis of COVID-19, one might expect the dysregulation of microglial function to severely impact both functional and structural plasticity, leading to the cognitive sequelae that appear in the pathogenesis of Long COVID. Therefore, understanding this complex scenario is mandatory for establishing the possible molecular mechanisms related to these symptoms. In the present review, we will discuss Long COVID and its association with reduced levels of BDNF, altered crosstalk between circulating immune cells and microglia, increased levels of inflammasomes, cytokines and chemokines, as well as the alterations in signaling pathways that impact neural synaptic remodeling and plasticity, such as fractalkines, the complement system, the expression of SIRPα and CD47 molecules and altered matrix remodeling. Together, these complex mechanisms may help us understand consequences of Long COVID for brain development and its association with altered brain plasticity, impacting learning disabilities, neurodevelopmental disorders, as well as cognitive decline in adults.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Program of Neuroscience, Department of Neurobiology, Institute of Biology, Federal Fluminense University, Niterói 24210-201, Rio de Janeiro, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Li Y, Chen X, Zhou M, Feng S, Peng X, Wang Y. Microglial TLR4/NLRP3 Inflammasome Signaling in Alzheimer's Disease. J Alzheimers Dis 2024; 97:75-88. [PMID: 38043010 DOI: 10.3233/jad-230273] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease is a pervasive neurodegenerative disease that is estimated to represent approximately 70% of dementia cases worldwide, and the molecular complexity that has been highlighted remains poorly understood. The accumulation of extracellular amyloid-β (Aβ), intracellular neurofibrillary tangles formed by tau hyperphosphorylation, and neuroinflammation are the major pathological features of Alzheimer's disease (AD). Over the years, there has been no apparent breakthrough in drug discovery based on the Aβ and tau hypotheses. Neuroinflammation has gradually become a hot spot in AD treatment research. As the primary cells of innate immunity in the central nervous system, microglia play a key role in neuroinflammation. Toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasomes are vital molecules in neuroinflammation. In the pathological context of AD, the complex interplay between TLR4 and the NLRP3 inflammasomes in microglia influences AD pathology via neuroinflammation. In this review, the effect of the activation and inhibition of TLR4 and NLRP3 in microglia on AD pathology, as well as the cross-talk between TLR4 and the NLRP3 inflammasome, and the influence of essential molecules in the relevant signaling pathway on AD pathology, were expounded. In addition, the feasibility of these factors in representing a potential treatment option for AD has been clarified.
Collapse
Affiliation(s)
- Yunfeng Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mulan Zhou
- Department of Pharmacy, The People's Hospital of Gaozhou, Maoming, China
| | - Sifan Feng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoping Peng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
11
|
Noor S, Sun MS, Pasmay AA, Pritha AN, Ruffaner-Hanson CD, Nysus MV, Jimenez DC, Murphy M, Savage DD, Valenzuela CF, Milligan ED. Prenatal alcohol exposure promotes NLRP3 inflammasome-dependent immune actions following morphine treatment and paradoxically prolongs nerve injury-induced pathological pain in female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2262-2277. [PMID: 38151779 PMCID: PMC10764094 DOI: 10.1111/acer.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuroimmune dysregulation from prenatal alcohol exposure (PAE) may contribute to neurological deficits associated with fetal alcohol spectrum disorders (FASD). PAE is a risk factor for developing peripheral immune and spinal glial sensitization and release of the proinflammatory cytokine IL-1β, which lead to neuropathic pain (allodynia) from minor nerve injury. Although morphine acts on μ-opioid receptors, it also activates immune receptors, TLR4, and the NLRP3 inflammasome that induces IL-1β. We hypothesized that PAE induces NLRP3 sensitization by morphine following nerve injury in adult mice. METHODS We used an established moderate PAE paradigm, in which adult PAE and non-PAE control female mice were exposed to a minor sciatic nerve injury, and subsequent allodynia was measured using the von Frey fiber test. In control mice with standard sciatic damage or PAE mice with minor sciatic damage, the effects of the NLRP3 inhibitor, MCC950, were examined during chronic allodynia. Additionally, minor nerve-injured mice were treated with morphine, with or without MCC950. In vitro studies examined the TLR4-NLRP3-dependent proinflammatory response of peripheral macrophages to morphine and/or lipopolysaccharide, with or without MCC950. RESULTS Mice with standard sciatic damage or PAE mice with minor sciatic damage developed robust allodynia. Blocking NLRP3 activation fully reversed allodynia in both control and PAE mice. Morphine paradoxically prolonged allodynia in PAE mice, while control mice with minor nerve injury remained stably non-allodynic. Allodynia resolved sooner in nerve-injured PAE mice without morphine treatment than in morphine-treated mice. MCC950 treatment significantly shortened allodynia in morphine-treated PAE mice. Morphine potentiated IL-1β release from TLR4-activated PAE immune cells, while MCC950 treatment greatly reduced it. CONCLUSIONS In female mice, PAE prolongs allodynia following morphine treatment through NLRP3 activation. TLR4-activated PAE immune cells showed enhanced IL-1β release with morphine via NLRP3 actions. Similar studies are needed to examine the adverse impact of morphine in males with PAE. These results are predictive of adverse responses to opioid pain therapeutics in individuals with FASD.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Melody S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrea A Pasmay
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ariana N Pritha
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Monique V Nysus
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Diane C Jimenez
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Minerva Murphy
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Erin D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
12
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
13
|
Yang Y, Ondrejcak T, Hu NW, Islam S, O'Rourke E, Reilly RB, Cunningham C, Rowan MJ, Klyubin I. Gamma-patterned sensory stimulation reverses synaptic plasticity deficits in rat models of early Alzheimer's disease. Eur J Neurosci 2023; 58:3402-3411. [PMID: 37655756 DOI: 10.1111/ejn.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Non-invasive sensory stimulation in the range of the brain's gamma rhythm (30-100 Hz) is emerging as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). Here, we investigated the effect of repeated combined exposure to 40 Hz synchronized sound and light stimuli on hippocampal long-term potentiation (LTP) in vivo in three rat models of early AD. We employed a very complete model of AD amyloidosis, amyloid precursor protein (APP)-overexpressing transgenic McGill-R-Thy1-APP rats at an early pre-plaque stage, systemic treatment of transgenic APP rats with corticosterone modelling certain environmental AD risk factors and, importantly, intracerebral injection of highly disease-relevant AD patient-derived synaptotoxic beta-amyloid and tau in wild-type animals. We found that daily treatment with 40 Hz sensory stimulation for 2 weeks fully abrogated the inhibition of LTP in all three models. Moreover, there was a negative correlation between the magnitude of LTP and the level of active caspase-1 in the hippocampus of transgenic APP animals, which suggests that the beneficial effect of 40 Hz stimulation was dependent on modulation of pro-inflammatory mechanisms. Our findings support ongoing clinical trials of gamma-patterned sensory stimulation in early AD.
