1
|
Yu S, Fan J, Zong S, Yu Q, Cheng Q, Wang Y, Li M, Lu Z. Correlation of extracellular vesicle Alu RNA with brain aging and neuronal injury: a potential biomarker for brain aging. Ann Med 2025; 57:2493767. [PMID: 40248949 PMCID: PMC12010651 DOI: 10.1080/07853890.2025.2493767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are promising biomarkers for neurodegeneration. Alu elements are retrotransposons increasingly expressed with age and may be involved in aging-related diseases. OBJECTIVE To determine the potential of Alu RNA in plasma-derived EVs as a biomarker for brain aging and neuronal injury. METHODS EVs were isolated from plasma samples across different age groups. EV Alu RNA levels were measured and their associations with biomarkers of brain aging, including plasma neurofilament light chain (NfL), plasma amyloid-beta (Aβ42 and Aβ40), and plasma phosphorylated tau (p-Tau181), were analyzed. RESULTS EV Alu RNA levels were increased significantly with age and were strongly correlated with plasma NfL, suggesting a strong association between EV Alu RNA and neuronal injury. Significant correlations were also found between EV Alu RNA and plasma amyloid-beta levels, while no significant association was observed with tau pathology. CONCLUSIONS EV Alu RNA levels are elevated with age and associated with neuronal injury, highlighting their potential as a novel, non-invasive biomarker for brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Shuyi Yu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Fan
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Yu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Cheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2025; 45:909-946. [PMID: 39704040 PMCID: PMC11976381 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of NeurologyThe Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone HealthNew York CityNew YorkUSA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Pascal Derkinderen
- Department of NeurologyNantes Université, CHU Nantes, INSERMNantesFrance
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
3
|
Dong X, Li Q, Li R, Li Y, Jin F, Li H, Tu K, Wu G. Inhibition of tRF- 02514 in Extracellular Vesicles Preserves Microglia Pyroptosis and Protects Against Parkinson's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04925-2. [PMID: 40254704 DOI: 10.1007/s12035-025-04925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs), ubiquitous in peripheral blood and bodily fluids, are important regulators of neuronal communication, facilitating the intercellular transfer of bioactive molecules crucial for maintaining homeostasis. Uncovering EV-mediated mechanisms is pivotal for Parkinson's disease (PD) therapy. tRNA-derived fragments (tRFs) are a novel class of small non-coding RNAs found in EVs. They are essential for gene regulation, directly binding to target mRNAs to inhibit their translation, and hold promise as innovative therapeutic targets. We isolated EVs from the serum of patients with PD (PD-EVs) and co-cultured them with microglial cells to systematically investigate the modulation of inflammatory mediators and autophagy-related proteins. Small-RNA sequencing was performed to identify significantly differentially expressed target genes in PD-EVs. This analysis led to the identification of tRF-02514, whose associated molecular pathways were found to be involved in pyroptosis. Subsequently, the target genes of tRF-02514 were identified. To validate the findings in a physiological context, in vivo experiments were performed using mice with PD. Behavioral changes in mice were observed before and after the targeted inhibition of tRF-02514. Additionally, the whole brain tissue, substantia nigra, and peripheral blood samples of mice were collected to evaluate the expression of inflammatory factors, autophagy markers, pyroptosis-related proteins, and neuroprotective genes, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are necessary for defense against neuronal damage. tRF-02514 promoted the release of inflammatory factors, induced pyroptosis in microglia, and accelerated neuronal loss in PD by targeting ATG5 and inhibiting autophagy. Inhibition of tRF-02514 effectively mitigated these detrimental effects, protecting neurons, promoting autophagy, and delaying the progression of PD. These findings offer valuable insights into the role of tRF-02514 in the pathogenesis of PD and highlight its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Rui Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Furong Jin
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Hongmei Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Kun Tu
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Isik M, Sari HK, Caglayan MG, Yilmaz R, Derkus B. Whispers in the Brain: Extracellular Vesicles in Neuropathology and the Diagnostic Alchemy of Neurological Diseases. Eur J Neurosci 2025; 61:e70090. [PMID: 40237381 DOI: 10.1111/ejn.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025]
Abstract
Extracellular vesicles (EVs) have emerged as pivotal mediators in neurological diseases, showcasing multifaceted potential roles ranging from pathogenesis to diagnosis. These nano-sized membranous structures, released by various cell types including neurons, astrocytes, and microglia, encapsulate a diverse cargo of proteins, lipids, RNA species, and even DNA fragments. In neuropathology, EVs contribute significantly to intercellular communication within the central nervous system (CNS), influencing physiological or pathological cascades. Through the transfer of bioactive molecules, EVs modulate neuroinflammation, neuronal survival, synaptic plasticity, and the propagation of protein aggregates characteristic of neurodegenerative disorders. Moreover, their presence in biofluids such as cerebrospinal fluid (CSF), blood, and urine reflects the pathophysiological state of the CNS, offering a window into the diagnosis, monitoring and treatment of neurological diseases. Recent advancements in EV isolation techniques, coupled with high-throughput omics technologies, have facilitated the profiling of EV cargo, enabling the identification of disease-specific biomarkers with high sensitivity and specificity. This review explores the intricate roles of EVs in neuropathology, highlighting their involvement in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and other neurological disorders. Furthermore, it delves into the diagnostic potential of EVs, discussing current challenges and prospects in harnessing EV-derived biomarkers for precision medicine in neurology. Ultimately, understanding the biology of EVs in neurological contexts promises transformative insights into disease mechanisms and therapeutic strategies, paving the way for innovative diagnostic tools and targeted interventions in clinical practice.
Collapse
Affiliation(s)
- Melis Isik
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Hatice Kubra Sari
- Department of Neurology, School of Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Gokhan Caglayan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Rezzak Yilmaz
- Department of Neurology, School of Medicine, Ankara University, Ankara, Turkey
- Brain Research Center, Ankara University, Ankara, Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NEUROM), Ankara, Turkey
| |
Collapse
|
5
|
Tsuda M, Tsuda K, Asano S, Kato Y, Miyazaki M. Differential diagnosis of multiple system atrophy with predominant parkinsonism and Parkinson's disease using neural networks (part II). J Neurol Sci 2025; 470:123411. [PMID: 39893881 DOI: 10.1016/j.jns.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neural networks (NNs) possess the capability to learn complex data relationships, recognize inherent patterns by emulating human brain functions, and generate predictions based on novel data. We conducted deep learning utilizing an NN to differentiate between Parkinson's disease (PD) and the parkinsonian variant (MSA-P) of multiple system atrophy (MSA). The distinction between PD and MSA-P in the early stages presents significant challenges. Considering the recently reported heterogeneity and random distribution of lesions in MSA, we performed an analysis employing an NN with voxel-based morphometry data from the entire brain as input variables. The NN's accuracy in distinguishing MSA-P from PD demonstrates sufficient practicality for clinical application.
Collapse
Affiliation(s)
- Mitsunori Tsuda
- Neurology Tsuda Clinic, 3006 Hisaishinmachi, Tsu, Mie 514-1118, Japan.
| | - Kenta Tsuda
- Neurology Tsuda Clinic, 3006 Hisaishinmachi, Tsu, Mie 514-1118, Japan
| | - Shingo Asano
- Neurology Tsuda Clinic, 3006 Hisaishinmachi, Tsu, Mie 514-1118, Japan
| | - Yasushi Kato
- Neurology Kato Clinic, 4-5-36 Ichinoki, Ise, Mie 516-0071, Japan
| | - Masao Miyazaki
- Neurology Kato Clinic, 4-5-36 Ichinoki, Ise, Mie 516-0071, Japan
| |
Collapse
|
6
|
González AC, Goossens J, Campuzano EV, Sala I, Sánchez-Saudinós MB, Rodríguez-Baz Í, Lidón L, Perlaza D, Bejanin A, Haapasalo A, Fortea J, Alcolea D, Lleó A, Vanmechelen E, Belbin O. Evaluation of cerebrospinal fluid levels of VAMP-2 and SNAP-25 in a dementia with Lewy bodies clinical cohort stratified by Alzheimer's pathophysiological biomarkers. Alzheimers Res Ther 2025; 17:51. [PMID: 39994784 PMCID: PMC11849174 DOI: 10.1186/s13195-025-01685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Synaptic protein levels in cerebrospinal fluid (CSF) may represent much-needed objective biomarkers of cognitive impairment, disease progression and drug efficacy in patients with dementia with Lewy bodies (DLB). Soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNARE) proteins, such as VAMP-2 and SNAP-25, are implicated in α-synuclein pathophysiology and CSF levels of these proteins are associated with pathophysiological biomarkers and cognitive decline in Alzheimer's disease (AD). The aim of the study was to compare CSF levels of VAMP-2 and SNAP-25 in patients with DLB to cognitively unimpaired controls and AD patients and study their association with cognitive performance and AD and neurodegeneration biomarkers. METHODS VAMP-2 and SNAP-25 were quantified in CSF from cognitively normal controls (n = 62), DLB (n = 44) and AD (n = 114) patients from the Sant Pau Initiative for Neurodegeneration (SPIN) cohort using homebrew Single Molecule Array assays (Simoa). The DLB group was stratified into two groups with ("DLB + AD", n = 28) or without AD co-pathology ("pure DLB", n = 16) using our validated cut-off for the CSF phosphorylated tau (p-tau)/Aβ42 ratio. We used linear regression to test for group differences (adjusting for age) and association with AD biomarkers. We used standardized w-scores of the cognitive tests to analyze the association of the synaptic markers with cognitive performance. RESULTS CSF VAMP-2 and SNAP-25 levels correlated across all groups (r = 0.71-0.9, p < 0.001). Both proteins were decreased in pure DLB (p < 0.001, p = 0.01) but increased in DLB + AD (p = 0.01, p = 0.02) compared to controls and showed good accuracy to discriminate pure DLB from DLB + AD (AUC = 0.84, 0.85). Both proteins were associated with CSF p-tau and total tau (t-tau) across all groups (r2 = 0.49-0.88, p < 0.001), with the Aβ42/40 ratio in DLB + AD (r2 = 0.29-0.36, p < 0.001) and in AD (r2 = 0.12-0.23, p < 0.001) and with CSF neurofilament-light chain (NfL) in controls (r²=0.10-0.11, p < 0.001-0.01) and AD patients (r²=0.01-0.08, p = 0.01 - 0.001). SNAP-25 was associated with CSF NfL in the DLB + AD group (r²=0.15, p = 0.02). CSF VAMP-2 and SNAP-25 were associated with phonemic fluency in pure DLB (r2 = 0.39 - 0.28, p = 0.01-0.03) and SNAP-25 with the Clock drawing test and the MMSE in DLB + AD (adj.r2 = 0.15 - 0.14, p = 0.03-0.03) and DLB (adj.r2 = 0.12 - 0.08, p = 0.02-0.04) groups. CONCLUSIONS CSF VAMP-2 and SNAP-25 are promising surrogate markers of synapse degeneration in DLB. However, care should be taken when interpreting CSF levels of these synaptic markers in DLB in light of the confounding effect of AD pathophysiological markers.
