1
|
Chahine LM, Lafontant DE, Choi SH, Iwaki H, Blauwendraat C, Singleton AB, Brumm MC, Alcalay RN, Merchant K, Nudelman KNH, Dagher A, Vo A, Tao Q, Venuto CS, Kieburtz K, Poston KL, Bressman S, Gonzalez-Latapi P, Avants B, Coffey C, Jennings D, Tolosa E, Siderowf A, Marek K, Simuni T. LRRK2-associated parkinsonism with and without in vivo evidence of alpha-synuclein aggregates: longitudinal clinical and biomarker characterization. Brain Commun 2025; 7:fcaf103. [PMID: 40114783 PMCID: PMC11925012 DOI: 10.1093/braincomms/fcaf103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Among LRRK2-associated parkinsonism cases with nigral degeneration, over two-thirds demonstrate evidence of pathologic alpha-synuclein, but many do not. Understanding the clinical phenotype and underlying biology in such individuals is critical for therapeutic development. Our objective was to compare clinical and biomarker features, and rate of progression over 4 years of follow-up, among LRRK2-associated parkinsonism cases with and without in vivo evidence of alpha-synuclein aggregates. Data were from the Parkinson's Progression Markers Initiative, a multicentre prospective cohort study. The sample included individuals diagnosed with Parkinson disease with pathogenic variants in LRRK2. Presence of CSF alpha-synuclein aggregation was assessed with seed amplification assay. A range of clinician- and patient-reported outcome assessments were administered. Biomarkers included dopamine transporter scan, CSF amyloid-beta1-42, total tau, phospho-tau181, urine bis(monoacylglycerol)phosphate levels and serum neurofilament light chain. Linear mixed-effects (LMMs) models examined differences in trajectory in CSF-negative and CSF-positive groups. A total of 148 LRRK2 parkinsonism cases (86% with G2019S variant), 46 negative and 102 positive for CSF alpha-synuclein seed amplification assay, were included. At baseline, the negative group was older than the positive group [median (inter-quartile range) 69.1 (65.2-72.3) versus 61.5 (55.6-66.9) years, P < 0.001] and a greater proportion were female [28 (61%) versus 43 (42%), P = 0.035]. Despite being older, the negative group had similar duration since diagnosis and similar motor rating scale [16 (11-23) versus 16 (10-22), P = 0.480] though lower levodopa equivalents. Only 13 (29%) of the negative group were hyposmic, compared with 75 (77%) of the positive group. The negative group, compared with the positive group, had higher per cent-expected putamenal dopamine transporter binding for their age and sex [0.36 (0.29-0.45) versus 0.26 (0.22-0.37), P < 0.001]. Serum neurofilament light chain was higher in the negative group compared with the positive group [17.10 (13.60-22.10) versus 10.50 (8.43-14.70) pg/mL; age-adjusted P-value = 0.013]. In terms of longitudinal change, the negative group remained stable in functional rating scale score in contrast to the positive group who had a significant increase (worsening) of 0.729 per year (P = 0.037), but no other differences in trajectory were found. Among individuals diagnosed with Parkinson disease with pathogenic variants in the LRRK2 gene, we found clinical and biomarker differences in cases without versus with in vivo evidence of CSF alpha-synuclein aggregates. LRRK2 parkinsonism cases without evidence of alpha-synuclein aggregates as a group exhibit less severe motor manifestations and decline. The underlying biology in LRRK2 parkinsonism cases without evidence of alpha-synuclein aggregates requires further investigation.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David-Erick Lafontant
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Hirotaka Iwaki
- DataTecnica LLC, Washington, DC 20037, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, 64239 Tel-Aviv, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Andrew Vo
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Qin Tao
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Charles S Venuto
- Department of Neurology, Center for Health and Technology, University of Rochester Medical Center, Rochester, NY 14642,USA
| | - Karl Kieburtz
- Department of Neurology, Center for Health and Technology, University of Rochester Medical Center, Rochester, NY 14642,USA
| | - Kathleen L Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, 94304 CA, USA
| | - Susan Bressman
- Department of Neurology, Icahn School of Medicine, Mount Sinai Beth Israel, New York City, NY 10029, USA
| | - Paulina Gonzalez-Latapi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Danna Jennings
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Eduardo Tolosa
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, 08028 Barcelona, Spain
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ken Marek
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA
| | - Tatyana Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Bahramiazar P, Abdollahzade N, Tartibian B, Ahmadiasl N, Yaghoob Nezhad F. The Role of Estrogen in Brain MicroRNAs Regulation. Adv Pharm Bull 2024; 14:819-835. [PMID: 40190672 PMCID: PMC11970499 DOI: 10.34172/apb.39216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose This review aims to elucidate the role of estrogen-sensitive microRNAs (miRNAs) in modulating brain functions and disorders, highlighting the protective effects of estrogen on the central nervous system. Methods A comprehensive literature review was conducted, examining the relationship between estrogen, miRNAs, and cognitive health. The study focused on experimental data comparing cognitive impairments between genders and the mechanisms of estrogen's effects on brain function. Results Cognitive impairments are less prevalent in women of reproductive age compared to men, indicating estrogen's neuroprotective role. Estrogen modulates gene expression through specific receptors, while miRNAs regulate approximately 30% of protein-coding genes in mammals. These miRNAs play critical roles in synaptic plasticity and neuronal survival. The review identifies several estrogen-sensitive miRNAs and their potential involvement in brain disorders. Conclusion The interplay between estrogen and miRNAs offers valuable insights into the molecular mechanisms underlying cognitive health and disease. Understanding these relationships may lead to novel therapeutic strategies for addressing various brain disorders, particularly those associated with hormonal changes and aging.
Collapse
Affiliation(s)
- Peyvand Bahramiazar
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Naser Ahmadiasl
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
López Hanotte J, Peralta F, Reggiani PC, Zappa Villar MF. Investigating the Impact of Intracerebroventricular Streptozotocin on Female Rats with and without Ovaries: Implications for Alzheimer's Disease. Neurochem Res 2024; 49:2785-2802. [PMID: 38985243 DOI: 10.1007/s11064-024-04204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
To contribute to research on female models of Alzheimer's disease (AD), our aim was to study the effect of intracerebroventricular (ICV) injection of streptozotocin (STZ) in female rats, and to evaluate a potential neuroprotective action of ovarian steroids against STZ. Female rats were either ovariectomized (OVX) or kept with ovaries (Sham) two weeks before ICV injections. Animals were injected with either vehicle (artificial cerebrospinal fluid, aCSF) or STZ (3 mg/kg) and separated into four experimental groups: Sham + aCSF, Sham + STZ, OVX + aCSF and OVX + STZ. Nineteen days post-injection, we assessed different behavioral aspects: burying, anxiety and exploration, object recognition memory, spatial memory, and depressive-like behavior. Immunohistochemistry and Immunoblot analyses were performed in the hippocampus to examine changes in AD-related proteins and neuronal and microglial populations. STZ affected burying and exploratory behavior depending on ovarian status, and impaired recognition but not spatial memory. STZ and ovariectomy increased depressive-like behavior. Interestingly, STZ did not alter the expression of β-amyloid peptide or Tau phosphorylated forms. STZ affected the neuronal population from the Dentate Gyrus, where immature neurons were more vulnerable to STZ in OVX rats. Regarding microglia, STZ increased reactive cells, and the OVX + STZ group showed an increase in the total cell number. In sum, STZ partially affected female rats, compared to what was previously reported for males. Although AD is more frequent in women, reports about the effect of ICV-STZ in female rats are scarce. Our work highlights the need to deepen into the effects of STZ in the female brain and study possible sex differences.
Collapse
Affiliation(s)
- Juliette López Hanotte
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Facundo Peralta
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Paula Cecilia Reggiani
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - María Florencia Zappa Villar
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
4
|
Fritz García JHG, Keller Valsecchi CI, Basilicata MF. Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks. Open Biol 2024; 14:240177. [PMID: 39471841 PMCID: PMC11521605 DOI: 10.1098/rsob.240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024] Open
Abstract
Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.