Collapse
Affiliation(s)
- Yin Yang
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sadia Islam
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eugene O'Rourke
- Department of Electronic and Electrical Engineering, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Richard B Reilly
- School of Medicine, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology and Therapeutics, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
14
|
Wang L, Liu Y, Xu T. Aerobic Exercise Improves Depressive-like Behavior in CUMS-Induced Rats via the SIRT3/ROS/NLRP3 Signaling Pathway. Life (Basel) 2023; 13:1711. [PMID: 37629568 PMCID: PMC10456012 DOI: 10.3390/life13081711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of exercise on depressive-like behavior induced by chronic unpredictable mild stress (CUMS) in rats and to explore the role of the SIRT3/ROS/NLRP3 signaling pathway in this process. METHODS Twenty-nine male 8-week-old Sprague Dawley rats were divided into a control group (CON) (nine rats) and a model group (twenty rats). Thirteen chronic stress stimuli were randomly applied once or twice per day for 35 days to induce depression in the model group rats. After the model was established, the model group rats were randomly divided into the CUMS group (CUMS) and the aerobic exercise + CUMS group (EX + CUMS). The EX + CUMS group received 8 weeks of aerobic exercise intervention for 6 days per week. Behavioral assessments were performed using the sucrose preference test and forced swimming test. The expression of SIRT3, NLRP3, IL-1β, and IL-18 in the hippocampus was detected using RT-PCR. The ROS level in the hippocampus was detected using immunofluorescence. The protein levels of SIRT3 and NLRP3 in the hippocampus were detected using western blotting. The protein levels of IL-1β and IL-18 in the hippocampus were measured using ELISA. RESULTS After 5 weeks of chronic stress stimuli, the hippocampal function of rats in the CUMS model group was impaired, and their sucrose preference was reduced, while their forced swimming time was prolonged. The expression of SIRT3 decreased, ROS increased, and the expression of NLRP3 and the levels of IL-1β and IL-18 increased. Aerobic exercise increased the sucrose preference of rats, shortened their immobility time, increased the expression of SIRT3, and reduced the levels of ROS, NLRP3, IL-1β, and IL-18. CONCLUSION Exercise can improve the depressive behavior of CUMS model rats, and its mechanism may be related to the upregulation of SIRT3 in the hippocampus, which plays an anti-inflammatory role.
Collapse
Affiliation(s)
- Lijun Wang
- School of Physical Education, Shaanxi Normal University, Xi’an 710119, China
| | | | | |
Collapse
|
15
|
Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res Rev 2023; 88:101954. [PMID: 37187367 DOI: 10.1016/j.arr.2023.101954] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
With increasing age, structural changes occur in the eye and brain. Neuronal death, inflammation, vascular disruption, and microglial activation are among many of the pathological changes that can occur during ageing. Furthermore, ageing individuals are at increased risk of developing neurodegenerative diseases in these organs, including Alzheimer's disease (AD), Parkinson's disease (PD), glaucoma and age-related macular degeneration (AMD). Although these diseases pose a significant global public health burden, current treatment options focus on slowing disease progression and symptomatic control rather than targeting underlying causes. Interestingly, recent investigations have proposed an analogous aetiology between age-related diseases in the eye and brain, where a process of chronic low-grade inflammation is implicated. Studies have suggested that patients with AD or PD are also associated with an increased risk of AMD, glaucoma, and cataracts. Moreover, pathognomonic amyloid-β and α-synuclein aggregates, which accumulate in AD and PD, respectively, can be found in ocular parenchyma. In terms of a common molecular pathway that underpins these diseases, the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome is thought to play a vital role in the manifestation of all these diseases. This review summarises the current evidence regarding cellular and molecular changes in the brain and eye with age, similarities between ocular and cerebral age-related diseases, and the role of the NLRP3 inflammasome as a critical mediator of disease propagation in the eye and the brain during ageing.
Collapse
Affiliation(s)
- Jack J Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Moradeke M Adesina
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and the New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
16
|
Ji S, Wu Y, Zhu R, Guo D, Jiang Y, Huang L, Ma X, Yu L. Novel Phenylethanoid Glycosides Improve Hippocampal Synaptic Plasticity via the Cyclic Adenosine Monophosphate-CREB-Brain-Derived Neurotrophic Growth Factor Pathway in APP/PS1 Transgenic Mice. Gerontology 2023; 69:1065-1075. [PMID: 37285833 PMCID: PMC10568609 DOI: 10.1159/000531194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a major public health concern worldwide, but there are still no drugs available that treat it effectively. Previous studies have shown that phenylethanoid glycosides have pharmacological effects, which include anti-AD properties, but the underlying mechanisms by which they ameliorate AD symptoms remain unknown. METHODS In this study, we used an APP/PS1 AD mouse model to explore the function and mechanisms underlying savatiside A (SA) and torenoside B (TB) in the treatment of AD. SA or TB (100 mg·kg-1·d-1) was orally administered to 7-month-old APP/PS1 mice for 4 weeks. Cognitive and memory functions were measured using behavioral experiments (including the Morris water maze test and the Y-maze spontaneous alternation test). Molecular biology experiments (including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays) were used to detect any corresponding changes in signaling pathways. RESULTS The results showed that SA or TB treatment could significantly reduce cognitive impairment in APP/PS1 mice. We also showed that chronic treatment with SA/TB could prevent spine loss, synaptophysin immunoreactivity, and neuronal loss in mice, thereby improving synaptic plasticity and moderating learning and memory deficits. SA/TB administration also promoted the expression of synaptic proteins in APP/PS1 mouse brains and upregulated phosphorylation of proteins in the cyclic adenosine monophosphate (cAMP)/CREB/brain-derived neurotrophic growth factor (BDNF) pathway that are responsible for synaptic plasticity. Additionally, chronic SA/TB treatment increased the levels of BDNF and nerve growth factor (NGF) in the brains of APP/PS1 mice. Both astrocyte and microglia volumes, as well as the generation of amyloid β, were also decreased in SA/TB-treated APP/PS1 mice compared to control APP/PS1 mice. CONCLUSION In summary, SA/TB treatment was associated with activation of the cAMP/CREB/BDNF pathway and increased BDNF and NGF expression, indicating that SA/TB improves cognitive functioning via nerve regeneration. SA/TB is a promising candidate drug for the treatment of AD.
Collapse
Affiliation(s)
- Shiliang Ji
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yijie Wu
- Department of Neurology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Ruifang Zhu
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Dongkai Guo
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yiguo Jiang
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lifeng Huang
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xinwei Ma
- Department of Medical Imaging, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Sbai O, Bazzani V, Tapaswi S, McHale J, Vascotto C, Perrone L. Is Drp1 a link between mitochondrial dysfunction and inflammation in Alzheimer's disease? Front Mol Neurosci 2023; 16:1166879. [PMID: 37251647 PMCID: PMC10213291 DOI: 10.3389/fnmol.2023.1166879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Recent advances highlight that inflammation is critical to Alzheimer Disease (AD) pathogenesis. Indeed, several diseases characterized by inflammation are considered risk factors for AD, such as type 2 diabetes, obesity, hypertension, and traumatic brain injury. Moreover, allelic variations in genes involved in the inflammatory cascade are risk factors for AD. AD is also characterized by mitochondrial dysfunction, which affects the energy homeostasis of the brain. The role of mitochondrial dysfunction has been characterized mostly in neuronal cells. However, recent data are demonstrating that mitochondrial dysfunction occurs also in inflammatory cells, promoting inflammation and the secretion of pro-inflammatory cytokines, which in turn induce neurodegeneration. In this review, we summarize the recent finding supporting the hypothesis of the inflammatory-amyloid cascade in AD. Moreover, we describe the recent data that demonstrate the link between altered mitochondrial dysfunction and the inflammatory cascade. We focus in summarizing the role of Drp1, which is involved in mitochondrial fission, showing that altered Drp1 activation affects the mitochondrial homeostasis and leads to the activation of the NLRP3 inflammasome, promoting the inflammatory cascade, which in turn aggravates Amyloid beta (Ab) deposition and tau-induced neurodegeneration, showing the relevance of this pro-inflammatory pathway as an early event in AD.