Collapse
Affiliation(s)
- Alba Cervantes González
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julie Goossens
- ADx NeuroSciences NV, Technologiepark-Zwijnaarde 6, Gent, 9052, Belgium
| | - Elena Vera Campuzano
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Isabel Sala
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - M Belén Sánchez-Saudinós
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Íñigo Rodríguez-Baz
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Laia Lidón
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Danna Perlaza
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juan Fortea
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eugeen Vanmechelen
- ADx NeuroSciences NV, Technologiepark-Zwijnaarde 6, Gent, 9052, Belgium.
| | - Olivia Belbin
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain.
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
7
|
Putnam GL, Maitta RW. Alpha synuclein and inflammaging. Heliyon 2025; 11:e41981. [PMID: 39897785 PMCID: PMC11786851 DOI: 10.1016/j.heliyon.2025.e41981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
The α-synuclein protein is an established molecule in Lewy body pathology, especially Parkinson's disease (PD). While the pathological role of α-synuclein (α-syn) in PD has been well described, novel evidence may suggest that α-syn interacts with inflammasomes in response to aging. As age is an inevitable physiological state and is also considered the greatest risk factor for PD, this calls for investigation into how α-syn, aging, and PD could be linked. There is a growing amount of data regarding α-syn normal function in the body that includes involvement in cellular transport such as protein complexes assembly, vesicular trafficking, neurotransmitter release, as well as immune cell maturation. Regarding abnormal α-syn, a number of autosomal dominant mutations have been identified as causes of familial PD, however, symptomatology may not become apparent until later in life due to compensatory mechanisms in the dopaminergic response. This potentially links age-related physiological changes not only as a risk factor for PD, but for the concept of "inflammaging ". This is defined as chronic inflammation that accompanies aging observed in many neurodegenerative pathologies, that include α-syn's ability to form oligomers and toxic fibrils seen in PD. This oligomeric α-syn stimulates pro-inflammatory signals, which may worsen PD symptoms and propagate chronic inflammation. Thus, this review will explore a potential link between α-syn's role in the immune system, inflammaging, and PD.
Collapse
Affiliation(s)
| | - Robert W. Maitta
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
8
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
9
|
De Bartolo MI, Belvisi D, Mancinelli R, Costanzo M, Caturano C, Leodori G, Berardelli A, Fabbrini G, Vivacqua G. A systematic review of salivary biomarkers in Parkinson's disease. Neural Regen Res 2024; 19:2613-2625. [PMID: 38595280 PMCID: PMC11168506 DOI: 10.4103/nrr.nrr-d-23-01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 04/11/2024] Open
Abstract
The search for reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis, to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies. Despite the need for non-invasively accessible biomarkers, the majority of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers, which require invasive collection procedures. Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers. In the present study, after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease, we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients. A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289 articles. After screening and exclusion, 34 relevant articles were derived for systematic review. Alpha-synuclein, the histopathological hallmark of Parkinson's disease, has been the most investigated Parkinson's disease biomarker in saliva, with oligomeric alpha-synuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls, while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein, and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease. Beyond alpha-synuclein, other biomarkers targeting different molecular pathways have been explored in the saliva of Parkinson's disease patients: total tau, phosphorylated tau, amyloid-β1-42 (pathological protein aggregation biomarkers); DJ-1, heme-oxygenase-1, metabolites (altered energy homeostasis biomarkers); MAPLC-3beta (aberrant proteostasis biomarker); cortisol, tumor necrosis factor-alpha (inflammation biomarkers); DNA methylation, miRNA (DNA/RNA defects biomarkers); acetylcholinesterase activity (synaptic and neuronal network dysfunction biomarkers); Raman spectra, proteome, and caffeine. Despite a few studies investigating biomarkers targeting molecular pathways different from alpha-synuclein in Parkinson's disease, these results should be replicated and observed in studies on larger cohorts, considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes. Although the need for standardization in sample collection and processing, salivary-based biomarkers studies have reported encouraging results, calling for large-scale longitudinal studies and multicentric assessments, given the great molecular potentials and the non-invasive accessibility of saliva.
Collapse
Affiliation(s)
| | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Claudia Caturano
- Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy
| | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Vivacqua
- Department of Experimental Morphology and Microscopy -Integrated Research Center (PRAAB) -Campus Biomedico University of Rome, Rome, Italy
| |
Collapse
|
10
|
Xu K, Zhang Y, Shi Y, Zhang Y, Zhang C, Wang T, Lv P, Bai Y, Wang S. Circadian rhythm disruption: a potential trigger in Parkinson's disease pathogenesis. Front Cell Neurosci 2024; 18:1464595. [PMID: 39539340 PMCID: PMC11557417 DOI: 10.3389/fncel.2024.1464595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), abnormal accumulation of α-synuclein (α-syn), and activation of microglia leading to neuroinflammation. Disturbances in circadian rhythm play a significant role in PD, with most non-motor symptoms associated with disruptions in circadian rhythm. These disturbances can be observed years before motor symptoms appear and are marked by the emergence of non-motor symptoms related to PD, such as rapid eye movement sleep behavior disorder (RBD), restless leg syndrome (RLS), excessive daytime sleepiness (EDS), depression and anxiety, changes in blood pressure, gastrointestinal dysfunction, and urinary problems. Circadian rhythm disruption precedes the onset of motor symptoms and contributes to the progression of PD. In brief, this article outlines the role of circadian rhythm disruption in triggering PD at cellular and molecular levels, as well as its clinical manifestations. It also explores how circadian rhythm research can contribute to preventing the onset and progression of PD from current and future perspectives.
Collapse
Affiliation(s)
- Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yu Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yue Shi
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yake Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengguang Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Tianjiao Wang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Peizhu Lv
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Institute of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shun Wang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Saibene FL, Agliardi C, Salvatore A, Arcuri P, Castagna A, Gobbo S, Merlo F, Bowman T, Anastasi D, Pagliari C, Farina E, Alberoni M, Calabrese E, La Rosa F, Arienti C, Saresella M, Guerini FR, Cattaneo D, Baglio F, Clerici M, Navarro J, Meloni M. Investigating the effects of a daily multidisciplinary intensive outpatient rehabilitation program on innovative biomarkers in people with Parkinson's disease: Study protocol for a phase III randomized controlled clinical trial. PLoS One 2024; 19:e0309405. [PMID: 39441873 PMCID: PMC11498734 DOI: 10.1371/journal.pone.0309405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND To date, there has been no medication that has prevented the progression of Parkinson's disease (PD). Many benefits of intensive and multidisciplinary rehabilitation program for PD are supported by clinical, epidemiological, and experimental data. The main question is whether high-intensity motor and cognitive exercises have an effect on the disease's biological mechanisms. OBJECTIVE This study protocol is a Randomized Controlled Trial (RCT) designed to determine the efficacy of an experimental, intensive, and multidisciplinary treatment in comparison to a home-based self-treatment in improving biomolecular and functional parameters in PD. METHODS A total of 72 participants will be randomly allocated to two different groups, experimental (n = 36) and control group (n = 36). The rehabilitation program will last 6 consecutive weeks and will involve the execution of a total of 30 sessions, one for each day of the week from Monday to Friday. Participants allocated to the control group will carry out a home-based self-treatment program that includes muscle-stretching and active mobilization exercises for 40'/day for 6 consecutive weeks. The primary outcome measure is the effects of both treatments on a new set of molecular biomarkers such as oligomeric alpha-synuclein and neurotrophic factors measured in peripheral neural derived extracellular vesicles (NDEVs). Secondary outcomes will include changes of motor and non-motor symptoms, balance and gait performance and cognitive functioning. This RCT has been registered as "Intensive Multidisciplinary Rehabilitation and Biomarkers in Parkinson's Disease" on 30 May, 2022 to ClinicalTrials.gov with the Study ID number: NCT05452655. DISCUSSION This rehabilitation program is believed to be crucial in modifying biomolecular and functional parameters in people with PD. We expect that this study will provide additional evidence to understand the impact of an aerobic and intensive rehabilitation program on brain plasticity in patients with PD.
Collapse
Affiliation(s)
| | | | | | - Pietro Arcuri
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Anna Castagna
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Silvia Gobbo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | - Thomas Bowman
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Denise Anastasi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | - Davide Cattaneo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Mario Meloni
- Neurology Unit, Azienda Ospedaliero-Universitaria, Cagliari, Italy
| |
Collapse
|
12
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
13
|
Agliardi C, Guerini FR, Zanzottera M, Bolognesi E, Caputo D, Rovaris M, Clerici M. Increased concentrations of P2X7R in oligodendrocyte derived extracellular vesicles of Multiple sclerosis patients. Neurobiol Dis 2024; 199:106601. [PMID: 38996986 DOI: 10.1016/j.nbd.2024.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
Activation of the purinergic receptor P2X7 (P2X7R) is believed to be deleterious in autoimmune diseases and it was hypothesized to play a role in the pathogenesis of MS. P2X7R is an ATP-gated non-selective cationic channel; its activation can be driven by high concentrations of ATP and leads to the generation of large, cytolytic conductance pores. P2X7R activation can also result in apoptosis as a consequence of the activation of the caspase cascade via P2X7R-dependent stimulation of the NLRP3 inflammasome. We measured P2X7R in oligodendrocyte derived extracellular vesicles (ODEVs) in MS patients and in healthy subjects. Sixty-eight MS patients (50 relapsing-remitting, RR-MS, 18 primary progressive, PP-MS) and 57 healthy controls (HC) were enrolled. ODEVs were enriched from serum by a double step immunoaffinity method using an anti OMGp (oligodendrocyte myelin glycoprotein) antibody. P2X7R concentration was measured in ODEVs lysates by ELISA. One-way Anova test showed that P2X7R in ODEVs is significantly higher in PP-MS (mean: 1742.89 pg/mL) compared both to RR-MS (mean: 1277.33 pg/mL) (p < 0.001) and HC (mean: 879.79 pg/mL) (p < 0.001). Comparison between RR-MS and HC was also statistically significant (p < 0.001). Pearson's correlations showed that P2RX7 in ODEVs was positively correlated with EDSS (p = 0.002, r = 0.38, 0.15-0.57 95% CI) and MSSS (p = 0.004, r = 0.34, 0.12-0.54 95% CI) scores, considering MS patients together (PP-MS + RR-MS) and with disease duration in PP-MS group (p = 0.02, r = 0.53, 0.09-0.80 95% CI). Results suggest that ODEVs-associated P2X7R levels could be a biomarker for MS.