Collapse
Affiliation(s)
| | | | - M. Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- University Medical Center (UMC), Mainz, Germany
| |
Collapse
|
5
|
Escamilla S, Salas-Lucia F. Thyroid Hormone and Alzheimer Disease: Bridging Epidemiology to Mechanism. Endocrinology 2024; 165:bqae124. [PMID: 39276028 DOI: 10.1210/endocr/bqae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The identification of critical factors that can worsen the mechanisms contributing to the pathophysiology of Alzheimer disease is of paramount importance. Thyroid hormones (TH) fit this criterion. Epidemiological studies have identified an association between altered circulating TH levels and Alzheimer disease. The study of human and animal models indicates that TH can affect all the main cellular, molecular, and genetic mechanisms known as hallmarks of Alzheimer disease. This is true not only for the excessive production in the brain of protein aggregates leading to amyloid plaques and neurofibrillary tangles but also for the clearance of these molecules from the brain parenchyma via the blood-brain barrier and for the escalated process of neuroinflammation-and even for the effects of carrying Alzheimer-associated genetic variants. Suboptimal TH levels result in a greater accumulation of protein aggregates in the brain. The direct TH regulation of critical genes involved in amyloid beta production and clearance is remarkable, affecting the expression of multiple genes, including APP (related to amyloid beta production), APOE, LRP1, TREM2, AQP4, and ABCB1 (related to amyloid beta clearance). TH also affects microglia by increasing their migration and function and directly regulating the immunosuppressor gene CD73, impacting the immune response of these cells. Studies aiming to understand the mechanisms that could explain how changes in TH levels can contribute to the brain alterations seen in patients with Alzheimer disease are ongoing. These studies have potential implications for the management of patients with Alzheimer disease and ultimately can contribute to devising new interventions for these conditions.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Alicante 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Alicante 03550, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
| | | |
Collapse
|
6
|
Chahine LM, Lafontant DE, Ho Choi S, Iwaki H, Blauwendraat C, Singleton AB, Brumm MC, Alcalay RN, Merchant K, Nudelman KNH, Dagher A, Vo A, Tao Q, Venuto CS, Kieburtz K, Poston KL, Bressman S, Gonzalez-Latapi P, Avants B, Coffey C, Jennings D, Tolosa E, Siderowf A, Marek K, Simuni T. LRRK2-Associated Parkinsonism With and Without In Vivo Evidence of Alpha-Synuclein Aggregates. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310806. [PMID: 39108519 PMCID: PMC11302724 DOI: 10.1101/2024.07.22.24310806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Among LRRK2-associated parkinsonism cases with nigral degeneration, over two-thirds demonstrate evidence of pathologic alpha-synuclein, but many do not. Understanding the clinical phenotype and underlying biology in such individuals is critical for therapeutic development. Our objective was to compare clinical and biomarker features, and rate of progression over 4 years follow-up, among LRRK2-associated parkinsonism cases with and without in vivo evidence of alpha-synuclein aggregates. Methods Data were from the Parkinson's Progression Markers Initiative, a multicenter prospective cohort study. The sample included individuals diagnosed with Parkinson disease with pathogenic variants in LRRK2. Presence of CSF alpha-synuclein aggregation was assessed with seed amplification assay. A range of clinician- and patient- reported outcome assessments were administered. Biomarkers included dopamine transporter SPECT scan, CSF amyloid-beta1-42, total tau, phospho-tau181, urine bis(monoacylglycerol)phosphate levels, and serum neurofilament light chain. Linear mixed effects models examined differences in trajectory in CSF negative and positive groups. Results 148 LRRK2-parkinsonism cases (86% with G2019S variant), 46 negative and 102 positive for CSF alpha-synuclein seed amplification assay were included. At baseline, the negative group were older than the positive group (median [interquartile range] 69.1 [65.2-72.3] vs 61.5 [55.6-66.9] years, p<0.001) and a greater proportion were female (28 (61%) vs 43 (42%), p=0.035). Despite being older, the negative group had similar duration since diagnosis, and similar motor rating scale (16 [11-23] vs 16 [10-22], p=0.480) though lower levodopa equivalents. Only 13 (29%) of the negative group were hyposmic, compared to 75 (77%) of the positive group. Lowest putamen dopamine transporter binding expected for age and sex was greater in the negative vs positive groups (0.36 [0.29-0.45] vs 0.26 [0.22-0.37], p<0.001). Serum neurofilament light chain was higher in the negative group compared to the positive group (17.10 [13.60-22.10] vs 10.50 [8.43-14.70]; age-adjusted p-value=0.013). In terms of longitudinal change, the negative group remained stable in functional rating scale score in contrast to the positive group who had a significant increase (worsening) of 0.729 per year (p=0.037), but no other differences in trajectory were found. Conclusion Among individuals diagnosed with Parkinson disease with pathogenic variants in the LRRK2 gene, we found clinical and biomarker differences in cases without versus with in vivo evidence of CSF alpha-synuclein aggregates. LRRK2 parkinsonism cases without evidence of alpha-synuclein aggregates as a group exhibit less severe motor manifestations and decline may have more significant cognitive dysfunction. The underlying biology in LRRK2-parkinsonism cases without evidence of alpha-synuclein aggregates requires further investigation.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA, 15213
| | - David-Erick Lafontant
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hirotaka Iwaki
- DataTecnica LLC, Washington, District of Columbia, USA. (2) Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael C Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Roy N Alcalay
- Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel and Department of Neurology; Columbia University Irving Medical Center
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrew Vo
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Qin Tao
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Charles S Venuto
- Department of Neurology, Center for Health and Technology, University of Rochester Medical Center, Rochester, NY
| | - Karl Kieburtz
- Department of Neurology, Center for Health and Technology, University of Rochester Medical Center, Rochester, NY
| | - Kathleen L Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine, Mount Sinai, New York City, New York, USA
| | - Paulina Gonzalez-Latapi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Eduard Tolosa
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) Barcelona, Spain
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ken Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, Ling J, Zhang J, Yin X, Yu P. Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis 2024; 196:106505. [PMID: 38642715 DOI: 10.1016/j.nbd.2024.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aβ deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Tong
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yaoqi Ba
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhengyang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Caidi Yang
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Kangtai Su
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Haodong Qi
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Deju Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China; Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuting Wu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
8
|
Tsamou M, Roggen EL. Sex-associated microRNAs potentially implicated in sporadic Alzheimer's disease (sAD). Brain Res 2024; 1829:148791. [PMID: 38307153 DOI: 10.1016/j.brainres.2024.148791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND The onset and pathology of sporadic Alzheimer's disease (sAD) seem to be affected by both sex and genetic mechanisms. Evidence supports that the high prevalence of sAD in women, worldwide, may be attributed to an interplay among aging, sex, and lifestyle, influenced by genetics, metabolic changes, and hormones. Interestingly, epigenetic mechanisms such as microRNAs (miRNAs), known as master regulators of gene expression, may contribute to this observed sexual dimorphism in sAD. OBJECTIVES To investigate the potential impact of sex-associated miRNAs on processes manifesting sAD pathology, as described by the Tau-driven Adverse Outcome Pathway (AOP) leading to memory loss. METHODS Using publicly available human miRNA datasets, sex-biased miRNAs, defined as differentially expressed by sex in tissues possibly affected by sAD pathology, were collected. In addition, sex hormone-related miRNAs were also retrieved from the literature. The compiled sex-biased and sex hormone-related miRNAs were further plugged into the dysregulated processes of the Tau-driven AOP for memory loss. RESULTS Several miRNAs, previously identified as sex-associated, were implicated in dysregulated processes associated with the manifestation of sAD pathology. Importantly, the described pathology processes were not confined to a particular sex. A mechanistic-based approach utilizing miRNAs was adopted in order to elucidate the link between sex and biological processes potentially involved in the development of memory loss. CONCLUSIONS The identification of sex-associated miRNAs involved in the early processes manifesting memory loss may shed light to the complex molecular mechanisms underlying sAD pathogenesis in a sex-specific manner.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands.
| | - Erwin L Roggen
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands
| |
Collapse
|
9
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Zhang Z, Xu W, Zheng Y, Chen C, Kang X, Chen D, Cheng F, Wang X. Causal relationship between psoriasis vulgaris and dementia: Insights from Mendelian randomization analysis. Exp Dermatol 2024; 33:e14984. [PMID: 37997526 DOI: 10.1111/exd.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Many clinical studies have demonstrated a correlation between psoriasis vulgaris and dementia, yet this correlation remains controversial. Our study employed the Mendelian randomization (MR) method to investigate the causal relationship between psoriasis vulgaris and dementia. Data were obtained from the summary statistics of the genome-wide association studies from IEU-OpenGWAS project database. In univariate Mendelian randomization (UVMR) analysis, psoriasis vulgaris was used as exposure. Alzheimer disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), Parkinson's disease with dementia (PDD) and frontotemporal dementia (FTD) served as the outcomes. In multivariate Mendelian randomization (MVMR) analysis, VaD served as the outcome. The first MVMR analysis used psoriasis vulgaris, mean platelet volume (MPV), platelet distribution width (PDW) and platelet count (PLT) as exposures. The second MVMR analysis used psoriasis vulgaris, vitamin D level and 25 hydroxyvitamin D level as exposures. The main analysis employed the inverse variance weighted method, and the outcomes were evaluated by odds ratio (OR) and 95% confidence interval (95% CI). In UVMR analysis, the results depicted that psoriasis vulgaris was associated with VaD (OR: 0.903, 95% CI: 0.818-0.996, p = 0.041). The results revealed insignificant associations between psoriasis vulgaris and other dementia types. After adjusting the effects of MPV, PDW and PLT in MVMR analysis, the association between psoriasis vulgaris and VaD was no longer significant (p = 0.164). Similarly, after adjusting the effects of vitamin D level and 25 hydroxyvitamin D level in MVMR analysis, the association between psoriasis vulgaris and VaD was also no longer significant (p = 0.533). Our study suggests that psoriasis vulgaris may potentially decrease VaD incidence. However, the causal association between psoriasis vulgaris and VaD may be impeded by platelet-related indices, vitamin D level and 25 hydroxyvitamin D level.
Collapse
Affiliation(s)
- Zehan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangdong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Shulman D, Dubnov S, Zorbaz T, Madrer N, Paldor I, Bennett DA, Seshadri S, Mufson EJ, Greenberg DS, Loewenstein Y, Soreq H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer's disease. Alzheimers Dement 2023; 19:5159-5172. [PMID: 37158312 PMCID: PMC10632545 DOI: 10.1002/alz.13095] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in transfer RNS (tRNA) fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). METHODS We analyzed small RNA-sequencing (RNA-Seq) data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. RESULTS NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single-cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. DISCUSSION Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.