Collapse
Affiliation(s)
- Oualid Sbai
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis, Tunisia
| | | | | | - Joshua McHale
- Department of Medicine, University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine, Italy
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
18
|
He W, Hu Z, Zhong Y, Wu C, Li J. The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Mol Neurobiol 2023; 60:2520-2538. [PMID: 36680735 DOI: 10.1007/s12035-023-03229-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is the best-described inflammasome that plays a crucial role in the innate immune system and a wide range of diseases. The intimate association of NLRP3 with neurological disorders, including neurodegenerative diseases and strokes, further emphasizes its prominence as a clinical target for pharmacological intervention. However, after decades of exploration, the mechanism of NLRP3 activation remains indefinite. This review highlights recent advances and gaps in our insights into the regulation of NLRP3 inflammasome. Furthermore, we present several emerging pharmacological approaches of clinical translational potential targeting the NLRP3 inflammasome in neurological diseases. More importantly, despite small-molecule inhibitors of the NLRP3 inflammasome, we have focused explicitly on Chinese herbal medicine and botanical ingredients, which may be splendid therapeutics by inhibiting NLRP3 inflammasome for central nervous system disorders. We expect that we can contribute new perspectives to the treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Yang Z, Liu J, Wei S, Deng J, Feng X, Liu S, Liu M. A novel strategy for bioactive natural products targeting NLRP3 inflammasome in Alzheimer's disease. Front Pharmacol 2023; 13:1077222. [PMID: 36699095 PMCID: PMC9868240 DOI: 10.3389/fphar.2022.1077222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is an ageing-related progressive neurodegenerative brain disorder. Extracellular neuritic plaques composed of misfolded amyloid β (Aβ) proteins and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein are the two classical characteristics of AD. Aβ and tau pathologies induce neurite atrophy and neuronal apoptosis, leading to cognitive, language, and behavioral deficits. For decades, researchers have made great efforts to explore the pathogens and therapeutics of AD; however, its intrinsic mechanism remains unclear and there are still no well-established strategies to restore or even prevent this disease. Therefore, it would be beneficial for the establishment of novel therapeutic strategy to determine the intrinsic molecular mechanism that is interrelated with the initiation and progression of AD. A variety of evidence indicates that neuroinflammation plays a crucial role in the pathogenesis of AD. Nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3) is a key inflammasome sensor of cellular stress and infection that is involved in the innate immune system. In response to a wide range of stimuli like Aβ, NLRP3 assembles apoptosis-associated speck-like protein (ASC) and procaspase-1 into an inflammasome complex to induce the caspase-1 mediated secretion of interleukin (IL)-1β/IL-18 in M1 polarized microglia, triggering the pathophysiological changes and cognitive decline of AD. Therefore, targeting NLRP3 inflammasome seems an efficient path for AD treatment via regulating brain immune microenvironment. Furthermore, accumulating evidence indicates that traditional Chinese medicine (TCM) exerts beneficial effects on AD via NLRP3 inflammasome inactivation. In this review, we summarize current reports on the role and activated mechanisms of the NLRP3 inflammasome in the pathogenesis of AD. We also review the natural products for attenuating neuroinflammation by targeting NLRP3 inflammasome activation, which provides useful clues for developing novel AD treatments.
Collapse
Affiliation(s)
- Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Junxin Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiahang Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyue Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Mingxin Liu
- College of Electrical and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
20
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
21
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
22
|
Yu X, Yu C, He W. Emerging trends and hot spots of NLRP3 inflammasome in neurological diseases: A bibliometric analysis. Front Pharmacol 2022; 13:952211. [PMID: 36160384 PMCID: PMC9490172 DOI: 10.3389/fphar.2022.952211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: NLRP3 inflammasome has been of great interest in the field of neurological diseases. To visualize the research hotspots and evolutionary trends in this area, we collected the relevant articles in the Web of Science Core Collection database from 2010 to 2022 and analyzed them using CiteSpace software. Methods: We performed a systematic search of the literature within the Web of Science Core Collection database using the strategy described below: TS = NLRP3 inflammasome AND TS = neurological diseases OR TS = neurological disorder OR TS = brain disorder OR TS = brain injury OR TS = central nervous system disease OR TS = CNS disease OR TS = central nervous system disorder OR TS = CNS disorder AND Language = English from 2010 to 2022. The type of literature was limited to articles and reviews. The data were processed using CiteSpace software (version 5.8. R3). Results: A total of 1,217 literature from 67 countries/regions and 337 research institutions was retrieved. Publications in this area have increased rapidly since 2013. China presents the highest number of published articles, but the United States has a higher centrality and h-index. The top five most published institutions and authors are from China, Zhejiang University and Li Y ranking first, respectively. Of the ten most cited articles, Prof. Heneka MT and colleagues accounted for three of them. In terms of the co-occurrence keyword diagram, the five most frequent keywords are “nlrp3 inflammasome”, “activation”, “oxidative stress”, “expression”, and “alzheimers disease”. Conclusion: The research of NLRP3 inflammasome in neurological disorders is overall developing well. Chinese scholars contributed the most significant number of articles, while researchers from developed countries presented more influential papers. The importance of NLRP3 inflammasome in neurological diseases is widely appreciated, and the mechanism is under study. Moreover, NLRP3 inflammasome is emerging as a promising therapeutic target in treating neurological disorders. However, despite decades of research, our understanding of NLRP3 inflammasome in central nervous system diseases is still lacking. More and more profound research is needed in the future.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wenfang He,
| |
Collapse
|
23
|
Xu Y, Xu Y, Blevins H, Guo C, Biby S, Wang XY, Wang C, Zhang S. Development of sulfonamide-based NLRP3 inhibitors: Further modifications and optimization through structure-activity relationship studies. Eur J Med Chem 2022; 238:114468. [PMID: 35635948 PMCID: PMC10084479 DOI: 10.1016/j.ejmech.2022.114468] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
NLRP3 inflammasome dysregulation has been observed in many human diseases including neurodegenerative disorders. Thus, development of small molecule inhibitors targeting this protein complex represents a promising strategy to achieve disease intervention. In our continuing efforts to develop NLRP3 inhibitors, a recently identified lead inhibitor, YQ128, was further modified and optimized. The structure-activity relationship studies of this lead compound suggested its flexibility for structural modifications while the sulfonamide and benzyl moiety demonstrated being important for selectivity. Additionally, the systematic SAR studies also provided insights for designing NLRC4 and AIM2 inflammasome inhibitors. A new lead inhibitor, 19, was identified with improved potency (IC50: 0.12 ± 0.01 μM) and binding affinity (KD: 84 nM). Further characterization of this lead compound using wild type and nlrp3-/- mice confirmed its in vivo selective target engagement. PET studies using a radiotracer based on the structure of 19 also demonstrated its improved brain penetration compared to previous lead compounds. These results strongly encourage further testing of 19 in disease models.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Hallie Blevins
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Savannah Biby
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
24
|
Whitson HE, Colton C, El Khoury J, Gate D, Goate A, Heneka MT, Kaddurah-Daouk R, Klein RS, Shinohara ML, Sisodia S, Spudich SS, Stevens B, Tanzi R, Ting JP, Garden G. Infection and inflammation: New perspectives on Alzheimer's disease. Brain Behav Immun Health 2022; 22:100462. [PMID: 36118272 PMCID: PMC9475126 DOI: 10.1016/j.bbih.2022.100462] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022] Open
Abstract
Neuroinflammation has been recognized as a component of Alzheimer's Disease (AD) pathology since the original descriptions by Alois Alzheimer and a role for infections in AD pathogenesis has long been hypothesized. More recently, this hypothesis has gained strength as human genetics and experimental data suggest key roles for inflammatory cells in AD pathogenesis. To review this topic, Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium: "Infection and Inflammation: New Perspectives on Alzheimer's Disease (AD)." Participants considered current evidence for and against the hypothesis that AD could be caused or exacerbated by infection or commensal microbes. Discussion focused on connecting microglial transcriptional states to functional states, mouse models that better mimic human immunity, the potential involvement of inflammasome signaling, metabolic alterations, self-reactive T cells, gut microbes and fungal infections, and lessons learned from Covid-19 patients with neurologic symptoms. The content presented in the symposium, and major topics raised in discussions are reviewed in this summary of the proceedings.