Collapse
Affiliation(s)
- Cristina Agliardi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | | | - Milena Zanzottera
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | | | - Domenico Caputo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy; Pathophysiology and Transplantation Department, University of Milan, via Francesco Sforza 35, Milan, Italy
| |
Collapse
|
14
|
Bravo-Miana RDC, Arizaga-Echebarria JK, Otaegui D. Central nervous system-derived extracellular vesicles: the next generation of neural circulating biomarkers? Transl Neurodegener 2024; 13:32. [PMID: 38898538 PMCID: PMC11186231 DOI: 10.1186/s40035-024-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.
Collapse
Affiliation(s)
- Rocío Del Carmen Bravo-Miana
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Jone Karmele Arizaga-Echebarria
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
15
|
Storci G, De Felice F, Ricci F, Santi S, Messelodi D, Bertuccio SN, Laprovitera N, Dicataldo M, Rossini L, De Matteis S, Casadei B, Vaglio F, Ursi M, Barbato F, Roberto M, Guarino M, Asioli GM, Arpinati M, Cortelli P, Maffini E, Tomassini E, Tassoni M, Cavallo C, Iannotta F, Naddeo M, Tazzari PL, Dan E, Pellegrini C, Guadagnuolo S, Carella M, Sinigaglia B, Pirazzini C, Severi C, Garagnani P, Kwiatkowska KM, Ferracin M, Zinzani PL, Bonafè M, Bonifazi F. CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells. J Clin Invest 2024; 134:e173096. [PMID: 38833312 PMCID: PMC11245152 DOI: 10.1172/jci173096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUNDPredicting immune effector cell-associated neurotoxicity syndrome (ICANS) in patients infused with CAR T cells is still a conundrum. This complication, thought to be consequent to CAR T cell activation, arises a few days after infusion, when circulating CAR T cells are scarce and specific CAR T cell-derived biomarkers are lacking.METHODSCAR+ extracellular vesicle (CAR+EV) release was assessed in human CD19.CAR T cells cocultured with CD19+ target cells. A prospective cohort of 100 patients with B cell lymphoma infused with approved CD19.CAR T cell products was assessed for plasma CAR+EVs as biomarkers of in vivo CD19.CAR T cell activation. Human induced pluripotent stem cell-derived (iPSC-derived) neural cells were used as a model for CAR+EV-induced neurotoxicity.RESULTSIn vitro release of CAR+EVs occurs within 1 hour after target engagement. Plasma CAR+EVs are detectable 1 hour after infusion. A concentration greater than 132.8 CAR+EVs/μL at hour +1 or greater than 224.5 CAR+EVs/μL at day +1 predicted ICANS in advance of 4 days, with a sensitivity and a specificity outperforming other ICANS predictors. ENO2+ nanoparticles were released by iPSC-derived neural cells upon CAR+EV exposure and were increased in plasma of patients with ICANS.CONCLUSIONPlasma CAR+EVs are an immediate signal of CD19.CAR T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis.TRIAL REGISTRATIONNCT04892433, NCT05807789.FUNDINGLife Science Hub-Advanced Therapies (financed by Health Ministry as part of the National Plan for Complementary Investments to the National Recovery and Resilience Plan [NRRP]: E.3 Innovative health ecosystem for APC fees and immunomonitoring).
Collapse
Affiliation(s)
- Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco De Felice
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Francesca Ricci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Spartaco Santi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Daria Messelodi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Michele Dicataldo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Lucrezia Rossini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Vaglio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Ursi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Francesco Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Marcello Roberto
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Maria Guarino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, Università di Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrica Tomassini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marta Tassoni
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Carola Cavallo
- Laboratory Ramses, Research & Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Elisa Dan
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Matteo Carella
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Chiara Pirazzini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Paolo Garagnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero–Università di Bologna, Istituto di Ematologia “Seràgnoli,” Bologna, Italy
| | - Massimiliano Bonafè
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | | |
Collapse
|
16
|
Kim KY, Shin KY, Chang KA. Potential Exosome Biomarkers for Parkinson's Disease Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5307. [PMID: 38791346 PMCID: PMC11121363 DOI: 10.3390/ijms25105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid β 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
17
|
Taha HB, Bogoniewski A. Analysis of biomarkers in speculative CNS-enriched extracellular vesicles for parkinsonian disorders: a comprehensive systematic review and diagnostic meta-analysis. J Neurol 2024; 271:1680-1706. [PMID: 38103086 PMCID: PMC10973014 DOI: 10.1007/s00415-023-12093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS), exhibit overlapping early-stage symptoms, complicating definitive diagnosis despite heterogeneous cellular and regional pathophysiology. Additionally, the progression and the eventual conversion of prodromal conditions such as REM behavior disorder (RBD) to PD, MSA, or DLB remain challenging to predict. Extracellular vesicles (EVs) are small, membrane-enclosed structures released by cells, playing a vital role in communicating cell-state-specific messages. Due to their ability to cross the blood-brain barrier into the peripheral circulation, measuring biomarkers in blood-isolated speculative CNS enriched EVs has become a popular diagnostic approach. However, replication and independent validation remain challenging in this field. Here, we aimed to evaluate the diagnostic accuracy of speculative CNS-enriched EVs for parkinsonian disorders. METHODS We conducted a PRISMA-guided systematic review and meta-analysis, covering 18 studies with a total of 1695 patients with PD, 253 with MSA, 21 with DLB, 172 with PSP, 152 with CBS, 189 with RBD, and 1288 HCs, employing either hierarchical bivariate models or univariate models based on study size. RESULTS Diagnostic accuracy was moderate for differentiating patients with PD from HCs, but revealed high heterogeneity and significant publication bias, suggesting an inflation of the perceived diagnostic effectiveness. The bias observed indicates that studies with non-significant or lower effect sizes were less likely to be published. Although results for differentiating patients with PD from those with MSA or PSP and CBS appeared promising, their validity is limited due to the small number of involved studies coming from the same research group. Despite initial reports, our analyses suggest that using speculative CNS-enriched EV biomarkers may not reliably differentiate patients with MSA from HCs or patients with RBD from HCs, due to their lesser accuracy and substantial variability among the studies, further complicated by substantial publication bias. CONCLUSION Our findings underscore the moderate, yet unreliable diagnostic accuracy of biomarkers in speculative CNS-enriched EVs in differentiating parkinsonian disorders, highlighting the presence of substantial heterogeneity and significant publication bias. These observations reinforce the need for larger, more standardized, and unbiased studies to validate the utility of these biomarkers but also call for the development of better biomarkers for parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Hong CT, Chung CC, Yu RC, Chan L. Plasma extracellular vesicle synaptic proteins as biomarkers of clinical progression in patients with Parkinson's disease. eLife 2024; 12:RP87501. [PMID: 38483306 PMCID: PMC10939498 DOI: 10.7554/elife.87501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Synaptic dysfunction plays a key role in Parkinson's disease (PD), and plasma extracellular vesicle (EV) synaptic proteins are emerging as biomarkers for neurodegenerative diseases. Assessment of plasma EV synaptic proteins for their efficacy as biomarkers in PD and their relationship with disease progression was conducted. In total, 144 participants were enrolled, including 101 people with PD (PwP) and 43 healthy controls (HCs). The changes in plasma EV synaptic protein levels between baseline and 1-year follow-up did not differ significantly in both PwP and HCs. In PwP, the changes in plasma EV synaptic protein levels were significantly associated with the changes in Unified Parkinson's Disease Rating Scale (UPDRS)-II and III scores. Moreover, PwP with elevated levels (first quartile) of any one plasma EV synaptic proteins (synaptosome-associated protein 25, growth-associated protein 43 or synaptotagmin-1) had significantly greater disease progression in UPDRS-II score and the postural instability and gait disturbance subscore in UPDRS-III than did the other PwP after adjustment for age, sex, and disease duration. The promising potential of plasma EV synaptic proteins as clinical biomarkers of disease progression in PD was suggested. However, a longer follow-up period is warranted to confirm their role as prognostic biomarkers.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Ruan-Ching Yu
- Division of Psychiatry, University College London, London, United Kingdom
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Adedara AO, Bressan GN, Dos Santos MM, Fachinetto R, Abolaji AO, Barbosa NV. Antioxidant responses driven by Hesperetin and Hesperidin counteract Parkinson's disease-like phenotypes in Drosophila melanogaster. Neurotoxicology 2024; 101:117-127. [PMID: 38423185 DOI: 10.1016/j.neuro.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The study investigated the protective effects of Hesperetin (HSP) and Hesperidin (HSD) on 1 methyl, 4 phenyl, 1,2,3,6 tetrahydropyridine hydrochloride (MPTP)-induced Parkinsonism in Drosophila melanogaster (D. melanogaster). After a lifespan study to select exposure time and concentrations, flies were co-exposed to MPTP (0.4 mg/g diet), Hesperetin (0.2 and 0.4 mg/g diet), and Hesperidin (0.1 and 0.4 mg/g) for 7 days. In addition to in vivo parameters, we assayed some markers of oxidative stress and antioxidant status (lipid peroxidation, protein carbonylation, thiol content, hydrogen peroxide, and nitrate/nitrite levels, mRNA expression of Keap-1 (Kelch-like ECH associated protein 1), /Nrf2 (Nuclear factor erythroid 2 related factor 2), catalase, and glutathione-S-transferase (GST) activities), and cholinergic (acetyl cholinesterase activity (AChE) and dopaminergic signaling content and the mRNA expression of tyrosine hydroxylase (TH), monoamine oxidase (MAO-like) activity). In addition to increasing the lifespan of flies, we found that both flavonoids counteracted the adverse effects of MPTP on survival, offspring emergence, and climbing ability of flies. Both flavonoids also reduced the oxidative damage on lipids and proteins and reestablished the basal levels of pro-oxidant species and activities of antioxidant enzymes in MPTP-exposed flies. These responses were accompanied by the normalization of the mRNA expression of Keap1/Nrf2 disrupted in flies exposed to MPTP. MPTP exposure also elicited changes in mRNA expression and content of TH as well as in MAO and AChE activity, which were reversed by HST and HSD. By efficiently hindering the oxidative stress in MPTP-exposed flies, our findings support the promising role of Hesperetin and Hesperidin as adjuvant therapy to manage Parkinsonism induced by chemicals such as MPTP.