Collapse
Affiliation(s)
- Dana Shulman
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Serafima Dubnov
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tamara Zorbaz
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nimrod Madrer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iddo Paldor
- The Neurosurgery Department, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 South Paulina, Suite 1028, Chicago, IL 60612, USA
| | - Sudha Seshadri
- UT Health Medical Arts & Research Center, San Antonio , TX 78229, USA
| | - Elliott J. Mufson
- Barrow Neurological Institute, St. Joseph's Medical Center, Phoenix, AZ, 85013, USA
| | - David S. Greenberg
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yonatan Loewenstein
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Federmann Center for the Study of Rationality, Jerusalem 9190401, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Li Y, Lei J, Qin X, Li G, Zhou Q, Yang Z. A mitochondria-targeted dual-response sensor for monitoring viscosity and peroxynitrite in living cells with distinct fluorescence signals. Bioorg Chem 2023; 138:106603. [PMID: 37210825 DOI: 10.1016/j.bioorg.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Viscosity and peroxynitrite (ONOO-) are two significant indicators to affect and evaluate the mitochondrial functional status, which are nearly relational with pathophysiological process in many diseases. Developing suitable analytical methods for monitoring mitochondrial viscosity changes and ONOO- is thus of great importance. In this research, a new mitochondria-targeted sensor DCVP-NO2 for the dual determination of viscosity and ONOO- was exploited based on the coumarin skeleton. DCVP-NO2 displayed a red fluorescence "turn-on" response toward viscosity along with about 30-fold intensity increase. Meanwhile, it could be used as ratiometric probe for detection of ONOO- with excellent sensitivity and extraordinary selectivity for ONOO- over other chemical and biological species. Moreover, thanks to its good photostability, low cytotoxicity and ideal mitochondrion-targeting capability, DCVP-NO2 was successfully utilized for fluorescence imaging of viscosity variations and ONOO- in mitochondria of living cells through different channels. In addition, the results of cell imaging revealed that ONOO- would lead to the increase of viscosity. Taken together, this work provides a potential molecular tool for researching biological functions and interactions of viscosity and ONOO- in mitochondria.
Collapse
Affiliation(s)
- Yaqian Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| | - Jieni Lei
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Xin Qin
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Guangyi Li
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Qiulan Zhou
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China
| | - Zi Yang
- Academician Workstation and Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, PR China.
| |
Collapse
|
13
|
Busler JN, Slate SR, Liao H, Lyndon S, Taylor J, Lin AP, Mahon PB. Sex hormones as correlates of oxidative stress in the adult brain. Psychiatry Res Neuroimaging 2023; 334:111681. [PMID: 37540945 PMCID: PMC10548422 DOI: 10.1016/j.pscychresns.2023.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
Oxidative stress, an imbalance between the production of reactive oxygen species and available antioxidant capacity, is implicated in multiple psychiatric disorders and neurodegenerative conditions. Peripheral and preclinical studies suggest oxidative stress differs by biological sex and covaries with estrogens. However, limited knowledge exists on the effect of circulating sex hormones on oxidative stress in the brain in humans in vivo. We aimed to examine the relationship of circulating estrogen with regional concentrations of brain glutathione (GSH) as a marker of oxidative stress. GSH was measured using magnetic resonance spectroscopy (MRS) at 7 Tesla in the dorsal anterior cingulate cortex (ACC), ventromedial prefrontal cortex (VMPFC), and left dorsolateral prefrontal cortex (DLPFC) in 34 individuals (18 females and 16 males). We observed an inverse correlation of estradiol with DLPFC GSH, as well as a trend inverse correlation of estrone with DLPFC GSH, in the combined sample of males and females and in females only. No significant sex differences were observed for GSH levels in the brain. Our study provides evidence of diminished DLPFC GSH in females with higher estradiol, suggesting circulating sex hormones may be important factors to consider in future studies examining brain GSH levels related to psychiatric and other disorders.
Collapse
Affiliation(s)
- Jessica N Busler
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Rose Slate
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huijun Liao
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stanley Lyndon
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob Taylor
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Lin
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pamela B Mahon
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Mei T, Li Y, Orduña Dolado A, Li Z, Andersson R, Berliocchi L, Rasmussen LJ. Pooled analysis of frontal lobe transcriptomic data identifies key mitophagy gene changes in Alzheimer's disease brain. Front Aging Neurosci 2023; 15:1101216. [PMID: 37358952 PMCID: PMC10288858 DOI: 10.3389/fnagi.2023.1101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing prevalence of Alzheimer's disease (AD) is becoming a global health challenge without effective treatments. Defective mitochondrial function and mitophagy have recently been suggested as etiological factors in AD, in association with abnormalities in components of the autophagic machinery like lysosomes and phagosomes. Several large transcriptomic studies have been performed on different brain regions from AD and healthy patients, and their data represent a vast source of important information that can be utilized to understand this condition. However, large integration analyses of these publicly available data, such as AD RNA-Seq data, are still missing. In addition, large-scale focused analysis on mitophagy, which seems to be relevant for the aetiology of the disease, has not yet been performed. Methods In this study, publicly available raw RNA-Seq data generated from healthy control and sporadic AD post-mortem human samples of the brain frontal lobe were collected and integrated. Sex-specific differential expression analysis was performed on the combined data set after batch effect correction. From the resulting set of differentially expressed genes, candidate mitophagy-related genes were identified based on their known functional roles in mitophagy, the lysosome, or the phagosome, followed by Protein-Protein Interaction (PPI) and microRNA-mRNA network analysis. The expression changes of candidate genes were further validated in human skin fibroblast and induced pluripotent stem cells (iPSCs)-derived cortical neurons from AD patients and matching healthy controls. Results From a large dataset (AD: 589; control: 246) based on three different datasets (i.e., ROSMAP, MSBB, & GSE110731), we identified 299 candidate mitophagy-related differentially expressed genes (DEG) in sporadic AD patients (male: 195, female: 188). Among these, the AAA ATPase VCP, the GTPase ARF1, the autophagic vesicle forming protein GABARAPL1 and the cytoskeleton protein actin beta ACTB were selected based on network degrees and existing literature. Changes in their expression were further validated in AD-relevant human in vitro models, which confirmed their down-regulation in AD conditions. Conclusion Through the joint analysis of multiple publicly available data sets, we identify four differentially expressed key mitophagy-related genes potentially relevant for the pathogenesis of sporadic AD. Changes in expression of these four genes were validated using two AD-relevant human in vitro models, primary human fibroblasts and iPSC-derived neurons. Our results provide foundation for further investigation of these genes as potential biomarkers or disease-modifying pharmacological targets.
Collapse
Affiliation(s)
- Taoyu Mei
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Orduña Dolado
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Berliocchi
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Szabo L, Grimm A, García-León JA, Verfaillie CM, Eckert A. Genetically Engineered Triple MAPT-Mutant Human-Induced Pluripotent Stem Cells (N279K, P301L, and E10+16 Mutations) Exhibit Impairments in Mitochondrial Bioenergetics and Dynamics. Cells 2023; 12:1385. [PMID: 37408218 DOI: 10.3390/cells12101385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Pathological abnormalities in the tau protein give rise to a variety of neurodegenerative diseases, conjointly termed tauopathies. Several tau mutations have been identified in the tau-encoding gene MAPT, affecting either the physical properties of tau or resulting in altered tau splicing. At early disease stages, mitochondrial dysfunction was highlighted with mutant tau compromising almost every aspect of mitochondrial function. Additionally, mitochondria have emerged as fundamental regulators of stem cell function. Here, we show that compared to the isogenic wild-type triple MAPT-mutant human-induced pluripotent stem cells, bearing the pathogenic N279K, P301L, and E10+16 mutations, exhibit deficits in mitochondrial bioenergetics and present altered parameters linked to the metabolic regulation of mitochondria. Moreover, we demonstrate that the triple tau mutations disturb the cellular redox homeostasis and modify the mitochondrial network morphology and distribution. This study provides the first characterization of disease-associated tau-mediated mitochondrial impairments in an advanced human cellular tau pathology model at early disease stages, ranging from mitochondrial bioenergetics to dynamics. Consequently, comprehending better the influence of dysfunctional mitochondria on the development and differentiation of stem cells and their contribution to disease progression may thus assist in the potential prevention and treatment of tau-related neurodegeneration.
Collapse
Affiliation(s)
- Leonora Szabo
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Juan Antonio García-León
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
16
|
Spermidine Rescues Bioenergetic and Mitophagy Deficits Induced by Disease-Associated Tau Protein. Int J Mol Sci 2023; 24:ijms24065297. [PMID: 36982371 PMCID: PMC10049002 DOI: 10.3390/ijms24065297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Abnormal tau build-up is a hallmark of Alzheimer’s disease (AD) and more than 20 other serious neurodegenerative diseases. Mitochondria are paramount organelles playing a predominant role in cellular bioenergetics, namely by providing the main source of cellular energy via adenosine triphosphate generation. Abnormal tau impairs almost every aspect of mitochondrial function, from mitochondrial respiration to mitophagy. The aim of our study was to investigate the effects of spermidine, a polyamine which exerts neuroprotective effects, on mitochondrial function in a cellular model of tauopathy. Recent evidence identified autophagy as the main mechanism of action of spermidine on life-span prolongation and neuroprotection, but the effects of spermidine on abnormal tau-induced mitochondrial dysfunction have not yet been investigated. We used SH-SY5Y cells stably expressing a mutant form of human tau protein (P301L tau mutation) or cells expressing the empty vector (control cells). We showed that spermidine improved mitochondrial respiration, mitochondrial membrane potential as well as adenosine triphosphate (ATP) production in both control and P301L tau-expressing cells. We also showed that spermidine decreased the level of free radicals, increased autophagy and restored P301L tau-induced impairments in mitophagy. Overall, our findings suggest that spermidine supplementation might represent an attractive therapeutic approach to prevent/counteract tau-related mitochondrial impairments.