Collapse
Affiliation(s)
- Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - Carol Colton
- Department of Neurology, Duke University School of Medicine, 3116 N Duke St, Durham, NM, 27704, USA
| | - Joseph El Khoury
- Center for Immunology & Inflammatory Diseases, Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - David Gate
- The Ken & Ruth Davee Dept of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Ward 12-140, Chicago, IL 60611, USA
| | - Alison Goate
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, One Gustave L. Levy Place, Box 1498, New York, NY, 10029-6574, USA
| | - Michael T. Heneka
- Dept of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127, Bonn, Germany
| | - Rima Kaddurah-Daouk
- Dept of Psychiatry and Behavioral Sciences, Dept of Medicine, Duke Institute of Brain Sciences, Duke University School of Medicine, DUMC Box 3903, Blue Zone, South, Durham, NC, 27710, USA
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Depts of Medicine, Pathology & Immunology, and Neuroscience, Washington University School of Medicine, 660 S Euclid Ave, Box 8015, St. Louis, MO, 63110, USA
| | - Mari L. Shinohara
- Dept of Immunology, Duke University School of Medicine, 207 Research Dr, Box 3010, Durham, NC, 27710, USA
| | - Sangram Sisodia
- Dept of Neurobiology, University of Chicago, Abbott Memorial Hall, 947 East 58th St, MC 0928, Chicago, IL, 60637, USA
| | - Serena S. Spudich
- Dept of Neurology, Yale School of Medicine, PO Box 208018, New Haven, CT, 06520, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, 300 Longwood Ave, Center for Life Sciences 12th Floor, Boston, MA, 02115, USA
| | - Rudolph Tanzi
- McCance Center for Brain Health, Massachusetts General Hospital, 114 16th St, Charlestown, MA, 02129, USA
| | - Jenny P. Ting
- Depts of Genetics, Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for Translational Immunology, UNC School of Medicine, 125 Mason Farm Road, 6th Floor Marsico Hall, Chapel Hill, NC, 27599-7290, USA
| | - Gwenn Garden
- Dept of Neurology, UNC School of Medicine, Physicians Office Building, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC, 27599-7025, USA
| |
Collapse
|
25
|
Liang T, Zhang Y, Wu S, Chen Q, Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 2022; 13:845185. [PMID: 35250595 PMCID: PMC8889079 DOI: 10.3389/fphar.2022.845185] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Wang,
| |
Collapse
|
26
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
27
|
Ren C, Chen M, Mu G, Peng S, Liu X, Ou C. NLRP3 Inflammasome Mediates Neurodegeneration in Rats with Chronic Neuropathic Pain. Shock 2021; 56:840-849. [PMID: 34265833 DOI: 10.1097/shk.0000000000001832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Patients with chronic neuropathic pain (NP) have a significantly increased risk of central nervous degeneration. Trigeminal neuralgia (TN) is a typical NP, and this manifestation is more obvious. In addition to severe pain, patients with TN are often accompanied by cognitive dysfunction and have a higher risk of central nervous system degeneration, but the mechanism is not clear. The NOD-like receptor 3 (NLRP3) inflammasome assembles inside of microglia on activation, which plays an important role in neurodegeneration such as Alzheimer disease. MCC950 is a specific blocker of NLRP3 inflammasome, which can improve the performance of degenerative diseases. Although NLRP3 inflammasome assembles inside of microglia on activation has been shown to be essential for the development and progression of amyloid pathology, its whether it mediates the neurodegeneration caused by NP is currently unclear. By constructing a rat model of chronic TN, we found that as the course of the disease progresses, TN rats have obvious cognitive and memory deficit. In addition, Tau hyperphosphorylation and Aβ expression increase in the cortex and hippocampus of the brain. At the same time, we found that NLRP3 expression increased significantly in model rats. Interestingly, NLRP3 specific blocker MCC950 can alleviate the neurodegeneration of trigeminal neuralgia rats to a certain extent. It is suggested that our NLRP3 inflammasome plays an important role in the neurodegeneration of trigeminal neuralgia rats. And it is related to the activation of central nervous system inflammation.
Collapse
Affiliation(s)
- Changhe Ren
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Milian Chen
- Department of Anesthesiology, The Shehong People's Hospital, Suining, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, China
| | - Suangchun Peng
- Department of Anesthesiology, Leshan Hospital of Traditional Chinese Medicine, Leshan, China
| | - Xiangbo Liu
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Enduring glucocorticoid-evoked exacerbation of synaptic plasticity disruption in male rats modelling early Alzheimer's disease amyloidosis. Neuropsychopharmacology 2021; 46:2170-2179. [PMID: 34188184 PMCID: PMC8505492 DOI: 10.1038/s41386-021-01056-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction is a likely proximate cause of subtle cognitive impairment in early Alzheimer's disease. Soluble oligomers are the most synaptotoxic forms of amyloid ß-protein (Aß) and mediate synaptic plasticity disruption in Alzheimer's disease amyloidosis. Because the presence and extent of cortisol excess in prodromal Alzheimer's disease predicts the onset of cognitive symptoms we hypothesised that corticosteroids would exacerbate the inhibition of hippocampal synaptic long-term potentiation in a rat model of Alzheimer's disease amyloidosis. In a longitudinal experimental design using freely behaving pre-plaque McGill-R-Thy1-APP male rats, three injections of corticosterone or the glucocorticoid methylprednisolone profoundly disrupted long-term potentiation induced by strong conditioning stimulation for at least 2 months. The same treatments had a transient or no detectible detrimental effect on synaptic plasticity in wild-type littermates. Moreover, corticosterone-mediated cognitive dysfunction, as assessed in a novel object recognition test, was more persistent in the transgenic animals. Evidence for the involvement of pro-inflammatory mechanisms was provided by the ability of the selective the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome inhibitor Mcc950 to reverse the synaptic plasticity deficit in corticosterone-treated transgenic animals. The marked prolongation of the synaptic plasticity disrupting effects of brief corticosteroid excess substantiates a causal role for hypothalamic-pituitary-adrenal axis dysregulation in early Alzheimer's disease.
Collapse
|
29
|
Zhang Z, Bai H, Ma X, Shen M, Li R, Qiu D, Li S, Gao L. Blockade of the NLRP3/caspase-1 axis attenuates ketamine-induced hippocampus pyroptosis and cognitive impairment in neonatal rats. J Neuroinflammation 2021; 18:239. [PMID: 34666787 PMCID: PMC8527745 DOI: 10.1186/s12974-021-02295-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Background Multiple studies have revealed that repeated or long-term exposure to ketamine causes neurodegeneration and cognitive dysfunction. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various neurological diseases. However, the role of NLRP3/caspase-1 axis-related pyroptosis in ketamine-induced neurotoxicity and cognitive dysfunction remains uncertain. Methods To evaluate whether ketamine caused NLRP3/caspase1-dependent pyroptosis, flow cytometry analysis, western blotting, ELISA test, histopathological analysis, Morris water maze (MWM) test, cell viability assay, and lactate dehydrogenase release (LDH) assay were carried out on PC12 cells, HAPI cells, and 7-day-old rats. In addition, the NLRP3 inhibitor MCC950 or the caspase-1 inhibitor VX-765 was used to investigate the role of the NLRP3/caspase-1 axis in ketamine-induced neurotoxicity and cognitive dysfunction. Results Our findings demonstrated that ketamine exposure caused cell damage and increased the levels of pyroptosis in PC12 cells, HAPI cells, and the hippocampus of neonatal rats. After continuous exposure to ketamine, targeting NLRP3 and caspase-1 with MCC950 or VX765 improved pyroptosis, reduced neuropathological damages, and alleviated cognitive dysfunction. Conclusion NLRP3/Caspase-1 axis-dependent pyroptosis is involved in ketamine-induced neuroinflammation and cognitive dysfunction, and it provides a promising strategy to treat ketamine-related neurotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02295-9.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Hui Bai
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Xiangying Ma
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Meilun Shen
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Rouqian Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Changjiang Rd, Xiangfang District, Harbin, 150030, China. .,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin, China.
| |
Collapse
|
30
|
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36:1591-1626. [PMID: 34387831 DOI: 10.1007/s11011-021-00806-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is one of the host defensive mechanisms through which the nervous system protects itself from pathogenic and or infectious insults. Moreover, neuroinflammation occurs as one of the most common pathological outcomes in various neurological disorders, makes it the promising target. The present review focuses on elaborating the recent advancement in understanding molecular mechanisms of neuroinflammation and its role in the etiopathogenesis of various neurological disorders, especially Alzheimer's disease (AD), Parkinson's disease (PD), and Epilepsy. Furthermore, the current status of anti-inflammatory agents in neurological diseases has been summarized in light of different preclinical and clinical studies. Finally, possible limitations and future directions for the effective use of anti-inflammatory agents in neurological disorders have been discussed.
