1
|
Marques E, Simões C, Pérez-Jiménez M, E Silva FC, Lamy E. Start looking at saliva: Effect of visualization of food images on salivary proteome. Food Res Int 2025; 209:116301. [PMID: 40253202 DOI: 10.1016/j.foodres.2025.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
This study aims to assess the influence of exposure to different visual food stimuli, on the salivary proteome, and relate them to the perception that participants had about those stimuli. For this purpose, participants were exposed to three food images: pizza, chocolate cake and salad. Unstimulated saliva was collected, before and during the image presentation, and the affective reactions evoked were assessed in a 9-point scale. Salivary secretion rate, total protein concentration and changes in the salivary proteome, by uni-dimensional (SDS-PAGE) and two-dimensional electrophoresis (2-DE), were studied. Results showed that salad image elicited a lower mouthwatering sensation than pizza and chocolate cake. Regarding salivary proteins, albumin increased, while amylase decreased during pizza visualization, carbonic anhydrase VI (CA-VI) increased in the visualization of the chocolate cake, while type S cystatins increased with salad image. Amylase showed a positive correlation with positive affective reactions produced by food images, while light chain of immunoglobulin, prolactin-inducible protein and type S cystatins correlated with negative reactions. Finally, CA-VI and short-palate lung and nasal epithelium carcinoma associated protein 2 (SPLUNC2) levels increased in the group that positively reacting to chocolate cake (cake +), compared to the group that react negatively to the chocolate cake (cake -) and control, contrarily to Ig alpha1 chain C region. This study showed the variations in saliva in response to pre-ingestive stimuli, and its relationship with affective reactions suggesting that the affective reactions that food triggers, might affect more the changes in salivary proteome than the type of food.
Collapse
Affiliation(s)
- Erica Marques
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Carla Simões
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - María Pérez-Jiménez
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| | - Fernando Capela E Silva
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; Department of Medical and Health Sciences, School of Health and Human Development, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Elsa Lamy
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| |
Collapse
|
2
|
Kant AK, Graubard BI. Self-Reported Weekend Temporal Eating Patterns of American Adults Differ From Weekday: National Health and Nutrition Examination Surveys: 2015-2020 Prepandemic. J Acad Nutr Diet 2025; 125:188-203.e10. [PMID: 39032606 PMCID: PMC11747926 DOI: 10.1016/j.jand.2024.07.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Weekend-weekday differences in time of ingestive events may be implicated in adverse metabolic and health outcomes. However, little is known about the nature of weekend-weekday differences in temporal eating behaviors of the US adult population. OBJECTIVE The study aimed to examine weekend-weekday differences in temporal and energy characteristics of ingestive events self-reported by American adults. DESIGN Observational; within-person comparative. PARTICIPANTS/SETTING The data were from the National Health and Nutrition Examination Surveys (NHANES) 2015-March 2020 (pre-pandemic) for ≥20-year-old adults who provided 1 weekday (M-Th) and 1 weekend (F, S, Su) 24-h dietary recall (n = 3564 men and 3823 women). MAIN OUTCOME MEASURES Prespecified primary temporal outcomes were recalled: time of ingestive events, and the duration of ingestive and fasting windows. Secondary outcomes included frequency and energy characteristics of ingestive events. STATISTICAL ANALYSIS PERFORMED Gender-specific, survey-weighted, multiple linear regression models that accounted for complex survey design with dummy covariates for weekend/weekday, mode of recall administration (in-person on day 1 and telephone on day 2), and a respondent-specific fixed intercept. RESULTS In both men and women, the weekend recalled time of first ingestive event, breakfast, and lunch were later than weekday (P ≤ .0008); however, no statistically significant differences were observed in time of dinner and the last eating episode. The mean weekend ingestive window (interval between the time of first and last eating events of the day) was shorter by 24 minutes (95% confidence interval [CI], -32, -11) in men and 18 minutes (95% CI, -20, -15) in women, and the mean overnight fasting window was correspondingly longer (P ≤ .0001). No statistically significant differences were observed between weekend and weekday frequency of ingestive events. Energy density of weekend food selections reported by women, and of beverages by men, was found to be higher than weekday (P ≤ .002). CONCLUSIONS Weekend ingestive patterns were characterized by later time of first ingestive event, breakfast, and lunch, and selection of higher-energy-density foods and beverages.