Collapse
|
17
|
Shulman D, Dubnov S, Zorbaz T, Madrer N, Paldor I, Bennett DA, Seshadri S, Mufson EJ, Greenberg DS, Loewenstein Y, Soreq H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527612. [PMID: 36798311 PMCID: PMC9934682 DOI: 10.1101/2023.02.08.527612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Introduction Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in tRNA fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). Methods We analyzed small RNA-sequencing data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. Results NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. Discussion Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.
Collapse
Affiliation(s)
- Dana Shulman
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Serafima Dubnov
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tamara Zorbaz
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nimrod Madrer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iddo Paldor
- The Neurosurgery Department, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 600 South Paulina, Suite 1028, Chicago, IL 60612, USA
| | - Sudha Seshadri
- UT Health Medical Arts & Research Center, San Antonio, TX 78229, USA
| | - Elliott J. Mufson
- Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, 85013, USA
| | - David S. Greenberg
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yonatan Loewenstein
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Federmann Center for the Study of Rationality, Jerusalem 9190401, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
18
|
Turek J, Gąsior Ł. Estrogen fluctuations during the menopausal transition are a risk factor for depressive disorders. Pharmacol Rep 2023; 75:32-43. [PMID: 36639604 PMCID: PMC9889489 DOI: 10.1007/s43440-022-00444-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Women are significantly more likely to develop depression than men. Fluctuations in the ovarian estrogen hormone levels are closely linked with women's well-being. This narrative review discusses the available knowledge on the role of estrogen in modulating brain function and the correlation between changes in estrogen levels and the development of depression. Equally discussed are the possible mechanisms underlying these effects, including the role of estrogen in modulating brain-derived neurotrophic factor activity, serotonin neurotransmission, as well as the induction of inflammatory response and changes in metabolic activity, are discussed.
Collapse
Affiliation(s)
- Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland
| |
Collapse
|
19
|
Li HY, Wang J, Liang LF, Shen SY, Li W, Chen XR, Li B, Zhang YQ, Yu J. Sirtuin 3 Plays a Critical Role in the Antidepressant- and Anxiolytic-like Effects of Kaempferol. Antioxidants (Basel) 2022; 11:1886. [PMID: 36290610 PMCID: PMC9598871 DOI: 10.3390/antiox11101886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
An estimated 20% of women experience depression at some point during menopause. Hormone replacement therapy (HRT), as the main therapy for depression and other menopausal syndromes, comes with a few undesirable side effects and a potential increase in cancer and cardiovascular risk. Consequently, there is a dire need for the development of new therapies to treat menopausal depression. Oxidative stress combined with the decline in sex hormones might explain the occurrence of psychological symptoms characteristic of menopause. Therefore, antioxidants have been suggested as a promising therapy for aging-associated diseases, such as menopausal depression. As a flavonoid antioxidant, kaempferol might have a potential neuroprotective action. Hence, the study was conducted to assess the potential antidepressant action of kaempferol and clarify the underlying mechanism. The results show that kaempferol has potential beneficial effects on VCD-induced rodent model of menopausal depression and produces antioxidant effects as well as increases the deacetylation of superoxide dismutase 2 (SOD2) and the protein level of Sirtuin3 (Sirt3) in the hippocampus. On the contrary, Sirt3 depletion abrogated the antidepressant- and anxiolytic-like effects as well as antioxidant effects of kaempferol. In conclusion, kaempferol might produce antidepressant effects via upregulating the expression of Sirt3, the major deacetylase in mitochondria, and subsequently activate the mitochondrial antioxidases. These findings shed some light on the use of kaempferol or vegetables and herbs that contain kaempferol as a complementary therapy for menopausal depression.
Collapse
Affiliation(s)
- Hao-Yuan Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling-Feng Liang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shi-Yu Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Rong Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Sato K, Takayama KI, Hashimoto M, Inoue S. Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP ) mRNA. FRONTIERS IN AGING 2022; 2:721579. [PMID: 35822056 PMCID: PMC9261399 DOI: 10.3389/fragi.2021.721579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive impairment of memory, thinking, behavior, and dementia. Based on ample evidence showing neurotoxicity of amyloid-β (Aβ) aggregates in AD, proteolytically derived from amyloid precursor protein (APP), it has been assumed that misfolding of Aβ plays a crucial role in the AD pathogenesis. Additionally, extra copies of the APP gene caused by chromosomal duplication in patients with Down syndrome can promote AD pathogenesis, indicating the pathological involvement of the APP gene dose in AD. Furthermore, increased APP expression due to locus duplication and promoter mutation of APP has been found in familial AD. Given this background, we aimed to summarize the mechanism underlying the upregulation of APP expression levels from a cutting-edge perspective. We first reviewed the literature relevant to this issue, specifically focusing on the transcriptional regulation of APP by transcription factors that bind to the promoter/enhancer regions. APP expression is also regulated by growth factors, cytokines, and hormone, such as androgen. We further evaluated the possible involvement of post-transcriptional regulators of APP in AD pathogenesis, such as RNA splicing factors. Indeed, alternative splicing isoforms of APP are proposed to be involved in the increased production of Aβ. Moreover, non-coding RNAs, including microRNAs, post-transcriptionally regulate the APP expression. Collectively, elucidation of the novel mechanisms underlying the upregulation of APP would lead to the development of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
21
|
Bachmann D, Roman ZJ, Buchmann A, Zuber I, Studer S, Saake A, Rauen K, Gruber E, Nitsch RM, Hock C, Gietl AF, Treyer V. Lifestyle affects amyloid burden and cognition differently in men and women. Ann Neurol 2022; 92:451-463. [PMID: 35598071 PMCID: PMC9542817 DOI: 10.1002/ana.26417] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Objective Evidence on associations of lifestyle factors with Alzheimer's pathology and cognition are ambiguous, potentially because they rarely addressed inter‐relationships of factors and sex effects. While considering these aspects, we examined the relationships of lifestyle factors with brain amyloid burden and cognition. Methods We studied 178 cognitively normal individuals (women, 49%; 65.0 [7.6] years) and 54 individuals with mild cognitive impairment (women, 35%; 71.3 [8.3] years) enrolled in a prospective study of volunteers who completed 18F‐Flutemetamol amyloid positron emission tomography. Using structural equation modeling, we examined associations between latent constructs representing metabolic/vascular risk, physical activity, and cognitive activity with global amyloid burden and cognitive performance. Furthermore, we investigated the influence of sex in this model. Results Overall, higher cognitive activity was associated with better cognitive performance and higher physical activity was associated with lower amyloid burden. The latter association was weakened to a nonsignificant level after excluding multivariate outliers. Examination of the moderating effect of sex in the model revealed an inverse association of metabolic/vascular risk with cognition in men, whereas in women metabolic/vascular risk trended toward increased amyloid burden. Furthermore, a significant inverse association between physical activity and amyloid burden was found only in men. Inheritance of an APOE4 allele was associated with higher amyloid burden only in women. Interpretation Sex modifies effects of certain lifestyle‐related factors on amyloid burden and cognition. Notably, our results suggest that the negative impact of metabolic/vascular risk influences the risk of cognitive decline and Alzheimer's disease through distinct paths in women and men. ANN NEUROL 2022;92:451–463
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Zachary J Roman
- Department of Psychology, Psychological Methods, Evaluation, and Statistics, University of Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Geriatric Psychiatry, Psychiatric Hospital Zurich
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Zurich, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Geriatric Psychiatry, Psychiatric Hospital Zurich
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Congiu L, Granato V, Loers G, Kleene R, Schachner M. Mitochondrial and Neuronal Dysfunctions in L1 Mutant Mice. Int J Mol Sci 2022; 23:ijms23084337. [PMID: 35457156 PMCID: PMC9026747 DOI: 10.3390/ijms23084337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Adhesion molecules regulate cell proliferation, migration, survival, neuritogenesis, synapse formation and synaptic plasticity during the nervous system’s development and in the adult. Among such molecules, the neural cell adhesion molecule L1 contributes to these functions during development, and in synapse formation, synaptic plasticity and regeneration after trauma. Proteolytic cleavage of L1 by different proteases is essential for these functions. A proteolytic fragment of 70 kDa (abbreviated L1-70) comprising part of the extracellular domain and the transmembrane and intracellular domains was shown to interact with mitochondrial proteins and is suggested to be involved in mitochondrial functions. To further determine the role of L1-70 in mitochondria, we generated two lines of gene-edited mice expressing full-length L1, but no or only low levels of L1-70. We showed that in the absence of L1-70, mitochondria in cultured cerebellar neurons move more retrogradely and exhibit reduced mitochondrial membrane potential, impaired Complex I activity and lower ATP levels compared to wild-type littermates. Neither neuronal migration, neuronal survival nor neuritogenesis in these mutants were stimulated with a function-triggering L1 antibody or with small agonistic L1 mimetics. These results suggest that L1-70 is important for mitochondrial homeostasis and that its absence contributes to the L1 syndrome phenotypes.