Collapse
Affiliation(s)
- Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Prabhakar Kumar Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Pragya Shakti Mishra
- Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, 226014, India
| | - Neha Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
31
|
Golzari-Sorkheh M, Brown CE, Weaver DF, Reed MA. The NLRP3 Inflammasome in the Pathogenesis and Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 84:579-598. [PMID: 34569958 DOI: 10.3233/jad-210660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Although AD is one of the most socioeconomically devastating diseases confronting humanity, no "curative" disease modifying drug has been identified. Recent decades have witnessed repeated failures of drug trials and have called into question the utility of the amyloid hypothesis approach to AD therapeutics design. Accordingly, new neurochemical processes are being evaluated and explored as sources of alternative druggable targets. Among these newly identified targets, neuroinflammation is emerging as a front-runner, and within the realm of neuroinflammation, the inflammasome, particularly the NLRP3 complex, is garnering focussed attention. This review summarizes current data and approaches to understanding the role of the NLRP3 inflammasome in neuroinflammation and AD, and systematically identifies and evaluates multiple targets within the NLRP3 inflammasome cascade as putative drug targets.
Collapse
Affiliation(s)
| | | | - Donald F Weaver
- Krembil Research Institute, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
32
|
Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S, Sun D. A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer's Disease Transgenic Mice. J Alzheimers Dis 2021; 82:1769-1783. [PMID: 34219728 DOI: 10.3233/jad-210400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the most common type of dementia. A growing body of evidence has implicated neuroinflammation as an essential player in the etiology of AD. Inflammasomes are intracellular multiprotein complexes and essential components of innate immunity in response to pathogen- and danger-associated molecular patterns. Among the known inflammasomes, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the pathogenesis of AD. OBJECTIVE We recently developed a novel class of small molecule inhibitors that selectively target the NLRP3 inflammasome. One of the lead compounds, JC124, has shown therapeutic efficacy in a transgenic animal model of AD. In this study we tested the preventative efficacy of JC124 in another strain of transgenic AD mice. METHODS In this study, 5-month-old female APP/PS1 and matched wild type mice were treated orally with JC124 for 3 months. After completion of treatment, cognitive functions and AD pathologies, as well as protein expression levels of synaptic proteins, were assessed. RESULTS We found that inhibition of NLRP3 inflammasome with JC124 significantly decreased multiple AD pathologies in APP/PS1 mice, including amyloid-β (Aβ) load, neuroinflammation, and neuronal cell cycle re-entry, accompanied by preserved synaptic plasticity with higher expression of pre- and post-synaptic proteins, increased hippocampal neurogenesis, and improved cognitive functions. CONCLUSION Our study demonstrates the importance of the NLRP3 inflammasome in AD pathological development, and pharmacological inhibition of NLRP3 inflammasome with small molecule inhibitors represents a potential therapy for AD.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Rolfe
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Long Di
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Blevins
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yiming Xu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuehan Sun
- Departments of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Departments of Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
33
|
Corcoran SE, Halai R, Cooper MA. Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacol Rev 2021; 73:968-1000. [PMID: 34117094 DOI: 10.1124/pharmrev.120.000171] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome drives release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 and induces pyroptosis (lytic cell death). These events drive chronic inflammation, and as such, NLRP3 has been implicated in a large number of human diseases. These range from autoimmune conditions, the simplest of which is NLRP3 gain-of-function mutations leading to an orphan disease, cryopyrin-associated period syndrome, to large disease burden indications, such as atherosclerosis, heart failure, stroke, neurodegeneration, asthma, ulcerative colitis, and arthritis. The potential clinical utility of NLRP3 inhibitors is substantiated by an expanding list of indications in which NLRP3 activation has been shown to play a detrimental role. Studies of pharmacological inhibition of NLRP3 in nonclinical models of disease using MCC950 in combination with human genetics, epigenetics, and analyses of the efficacy of biologic inhibitors of IL-1β, such as anakinra and canakinumab, can help to prioritize clinical trials of NLRP3-directed therapeutics. Although MCC950 shows excellent (nanomolar) potency and high target selectivity, its pharmacokinetic and toxicokinetic properties limited its therapeutic development in the clinic. Several improved, next-generation inhibitors are now in clinical trials. Hence the body of research in a plethora of conditions reviewed herein may inform analysis of the potential translational value of NLRP3 inhibition in diseases with significant unmet medical need. SIGNIFICANCE STATEMENT: The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is one of the most widely studied and best validated biological targets in innate immunity. Activation of NLRP3 can be inhibited with MCC950, resulting in efficacy in more than 100 nonclinical models of inflammatory diseases. As several next-generation NLRP3 inhibitors are entering proof-of-concept clinical trials in 2020, a review of the pharmacology of MCC950 is timely and significant.
Collapse
Affiliation(s)
- Sarah E Corcoran
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Reena Halai
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Matthew A Cooper
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| |
Collapse
|
34
|
Inflammasome NLRP3 Potentially Links Obesity-Associated Low-Grade Systemic Inflammation and Insulin Resistance with Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22115603. [PMID: 34070553 PMCID: PMC8198882 DOI: 10.3390/ijms22115603] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.
Collapse
|
35
|
Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, Saravia F, Beauquis J. Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Front Neurosci 2021; 15:653651. [PMID: 33967682 PMCID: PMC8102834 DOI: 10.3389/fnins.2021.653651] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Overnutrition and modern diets containing high proportions of saturated fat are among the major factors contributing to a low-grade state of inflammation, hyperglycemia and dyslipidemia. In the last decades, the global rise of type 2 diabetes and obesity prevalence has elicited a great interest in understanding how changes in metabolic function lead to an increased risk for premature brain aging and the development of neurodegenerative disorders such as Alzheimer's disease (AD). Cognitive impairment and decreased neurogenic capacity could be a consequence of metabolic disturbances. In these scenarios, the interplay between inflammation and insulin resistance could represent a potential therapeutic target to prevent or ameliorate neurodegeneration and cognitive impairment. The present review aims to provide an update on the impact of metabolic stress pathways on AD with a focus on inflammation and insulin resistance as risk factors and therapeutic targets.
Collapse
Affiliation(s)
- Angeles Vinuesa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Pomilio
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amal Gregosa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Bentivegna
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jessica Presa
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina Bellotto
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
36
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
37
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
38
|
He XF, Xu JH, Li G, Li MY, Li LL, Pei Z, Zhang LY, Hu XQ. NLRP3-dependent microglial training impaired the clearance of amyloid-beta and aggravated the cognitive decline in Alzheimer's disease. Cell Death Dis 2020; 11:849. [PMID: 33051464 PMCID: PMC7555905 DOI: 10.1038/s41419-020-03072-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is marked by progressive cognitive decline, deposition of misfolded amyloid-β (Aβ) peptide and formation of neurofibrillary tangles. Recently, microglial training has emerged as an important contributor to neurological diseases, which augments the subsequent inflammation. However, how it affects the pathology of AD remains unknown. Here, using a mouse model of sporadic Alzheimer's disease (SAD) induced by streptozotocin injection, we demonstrated that microglial training exacerbated Aβ accumulation, neuronal loss, and cognitive impairment. In addition, we injected MCC950 to inhibit NLRP3 activation and used an inducible Cre recombinase to delete the NLRP3 gene in microglia. Inhibition or depletion of microglial NLRP3 could protect against the pathologies of SAD and abolish the effects of microglial training. Our results identified microglial training as an important modifier of neuropathology in SAD and demonstrated that activation of NLRP3 inflammasome contributed to the pathologies and microglial training in SAD. Therefore, NLRP3 could be a potential therapeutic target for SAD treatment.