Collapse
Affiliation(s)
- Adeola Oluwatosin Adedara
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil; Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Getúlio Nicola Bressan
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Matheus Mulling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Roselei Fachinetto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Amos Olalekan Abolaji
- Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
20
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
21
|
Cara-Esteban M, Marín MP, Martínez-Alonso E, Martínez-Bellver S, Teruel-Martí V, Martínez-Menárguez JA, Tomás M. The Golgi complex of dopaminergic enteric neurons is fragmented in a hemiparkinsonian rat model. Microsc Res Tech 2024; 87:373-386. [PMID: 37855309 DOI: 10.1002/jemt.24442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.
Collapse
Affiliation(s)
- Mireia Cara-Esteban
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
- Cell Biology Platform, Health Research Institute La Fe, Valencia, Spain
| | - María Pilar Marín
- Cell Biology Platform, Health Research Institute La Fe, Valencia, Spain
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, Murcia, Spain
| | - Sergio Martínez-Bellver
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | | | - Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
22
|
Gualerzi A, Picciolini S, Bedoni M, Guerini FR, Clerici M, Agliardi C. Extracellular Vesicles as Biomarkers for Parkinson's Disease: How Far from Clinical Translation? Int J Mol Sci 2024; 25:1136. [PMID: 38256215 PMCID: PMC10816807 DOI: 10.3390/ijms25021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting about 10 million people worldwide with a prevalence of about 2% in the over-80 population. The disease brings in also a huge annual economic burden, recently estimated by the Michael J Fox Foundation for Parkinson's Research to be USD 52 billion in the United States alone. Currently, no effective cure exists, but available PD medical treatments are based on symptomatic prescriptions that include drugs, surgical approaches and rehabilitation treatment. Due to the complex biology of a PD brain, the design of clinical trials and the personalization of treatment strategies require the identification of accessible and measurable biomarkers to monitor the events induced by treatment and disease progression and to predict patients' responsiveness. In the present review, we strive to briefly summarize current knowledge about PD biomarkers, focusing on the role of extracellular vesicles as active or involuntary carriers of disease-associated proteins, with particular attention to those research works that envision possible clinical applications.
Collapse
Affiliation(s)
- Alice Gualerzi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Marzia Bedoni
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| | - Mario Clerici
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Cristina Agliardi
- IRCCS Fondazione Don Gnocchi Onlus, 20148 Milan, Italy; (A.G.); (S.P.); (M.C.); (C.A.)
| |
Collapse
|
23
|
Kluge A, Iranzo A. Biofluid Detection of Pathological α-Synuclein in the Prodromal Phase of Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S323-S331. [PMID: 38995801 PMCID: PMC11494638 DOI: 10.3233/jpd-230429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/14/2024]
Abstract
Synucleinopathies are disorders characterized by the aggregation and deposition of pathological α-synuclein conformers. The underlying neurodegenerative processes begin years or decades before the onset of cardinal motor symptoms. This prodromal phase may manifest with various signs or symptoms. However, there are no current standardized laboratory tests to ascertain the progression and conversion of prodromal conditions such as mild cognitive impairment, isolated REM sleep behavior disorder or pure autonomic failure. The aim of this systematic review was to evaluate the diagnostic possibilities using human biofluids as source material to detect pathological α-synuclein in the prodromal phase of synucleinopathies. Our review identified eight eligible studies, that investigated pathological α-synuclein conformers using cerebrospinal fluid from patients with prodromal signs of synulceinopathies to differentiate this patient group from non-synucleinopathies, while only one study investigated this aspect using blood as medium. While previous studies clearly demonstrated a high diagnostic performance of α-synuclein seed amplification assays for differentiating synucleinopathies with Lewy bodies from healthy controls, only few analyses were performed focussing on individuals with prodromal disease. Nevertheless, results for the early detection of α-synuclein seeds using α-synuclein seed amplification assays were promising and may be of particular relevance for future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, Barcelona University, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
24
|
Shu J, Peng F, Li J, Liu Y, Li X, Yuan C. The Relationship between SNAP25 and Some Common Human Neurological Syndromes. Curr Pharm Des 2024; 30:2378-2386. [PMID: 38963116 DOI: 10.2174/0113816128305683240621060024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Over the years, research on the pathogenesis of neurological diseases has progressed slowly worldwide. However, as the incidence rate continues to increase and the disease gradually develops, early diagnosis and treatment have become a top priority. SANP25, a protein present on the presynaptic membrane and involved in neurotransmitter release, is closely related to the loss or abnormal expression of synapses and neurons. SNAP25 deficiency can lead to synaptic disorders and inhibit neurotransmitter release. Therefore, a large amount of literature believes that SNAP25 gene mutation is a risk factor for many neurological diseases. This review used advanced search on PubMed to conduct extensive article searches for relevant literature. The search keywords included SNAP25 and Alzheimer's disease, SNAP25 and Parkinson's disease, and so on. After reading and summarizing the previous papers, the corresponding conclusions were obtained to achieve the purpose of the review. The deficiency or variation of SNAP25 might be related to the onset of schizophrenia, epilepsy, attention deficit/hypoactivity disorder, bipolar disorder effective disorder, and autism. SNAP25 has been found to be used as a neuropathological marker for neurological diseases, which could be the target of diagnosis or treatment of Alzheimer's disease and Parkinson's disease. Cerebrospinal Fluid (CSF) or blood has been found to enable more effective drug development.
Collapse
Affiliation(s)
- Jie Shu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Fan Peng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Jing Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Yuhang Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Xiaolan Li
- College of Basic Medicine, The Second People's Hospital of China Three Gorges University, Yichang 443002, China
- Department of Gynecology, The Second People's Hospital of Yichang, Hubei, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
25
|
Taha HB, Ati SS. Evaluation of α-synuclein in CNS-originating extracellular vesicles for Parkinsonian disorders: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3741-3755. [PMID: 37416941 PMCID: PMC10651986 DOI: 10.1111/cns.14341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND & AIMS Parkinsonian disorders, such as Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), share early motor symptoms but have distinct pathophysiology. As a result, accurate premortem diagnosis is challenging for neurologists, hindering efforts for disease-modifying therapeutic discovery. Extracellular vesicles (EVs) contain cell-state-specific biomolecules and can cross the blood-brain barrier to the peripheral circulation, providing a unique central nervous system (CNS) insight. This meta-analysis evaluated blood-isolated neuronal and oligodendroglial EVs (nEVs and oEVs) α-synuclein levels in Parkinsonian disorders. METHODS Following PRISMA guidelines, the meta-analysis included 13 studies. An inverse-variance random-effects model quantified effect size (SMD), QUADAS-2 assessed risk of bias and publication bias was evaluated. Demographic and clinical variables were collected for meta-regression. RESULTS The meta-analysis included 1,565 patients with PD, 206 with MSA, 21 with DLB, 172 with PSP, 152 with CBS and 967 healthy controls (HCs). Findings suggest that combined concentrations of nEVs and oEVs α-syn is higher in patients with PD compared to HCs (SMD = 0.21, p = 0.021), while nEVs α-syn is lower in patients with PSP and CBS compared to patients with PD (SMD = -1.04, p = 0.0017) or HCs (SMD = -0.41, p < 0.001). Additionally, α-syn in nEVs and/or oEVs did not significantly differ in patients with PD vs. MSA, contradicting the literature. Meta-regressions show that demographic and clinical factors were not significant predictors of nEVs or oEVs α-syn concentrations. CONCLUSION The results highlight the need for standardized procedures and independent validations in biomarker studies and the development of improved biomarkers for distinguishing Parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Shomik S. Ati
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
26
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
27
|
Novikov NI, Brazhnik ES, Kitchigina VF. Pathological Correlates of Cognitive Decline in Parkinson's Disease: From Molecules to Neural Networks. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1890-1904. [PMID: 38105206 DOI: 10.1134/s0006297923110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the death of dopaminergic neurons in the substantia nigra and appearance of protein aggregates (Lewy bodies) consisting predominantly of α-synuclein in neurons. PD is currently recognized as a multisystem disorder characterized by severe motor impairments and various non-motor symptoms. Cognitive decline is one of the most common and worrisome non-motor symptoms. Moderate cognitive impairments (CI) are diagnosed already at the early stages of PD, usually transform into dementia. The main types of CI in PD include executive dysfunction, attention and memory decline, visuospatial impairments, and verbal deficits. According to the published data, the following mechanisms play an essential role demonstrates a crucial importance in the decline of the motor and cognitive functions in PD: (1) changes in the conformational structure of transsynaptic proteins and protein aggregation in presynapses; (2) synaptic transmission impairment; (3) neuroinflammation (pathological activation of the neuroglia); (4) mitochondrial dysfunction and oxidative stress; (5) metabolic disorders (hypometabolism of glucose, dysfunction of glycolipid metabolism; and (6) functional rearrangement of neuronal networks. These changes can lead to the death of dopaminergic cells in the substantia nigra and affect the functioning of other neurotransmitter systems, thus disturbing neuronal networks involved in the transmission of information related to the regulation of motor activity and cognitive functions. Identification of factors causing detrimental changes in PD and methods for their elimination will help in the development of new approaches to the therapy of PD. The goal of this review was to analyze pathological processes that take place in the brain and underlie the onset of cognitive disorders in PD, as well as to describe the impairments of cognitive functions in this disease.