Collapse
Affiliation(s)
- Ashima K Kant
- Department of Family, Nutrition, and Exercise Sciences, Queens College of the City University of New York, Flushing, New York.
| | - Barry I Graubard
- Senior Investigator, Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 1: yesterday. Expert Opin Pharmacother 2025; 26:313-324. [PMID: 39875200 DOI: 10.1080/14656566.2025.2454280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Type 1 diabetes is a unique autoimmune attack on the β cell of the pancreatic islet resulting in progressive destruction of these cells and as a result the ability of the body to maintain insulin production. The consequences of insulin deficiency are very severe, and the disease was fatal prior to the ability to extract insulin from animal pancreas in 1921. We review progress in the treatment of childhood type 1 diabetes over the past 100 years. AREAS COVERED We used PubMed and standard search engines to search for the evolution of diagnosis and treatment of type 1 diabetes. EXPERT OPINION Insulin replacement proved lifesaving for children afflicted with type 1 diabetes. However, it was observed that these children suffered from microvascular and large vessel disease. The Diabetes Control and Complications Trial (DCCT) with its extension Epidemiology of Diabetes Interventions and Complications Trial (EDIC) proved that control of blood glucose as close to normal as possible could prevent these diabetes-related conditions. Many formuations of insulin with varying onset and duration of action have been developed; yet normalization of glucose levels is difficult due to hypoglycemic events. There is continued progress toward that goal.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
4
|
Magkos F, Sørensen TIA, Raubenheimer D, Dhurandhar NV, Loos RJF, Bosy-Westphal A, Clemmensen C, Hjorth MF, Allison DB, Taubes G, Ravussin E, Friedman MI, Hall KD, Ludwig DS, Speakman JR, Astrup A. On the pathogenesis of obesity: causal models and missing pieces of the puzzle. Nat Metab 2024; 6:1856-1865. [PMID: 39164418 DOI: 10.1038/s42255-024-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024]
Abstract
Application of the physical laws of energy and mass conservation at the whole-body level is not necessarily informative about causal mechanisms of weight gain and the development of obesity. The energy balance model (EBM) and the carbohydrate-insulin model (CIM) are two plausible theories, among several others, attempting to explain why obesity develops within an overall common physiological framework of regulation of human energy metabolism. These models have been used to explain the pathogenesis of obesity in individuals as well as the dramatic increases in the prevalence of obesity worldwide over the past half century. Here, we summarize outcomes of a recent workshop in Copenhagen that brought together obesity experts from around the world to discuss causal models of obesity pathogenesis. These discussions helped to operationally define commonly used terms; delineate the structure of each model, particularly focussing on areas of overlap and divergence; challenge ideas about the importance of purported causal factors for weight gain; and brainstorm on the key scientific questions that need to be answered. We hope that more experimental research in nutrition and other related fields, and more testing of the models and their predictions will pave the way and provide more answers about the pathogenesis of obesity than those currently available.
Collapse
Affiliation(s)
- Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | - David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | | | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads F Hjorth
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| | - David B Allison
- School of Public Health, Indiana University Bloomington, Bloomington, IN, USA
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | | | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - John R Speakman
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Aberdeen, Aberdeen, UK
| | - Arne Astrup
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| |
Collapse
|
5
|
Kim KS, Park JS, Hwang E, Park MJ, Shin HY, Lee YH, Kim KM, Gautron L, Godschall E, Portillo B, Grose K, Jung SH, Baek SL, Yun YH, Lee D, Kim E, Ajwani J, Yoo SH, Güler AD, Williams KW, Choi HJ. GLP-1 increases preingestive satiation via hypothalamic circuits in mice and humans. Science 2024; 385:438-446. [PMID: 38935778 PMCID: PMC11961025 DOI: 10.1126/science.adj2537] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are effective antiobesity drugs. However, the precise central mechanisms of GLP-1RAs remain elusive. We administered GLP-1RAs to patients with obesity and observed a heightened sense of preingestive satiation. Analysis of human and mouse brain samples pinpointed GLP-1 receptor (GLP-1R) neurons in the dorsomedial hypothalamus (DMH) as candidates for encoding preingestive satiation. Optogenetic manipulation of DMHGLP-1R neurons caused satiation. Calcium imaging demonstrated that these neurons are actively involved in encoding preingestive satiation. GLP-1RA administration increased the activity of DMHGLP-1R neurons selectively during eating behavior. We further identified that an intricate interplay between DMHGLP-1R neurons and neuropeptide Y/agouti-related peptide neurons of the arcuate nucleus (ARCNPY/AgRP neurons) occurs to regulate food intake. Our findings reveal a hypothalamic mechanism through which GLP-1RAs control preingestive satiation, offering previously unexplored neural targets for obesity and metabolic diseases.