Collapse
Affiliation(s)
- Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, Guangdong, China
| | - Jing-Hui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, Guangdong, China.,The Eighth Affiliated Hospital, Sun Yat-sen University, 518000, Shenzhen, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, 510663, Guangzhou, Guangdong, China
| | - Ming-Yue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, Guangdong, China
| | - Li-Li Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, Guangdong, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Li-Ying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, Guangdong, China.
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Xia B, Tong Y, Xia C, Chen C, Shan X. α-Cyperone Confers Antidepressant-Like Effects in Mice via Neuroplasticity Enhancement by SIRT3/ROS Mediated NLRP3 Inflammasome Deactivation. Front Pharmacol 2020; 11:577062. [PMID: 33132912 PMCID: PMC7579414 DOI: 10.3389/fphar.2020.577062] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
α-Cyperone (Cy) is a major active compound of Cyperus rotundus that has various pharmacological activities. But whether Cy possesses antidepressant effect is unknown. In this study, we exposed mice to chronic unpredictable mild stress (CUMS) with or without intervention with Cy. Our results showed that Cy significantly improved the depressive phenotypes in sucrose preference test, tail suspension test and forced swimming test. Meanwhile, increased SIRT3 expression, reduced ROS production and activated NF-κB signal were detected in the hippocampus of mice. NLRP3 inflammasome related proteins including NLRP3, ASC, Caspase-1, IL-1β, IL-18 and GSDMD-N were downregulated after Cy administration. Synaptic proteins including Synapsin-1 and PSD-95 and dendritic spine density were improved after Cy treatment. Moreover, the protective effects of Cy in CUMS mice were compromised when co-administrated with SIRT3 inhibitor 3-TYP. Taken together, these findings suggested that Cy has therapeutic potential for treating depression and that this antidepressant effect may be attributed to SIRT3 stimulated neuroplasticity enhancement by suppressing NLRP3 inflammasome.
Collapse
Affiliation(s)
- Baomei Xia
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, China.,Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Yue Tong
- School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Taizhou, China
| | - Changbo Xia
- School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Taizhou, China
| | - Chang Chen
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Shan
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, China
| |
Collapse
|
40
|
Hull C, Dekeryte R, Buchanan H, Kamli-Salino S, Robertson A, Delibegovic M, Platt B. NLRP3 inflammasome inhibition with MCC950 improves insulin sensitivity and inflammation in a mouse model of frontotemporal dementia. Neuropharmacology 2020; 180:108305. [PMID: 32931815 DOI: 10.1016/j.neuropharm.2020.108305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been implicated as a crucial component in both neurodegeneration and diabetes. However, the role of metabolic signalling pathways and the NLRP3 inflammasome in frontotemporal dementia remain largely elusive. We therefore investigated the effects of an NLRP3 inhibitor (MCC950) in a murine tau knock-in (PLB2TAU) model vs. wild-type (PLBWT) control mice. In male PLB2TAU mice (4 months at start of study), MCC950 treatment (20 mg/kg, for 12 weeks) improved insulin sensitivity and reduced circulating plasma insulin levels. Further molecular analysis suggested normalisation in insulin signalling pathways in both liver and muscle tissue. Treatment also resulted in improvements in inflammation and ER stress signalling, both peripherally and centrally, alongside a partial normalisation of phospho-tau levels. Overall, we provide evidence that MCC950 improved metabolic, inflammatory and frontotemporal dementia (FTD) relevant phenotypes in multiple tissues. NLRP3 inhibition may therefore offer a therapeutic approach to ameliorate FTD pathology.
Collapse
Affiliation(s)
- Claire Hull
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Ruta Dekeryte
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Heather Buchanan
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Sarah Kamli-Salino
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Avril Robertson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mirela Delibegovic
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
41
|
Lee JS, Jeon YJ, Kang JY, Lee SK, Lee HD, Son CG. Aquilariae Lignum Methylene Chloride Fraction Attenuates IL-1β-Driven Neuroinflammation in BV2 Microglial Cells. Int J Mol Sci 2020; 21:5465. [PMID: 32751738 PMCID: PMC7432889 DOI: 10.3390/ijms21155465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Microglial hyperactivation and neuroinflammation are known to induce neuronal death, which is one of the main causes of neurodegenerative disorders. We previously found that Aquilariae Lignum extract attenuated both neuronal excitotoxicity and neuroinflammation in vivo and in vitro. For further analysis, we extracted the methylene chloride fraction of Aquilariae Lignum to determine the bioactive compounds. In this study, we investigated the anti-neuroinflammatory effects and underlying mechanisms of the Aquilariae Lignum fraction (ALF) using lipopolysaccharide (LPS)-stimulated BV2 microglial cells. BV2 cells were pretreated with ALF (0.5, 1, and 2.5 μg/mL) before treatment with LPS (1 μg/mL). Pretreatment with ALF significantly attenuated the LPS-induced overproductions of nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and interleukin (IL)-1β. These anti-inflammatory effects were supported by ALF-mediated modulation of the nuclear factor-kappa B (NF-κB) pathway. Furthermore, ALF exerted strong anti-inflammasome effects, as shown by IL-1β-specific inhibitory activity, but not activity against tumor necrosis factor (TNF)-α, along with inhibition of caspase-1 activity and NACHT, LRR, and PYD domain-containing protein 3 (NLRP3)-related molecules. These results indicate the potent anti-neuroinflammatory activity of ALF and that its underlying mechanism may involve the regulation of NLRP3 inflammasome-derived neuroinflammation in microglial cells.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Dunsan Hospital of Daejeon University, Daejeon 35235, Korea; (J.-S.L.); (Y.-J.J.); (J.-Y.K.)
| | - Yoo-Jin Jeon
- Institute of Bioscience & Integrative Medicine, Dunsan Hospital of Daejeon University, Daejeon 35235, Korea; (J.-S.L.); (Y.-J.J.); (J.-Y.K.)
| | - Ji-Yun Kang
- Institute of Bioscience & Integrative Medicine, Dunsan Hospital of Daejeon University, Daejeon 35235, Korea; (J.-S.L.); (Y.-J.J.); (J.-Y.K.)
| | - Sam-Keun Lee
- Department of Applied Chemistry, Oriental Medicine Collage of Daejeon University, Daejeon 35235, Korea;
| | - Hwa-Dong Lee
- National Institute for Korean Medicine, 94, Hwarang-ro, Gyeongsan-si, Gyeongsangbuk-do 38540, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Dunsan Hospital of Daejeon University, Daejeon 35235, Korea; (J.-S.L.); (Y.-J.J.); (J.-Y.K.)