Collapse
Affiliation(s)
- Nikolai I Novikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena S Brazhnik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
28
|
Taha HB, Bogoniewski A. Extracellular vesicles from bodily fluids for the accurate diagnosis of Parkinson's disease and related disorders: A systematic review and diagnostic meta-analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e121. [PMID: 38939363 PMCID: PMC11080888 DOI: 10.1002/jex2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 06/29/2024]
Abstract
Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) are often misdiagnosed due to overlapping symptoms and the absence of precise biomarkers. Furthermore, there are no current methods to ascertain the progression and conversion of prodromal conditions such as REM behaviour disorder (RBD). Extracellular vesicles (EVs), containing a mixture of biomolecules, have emerged as potential sources for parkinsonian diagnostics. However, inconsistencies in previous studies have left their diagnostic potential unclear. We conducted a meta-analysis, following PRISMA guidelines, to assess the diagnostic accuracy of general EVs isolated from various bodily fluids, including cerebrospinal fluid (CSF), plasma, serum, urine or saliva, in differentiating patients with parkinsonian disorders from healthy controls (HCs). The meta-analysis included 21 studies encompassing 1285 patients with PD, 24 with MSA, 105 with DLB, 99 with PSP, 101 with RBD and 783 HCs. Further analyses were conducted only for patients with PD versus HCs, given the limited number for other comparisons. Using bivariate and hierarchal receiver operating characteristics (HSROC) models, the meta-analysis revealed moderate diagnostic accuracy in distinguishing patients with PD from HCs, with substantial heterogeneity and publication bias. The trim-and-fill method revealed at least two missing studies with null or low diagnostic accuracy. CSF-EVs showed better overall diagnostic accuracy, while plasma-EVs had the lowest performance. General EVs demonstrated higher diagnostic accuracy compared to CNS-originating EVs, which are more time-consuming, labour- and cost-intensive to isolate. In conclusion, while holding promise, utilizing biomarkers in general EVs for PD diagnosis remains unfeasible due to existing challenges. The focus should shift toward harmonizing the field through standardization, collaboration, and rigorous validation. Current efforts by the International Society For Extracellular Vesicles (ISEV) aim to enhance the accuracy and reproducibility of EV-related research through rigor and standardization, aiming to bridge the gap between theory and practical clinical application.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
29
|
Huang J, Yuan X, Chen L, Hu B, Wang H, Huang W. The Biology, Pathological Roles of Exosomes and Their Clinical Application in Parkinson's Disease. Neuroscience 2023; 531:24-38. [PMID: 37689233 DOI: 10.1016/j.neuroscience.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a high global incidence and places a great burden on the patient, their family and society. Early diagnosis of PD is the key to hindering the progression process and may enable treatment to partially reverse the disease course. Exosomes are lipid bilayers with a diameter of 40-160 nm (average ∼100 nm), show a cup-shaped structure in transmission electron microscopy (TEM) images, and contain different types of nucleic acids and proteins. On the one hand, several molecules contained in exosomes are correlated with PD pathology. On the other hand, biomarkers based on exosomes have gradually become diagnostic tools in PD. Since exosomes can freely cross the blood-brain barrier, CNS-derived exosomes obtained from the periphery have the potential to be a powerful marker for early PD diagnosis. Of course, exosomes also have great potential as drug delivery systems due to their low toxicity, lipid solubility and immunological inertness. However, there is still a lack of standardized, efficient, and ultrasensitive methods for the isolation of exosomes, hindering the development of effective biomarkers. Therefore, this review describes the biological characteristics of exosomes, exosome extraction methods, and the pathological role, diagnostic/therapeutic value of exosomes in PD.
Collapse
Affiliation(s)
- Juan Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Xingxing Yuan
- The department of Anesthesiology, Hunan Provincial People,s Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lin Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Binbin Hu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Hui Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
30
|
Rastogi S, Rani K, Rai S, Singh R, Bharti PS, Sharma V, Sahu J, Kapoor V, Vishwakarma P, Garg S, Gholap SL, Inampudi KK, Modi GP, Rani N, Tripathi M, Srivastava A, Rajan R, Nikolajeff F, Kumar S. Fluorescence-tagged salivary small extracellular vesicles as a nanotool in early diagnosis of Parkinson's disease. BMC Med 2023; 21:335. [PMID: 37667227 PMCID: PMC10478478 DOI: 10.1186/s12916-023-03031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Parkinson's disease is generally asymptomatic at earlier stages. At an early stage, there is an extensive progression in the neuropathological hallmarks, although, at this stage, diagnosis is not possible with currently available diagnostic methods. Therefore, the pressing need is for susceptibility risk biomarkers that can aid in better diagnosis and therapeutics as well can objectively serve to measure the endpoint of disease progression. The role of small extracellular vesicles (sEV) in the progression of neurodegenerative diseases could be potent in playing a revolutionary role in biomarker discovery. METHODS In our study, the salivary sEV were efficiently isolated by chemical precipitation combined with ultrafiltration from subjects (PD = 70, healthy controls = 26, and prodromal PD = 08), followed by antibody-based validation with CD63, CD9, GAPDH, Flotillin-1, and L1CAM. Morphological characterization of the isolated sEV through transmission electron microscopy. The quantification of sEV was achieved by fluorescence (lipid-binding dye-labeled) nanoparticle tracking analysis and antibody-based (CD63 Alexa fluor 488 tagged sEV) nanoparticle tracking analysis. The total alpha-synuclein (α-synTotal) in salivary sEVs cargo was quantified by ELISA. The disease severity staging confirmation for n = 18 clinically diagnosed Parkinson's disease patients was done by 99mTc-TRODAT-single-photon emission computed tomography. RESULTS We observed a significant increase in total sEVs concentration in PD patients than in the healthy control (HC), where fluorescence lipid-binding dye-tagged sEV were observed to be higher in PD (p = 0.0001) than in the HC using NTA with a sensitivity of 94.34%. In the prodromal PD cases, the fluorescence lipid-binding dye-tagged sEV concentration was found to be higher (p = 0.008) than in HC. This result was validated through anti-CD63 tagged sEV (p = 0.0006) with similar sensitivity of 94.12%. We further validated our findings with the ELISA based on α-synTotal concentration in sEV, where it was observed to be higher in PD (p = 0.004) with a sensitivity of 88.24%. The caudate binding ratios in 99mTc-TRODAT-SPECT represent a positive correlation with sEV concentration (r = 0.8117 with p = 0.0112). CONCLUSIONS In this study, for the first time, we have found that the fluorescence-tagged sEV has the potential to screen the progression of disease with clinically acceptable sensitivity and can be a potent early detection method for PD.
Collapse
Affiliation(s)
- Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Komal Rani
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Pathology & Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, 508126, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaibhav Sharma
- Department of Health, Education, and Technology, Luleå University of Technology, 97187, Luleå, Sweden
| | - Jyoti Sahu
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vrinda Kapoor
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Poorvi Vishwakarma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sumit Garg
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | | | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi, 221005, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhavi Tripathi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Achal Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Luleå University of Technology, 97187, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Luleå University of Technology, 97187, Luleå, Sweden.
| |
Collapse
|
31
|
Xylaki M, Chopra A, Weber S, Bartl M, Outeiro TF, Mollenhauer B. Extracellular Vesicles for the Diagnosis of Parkinson's Disease: Systematic Review and Meta-Analysis. Mov Disord 2023; 38:1585-1597. [PMID: 37449706 DOI: 10.1002/mds.29497] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023] Open
Abstract
Parkinson's disease (PD) biomarkers are needed by both clinicians and researchers (for diagnosis, identifying study populations, and monitoring therapeutic response). Imaging, genetic, and biochemical biomarkers have been widely studied. In recent years, extracellular vesicles (EVs) have become a promising material for biomarker development. Proteins and molecular material from any organ, including the central nervous system, can be packed into EVs and transported to the periphery into easily obtainable biological specimens like blood, urine, and saliva. We performed a systematic review and meta-analysis of articles (published before November 15, 2022) reporting biomarker assessment in EVs in PD patients and healthy controls (HCs). Biomarkers were analyzed using random effects meta-analysis and the calculated standardized mean difference (Std.MD). Several proteins and ribonucleic acids have been identified in EVs in PD patients, but only α-synuclein (aSyn) and leucine-rich repeat kinase 2 (LRRK2) were reported in sufficient studies (n = 24 and 6, respectively) to perform a meta-analysis. EV aSyn was significantly increased in neuronal L1 cell adhesion molecule (L1CAM)-positive blood EVs in PD patients compared to HCs (Std.MD = 1.84, 95% confidence interval = 0.76-2.93, P = 0.0009). Further analysis of the biological sample and EV isolation method indicated that L1CAM-IP (immunoprecipitation) directly from plasma was the best isolation method for assessing aSyn in PD patients. Upcoming neuroprotective clinical trials immediately need peripheral biomarkers for identifying individuals at risk of developing PD. Overall, the improved sensitivity of assays means they can identify biomarkers in blood that reflect changes in the brain. CNS-derived EVs in blood will likely play a major role in biomarker development in the coming years. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, Upon Tyne, United Kingdom
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
32
|
Wang X, Yang H, Liu C, Liu K. A new diagnostic tool for brain disorders: extracellular vesicles derived from neuron, astrocyte, and oligodendrocyte. Front Mol Neurosci 2023; 16:1194210. [PMID: 37621405 PMCID: PMC10445044 DOI: 10.3389/fnmol.2023.1194210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Brain disorders are the leading cause of disability worldwide, affecting people's quality of life and causing economic burdens. The current clinical diagnosis of brain disorders relies solely on individual phenotypes and lacks accurate molecular biomarkers. An emerging field of research centers around extracellular vesicles (EVs), nanoscale membrane vesicles which can easily cross the blood-brain barrier. EVs in the blood are derived from various tissues, including the brain. Therefore, purifying central nervous system (CNS)-derived EVs from the blood and analyzing their contents may be a relatively non-invasive way to analyze brain molecular alterations and identify biomarkers in brain disorders. Recently, methods for capturing neuron-derived EVs (NDEs), astrocyte-derived EVs (ADEs), and oligodendrocyte-derived EVs (ODEs) in peripheral blood were reported. In this article, we provide an overview of the research history of EVs in the blood, specifically focusing on biomarker findings in six major brain disorders (Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, depression, and autism spectrum disorder). Additionally, we discuss the methodology employed for testing CNS-derived EVs. Among brain disorders, Alzheimer's disease has received the most extensive attention in EV research to date. Most studies focus on specific molecules, candidate proteins, or miRNAs. Notably, the most studied molecules implicated in the pathology of these diseases, such as Aβ, tau, and α-synuclein, exhibit good reproducibility. These findings suggest that CNS-derived EVs can serve as valuable tools for observing brain molecular changes minimally invasively. However, further analysis is necessary to understand the cargo composition of these EVs and improve isolation methods. Therefore, research efforts should prioritize the analysis of CNS-derived EVs' origin and genome-wide biomarker discovery studies.