Collapse
Affiliation(s)
- Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (L.C.); (V.G.); (G.L.); (R.K.)
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (L.C.); (V.G.); (G.L.); (R.K.)
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (L.C.); (V.G.); (G.L.); (R.K.)
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (L.C.); (V.G.); (G.L.); (R.K.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
23
|
Tsiknia AA, Reas E, Bangen KJ, Sundermann EE, McEvoy L, Brewer JB, Edland SD, Banks SJ. Sex and APOE ε4 modify the effect of cardiovascular risk on tau in cognitively normal older adults. Brain Commun 2022; 4:fcac035. [PMID: 35233525 PMCID: PMC8882003 DOI: 10.1093/braincomms/fcac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The interaction between APOE ε4 and vascular risk factors on cognitive function is stronger in women than in men. These effects may be mediated by the amount of tau pathology in the brain. Therefore, we examined whether APOE ε4 and sex modify cross-sectional associations between cardiovascular risk and tau deposition in cognitively normal older adults from the Alzheimer’s Disease Neuroimaging Initiative. We calculated the Framingham Heart Study cardiovascular disease risk score for 141 participants (74 women, 47 APOE ε4 carriers) with complete medical history data, processed tau PET data and a Clinical Dementia Rating global score of 0.0 at the time of the tau PET scan, implying no significant cognitive or functional impairment. We used linear regression models to examine the effects of sex, APOE ε4, cardiovascular risk and their interactions on tau deposition in the entorhinal cortex, inferior temporal cortex and a composite meta-region of interest of temporal lobe areas. We found a significant three-way interaction among sex, APOE ε4 status, and cardiovascular disease risk on tau deposition in the entorhinal cortex (β = 0.04; 95% CI, 0.01 to 0.07; P =0.008), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.029) and meta-region (β = 0.02; 95% CI, 0.0–0.04; P = 0.042). After stratifying by APOE ε4 status to examine interactions between sex and cardiovascular disease risk on tau in APOE ε4 carriers and non-carriers, we found a significant two-way interaction between sex and cardiovascular disease risk on tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.001), inferior temporal cortex (β = 0.03; 95% CI, 0.01 to 0.05; P =0.009) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.008) only among APOE ε4 carriers. In analyses stratified by sex, higher cardiovascular risk scores were associated with higher levels of tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.002), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.023) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.013) in female APOE ε4 carriers but not in male carriers. Our findings suggest that cognitively normal older women carrying at least one APOE ε4 allele, may be particularly vulnerable to the effects of cardiovascular disease risk on early tau deposition.
Collapse
Affiliation(s)
- Amaryllis A. Tsiknia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Emilie Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Linda McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - James B. Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Steven D. Edland
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
24
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
Demetrius LA, Eckert A, Grimm A. Sex differences in Alzheimer's disease: metabolic reprogramming and therapeutic intervention. Trends Endocrinol Metab 2021; 32:963-979. [PMID: 34654630 DOI: 10.1016/j.tem.2021.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Studies on the sporadic form of Alzheimer's disease (AD) have revealed three classes of risk factor: age, genetics, and sex. These risk factors point to a metabolic dysregulation as the origin of AD. Adaptive alterations in cerebral metabolism are the rationale for the Metabolic Reprogramming (MR) Theory of the origin of AD. The theory contends that the progression toward AD involves three adaptive events: a hypermetabolic phase, a prolonged prodromal phase, and a metabolic collapse. This article exploits the MR Theory to elucidate the effect of hormonal changes on the origin and progression of AD in women. The theory invokes bioenergetic signatures of the menopausal transition to propose sex-specific diagnostic program and therapeutic strategies.
Collapse
Affiliation(s)
- Lloyd A Demetrius
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anne Eckert
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, 4002 Basel, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
| | - Amandine Grimm
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, 4002 Basel, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland; University of Basel, Life Sciences Training Facility, 4055 Basel, Switzerland.
| |
Collapse
|
26
|
Elfouly A, Awny M, Ibrahim MK, Aboelsaad M, Tian J, Sayed M. Effects of Long-Acting Testosterone Undecanoate on Behavioral Parameters and Na + , K +-ATPase mRNA Expression in Mice with Alzheimer`s Disease. Neurochem Res 2021; 46:2238-2248. [PMID: 34036518 DOI: 10.1007/s11064-021-03357-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that testosterone attenuates stress-induced mood dysfunction and memory deterioration. However, the exact mechanism is still unknown. This study was conducted to investigate the role of long-term testosterone undecanoate on the behavioral responses in AD induced by AlCl3 + D-galactose administration and the possible alteration of the gene expression level of the Na/K ATPase pump. Adult male mice received AlCl3 in drinking water (10 mg/kg/day) and (D-gal 200 mg/kg/day), subcutaneously for 90 consecutive days, then received a single intramuscular (I.M) injection of castor oil (vehicle) on day 91, while treated groups received a single I.M injection of either low (100 mg/kg/45 days) or high dose (500 mg/kg/45 days) respectively of long-acting testosterone undecanoate on day 91. The time spent in the interaction zone during the open field test, preference index to novel objects in the novel object recognition test, spontaneous alternation percentage (SAP) in Y-maze test, and escape latency time in the Morris water maze test were used to measure the locomotor activity, long-term memory, and spatial memory in mice, respectively. The results showed that testosterone undecanoate treatment improved locomotor activity, improved preference to novel objects, improved spatial memory, and reversed anxiety and depression induced by AlCl3 + D-galactose administration in male mice, suggesting the enhancement of behavioral and memory functions brought by testosterone treatment. Moreover, testosterone undecanoate treatment did alter gene expression levels of Na/K ATPase isoforms in the brain hippocampus. In most cases, altered gene expression was significant and correlated with the observed behavioral changes. Taken together, our findings provide new insight into the effects of long-acting testosterone undecanoate administration on locomotor activity, long-term memory, anxiety, and spatial memory in male mice with Alzheimer's disease.
Collapse
Affiliation(s)
- A Elfouly
- Department of Pharmacology, Faculty of Pharmacy, October 6Th University, Cairo, Egypt
| | - M Awny
- Department of Pharmacology, Faculty of Pharmacy, October 6Th University, Cairo, Egypt
| | - M K Ibrahim
- Department of Developmental Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - M Aboelsaad
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, El Shorouk City, Egypt
| | - J Tian
- Department of Biomedical Sciences &, Marshall Institute of Interdisciplinary Research (MIIR), Marshall University, Huntington, WV, USA
| | - M Sayed
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, El Shorouk City, Egypt. .,Center of Drug Research Development (CDRD), The British University in Egypt, El Shorouk City, Egypt.
| |
Collapse
|
27
|
Mitochondrial Functioning and the Relations among Health, Cognition, and Aging: Where Cell Biology Meets Cognitive Science. Int J Mol Sci 2021; 22:ijms22073562. [PMID: 33808109 PMCID: PMC8037956 DOI: 10.3390/ijms22073562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cognitive scientists have determined that there is a set of mechanisms common to all sensory, perceptual, and cognitive abilities and correlated with age- and disease-related declines in cognition. These mechanisms also contribute to the development and functional coherence of the large-scale brain networks that support complex forms of cognition. At the same time, these brain and cognitive patterns are correlated with myriad health outcomes, indicating that at least some of the underlying mechanisms are common to all biological systems. Mitochondrial functions, including cellular energy production and control of oxidative stress, among others, are well situated to explain the relations among the brain, cognition, and health. Here, I provide an overview of the relations among cognitive abilities, associated brain networks, and the importance of mitochondrial energy production for their functioning. These are then linked to the relations between cognition, health, and aging. The discussion closes with implications for better integrating research in cognitive science and cell biology in the context of developing more sensitive measures of age- and disease-related declines in cognition.
Collapse
|
28
|
Ahmadpour D, Grange-Messent V. Involvement of Testosterone Signaling in the Integrity of the Neurovascular Unit in the Male: Review of Evidence, Contradictions, and Hypothesis. Neuroendocrinology 2021; 111:403-420. [PMID: 32512571 DOI: 10.1159/000509218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
Age-related central nervous system function decline and increased susceptibility of females compared to males with respect to prevalence of several neurodegenerative and neuropsychiatric diseases are both based on the principle that hormonal factors could be involved. These cerebral disorders are characterized by an alteration of blood-brain barrier (BBB) properties and chronic neuroinflammation, which lead to disease progression. Neuroinflammation, in turn, contributes to BBB dysfunction. The BBB and its environment, called the neurovascular unit (NVU), are crucial for cerebral homeostasis and neuronal function. Interestingly, sex steroids influence BBB properties and modulate neuroinflammatory responses. To date however, the majority of work reported has focused on the effects of estrogens on BBB function and neuroinflammation in female mammals. In contrast, the effects of testosterone signaling on the NVU in males are still poorly studied. The aim of this review was to summarize and discuss the literature, providing insights and contradictions to highlight hypothesis and the need for further investigations.