| |
Collapse
|
42
|
Chang Y, Zhu J, Wang D, Li H, He Y, Liu K, Wang X, Peng Y, Pan S, Huang K. NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J Neuroinflammation 2020; 17:219. [PMID: 32703306 PMCID: PMC7376727 DOI: 10.1186/s12974-020-01879-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Brain injury is the leading cause of death and disability in survivors of cardiac arrest, where neuroinflammation is believed to play a pivotal role, but the underlying mechanism remains unclear. Pyroptosis is a pro-inflammatory form of programmed cell death that triggers inflammatory response upon infection or other stimuli. This study aims to understand the role of microglial pyroptosis in post-cardiac arrest brain injury. Methods Sprague-Dawley male rats underwent 10-min asphyxial cardiac arrest and cardiopulmonary resuscitation or sham-operation. Flow cytometry analysis, Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), co-immunoprecipitation, and immunofluorescence were used to evaluate activated microglia and CD11b-positive leukocytes after cardiac arrest and assess inflammasome activation and pyroptosis of specific cellular populations. To further explore the underlying mechanism, MCC950 or Ac-YVAD-cmk was administered to block nod-like receptor family protein 3 (NLRP3) or caspase-1, respectively. Results Our results showed that, in a rat model, successful resuscitation from cardiac arrest resulted in microglial pyroptosis and consequential inflammatory infiltration which was mediated by the activation of NLRP3 inflammasome. Targeting NLRP3 and caspase-1, the executor of pyroptosis, with selective inhibitors MCC950 and Ac-YVAD-cmk treatment significantly prevented microglial pyroptosis, reduced infiltration of leukocytes, improved neurologic outcome, and alleviated neuro-pathological damages after cardiac arrest in modeling rats. Conclusions This study demonstrates that microglial pyroptosis mediated by NLRP3 inflammasome is critically involved in the pathogenesis of post-cardiac arrest brain injury and provides a new therapeutic strategy.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China
| | - Di Wang
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Li
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China.,Department of Neurology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China
| | - Xiaoqiang Wang
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical Univerisity, North Avenue 1838#, Guangzhou, Guangzhou, 510515, China.
| |
Collapse
|
43
|
Ren P, Wu D, Appel R, Zhang L, Zhang C, Luo W, Robertson AAB, Cooper MA, Coselli JS, Milewicz DM, Shen YH, LeMaire SA. Targeting the NLRP3 Inflammasome With Inhibitor MCC950 Prevents Aortic Aneurysms and Dissections in Mice. J Am Heart Assoc 2020; 9:e014044. [PMID: 32223388 PMCID: PMC7428617 DOI: 10.1161/jaha.119.014044] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Aortic aneurysms and dissections are highly lethal diseases for which an effective treatment strategy is critically needed to prevent disease progression. The nucleotide‐binding oligomerization domain–like receptor pyrin domain containing 3 (NLRP3)–caspase‐1 inflammasome cascade was recently shown to play an important role in aortic destruction and disease development. In this study, we tested the effects of MCC950, a potent, selective NLRP3 inhibitor, on preventing aortic destruction and aortic aneurysm and dissection formation. Methods and Results In a model of sporadic aortic aneurysm and dissection induced by challenging wild‐type mice with a high‐fat, high‐cholesterol diet and angiotensin II infusion, MCC950 treatment significantly inhibited challenge‐induced aortic dilatation, dissection, and rupture in different thoracic and abdominal aortic segments in both male and female mice. Aortic disease reduction by MCC950 was associated with the prevention of NLRP3–caspase‐1 upregulation, smooth muscle cell contractile protein degradation, aortic cell death, and extracellular matrix destruction. Further investigation revealed that preventing matrix metallopeptidase 9 (MMP‐9) expression and activation in macrophages is an important mechanism underlying MCC950's protective effect. We found that caspase‐1 directly activated MMP‐9 by cleaving its N‐terminal inhibitory domain. Moreover, the genetic knockdown of Nlrp3 or Casp‐1 in mice or treatment of mice with MCC950 diminished the challenge‐induced N‐terminal cleavage of MMP‐9, MMP‐9 activation, and aortic destruction. Conclusions Our findings suggest that the NLRP3–caspase‐1 inflammasome directly activates MMP‐9. Targeting the inflammasome with MCC950 is a promising approach for preventing aortic destruction and aortic aneurysm and dissection development.
Collapse
Affiliation(s)
- Pingping Ren
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Darrell Wu
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Richard Appel
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Lin Zhang
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Chen Zhang
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Wei Luo
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Avril A B Robertson
- Institute for Molecular Bioscience University of Queensland Brisbane Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience University of Queensland Brisbane Australia
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Dianna M Milewicz
- Division of Medical Genetics Department of Internal Medicine The University of Texas Health Science Center at Houston TX
| | - Ying H Shen
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| |
Collapse
|
44
|
Jiao J, Zhao G, Wang Y, Ren P, Wu M. MCC950, a Selective Inhibitor of NLRP3 Inflammasome, Reduces the Inflammatory Response and Improves Neurological Outcomes in Mice Model of Spinal Cord Injury. Front Mol Biosci 2020; 7:37. [PMID: 32195267 PMCID: PMC7062868 DOI: 10.3389/fmolb.2020.00037] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a serious condition that affects bodily function; however, there is no effective therapy in clinical practice. MCC950, a selective NOD-like receptor protein-3 (NLRP3) inflammasome inhibitor, has been reported to alleviate canonical and non-canonical NLRP3 inflammasome activation of the inflammatory response in vitro and in vivo. However, the effect of MCC950 treatment on neurological post-SCI recovery remains unclear. In this study, we assessed the pharmacological effect of MCC950 on an experimental SCI model in vivo and neuronal injury in vitro. We found that MCC950 improved the grip strength, hind limb movements, spinal cord edema, and pathological injury in the SCI mice. We demonstrated that it exerted this effect by blocking NLRP3 inflammasome assembly, including NLRP3-ASC and NLRP3-Caspase-1 complexes, as well as the release of pro-inflammatory cytokines TNF-α, IL-1β, and IL-18. Moreover, we found that MCC950 reduced spinal neuron injury and NLRP3 inflammasome activation, which had been induced by oxygen–glucose deprivation (OGD) or lipopolysaccharides (LPS) in vitro. In conclusion, our findings indicate that MCC950 alleviates inflammatory response and improves functional recovery in the acute mice model of SCI by blocking NLRP3 inflammasome assembly and alleviating downstream neuroinflammation. Therefore, these findings could prove useful in the development of effective therapeutic strategies for the treatment and prognosis of SCI.
Collapse
Affiliation(s)
- Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guanjie Zhao
- Department of Kidney Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Pengfei Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Inflammasome and Cognitive Symptoms in Human Diseases: Biological Evidence from Experimental Research. Int J Mol Sci 2020; 21:ijms21031103. [PMID: 32046097 PMCID: PMC7036918 DOI: 10.3390/ijms21031103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Cognitive symptoms are prevalent in the elderly and are associated with an elevated risk of developing dementia. Disease-driven changes can cause cognitive disabilities in memory, attention, and language. The inflammasome is an innate immune intracellular complex that has a critical role in the host defense system, in that it senses infectious pathogen-associated and endogenous danger-associated molecular patterns. An unbalanced or dysregulated inflammasome is associated with infectious, inflammatory, and neurodegenerative diseases. Due to its importance in such pathological conditions, the inflammasome is an emerging drug target for human diseases. A growing number of studies have revealed links between cognitive symptoms and the inflammasome. Several studies have shown that reducing the inflammasome component mitigates cognitive symptoms in diseased states. Therefore, understanding the inflammasome regulatory mechanisms may be required for the prevention and treatment of cognitive symptoms. The purpose of this review is to discuss the current understanding of the inflammasome and its relationships with cognitive symptoms in various human diseases.