Collapse
Affiliation(s)
- Xueying Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huihui Yang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Kefu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Jacob D, Guerrini L, Pescaglia F, Pierucci S, Gelormini C, Minutolo V, Fratini A, Di Lorenzo G, Petersen H, Gargiulo P. Adaptation strategies and neurophysiological response in early-stage Parkinson's disease: BioVRSea approach. Front Hum Neurosci 2023; 17:1197142. [PMID: 37529404 PMCID: PMC10389765 DOI: 10.3389/fnhum.2023.1197142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction There is accumulating evidence that many pathological conditions affecting human balance are consequence of postural control (PC) failure or overstimulation such as in motion sickness. Our research shows the potential of using the response to a complex postural control task to assess patients with early-stage Parkinson's Disease (PD). Methods We developed a unique measurement model, where the PC task is triggered by a moving platform in a virtual reality environment while simultaneously recording EEG, EMG and CoP signals. This novel paradigm of assessment is called BioVRSea. We studied the interplay between biosignals and their differences in healthy subjects and with early-stage PD. Results Despite the limited number of subjects (29 healthy and nine PD) the results of our work show significant differences in several biosignals features, demonstrating that the combined output of posturography, muscle activation and cortical response is capable of distinguishing healthy from pathological. Discussion The differences measured following the end of the platform movement are remarkable, as the induced sway is different between the two groups and triggers statistically relevant cortical activities in α and θ bands. This is a first important step to develop a multi-metric signature able to quantify PC and distinguish healthy from pathological response.
Collapse
Affiliation(s)
- Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Lorena Guerrini
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Engineering, University of Campania L. Vanvitelli, Aversa, Italy
| | - Federica Pescaglia
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| | - Simona Pierucci
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Carmine Gelormini
- Department of Civil Engineering and Computer Science Engineering, Tor Vergata University of Rome, Rome, Italy
| | - Vincenzo Minutolo
- Department of Engineering, University of Campania L. Vanvitelli, Aversa, Italy
| | - Antonio Fratini
- Engineering for Health Research Centre, Aston University, Birmingham, United Kingdom
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Hannes Petersen
- Department of Anatomy, University of Iceland, Reykjavik, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Science, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
34
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
35
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, Yang Q. Advances in Therapeutic Applications of Extracellular Vesicles. Int J Nanomedicine 2023; 18:3285-3307. [PMID: 37346366 PMCID: PMC10281276 DOI: 10.2147/ijn.s409588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale bilayer phospholipid membrane vesicles released by cells. Contained large molecules such as nucleic acid, protein, and lipid, EVs are an integral part of cell communication. The contents of EVs vary based on the cell source and play an important role in both pathological and physiological conditions. EVs can be used as drugs or targets in disease treatment, and changes in the contents of EVs can indicate the progression of diseases. In recent years, with the continuous exploration of the structure, characteristics, and functions of EVs, the potential of engineered EVs for drug delivery and therapy being constantly explored. This review provides a brief overview of the structure, characteristics and functions of EVs, summarizes the advanced application of EVs and outlook on the prospect of it. It is our hope that this review will increase understanding of the current development of medical applications of EVs and help us overcome future challenges.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
36
|
Hessvik NP, Sagini K, Romero S, Ramirez-Garrastacho M, Rodriguez M, Tutturen AEV, Kvalvaag A, Stang E, Brech A, Sandvig K, Llorente A. siRNA screening reveals that SNAP29 contributes to exosome release. Cell Mol Life Sci 2023; 80:177. [PMID: 37285022 PMCID: PMC10247572 DOI: 10.1007/s00018-023-04822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
Cells release extracellular vesicles (EVs) of different sizes. Small EVs (< 200 nm) can originate from the fusion of multivesicular bodies with the plasma membrane, i.e. exosomes, and from budding of the plasma membrane, i.e. small ectosomes. To investigate the molecular machinery required for the release of small EVs, we developed a sensitive assay based on incorporation of radioactive cholesterol in EV membranes and used it in a siRNA screening. The screening showed that depletion of several SNARE proteins affected the release of small EVs. We focused on SNAP29, VAMP8, syntaxin 2, syntaxin 3 and syntaxin 18, the depletion of which reduced the release of small EVs. Importantly, this result was verified using gold standard techniques. SNAP29 depletion resulted in the largest effect and was further investigated. Immunoblotting analysis of small EVs showed that the release of several proteins considered to be associated with exosomes like syntenin, CD63 and Tsg101 was reduced, while the level of several proteins that have been shown to be released in ectosomes (annexins) or by secretory autophagy (LC3B and p62) was not affected by SNAP29 depletion. Moreover, these proteins appeared in different fractions when the EV samples were further separated by a density gradient. These results suggest that SNAP29 depletion mainly affects the secretion of exosomes. To investigate how SNAP29 affects exosome release, we used microscopy to study the distribution of MBVs using CD63 labelling and CD63-pHluorin to detect fusion events of MVBs with the plasma membrane. SNAP29 depletion caused a redistribution of CD63-labelled compartments but did not change the number of fusion events. Further experiments are therefore needed to fully understand the function of SNAP29. To conclude, we have developed a novel screening assay that has allowed us to identify several SNAREs involved in the release of small EVs.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marta Rodriguez
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Center for the Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
| | | | - Audun Kvalvaag
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Espen Stang
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
37
|
Meloni M, Agliardi C, Guerini FR, Saibene FL, Milner AV, Zanzottera M, Bolognesi E, Puligheddu M, Figorilli M, Navarro J, Clerici M. Oligomeric Alpha-Synuclein and STX-1A from Neural-Derived Extracellular Vesicles (NDEVs) as Possible Biomarkers of REM Sleep Behavior Disorder in Parkinson's Disease: A Preliminary Cohort Study. Int J Mol Sci 2023; 24:ijms24108839. [PMID: 37240185 DOI: 10.3390/ijms24108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
REM sleep behavior disorder (RBD) has a tighter link with synucleinopathies than other neurodegenerative disorders. Parkinson's Disease (PD) patients with RBD have a more severe motor and cognitive impairment; biomarkers for RBD are currently unavailable. Synaptic accumulation of α-Syn oligomers and their interaction with SNARE proteins is responsible for synaptic dysfunction in PD. We verified whether oligomeric α-Syn and SNARE components in neural-derived extracellular vesicles (NDEVs) in serum could be biomarkers for RBD. Forty-seven PD patients were enrolled, and the RBD Screening Questionnaire (RBDSQ) was compiled. A cut-off score > 6 to define probable RBD (p-RBD) and probable non-RBD (p non-RBD) was used. NDEVs were isolated from serum by immunocapture, and oligomeric α-Syn and SNARE complex components VAMP-2 and STX-1 were measured by ELISA. NDEVs' STX-1A resulted in being decreased in p-RBD compared to p non-RBD PD patients. A positive correlation between NDEVs' oligomeric α-Syn and RBDSQ total score was found (p = 0.032). Regression analysis confirmed a significant association between NDEVs' oligomeric α-Syn concentration and RBD symptoms (p = 0.033) independent from age, disease duration, and motor impairment severity. Our findings suggest that synuclein-mediated neurodegeneration in PD-RBD is more diffuse. NDEVs' oligomeric α-Syn and SNARE complex components' serum concentrations could be regarded as reliable biomarkers for the RBD-specific PD endophenotype.
Collapse
Affiliation(s)
- Mario Meloni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | | | | | | | | | | | | | - Monica Puligheddu
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Michela Figorilli
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
38
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Xu J, Li J, Sun YJ, Quan W, Liu L, Zhang QH, Qin YD, Pei XC, Su H, Chen JJ. Identification of key genes and signaling pathways associated with dementia with Lewy bodies and Parkinson's disease dementia using bioinformatics. Front Neurol 2023; 14:1029370. [PMID: 36970514 PMCID: PMC10034123 DOI: 10.3389/fneur.2023.1029370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectiveDementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are collectively known as Lewy body dementia (LBD). Considering the heterogeneous nature of LBD and the different constellations of symptoms with which patients can present, the exact molecular mechanism underlying the differences between these two isoforms is still unknown. Therefore, this study aimed to explore the biomarkers and potential mechanisms that distinguish between PDD and DLB.MethodsThe mRNA expression profile dataset of GSE150696 was acquired from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between 12 DLB and 12 PDD were identified from Brodmann area 9 of human postmortem brains using GEO2R. A series of bioinformatics methods were applied to identify the potential signaling pathways involved, and a protein–protein interaction (PPI) network was constructed. Weighted gene co-expression network analysis (WGCNA) was used to further investigate the relationship between gene co-expression and different LBD subtypes. Hub genes that are strongly associated with PDD and DLB were obtained from the intersection of DEGs and selected modules by WGCNA.ResultsA total of 1,864 DEGs between PDD and DLB were filtered by the online analysis tool GEO2R. We found that the most significant GO- and KEGG-enriched terms are involved in the establishment of the vesicle localization and pathways of neurodegeneration-multiple diseases. Glycerolipid metabolism and viral myocarditis were enriched in the PDD group. A B-cell receptor signaling pathway and one carbon pool by folate correlated with DLB in the results obtained from the GSEA. We found several clusters of co-expressed genes which we designated by colors in our WGCNA analysis. Furthermore, we identified seven upregulated genes, namely, SNAP25, GRIN2A, GABRG2, GABRA1, GRIA1, SLC17A6, and SYN1, which are significantly correlated with PDD.ConclusionThe seven hub genes and the signaling pathways we identified may be involved in the heterogeneous pathogenesis of PDD and DLB.