Collapse
Affiliation(s)
- Delnia Ahmadpour
- Sorbonne Université, INSERM U1130, CNRS UMR 8246, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, INSERM U1130, CNRS UMR 8246, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, Paris, France,
| |
Collapse
|
29
|
Reproductive status impact on tau phosphorylation induced by chronic stress. Neurobiol Stress 2020; 13:100241. [PMID: 33344697 PMCID: PMC7739034 DOI: 10.1016/j.ynstr.2020.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/20/2023] Open
Abstract
Sex and exposure to chronic stress have been identified as risk factors for developing Alzheimer's disease (AD). Although AD has been demonstrated to be more prevalent in females, sex is often overlooked in research studies, likely due to the complexity of the hormonal status. In female rats, the reproductive status can modulate the well-known increase in tau phosphorylation (pTau) caused by the exposure to acute physical and psychological stressors. To test the hypothesis that reproductive status can impact hippocampal pTau induced by chronic stress, cohorts of virgin, lactating (4–5 days pp), and post-maternal (1-month post-weaned) rats were subjected to a daily 30-min episode of restraint stress for 14 days and were sacrificed either 20 min or 24 h after their last stress/handling episode. Western blot analysis of two well-characterized AD-relevant pTau epitopes (AT8 and PHF-1) and upstream pTau mechanisms (e.g. GSK3β) analysis, showed that stressed post-maternal rats have increased pTau in comparison to stressed lactating rats 20 min after their last stress episode. Furthermore, an increase in pTau was also seen 24 h after the last stress episode in stressed post-maternal rats in comparison to their non-stressed controls in the detergent-soluble fraction. GSK3 analysis showed an increase in total levels of GSK3β in virgin rats and an increase of inactive levels of GSK3β in post-maternal rats, which suggests a different stress response in pTau after the rat has gone through the maternal experience. Interestingly, post-maternal rats also presented the more variability in their estrous cycles in response to stress. Besides no differences in pTau, non-stressed lactating rats showed an increase in inactive GSK3β 24 h after the last handling episode. Immunohistochemical detection of the PHF-1 epitope revealed increased pTau in the CA4/hilar subfield of the hippocampus of virgin and post-maternal rats exposed to chronic stress shortly after their last stress episode. Overall, lactating rats remained unresponsive to chronic restraint stress. These results suggest increased sensitivity of the virgin and post-maternal rats to hippocampal stress-induced pTau with chronic restraint stress compared to lactating rats. Because no differences were detected in response to stress by lactating rats and an exaggerated response was observed in post-maternal rats, current results support the hypothesis that lactation affects tau processing in the brain of the female. pTau increases in the hippocampus of stressed virgin and especially post-maternal rats but not in that of lactating dams. The hippocampal area CA4 of virgin and post-maternal rats is most affected by the chronic restraint stress. GSK3β overall levels and activity are modified by the reproductive condition and stress. Reproductive experience modifies pTau induced by chronic stress.
Collapse
|
30
|
Insights into Disease-Associated Tau Impact on Mitochondria. Int J Mol Sci 2020; 21:ijms21176344. [PMID: 32882957 PMCID: PMC7503371 DOI: 10.3390/ijms21176344] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal tau protein aggregation in the brain is a hallmark of tauopathies, such as frontotemporal lobar degeneration and Alzheimer’s disease. Substantial evidence has been linking tau to neurodegeneration, but the underlying mechanisms have yet to be clearly identified. Mitochondria are paramount organelles in neurons, as they provide the main source of energy (adenosine triphosphate) to these highly energetic cells. Mitochondrial dysfunction was identified as an early event of neurodegenerative diseases occurring even before the cognitive deficits. Tau protein was shown to interact with mitochondrial proteins and to impair mitochondrial bioenergetics and dynamics, leading to neurotoxicity. In this review, we discuss in detail the different impacts of disease-associated tau protein on mitochondrial functions, including mitochondrial transport, network dynamics, mitophagy and bioenergetics. We also give new insights about the effects of abnormal tau protein on mitochondrial neurosteroidogenesis, as well as on the endoplasmic reticulum-mitochondria coupling. A better understanding of the pathomechanisms of abnormal tau-induced mitochondrial failure may help to identify new targets for therapeutic interventions.
Collapse
|
31
|
Honeybush Extracts ( Cyclopia spp.) Rescue Mitochondrial Functions and Bioenergetics against Oxidative Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1948602. [PMID: 32831989 PMCID: PMC7428828 DOI: 10.1155/2020/1948602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022]
Abstract
Mitochondrial dysfunction plays a major role not only in the pathogenesis of many oxidative stress or age-related diseases such as neurodegenerative as well as mental disorders but also in normal aging. There is evidence that oxidative stress and mitochondrial dysfunction are the most upstream and common events in the pathomechanisms of neurodegeneration. Cyclopia species are endemic South African plants and some have a long tradition of use as herbal tea, known as honeybush tea. Extracts of the tea are gaining more scientific attention due to their phenolic composition. In the present study, we tested not only the in vitro mitochondria-enhancing properties of honeybush extracts under physiological conditions but also their ameliorative properties under oxidative stress situations. Hot water and ethanolic extracts of C. subternata, C. genistoides, and C. longifolia were investigated. Pretreatment of human neuroblastoma SH-SY5Y cells with honeybush extracts, at a concentration range of 0.1-1 ng/ml, had a beneficial effect on bioenergetics as it increased ATP production, respiration, and mitochondrial membrane potential (MMP) after 24 hours under physiological conditions. The aqueous extracts of C. subternata and C. genistoides, in particular, showed a protective effect by rescuing the bioenergetic and mitochondrial deficits under oxidative stress conditions (400 μM H2O2 for 3 hours). These findings indicate that honeybush extracts could constitute candidates for the prevention of oxidative stress with an impact on aging processes and age-related neurodegenerative disorders potentially leading to the development of a condition-specific nutraceutical.
Collapse
|
32
|
Babapour Mofrad R, Tijms BM, Scheltens P, Barkhof F, van der Flier WM, Sikkes SA, Teunissen CE. Sex differences in CSF biomarkers vary by Alzheimer disease stage and APOE ε4 genotype. Neurology 2020; 95:e2378-e2388. [DOI: 10.1212/wnl.0000000000010629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
ObjectiveTo evaluate sex differences in CSF biomarkers, taking the potential modifying role of clinical disease stage and APOE ε4 genotype into account.MethodWe included participants (n = 1,801) with probable Alzheimer disease (AD) dementia (n = 937), mild cognitive impairment (MCI; n = 437), and subjective cognitive decline (SCD; n = 427). Main outcomes were CSF β-amyloid1–42 (Aβ42), total tau (t-Tau), and tau phosphorylated at threonine 181 (p-Tau) levels. Age-corrected 3-way interactions between sex, disease stage (i.e., syndrome diagnosis at baseline), and APOE ε4 were tested with linear regression analyses for each outcome measure. In case of significant interactions (p < 0.05), sex differences were further evaluated by stratifying analyses for clinical disease stage and APOE ε4 genotype, including age as a covariate.ResultsThree-way interactions were significant for t-Tau (p < 0.001) and p-Tau (p < 0.01) but not Aβ42. In APOE ε4 carriers, women showed higher p-Tau concentrations than men in SCD (Cohen d [95% confidence interval]: t-Tau = 0.52 [0.19–0.84], p < 0.001; p-Tau = 0.44 [0.11–0.77] p = 0.004) and MCI (Cohen d [95% CI]: t-Tau = 0.54 [0.28–0.80], p < 0.001; p-Tau = 0.52 [0.26–0.77], p < 0.001) but not in AD dementia. In APOE ε4 noncarriers, women showed higher p-Tau concentrations in MCI (Cohen d [95% CI]: t-Tau = 0.49 [0.17–0.80], p = 0.002; p-Tau = 0.47 [0.16–0.78], p = 0.003) and AD dementia (Cohen d [95% CI]: t-Tau = 0.42 [0.19–0.65], p < 0.001; p-Tau = 0.38 [0.15–0.61] p = 0.002) but not in SCD.ConclusionsWithin APOE ε4 carriers, sex differences in CSF p-Tau are more evident in early disease stages, whereas for APOE ε4 noncarriers, sex differences are more evident in advanced disease stages. These findings suggest that the effect of APOE ε4 on sex differences in CSF biomarkers depends on disease stage in AD.