Collapse
|
46
|
Wen M, Ding L, Zhang L, Zhang T, Teruyoshi Y, Wang Y, Xue C. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Mitigated Aβ1-42-Induced Neurotoxicity via Autophagy-Inflammasome Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13767-13774. [PMID: 31722531 DOI: 10.1021/acs.jafc.9b05947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies indicated that neuroinflammation contributes to the exacerbation of Alzheimer's disease (AD) and plays an important role in AD. The NOD-like receptor protein 3 (NLRP3) inflammasome, which is an important component of innate immune system, is associated with a wide range of human central nervous system disorders, including AD. Most of the studies focus on the protective effects of docosahexaenoic acid (DHA) in AD, but eicosapentaenoic acid (EPA) has rarely been involved. Here, we investigate the effects of EPA in the forms of phosphatidylcholine (EPA-PC) and ethyl esters (EPA-EE) in improving Aβ1-42-induced neurotoxicity. The spatial memory ability and the biochemical changes in the hippocampus were measured, including glial cell activation, tumor necrosis factor α production, NLRP3 inflammasome activation, and autophagic flux. The present results showed that the AD rats were significantly protected from spatial memory loss by the supplementation (EPA + DHA = 60 mg/kg, i.g., 20 days) of EPA-PC, while EPA-EE showed no significant benefit. Further mechanism studies suggested that EPA-PC could inhibit Aβ-induced neurotoxicity by alleviating NLRP3 inflammasome activation and enhancing autophagy. These findings indicate that EPA could improve cognitive deficiency in Aβ1-42-induced AD rats via autophagic inflammasomal pathway and the bioactivity differs in its molecular form.
Collapse
Affiliation(s)
- Min Wen
- Institute of Biopharmaceutical Research , Liaocheng University , Liaocheng 252059 , P. R. China
| | - Lin Ding
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , P. R. China
| | - Lingyu Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , P. R. China
| | - Tiantian Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , P. R. China
| | - Yanagita Teruyoshi
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science , Saga University , Saga 840-8502 , Japan
| | - Yuming Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , P. R. China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , P. R. China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , P. R. China
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , P. R. China
| |
Collapse
|
47
|
Gong Q, He L, Wang M, Zuo S, Gao H, Feng Y, Du L, Luo Y, Li J. Comparison of the TLR4/NFκB and NLRP3 signalling pathways in major organs of the mouse after intravenous injection of lipopolysaccharide. PHARMACEUTICAL BIOLOGY 2019; 57:555-563. [PMID: 31446815 PMCID: PMC6720225 DOI: 10.1080/13880209.2019.1653326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Context: Lipopolysaccharide (LPS) is often used to induce immunoinflammatory reactions. TLR4/NFκB and NLRP3 signalling are major factors for inflammation. Dexamethasone (DXM) has an anti-immunoinflammatory effect. Objective: To investigate the inflammatory reaction in pathological changes of organs and the expression of inflammatory signalling during LPS infection. Materials and methods: ICR mice were divided into control group (n = 9), LPS group (n = 15) and LPS + DXM group (n = 14). LPS (10 mg/kg) was injected intravenously in LPS group and LPS + DXM group, normal saline was injected to the control group; DXM (0.5 mg/kg) was given by intragastric administration. 12 h after LPS, the blood was collected and the organs were isolated for biochemical analysis, protein expression, and morphological examination. Results: The results showed that BUN, Cre, ALT, AST in the LPS group increased distinctly by 81.42, 67.84, 40.53 and 36.05%, respectively, and CK, ALP, TP and ALB decreased by 71.37, 60.6, 12.57 and 19.73%, respectively, compared with the control group. In the morphologic observation, local necrosis in the liver, arterial vasodilation in the heart and kidney, alveolar secretions and pulmonary interstitial in the lungs, and mucosal shedding in the small and large intestines, the expression of TLR4-NFκB signalling were up-regulated distinctly whereas NLRP3 signalling was less broadly affected. DXM can decrease BUN and Cre, downregulate the expression of TLR4-NFκB signalling, but has no effect on the organ damage based on morphology. Conclusion: Acute injuries induced by LPS are extensive. The inflammatory damage in small and large intestines, liver and kidney was more severe than other organs. TLR4-NFκB signalling was the major response to LPS stress.
Collapse
Affiliation(s)
- Qin Gong
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Luling He
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mulan Wang
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shasha Zuo
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulin Feng
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lijun Du
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingying Luo
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Yingying Luo School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, No. 56, Yangming Road, Nanchang 330006, China
| | - Jun Li
- School of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- CONTACT Jun Li
| |
Collapse
|
48
|
Lv Y, Sun B, Lu XX, Liu YL, Li M, Xu LX, Feng CX, Ding X, Feng X. The role of microglia mediated pyroptosis in neonatal hypoxic-ischemic brain damage. Biochem Biophys Res Commun 2019; 521:933-938. [PMID: 31718799 DOI: 10.1016/j.bbrc.2019.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/28/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) often leads to neonatal death or severe, irreversible neurological deficits. Pathologically, the occurrence of massive cell death and subsequent inflammation suggested that pyroptosis, an inflammation associated programed cell death, might play a role in HIE. Here, by measuring changes of key molecules in pyroptosis pathway in HIE patients, we discovered that their elevation levels tightly correlate with the severity of HIE. Next, we demonstrated that application of MCC950, a small molecule to inhibit NLRP3 inflammasome and thus pyroptosis, substantially alleviated pyroptosis and the injury severity in rats with neonatal hypoxic-ischemic brain damage (HIBD). Mechanistically, we showed that NLRP-3/caspase-1/GSDMD axis is required for microglia pyroptosis and activation. Our data demonstrated that microglia mediated pyroptosis played a crucial role in neonatal HIE, which shed lights into the development of intervention avenues targeting pyroptosis to treat HIE and traumatic brain injuries.
Collapse
Affiliation(s)
- Yuan Lv
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xing-Xing Lu
- Department of Neonatology, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Yan-Lin Liu
- Department of Neonatology, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Mei Li
- Department of Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li-Xiao Xu
- Department of Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Chen-Xi Feng
- Department of Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
49
|
Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019; 179:312-339. [PMID: 31564456 PMCID: PMC6778042 DOI: 10.1016/j.cell.2019.09.001] [Citation(s) in RCA: 1865] [Impact Index Per Article: 310.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular β-amyloid deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remains the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease-modifying treatment currently exists, and numerous phase 3 clinical trials have failed to demonstrate benefits. Here, we review recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease-modifying therapies.
Collapse
Affiliation(s)
- Justin M Long
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
50
|
Qi Y, Klyubin I, Hu NW, Ondrejcak T, Rowan MJ. Pre-plaque Aß-Mediated Impairment of Synaptic Depotentiation in a Transgenic Rat Model of Alzheimer's Disease Amyloidosis. Front Neurosci 2019; 13:861. [PMID: 31474823 PMCID: PMC6702302 DOI: 10.3389/fnins.2019.00861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
How endogenously produced soluble amyloid ß-protein (Aß) affects synaptic plasticity in vulnerable circuits should provide insight into early Alzheimer's disease pathophysiology. McGill-R-Thy1-APP transgenic rats, modeling Alzheimer's disease amyloidosis, exhibit an age-dependent soluble Aß-mediated impairment of the induction of long-term potentiation (LTP) by 200 Hz conditioning stimulation at apical CA3-to-CA1 synapses. Here, we investigated if synaptic weakening at these synapses in the form of activity-dependent persistent reversal (depotentiation) of LTP is also altered in pre-plaque rats in vivo. In freely behaving transgenic rats strong, 400 Hz, conditioning stimulation induced stable LTP that was NMDA receptor- and voltage-gated Ca2+ channel-dependent. Surprisingly, the ability of novelty exploration to induce depotentiation of 400 Hz-induced LTP was impaired in an Aß-dependent manner in the freely behaving transgenic rats. Moreover, at apical synapses, low frequency conditioning stimulation (1 Hz) did not trigger depotentiation in anaesthetized transgenic rats, with an age-dependence similar to the LTP deficit. In contrast, at basal synapses neither LTP, induced by 100 or 200 Hz, nor novelty exploration-induced depotentiation was impaired in the freely behaving transgenic rats. These findings indicate that activity-dependent weakening, as well as strengthening, is impaired in a synapse- and age-dependent manner in this model of early Alzheimer's disease amyloidosis.
Collapse
Affiliation(s)
- Yingjie Qi
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|