Collapse
|
40
|
De Bartolo MI, Vivacqua G, Belvisi D, Mancinelli R, Fabbrini A, Manzo N, Costanzo M, Leodori G, Conte A, Fabbrini G, Morini S, Berardelli A. A Combined Panel of Salivary Biomarkers in de novo Parkinson's Disease. Ann Neurol 2023; 93:446-459. [PMID: 36385395 DOI: 10.1002/ana.26550] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate molecular biomarkers of a-synuclein and tau aggregation, autophagy, and inflammation in the saliva of de novo Parkinson's disease (PD) patients in comparison to healthy subjects (HS), and to correlate molecular data with clinical features of PD patients, in order to establish whether abnormalities of these parameters are associated with specific clusters of de novo PD patients, and their potential diagnostic power in differentiating PD patients from HS. METHODS We measured total and oligomeric a-synuclein, total-tau and phosphorylated-tau, microtubule-associated protein light chain 3 beta (MAP-LC3beta), and tumor necrosis factor alpha (TNFalpha) in the saliva of 80 de novo PD patients and 62 HS, using quantitative enzyme-linked immunosorbent Assay analysis. RESULTS Oligomeric a-synuclein, total-tau, MAP-LC3beta, and TNFalpha levels resulted significantly higher in patients with respect to HS, while no significant differences were detected for total a-synuclein or phosphorylated-tau. Phosphorylated-tau directly correlated with MAP-LC3beta, whereas it inversely correlated with TNFalpha in PD patients. An inverse correlation was detected between MAP-LC3beta and non-motor symptoms severity. Principal Component Analysis showed that molecular and clinical parameters were independent of each other in de novo PD patients. Receiver operating characteristic curve analysis reported an accurate diagnostic performance of oligomeric a-synuclein and MAP-LC3beta. The diagnostic accuracy of total a-synuclein increased when it was combined with other salivary biomarkers targeting different molecular pathways. INTERPRETATION Our study proposes a novel biomarker panel using saliva, a non-invasive biofluid, in de novo PD patients, with implications in understanding the molecular pathways involved in PD pathogenesis and the relevance of different molecular pathways in determining clinical PD subtypes. ANN NEUROL 2023;93:446-459.
Collapse
Affiliation(s)
| | - Giorgio Vivacqua
- Department of Experimental Morphology and Microscopy - Integrated Research Center (PRAAB) - Campus Biomedico University of Rome, Rome, Italy.,Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Belvisi
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS San Camillo Hospital, Venice, Italy
| | | | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Sergio Morini
- Department of Experimental Morphology and Microscopy - Integrated Research Center (PRAAB) - Campus Biomedico University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Birkenbihl C, Ahmad A, Massat NJ, Raschka T, Avbersek A, Downey P, Armstrong M, Fröhlich H. Artificial intelligence-based clustering and characterization of Parkinson's disease trajectories. Sci Rep 2023; 13:2897. [PMID: 36801900 PMCID: PMC9938890 DOI: 10.1038/s41598-023-30038-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disease both with respect to arising symptoms and its progression over time. This hampers the design of disease modifying trials for PD as treatments which would potentially show efficacy in specific patient subgroups could be considered ineffective in a heterogeneous trial cohort. Establishing clusters of PD patients based on their progression patterns could help to disentangle the exhibited heterogeneity, highlight clinical differences among patient subgroups, and identify the biological pathways and molecular players which underlie the evident differences. Further, stratification of patients into clusters with distinct progression patterns could help to recruit more homogeneous trial cohorts. In the present work, we applied an artificial intelligence-based algorithm to model and cluster longitudinal PD progression trajectories from the Parkinson's Progression Markers Initiative. Using a combination of six clinical outcome scores covering both motor and non-motor symptoms, we were able to identify specific clusters of PD that showed significantly different patterns of PD progression. The inclusion of genetic variants and biomarker data allowed us to associate the established progression clusters with distinct biological mechanisms, such as perturbations in vesicle transport or neuroprotection. Furthermore, we found that patients of identified progression clusters showed significant differences in their responsiveness to symptomatic treatment. Taken together, our work contributes to a better understanding of the heterogeneity encountered when examining and treating patients with PD, and points towards potential biological pathways and genes that could underlie those differences.
Collapse
Affiliation(s)
- Colin Birkenbihl
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany. .,Bonn-, Aachen International Center for IT, University of Bonn, Friedrich Hirzebruch-Allee 6, 53115, Bonn, Germany.
| | - Ashar Ahmad
- grid.421932.f0000 0004 0605 7243UCB Pharma, Chemin du Foriest 1, 1420 Braine-L’Alleud, Belgium ,grid.428898.70000 0004 1765 3892Present Address: Grünenthal GmbH, 52078 Aachen, Germany
| | - Nathalie J. Massat
- grid.421932.f0000 0004 0605 7243UCB Pharma, Chemin du Foriest 1, 1420 Braine-L’Alleud, Belgium ,Veramed Limited, 5th Floor Regal House, 70 London Road, Twickenham, TW1 3QS UK
| | - Tamara Raschka
- grid.4561.60000 0000 9261 3939Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany ,grid.10388.320000 0001 2240 3300Bonn-, Aachen International Center for IT, University of Bonn, Friedrich Hirzebruch-Allee 6, 53115 Bonn, Germany
| | - Andreja Avbersek
- grid.421932.f0000 0004 0605 7243UCB Pharma, Chemin du Foriest 1, 1420 Braine-L’Alleud, Belgium ,grid.418961.30000 0004 0472 2713Present Address: Regeneron Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | - Patrick Downey
- grid.421932.f0000 0004 0605 7243UCB Pharma, Chemin du Foriest 1, 1420 Braine-L’Alleud, Belgium
| | - Martin Armstrong
- grid.421932.f0000 0004 0605 7243UCB Pharma, Chemin du Foriest 1, 1420 Braine-L’Alleud, Belgium
| | - Holger Fröhlich
- grid.4561.60000 0000 9261 3939Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany ,grid.10388.320000 0001 2240 3300Bonn-, Aachen International Center for IT, University of Bonn, Friedrich Hirzebruch-Allee 6, 53115 Bonn, Germany
| |
Collapse
|
42
|
An Update on Peripheral Blood Extracellular Vesicles as Biomarkers for Parkinson's Disease Diagnosis. Neuroscience 2023; 511:131-146. [PMID: 36435476 DOI: 10.1016/j.neuroscience.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the world's second primary neurodegenerative disease, and the diagnosis and treatment of PD have become mainstream research. Over the past decades, several studies have identified potential biomarkers for diagnosing PD. Among them, extracellular vesicles (EVs) can carry specific biomarkers reflecting the physiological and pathological state of the body. Due to the blood-brain barrier (BBB) limitation, peripheral blood is limited in diagnosing neurodegenerative diseases. With the increasing research on EVs, their ability to pass through BBB indicated that peripheral blood could depict disease status like cerebrospinal fluid (CSF). Peripheral blood is a clinically available sample and has recently been widely used by researchers in various studies. In this review, we summarized previous studies on PD diagnosis biomarkers in peripheral blood EVs and evaluated their diagnostic value. Some EV surface markers were also described, which can extract EVs from specific cell origins. In addition, the combination of several biomarkers demonstrated good diagnostic performance in PD diagnosis compared with a single biomarker, suggesting the focus of future research.
Collapse
|
43
|
The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. Int J Mol Sci 2023; 24:ijms24032477. [PMID: 36768798 PMCID: PMC9916729 DOI: 10.3390/ijms24032477] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Synucleinopathies are a set of devastating neurodegenerative diseases that share a pathologic accumulation of the protein α-synuclein (α-syn). This accumulation causes neuronal death resulting in irreversible dementia, deteriorating motor symptoms, and devastating cognitive decline. While the etiology of these conditions remains largely unknown, microglia, the resident immune cells of the central nervous system (CNS), have been consistently implicated in the pathogenesis of synucleinopathies. Microglia are generally believed to be neuroprotective in the early stages of α-syn accumulation and contribute to further neurodegeneration in chronic disease states. While the molecular mechanisms by which microglia achieve this role are still being investigated, here we highlight the major findings to date. In this review, we describe how structural varieties of inherently disordered α-syn result in varied microglial receptor-mediated interactions. We also summarize which microglial receptors enable cellular recognition and uptake of α-syn. Lastly, we review the downstream effects of α-syn processing within microglia, including spread to other brain regions resulting in neuroinflammation and neurodegeneration in chronic disease states. Understanding the mechanism of microglial interactions with α-syn is vital to conceptualizing molecular targets for novel therapeutic interventions. In addition, given the significant diversity in the pathophysiology of synucleinopathies, such molecular interactions are vital in gauging all potential pathways of neurodegeneration in the disease state.
Collapse
|
44
|
Oligomeric α-synuclein and tau aggregates in NDEVs differentiate Parkinson's disease from atypical parkinsonisms. Neurobiol Dis 2023; 176:105947. [PMID: 36481435 DOI: 10.1016/j.nbd.2022.105947] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The early differential diagnosis of Parkinson's disease (PD) and atypical Parkinsonian syndromes (APS), including corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), is challenging because of an overlap of clinical features and the lack of reliable biomarkers. Neural-derived extracellular vesicles (NDEVs) isolated from blood provide a window into the brain's biochemistry and may assist in distinguishing between PD and APS. We verified in a case-control study whether oligomeric α-Synuclein and Tau aggregates isolated from NDEVs could allow the differential diagnosis of these conditions. Blood sampling and clinical data, including disease duration, motor severity, global cognition, and levodopa equivalent daily dose (LEDD), were collected from patients with a diagnosis of either PD (n = 70), PSP (n = 21), or CBD (n = 19). NDEVs were isolated from serum by immunocapture using an antibody against the neuronal surface marker L1CAM; oligomeric α-Synuclein and aggregated Tau were measured by ELISA. NDEVs analyses showed that oligomeric α-Synuclein is significantly augmented in PD compared to APS, whereas Tau aggregates are significantly increased in APS compared to PD (p < 0.0001). ROC analyses showed that these two biomarkers have a "good" power of classification (p < 0.0001 for both proteins), with high sensitivity and specificity, with NDEVs concentration of Tau aggregates and oligomeric α-Synuclein being respectively the best biomarker for PD/PSP and PD/CBD diagnostic differentiation. Logistic and multiple regression analysis confirmed that NDEVs-derived oligomeric α-Synuclein and Tau aggregates differentiate PD from CBD and PSP (p < 0.001). Notably, a positive correlation between NDEVs oligomeric α-Synuclein and disease severity (disease duration, p = 0.023; Modified H&Y, p = 0.015; UPDRS motor scores, p = 0.004) was found in PD patients and, in these same patients, NDEVs Tau aggregates concentration inversely correlated with global cognitive scores (p = 0.043). A minimally invasive blood test measuring the concentration of α-synuclein and Tau aggregates in NDEVs can represent a promising tool to distinguish with high sensitivity and specificity PD from CBD or PSP patients. Optimization and validation of these data will be needed to confirm the diagnostic value of these biomarkers in distinguishing synucleinopathies from taupathies.