Collapse
Affiliation(s)
- Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Joon Seok Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Eunsang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Min Jung Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hwa Yun Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyung Min Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Laurent Gautron
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Bryan Portillo
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sang-Ho Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - So Lin Baek
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Hyun Yun
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Doyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Eunseong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jason Ajwani
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Seong Ho Yoo
- Department of Forensic Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Seoul, Republic of Korea
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Kevin W. Williams
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do 25159, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Pullicin AJ, Wils D, Lim J. Oral glucose sensing in cephalic phase insulin release. Appetite 2023; 191:107070. [PMID: 37788735 DOI: 10.1016/j.appet.2023.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Oral stimulation with foods or food components elicits cephalic phase insulin release (CPIR), which limits postprandial hyperglycemia. Despite its physiological importance, the specific gustatory mechanisms that elicit CPIR have not been clearly defined. While most studies point to glucose and glucose-containing saccharides (e.g., sucrose, maltodextrins) as being the most consistent elicitors, it is not apparent whether this is due to the detection of glucose per se, or to the perceived taste cues associated with these stimuli (e.g., sweetness, starchiness). This study investigated potential sensory mechanisms involved with eliciting CPIR in humans, focusing on the role of oral glucose detection and associated taste. Four stimulus conditions possessing different carbohydrate and taste profiles were designed: 1) glucose alone; 2) glucose mixed with lactisole, a sweet taste inhibitor; 3) maltodextrin, which is digested to starchy- and sweet-tasting products during oral processing; and 4) maltodextrin mixed with lactisole and acarbose, an oral digestion inhibitor. Healthy adults (N = 22) attended four sessions where blood samples were drawn before and after oral stimulation with one of the target stimuli. Plasma c-peptide, insulin, and glucose concentrations were then analyzed. Whereas glucose alone elicited CPIR (one-sample t-test, p < 0.05), it did not stimulate the response in the presence of lactisole. Likewise, maltodextrin alone stimulated CPIR (p < 0.05), but maltodextrin with lactisole and acarbose did not. Together, these findings indicate that glucose is an effective CPIR stimulus, but that an associated taste sensation also serves as an important cue for triggering this response in humans.
Collapse
Affiliation(s)
- Alexa J Pullicin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Daniel Wils
- Nutrition and Health Department, Roquette Frères, Lestrem, France
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
7
|
Bateson M, Pepper GV. Food insecurity as a cause of adiposity: evolutionary and mechanistic hypotheses. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220228. [PMID: 37661744 PMCID: PMC10475876 DOI: 10.1098/rstb.2022.0228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Food insecurity (FI) is associated with obesity among women in high-income countries. This seemingly paradoxical association can be explained by the insurance hypothesis, which states that humans possess evolved mechanisms that increase fat storage to buffer against energy shortfall when access to food is unpredictable. The evolutionary logic underlying the insurance hypothesis is well established and experiments on animals confirm that exposure to unpredictable food causes weight gain, but the mechanisms involved are less clear. Drawing on data from humans and other vertebrates, we review a suite of behavioural and physiological mechanisms that could increase fat storage under FI. FI causes short-term hyperphagia, but evidence that it is associated with increased total energy intake is lacking. Experiments on animals suggest that unpredictable food causes increases in retained metabolizable energy and reductions in energy expenditure sufficient to fuel weight gain in the absence of increased food intake. Reducing energy expenditure by diverting energy from somatic maintenance into fat stores should improve short-term survival under FI, but the trade-offs potentially include increased disease risk and accelerated ageing. We conclude that exposure to FI plausibly causes increased adiposity, poor health and shorter lifespan. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Melissa Bateson