Collapse
|
33
|
Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020; 25:E3337. [PMID: 32717806 PMCID: PMC7435667 DOI: 10.3390/molecules25153337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous research efforts at every level, globally, there is still a lack of effective drugs for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease are not yet clearly understood. This review analyses the relevance of multiple ligands in drug discovery for AD as a versatile toolbox for a polypharmacological approach to AD. Herein, we highlight major targets associated with AD, ranging from acetylcholine esterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3 beta (GSK-3β), N-methyl-d-aspartate (NMDA) receptor, monoamine oxidases (MAOs), metal ions in the brain, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), to phosphodiesterases (PDEs), along with a summary of their respective relationship to the disease network. In addition, a multitarget strategy for AD is presented, based on reported milestones in this area and the recent progress that has been achieved with multitargeted-directed ligands (MTDLs). Finally, the latest publications referencing the enlarged panel of new biological targets for AD related to the microglia are highlighted. However, the question of how to find meaningful combinations of targets for an MTDLs approach remains unanswered.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
34
|
Wu Z, Wu H, Sun S, Wu H, Shi W, Song J, Liu J, Zhang Y, Bian F, Jia P, Hou Y. Progesterone attenuates Aβ25–35-induced neuronal toxicity by activating the Ras signalling pathway through progesterone receptor membrane component 1. Life Sci 2020; 253:117360. [DOI: 10.1016/j.lfs.2020.117360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
|
35
|
Midlife Chronological and Endocrinological Transitions in Brain Metabolism: System Biology Basis for Increased Alzheimer's Risk in Female Brain. Sci Rep 2020; 10:8528. [PMID: 32444841 PMCID: PMC7244485 DOI: 10.1038/s41598-020-65402-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Decline in brain glucose metabolism is a hallmark of late-onset Alzheimer’s disease (LOAD). Comprehensive understanding of the dynamic metabolic aging process in brain can provide insights into windows of opportunities to promote healthy brain aging. Chronological and endocrinological aging are associated with brain glucose hypometabolism and mitochondrial adaptations in female brain. Using a rat model recapitulating fundamental features of the human menopausal transition, results of transcriptomic analysis revealed stage-specific shifts in bioenergetic systems of biology that were paralleled by bioenergetic dysregulation in midlife aging female brain. Transcriptomic profiles were predictive of outcomes from unbiased, discovery-based metabolomic and lipidomic analyses, which revealed a dynamic adaptation of the aging female brain from glucose centric to utilization of auxiliary fuel sources that included amino acids, fatty acids, lipids, and ketone bodies. Coupling between brain and peripheral metabolic systems was dynamic and shifted from uncoupled to coupled under metabolic stress. Collectively, these data provide a detailed profile across transcriptomic and metabolomic systems underlying bioenergetic function in brain and its relationship to peripheral metabolic responses. Mechanistically, these data provide insights into the complex dynamics of chronological and endocrinological bioenergetic aging in female brain. Translationally, these findings are predictive of initiation of the prodromal / preclinical phase of LOAD for women in midlife and highlight therapeutic windows of opportunity to reduce the risk of late-onset Alzheimer’s disease.
Collapse
|
36
|
Ferretti MT, Martinkova J, Biskup E, Benke T, Gialdini G, Nedelska Z, Rauen K, Mantua V, Religa D, Hort J, Santuccione Chadha A, Schmidt R. Sex and gender differences in Alzheimer's disease: current challenges and implications for clinical practice: Position paper of the Dementia and Cognitive Disorders Panel of the European Academy of Neurology. Eur J Neurol 2020; 27:928-943. [PMID: 32056347 DOI: 10.1111/ene.14174] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is characterized by high heterogeneity in disease manifestation, progression and risk factors. High phenotypic variability is currently regarded as one of the largest hurdles in early diagnosis and in the design of clinical trials; there is therefore great interest in identifying factors driving variability that can be used for patient stratification. In addition to genetic and lifestyle factors, the individual's sex and gender are emerging as crucial drivers of phenotypic variability. Evidence exists on sex and gender differences in the rate of cognitive deterioration and brain atrophy, and in the effect of risk factors as well as in the patterns of diagnostic biomarkers. Such evidence might be of high relevance and requires attention in clinical practice and clinical trials. However, sex and gender differences are currently seldom appreciated; importantly, consideration of sex and gender differences is not currently a focus in the design and analysis of clinical trials for AD. The objective of this position paper is (i) to provide an overview of known sex and gender differences that might have implications for clinical practice, (ii) to identify the most important knowledge gaps in the field (with a special regard to clinical trials) and (iii) to provide conclusions for future studies. This scientific statement is endorsed by the European Academy of Neurology.
Collapse
Affiliation(s)
- M T Ferretti
- Institute for Regenerative Medicine - IREM, University of Zurich, Zurich, Switzerland.,Women's Brain Project, Guntershausen, Switzerland
| | - J Martinkova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - E Biskup
- College of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Division of Internal Medicine, University Hospital of Basel, Basel, Switzerland
| | - T Benke
- Neurology Clinic, Medical University Innsbruck, Innsbruck, Austria
| | - G Gialdini
- Neurology - Private Practice, Lucca, Italy
| | - Z Nedelska
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - K Rauen
- Institute for Regenerative Medicine - IREM, University of Zurich, Zurich, Switzerland.,Women's Brain Project, Guntershausen, Switzerland.,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - V Mantua
- Italian Medicines Agency, Rome, Italy
| | - D Religa
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - J Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - A Santuccione Chadha
- Women's Brain Project, Guntershausen, Switzerland.,Global Medical and Scientific Affairs, Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - R Schmidt
- Department of Neurogeriatrics, University Clinic of Neurology, Medical University Graz, Graz, Austria
| |
Collapse
|
37
|
Cai Z, Li H. An Updated Review: Androgens and Cognitive Impairment in Older Men. Front Endocrinol (Lausanne) 2020; 11:586909. [PMID: 33281745 PMCID: PMC7691320 DOI: 10.3389/fendo.2020.586909] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Androgens are some of the most important sex hormones in men, and they maintain important physiological activities in the human body. Cognitive impairment is one of the most common manifestations of aging in the elderly population and an important factor affecting the quality of life of elderly individuals. The levels of sex hormones in elderly people decrease with age, and low levels of androgens in older male individuals have been closely linked to the development of cognitive impairment. Basic studies have shown that androgens have neuroprotective effects and that androgen deficiency impairs cognitive function by increasing oxidative stress and decreasing synaptic plasticity, among other effects. Additionally, clinical studies have also shown that androgen deficiency is closely related to cognitive impairment. This article reviews the relationship between low androgen levels and cognitive impairment, their potential mechanisms, and the effects of testosterone supplementation in improving cognition.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Grimm A, Lejri I, Hallé F, Schmitt M, Götz J, Bihel F, Eckert A. Mitochondria modulatory effects of new TSPO ligands in a cellular model of tauopathies. J Neuroendocrinol 2020; 32:e12796. [PMID: 31536662 PMCID: PMC7003898 DOI: 10.1111/jne.12796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 01/12/2023]
Abstract
Translocator protein 18 kDa (TSPO) is a mitochondrial protein located in the outer membrane and involved in cholesterol translocation, a prerequisite for steroid biosynthesis. TSPO modulation also appears to play a role in other mitochondrial functions, including mitochondrial respiration and cell survival. In the central nervous system, its expression is up-regulated in neuropathology such as Alzheimer's disease (AD). Previously, we demonstrated that two new TSPO ligands, named 2a and 2b, stimulated pregnenolone synthesis and ATP production in a cellular model of AD overproducing β-amyloid peptide. The present study aimed to evaluate the impact of the new TSPO ligands on mitochondrial dysfunction in a cellular model of AD-related tauopathy (human neuroblastoma cells SH-SY5Y stably overexpressing the P301L-mutant Tau) presenting mitochondrial impairments, including a decreased ATP synthesis and mitochondrial membrane potential, as well as a decrease in pregnenolone synthesis compared to control cells. The effects of our new ligands were compared with those of TSPO ligands described in the literature (XBD173, SSR-180,575 and Ro5-4864). The TSPO ligands 2a and 2b exerted beneficial mitochondrial modulatory effects by increasing ATP levels and mitochondrial membrane potential, paralleled by an increase of pregnenolone levels in mutant Tau cells, as well as in control cells. The compounds 2a and 2b showed effects on mitochondrial activity similar to those obtained with the TSPO ligands of reference. These findings indicate that the new TSPO ligands modulate the mitochondrial bioenergetic phenotype as well as the de novo synthesis of neurosteroids in a cellular model of AD-related tauopathy, suggesting that these compounds could be potential new therapeutic tools for the treatment of AD.
Collapse
Affiliation(s)
- Amandine Grimm
- Transfaculty Research Platform, Molecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsBaselSwitzerland
| | - Imane Lejri
- Transfaculty Research Platform, Molecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsBaselSwitzerland
| | - François Hallé
- Laboratoire d’Innovation ThérapeutiqueFaculté de PharmacieUMR7200CNRSUniversité de StrasbourgIllkirchFrance
| | - Martine Schmitt
- Laboratoire d’Innovation ThérapeutiqueFaculté de PharmacieUMR7200CNRSUniversité de StrasbourgIllkirchFrance
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR)Queensland Brain Institute (QBI)The University of QueenslandSt LuciaQLDAustralia
| | - Frederic Bihel
- Laboratoire d’Innovation ThérapeutiqueFaculté de PharmacieUMR7200CNRSUniversité de StrasbourgIllkirchFrance
| | - Anne Eckert
- Transfaculty Research Platform, Molecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsBaselSwitzerland
| |
Collapse
|
39
|
González SL, Coronel MF, Raggio MC, Labombarda F. Progesterone receptor-mediated actions and the treatment of central nervous system disorders: An up-date of the known and the challenge of the unknown. Steroids 2020; 153:108525. [PMID: 31634489 DOI: 10.1016/j.steroids.2019.108525] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.