Collapse
|
45
|
Nila IS, Sumsuzzman DM, Khan ZA, Jung JH, Kazema AS, Kim SJ, Hong Y. Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson's disease: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101764. [PMID: 36273807 DOI: 10.1016/j.arr.2022.101764] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Recently, there has been growing interest in exosomal biomarkers for their active targeting and specificity for delivering their cargos (proteins, lipids, nucleic acids) from the parent cell to the recipient cell. Currently, the clinical diagnosis of Parkinson's disease (PD) is mainly based on a clinician's neuropsychological examination and motor symptoms (e.g., bradykinesia, rigidity, postural instability, and resting tremor). However, this diagnosis method is not accurate due to overlapping criteria of other neurodegenerative diseases. Exosomes are differentially expressed in PD and a combination of types and contents of exosomes might be used as a biomarker in PD. Here, we systematically reviewed and meta-analyzed exosomal contents, types and sources of exosomes, method of isolation, and protein quantification tools to determine the optimum exosome-related attributes for PD diagnosis. Pubmed, Embase, and ISI Web of Science were searched for relevant studies. 25 studies were included in the meta-analysis. The Ratio of Mean (RoM) with 95% confidence intervals (CI) was calculated to estimate the effect size. Biomarker performances were rated by random-effects meta-analysis with the Restricted Maximum Likelihood (REML) method. The study protocol is available at PROSPERO (CRD42022331885). Exosomal α-synuclein (α-Syn) was significantly altered in PD patients from healthy controls [RoM = 1.67, 95% CI (0.99 to 2.35); p = 0.00] followed by tau [RoM = 1.33, 95% CI (0.79 to 1.87); p = 0.00], PS-129 [RoM = 0.97, 95% CI (0.54 to 1.40); p = 0.00], and DJ-1/PARK7 [RoM = 0.93, 95% CI (0.64 to 1.21); p = 0.00]. Central nervous system derived L1CAM exosome [RoM = 1.24, 95% CI (1.04 to 1.45); p = 0.00] from either plasma [RoM = 1.35, 95% CI (1.09 to 1.61); p = 0.00]; or serum [RoM = 1.47, 95% CI (1.05 to 1.90); p = 0.00] has been found the optimum type of exosome. The exosome isolation by ExoQuick [RoM = 1.16, 95% CI (0.89 to 1.43); p = 0.00] and protein quantification method by ELISA [RoM = 1.28, 95% CI (1.15 to 1.41); p = 0.00] has been found the optimum isolation and quantification method, respectively for PD diagnosis. This meta-analysis suggests that α-Syn in L1CAM exosome derived from blood, isolated by ExoQuick kit, and quantified by ELISA can be used for PD diagnosis.
Collapse
Affiliation(s)
- Irin Sultana Nila
- Institute of Digital Anti-aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea.
| | - Dewan Md Sumsuzzman
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea.
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea.
| | - Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Republic of Korea.
| | - Ashura Suleiman Kazema
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Republic of Korea.
| | - Sang Jin Kim
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Republic of Korea.
| | - Yonggeun Hong
- Institute of Digital Anti-aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Republic of Korea; Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
46
|
Yoo G, An HJ, Yeou S, Lee NK. α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms. Mol Cells 2022; 45:806-819. [PMID: 36380732 PMCID: PMC9676983 DOI: 10.14348/molcells.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.
Collapse
Affiliation(s)
- Gyeongji Yoo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyeong Jeon An
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sanghun Yeou
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
47
|
Ku K, Frey C, Arad M, Ghafourifar G. Development of novel enzyme immobilization methods employing formaldehyde or triethoxysilylbutyraldehyde to fabricate immobilized enzyme microreactors for peptide mapping. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4053-4063. [PMID: 36196924 DOI: 10.1039/d2ay00840h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The digestion of proteins with proteolytic enzymes has expedited the analysis of peptide mapping. Here, we compared the digestion efficiency of soluble chymotrypsin (CT) with two immobilized CT preparations using bovine serum albumin (BSA) as the substrate. An efficient method of immobilizing chymotrypsin using formaldehyde (FA) was optimized and the conditions were applied to assess a novel immobilization reagent, triethoxysilylbutaraldehyde (TESB). Efforts to determine the best enzyme-to-substrate (E : S) ratios during digestion of denatured BSA with single-use FA-CT enzyme particles were performed by adjusting the amount of substrate used. An E : S ratio of 10 : 1 was found to be best based on the LC-MS/MS analysis data showing sequence coverage of 67%. Fabrication of immobilized enzyme microreactors (IMERs) was carried out using both (3-aminopropyl)triethoxysilane (APTES) with the idealized conditions with FA, as well as the novel procedure utilizing TESB for a proof of concept open-tubular IMER. It was found that the FA-APTES IMER had a sequence coverage of 6%, while the TESB IMER had 29% sequence coverage from MS analysis. The application of TESB in enzyme immobilization has the potential to facilitate a greater degree of enzymatic digestion with higher sequence coverage than traditional immobilization or crosslinking reagents for bottom-up proteomics.
Collapse
Affiliation(s)
- Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Connor Frey
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Maor Arad
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, British Columbia, V2S 7M8, Canada.
| |
Collapse
|
48
|
Ding Y, Zhang Y, Liu X. Combinational treatments of RNA interference and extracellular vesicles in the spinocerebellar ataxia. Front Mol Neurosci 2022; 15:1043947. [PMID: 36311034 PMCID: PMC9606576 DOI: 10.3389/fnmol.2022.1043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disease (ND) with a high mortality rate. Symptomatic treatment is the only clinically adopted treatment. However, it has poor effect and serious complications. Traditional diagnostic methods [such as magnetic resonance imaging (MRI)] have drawbacks. Presently, the superiority of RNA interference (RNAi) and extracellular vesicles (EVs) in improving SCA has attracted extensive attention. Both can serve as the potential biomarkers for the diagnosing and monitoring disease progression. Herein, we analyzed the basis and prospect of therapies for SCA. Meanwhile, we elaborated the development and application of miRNAs, siRNAs, shRNAs, and EVs in the diagnosis and treatment of SCA. We propose the combination of RNAi and EVs to avoid the adverse factors of their respective treatment and maximize the benefits of treatment through the technology of EVs loaded with RNA. Obviously, the combinational therapy of RNAi and EVs may more accurately diagnose and cure SCA.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
49
|
Liu H, Zhang J, Wei C, Liu Z, Zhou W, Yang P, Gong Y, Zhao Y. Prognostic signature construction of energy metabolism-related genes in pancreatic cancer. Front Oncol 2022; 12:917897. [PMID: 36248974 PMCID: PMC9559226 DOI: 10.3389/fonc.2022.917897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is the 7th leading cause of cancer death worldwide, and its incidence and mortality rate have been on the rise in recent years in Western developed countries. The specificity of the disease and the lack of appropriate treatments have resulted in a 5-year overall survival rate of only 9%. In this study, we conducted a study based on the TCGA database and GEO database and analyzed using the energy metabolism gene set to establish a prognostic model with the least absolute shrinkage and selection operator to identify 7-genes prognostic signature, and the gene expression was verified by Real-time PCR. The model was validated using a risk score calculation, and the OS rates of the 7 genes were analyzed using one-way Cox regression. The prognostic relationship between vesicle-associated membrane protein 2 (VAMP2) and pancreatic cancer patients was analyzed by OS and progression-free survival, and the prognosis was found to be significantly worse in the high-expression group. A Nomogram showed that VAMP2 was an independent prognostic factor in pancreatic cancer. Gene set enrichment analysis showed that VAMP2 upregulation was enriched in pathways associated with immune response and that VAMP2 downregulation was enriched in metabolism-related pathways. The association of VAMP2 with immune cell infiltration was analyzed for the enrichment results, and VAMP2 was found to be positively associated with all 6 immune cells. The results of this study suggest that VAMP2 is an independent prognostic factor associated with energy metabolism in pancreatic cancer and may be involved in the immune response.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Jianhua Zhang
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Chaoguang Wei
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Zhao Liu
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
| | - Wei Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pan Yang
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Yuxiang Zhao, ; Yifu Gong,
| | - Yuxiang Zhao
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
- *Correspondence: Yuxiang Zhao, ; Yifu Gong,
| |
Collapse
|
50
|
The Effect of Aggregated Alpha Synuclein on Synaptic and Axonal Proteins in Parkinson’s Disease—A Systematic Review. Biomolecules 2022; 12:biom12091199. [PMID: 36139038 PMCID: PMC9496556 DOI: 10.3390/biom12091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is a core component of Lewy bodies, one of the pathological hallmarks of Parkinson’s disease. Aggregated α-synuclein can impair both synaptic functioning and axonal transport. However, understanding the pathological role that α-synuclein plays at a cellular level is complicated as existing findings are multifaceted and dependent on the mutation, the species, and the quantity of the protein that is involved. This systematic review aims to stratify the research findings to develop a more comprehensive understanding of the role of aggregated α-synuclein on synaptic and axonal proteins in Parkinson’s disease models. A literature search of the PubMed, Scopus, and Web of Science databases was conducted and a total of 39 studies were included for analysis. The review provides evidence for the dysregulation or redistribution of synaptic and axonal proteins due to α-synuclein toxicity. However, due to the high quantity of variables that were used in the research investigations, it was challenging to ascertain exactly what effect α-synuclein has on the expression of the proteins. A more standardized experimental approach regarding the variables that are employed in future studies is crucial so that existing literature can be consolidated. New research involving aggregated α-synuclein at the synapse and regarding axonal transport could be advantageous in guiding new treatment solutions.
Collapse
|