- Centre for Healther Lives and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gillian V. Pepper
- Department of Psychology, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
8
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
9
|
Miguéns‐Gómez A, Sierra‐Cruz M, Segú H, Beltrán‐Debón R, Rodríguez‐Gallego E, Terra X, Blay MT, Pérez‐Vendrell AM, Pinent M, Ardévol A. Administration of Alphitobius diaperinus or Tenebrio molitor before meals transiently increases food intake through enterohormone regulation in female rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1660-1667. [PMID: 36324158 PMCID: PMC10099498 DOI: 10.1002/jsfa.12305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND It has been previously shown that acutely administered insect Alphitobius diaperinus protein increases food intake in rats and modifies the ex vivo enterohormone secretory profile differently than beef or almond proteins. In this study, we aimed to evaluate whether these effects could be maintained for a longer period and determine the underlying mechanisms. RESULTS We administered two different insect species to rats for 26 days and measured food intake at different time points. Both insect species increased food intake in the first week, but the effect was later lost. Glucagon-like peptide 1 (GLP-1) and ghrelin were measured in plasma and ex vivo, and no chronic effects on their secretion or desensitization were found. Nevertheless, digested A. diaperinus acutely modified GLP-1 and ghrelin secretion ex vivo. CONCLUSION Our results suggest that increases in food intake could be explained by a local ghrelin reduction acting in the small intestine. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alba Miguéns‐Gómez
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Marta Sierra‐Cruz
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Helena Segú
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Raúl Beltrán‐Debón
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Esther Rodríguez‐Gallego
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Ximena Terra
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Maria Teresa Blay
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | | | - Montserrat Pinent
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Anna Ardévol
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| |
Collapse
|
10
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
11
|
Use of c-peptide as a measure of cephalic phase insulin release in humans. Physiol Behav 2022; 255:113940. [PMID: 35961609 PMCID: PMC9993810 DOI: 10.1016/j.physbeh.2022.113940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023]
Abstract
Cephalic phase insulin release (CPIR) is a rapid pulse of insulin secreted within minutes of food-related sensory stimulation. Understanding the mechanisms underlying CPIR in humans has been hindered by its small observed effect size and high variability within and between studies. One contributing factor to these limitations may be the use of peripherally measured insulin as an indicator of secreted insulin, since a substantial portion of insulin is metabolized by the liver before delivery to peripheral circulation. Here, we investigated the use of c-peptide, which is co-secreted in equimolar amounts to insulin from pancreatic beta cells, as a proxy for insulin secretion during the cephalic phase period. Changes in insulin and c-peptide were monitored in 18 adults over two repeated sessions following oral stimulation with a sucrose-containing gelatin stimulus. We found that, on average, insulin and c-peptide release followed a similar time course over the cephalic phase period, but that c-peptide showed a greater effect size. Importantly, when insulin and c-peptide concentrations were compared across sessions, we found that changes in c-peptide were significantly correlated at the 2 min (r = 0.50, p = 0.03) and 4 min (r = 0.65, p = 0.003) time points, as well as when participants' highest c-peptide concentrations were considered (r = 0.64, p = 0.004). In contrast, no significant correlations were observed for changes in insulin measured from the sessions (r = -0.06-0.35, p > 0.05). Herein, we detail the individual variability of insulin and c-peptide concentrations measured during the cephalic phase period, and identify c-peptide as a valuable metric for insulin secretion alongside insulin concentrations when investigating CPIR.