Collapse
Affiliation(s)
- Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
40
|
Wang L, Ahn YJ, Asmis R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol 2019; 31:101410. [PMID: 31883838 PMCID: PMC7212491 DOI: 10.1016/j.redox.2019.101410] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Glutathione is the most abundant intracellular low molecular weight thiol in cells and tissues, and plays an essential role in numerous cellular processes, including antioxidant defenses, the regulation of protein function, protein localization and stability, DNA synthesis, gene expression, cell proliferation, and cell signaling. Sexual dimorphisms in glutathione biology, metabolism and glutathione-dependent signaling have been reported for a broad range of biological processes, spanning the human lifespan from early development to aging. Sex-depended differences with regard to glutathione and its biology have also been reported for a number of human pathologies and diseases such as neurodegeneration, cardiovascular diseases and metabolic disorders. Here we review the latest literature in this field and discuss the potential impact of these sexual dimorphisms in glutathione biology on human health and diseases.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Yong Joo Ahn
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
41
|
Neurosteroids and neuropathic pain management: Basic evidence and therapeutic perspectives. Front Neuroendocrinol 2019; 55:100795. [PMID: 31562849 DOI: 10.1016/j.yfrne.2019.100795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
Complex mechanisms involved in neuropathic pain that represents a major health concern make its management complicated. Because neurosteroids are bioactive steroids endogenously synthesized in the nervous system, including in pain pathways, they appear relevant to develop effective treatments against neuropathic pain. Neurosteroids act in paracrine or autocrine manner through genomic mechanisms and/or via membrane receptors of neurotransmitters that pivotally modulate pain sensation. Basic studies which uncovered a direct link between neuropathic pain symptoms and endogenous neurosteroid production/regulation, paved the way for the investigations of neurosteroid therapeutic potential against pathological pain. Concordantly, antinociceptive properties of synthetic neurosteroids were evidenced in humans and animals. Neurosteroids promote peripheral analgesia mediated by T-type calcium and gamma-aminobutyric acid type A channels, counteract chemotherapy-induced neuropathic pain and ameliorate neuropathic symptoms of injured spinal cord animals by stimulating anti-inflammatory, remyelinating and neuroprotective processes. Together, these data open interesting perspectives for neurosteroid-based strategies to manage/alleviate efficiently neuropathic pain.
Collapse
|
42
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
43
|
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019; 4:29. [PMID: 31637009 PMCID: PMC6799833 DOI: 10.1038/s41392-019-0063-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss along with neuropsychiatric symptoms and a decline in activities of daily life. Its main pathological features are cerebral atrophy, amyloid plaques, and neurofibrillary tangles in the brains of patients. There are various descriptive hypotheses regarding the causes of AD, including the cholinergic hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis. However, the ultimate etiology of AD remains obscure. In this review, we discuss the main hypotheses of AD and related clinical trials. Wealthy puzzles and lessons have made it possible to develop explanatory theories and identify potential strategies for therapeutic interventions for AD. The combination of hypometabolism and autophagy deficiency is likely to be a causative factor for AD. We further propose that fluoxetine, a selective serotonin reuptake inhibitor, has the potential to treat AD.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Xie
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
44
|
Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S455-S467. [PMID: 29504539 DOI: 10.3233/jad-179915] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because of the failure of all amyloid-β directed treatment strategies for Alzheimer's disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant consequences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore (mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as more recent work suggests the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochondrial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism which correlates best with functional deficits (cognition, behavior) in aging and AD.
Collapse
Affiliation(s)
- Carola Stockburger
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Schamim Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, University of Giessen, Giessen, Germany
| | - Kristina Friedland
- Department of Molecular and Clinical Pharmacy, University of Erlangen, Erlangen, Germany
| | - Walter E Müller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| |
Collapse
|
45
|
Geary DC. The Spark of Life and the Unification of Intelligence, Health, and Aging. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2019. [DOI: 10.1177/0963721419829719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
General intelligence ( g) represents the factors that influence performance across all academic and cognitive domains. The search for these factors has been ongoing for more than a century and has focused on the brain and cognitive systems that support learning and problem solving. In recent decades, it has become clear that the factors that influence academic and cognitive performance extend to general health and to successful aging in adulthood. The implication is that there may be one or several fundamental processes that influence the functioning of all biological systems, not simply the brain. The functioning of mitochondria is well situated as one of the processes that might unify intelligence, health, and aging. These organelles are located within cells and are the primary producers of cellular energy, among other functions. Energy availability, in turn, is the lowest common denominator needed for the development, maintenance, and optimal functioning of all biological systems. Here, I review the relations among intelligence, health, and aging and outline how the efficiency of mitochondrial functioning can link them together.
Collapse
Affiliation(s)
- David C. Geary
- Department of Psychological Sciences, University of Missouri
| |
Collapse
|
46
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
González SL, Meyer L, Raggio MC, Taleb O, Coronel MF, Patte-Mensah C, Mensah-Nyagan AG. Allopregnanolone and Progesterone in Experimental Neuropathic Pain: Former and New Insights with a Translational Perspective. Cell Mol Neurobiol 2019; 39:523-537. [PMID: 30187261 PMCID: PMC11469882 DOI: 10.1007/s10571-018-0618-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
In the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease. Because the characterization of new related molecules with improved specificity and enhanced pharmacological profiles may represent a crucial step to develop more efficient steroid-based therapies, we have also discussed the potential of novel synthetic analogs of allopregnanolone as valuable molecules for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Susana Laura González
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - Laurence Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - María Celeste Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - María Florencia Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France
| | - Ayikoe Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médicine, 11 rue Humann, 67 000, Strasbourg, France.
| |
Collapse
|
48
|
Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology 2019; 71:647-663. [PMID: 30706303 PMCID: PMC6465382 DOI: 10.1007/s10616-019-00302-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are attractive cellular organelles which are so interesting in both basic and clinical research, especially after it was found that they were arisen as a bacterial intruder in ancient cells. Interestingly, even now, they are the focus of many investigations and their function and relevance to health and disease have remained open questions. More recently, research on mitochondria have turned out their potential application in medicine as a novel therapeutic intervention. The importance of this issue is highlighted when we know that mitochondrial dysfunction can be observed in a variety of diseases such as cardiovascular diseases, neurodegenerative diseases, ischemia, diabetes, renal failure, skeletal muscles disorders, liver diseases, burns, aging, and cancer progression. In other words, transplantation of viable mitochondria into the injured tissues would replace or augment damaged mitochondria, allowing the rescue of cells and restoration of the normal function. Therefore, mitochondrial transplantation would be revolutionary for the treatment of a variety of diseases in which conventional therapies have proved unsuccessful. Here, we describe pieces of evidence of mitochondrial transplantation, discuss and highlight the current and future directions to show why mitochondrial transplantation could be a master key for treatment of a variety of diseases or injuries.
Collapse
Affiliation(s)
| | - Yoshikazu Kuwahara
- Divisions of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mehryar Habibi Roudkenar
- Department of Cardiology, Cardiovascular Disease Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Stem Cell and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
49
|
Yan XS, Yang ZJ, Jia JX, Song W, Fang X, Cai ZP, Huo DS, Wang H. Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer's disease. Neural Regen Res 2019; 14:649-657. [PMID: 30632505 PMCID: PMC6352583 DOI: 10.4103/1673-5374.245477] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Cognitive dysfunction in Alzheimer's disease is strongly associated with a reduction in synaptic plasticity, which may be induced by oxidative stress. Testosterone is beneficial in learning and memory, although the underlying protective mechanism of testosterone on cognitive performance remains unclear. This study explored the protective mechanism of a subcutaneous injection of 0.75 mg testosterone on cognitive dysfunction induced by bilateral injections of amyloid beta 1-42 oligomers into the lateral ventricles of male rats. Morris water maze test results demonstrated that testosterone treatment remarkably reduced escape latency and path length in Alzheimer's disease rat models. During probe trials, testosterone administration significantly elevated the percentage of time spent in the target quadrant and the number of platform crossings. However, flutamide, an androgen receptor antagonist, inhibited the protective effect of testosterone on cognitive performance in Alzheimer's disease rat models. Nissl staining, immunohistochemistry, western blot assay, and enzyme-linked immunosorbent assay results showed that the number of intact hippocampal pyramidal cells, the dendritic spine density in the hippocampal CA1 region, the immune response and expression level of postsynaptic density protein 95 in the hippocampus, and the activities of superoxide dismutase and glutathione peroxidase were increased with testosterone treatment. In contrast, testosterone treatment reduced malondialdehyde levels. Flutamide inhibited the effects of testosterone on all of these indicators. Our data showed that the protective effect of testosterone on cognitive dysfunction in Alzheimer's disease is mediated via androgen receptors to scavenge free radicals, thereby enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhan-Jun Yang
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Wei Song
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Xin Fang
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhi-Ping Cai
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| |
Collapse
|
50
|
Dumitrescu L, Mayeda ER, Sharman K, Moore AM, Hohman TJ. Sex Differences in the Genetic Architecture of Alzheimer's Disease. CURRENT GENETIC MEDICINE REPORTS 2019; 7:13-21. [PMID: 31360619 PMCID: PMC6662731 DOI: 10.1007/s40142-019-0157-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Summarize sex-specific contributors to the genetic architecture of Alzheimer's disease (AD). RECENT FINDINGS There are sex differences in the effects of Apolipoprotein E (APOE), genes along the APOE pathway, and genes along the neurotrophic signaling pathway in predicting AD. Reported sex differences are largely driven by stronger associations among females. Evidence also suggests that genetic predictors of amyloidosis are largely shared across sexes, while sex-specific genetic effects emerge downstream of amyloidosis and drive the clinical manifestation of AD. SUMMARY There is a lack of comprehensive assessments of sex differences in genome-wide analyses of AD and a need for more systematic reporting a sex-stratified genetic effects. The emerging emphasis on sex as a biological variable provides an opportunity for transdisciplinary collaborations aimed at addressing major analytical challenges that have hampered advancements in the field. Ultimately, sex-specific genetic association studies represent a logical first step towards precision medicine.
Collapse
Affiliation(s)
- Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Genetics Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA
| | - Kavya Sharman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Genetics Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Annah M. Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Genetics Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Genetics Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|