Collapse
|
12
|
Harnessing associative learning paradigms to optimize drug treatment. Trends Pharmacol Sci 2022; 43:464-472. [DOI: 10.1016/j.tips.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
|
13
|
Daimon CM, Hentges ST. Inhibition of POMC neurons in mice undergoing activity-based anorexia selectively blunts food anticipatory activity without affecting body weight or food intake. Am J Physiol Regul Integr Comp Physiol 2022; 322:R219-R227. [PMID: 35043681 PMCID: PMC8858678 DOI: 10.1152/ajpregu.00313.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anorexia nervosa (AN) is a debilitating eating disorder characterized by severely restricted eating and significant body weight loss. In addition, many individuals also report engaging in excessive exercise. Previous research using the activity-based anorexia (ABA) model has implicated the hypothalamic proopiomelanocortin (POMC) system. Using the ABA model, Pomc mRNA has been shown to be transiently elevated in both male and female rodents undergoing ABA. In addition, the POMC peptide β-endorphin appears to contribute to food anticipatory activity (FAA), a characteristic of ABA, as both deletion and antagonism of the µ opioid receptor (MOR) that β-endorphin targets, results in decreased FAA. The role of β-endorphin in reduced food intake in ABA is unknown and POMC neurons release multiple transmitters in addition to β-endorphin. In the current study, we set out to determine whether targeted inhibition of POMC neurons themselves rather than their peptide products would lessen the severity of ABA. Inhibition of POMC neurons during ABA via chemogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology resulted in reduced FAA in both male and female mice with no significant changes in body weight or food intake. The selective reduction in FAA persisted even in the face of concurrent chemogenetic inhibition of additional cell types in the hypothalamic arcuate nucleus. The results suggest that POMC neurons could be contributing preferentially to excessive exercise habits in patients with AN. Furthermore, the results also suggest that metabolic control during ABA appears to take place via a POMC neuron-independent mechanism.
Collapse
Affiliation(s)
- Caitlin M. Daimon
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T. Hentges
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
14
|
Gouveia A, de Oliveira Beleza R, Steculorum SM. AgRP neuronal activity across feeding-related behaviours. Eur J Neurosci 2021; 54:7458-7475. [PMID: 34655481 DOI: 10.1111/ejn.15498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/24/2023]
Abstract
AgRP neurons trigger one of the most potent orexigenic responses and are both necessary and sufficient for feeding. Recent technical advances for monitoring in vivo neuronal activity have revisited a previously well-established model of AgRP neurons' feeding regulatory effects. Our current understanding of AgRP neurons has increased in complexity and revealed a fine-tuned regulation of their activity dynamics across the whole sequence of feeding-related behaviours. This review focuses on recent studies that refined and re-evaluated our understanding of the regulatory principles and behavioural effects of AgRP circuits. We aim to cover major discoveries on the dynamic regulation of AgRP neuronal activity by exteroceptive and interoceptive food-related cues, their pleiotropic effects in feeding and whole-body homeostasis, and the associated AgRP circuits. The function and regulation of AgRP neuron will be sequentially discussed across the temporal series of behavioural and physiological changes occurring during the appetitive (food craving and foraging), the anticipatory (discovery of food-predicting cues), and the consummatory/post-ingestive phase of feeding (calorie ingestion).
Collapse
Affiliation(s)
- Ayden Gouveia
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany.,Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rui de Oliveira Beleza
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany.,Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany.,Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
15
|
Pullicin AJ, Glendinning JI, Lim J. Cephalic phase insulin release: A review of its mechanistic basis and variability in humans. Physiol Behav 2021; 239:113514. [PMID: 34252401 PMCID: PMC8440382 DOI: 10.1016/j.physbeh.2021.113514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Cephalic phase insulin release (CPIR) is a transient pulse of insulin that occurs within minutes of stimulation from foods or food-related stimuli. Despite decades of research on CPIR in humans, the body of literature surrounding this phenomenon is controversial due in part to contradictory findings . This has slowed progress towards understanding the sensory and neural basis of CPIR, as well as its overall relevance to health. This review examines up-to-date knowledge in CPIR research and identifies sources of CPIR variability in humans in an effort to guide future research. The review starts by defining CPIR and discussing its presumed functional roles in glucose homeostasis and feeding behavior. Next, the types of stimuli that have been reported to elicit CPIR, as well as the sensory and neural mechanisms underlying the response in rodents and humans are discussed, and areas where knowledge is limited are identified. Finally, factors that may contribute to the observed variability of CPIR in humans are examined, including experimental design, test procedure, and individual characteristics. Overall, oral stimulation appears to be important for eliciting CPIR, especially when combined with other sensory modalities (vision, olfaction, somatosensation). While differences in experimental design and testing procedure likely explain some of the observed inter- and intra-study variability, individual differences also appear to play an important role. Understanding sources of these individual differences in CPIR will be key for establishing its health relevance.
Collapse
Affiliation(s)
- Alexa J Pullicin
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA
| | - John I Glendinning
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027 US
| | - Juyun Lim
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|