1
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
3
|
LRRC8A-dependent volume-regulated anion channels contribute to ischemia-induced brain injury and glutamatergic input to hippocampal neurons. Exp Neurol 2020; 332:113391. [PMID: 32598930 DOI: 10.1016/j.expneurol.2020.113391] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022]
Abstract
Volume-regulated anion channels (VRACs) are critically involved in regulating cell volume, and leucine-rich repeat-containing protein 8A (LRRC8A, SWELL1) is an obligatory subunit of VRACs. Cell swelling occurs early after brain ischemia, but it is unclear whether neuronal LRRC8a contributes to ischemia-induced glutamate release and brain injury. We found that Lrrc8a conditional knockout (Lrrc8a-cKO) mice produced by crossing NestinCre+/- with Lrrc8aflox+/+ mice died 7-8 weeks of age, indicating an essential role of neuronal LRRC8A for survival. Middle cerebral artery occlusion (MCAO) caused an early increase in LRRC8A protein levels in the hippocampus in wild-type (WT) mice. Whole-cell patch-clamp recording in brain slices revealed that oxygen-glucose deprivation significantly increased the amplitude of VRAC currents in hippocampal CA1 neurons in WT but not in Lrrc8a-cKO mice. Hypotonicity increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in hippocampal CA1 neurons in WT mice, and this was abolished by DCPIB, a VRAC blocker. But in Lrrc8a-cKO mice, hypotonic solution had no effect on the frequency of sEPSCs in these neurons. Furthermore, the brain infarct volume and neurological severity score induced by MCAO were significantly lower in Lrrc8a-cKO mice than in WT mice. In addition, MCAO-induced increases in cleaved caspase-3 and calpain activity, two biochemical markers of neuronal apoptosis and death, in brain tissues were significantly attenuated in Lrrc8a-cKO mice compared with WT mice. These new findings indicate that cerebral ischemia increases neuronal LRRC8A-dependent VRAC activity and that VRACs contribute to increased glutamatergic input to hippocampal neurons and brain injury caused by ischemic stroke.
Collapse
|
4
|
Quintana DD, Garcia JA, Sarkar SN, Jun S, Engler-Chiurazzi EB, Russell AE, Cavendish JZ, Simpkins JW. Hypoxia-reoxygenation of primary astrocytes results in a redistribution of mitochondrial size and mitophagy. Mitochondrion 2019; 47:244-255. [PMID: 30594729 PMCID: PMC6980114 DOI: 10.1016/j.mito.2018.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/07/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Astrocytes serve to maintain proper neuronal function and support neuronal viability, but remain largely understudied in research of cerebral ischemia. Astrocytic mitochondria are core participants in the metabolic activity of astrocytes. The objective of this study is to assess astrocyte mitochondrial competence during hypoxia and post-hypoxia reoxygenation and to determine cellular adaptive and pathological changes in the mitochondrial network. We hypothesize that during metabolic distress in astrocytes; mitochondrial networks undergo a shift in fission-fusion dynamics that results in a change in the morphometric state of the entire mitochondrial network. This mitochondrial network shift may be protective during metabolic distress by priming mitochondrial size and facilitating mitophagy. We demonstrated that hypoxia and post-hypoxia reoxygenation of rat primary astrocytes results in a redistribution of mitochondria to smaller sizes evoked by increased mitochondrial fission. Excessive mitochondrial fission corresponded to Drp-1 dephosphorylation at Ser 637, which preceded mitophagy of relatively small mitochondria. Reoxygenation of astrocytes marked the initiation of elevated mitophagic activity primarily reserved to the perinuclear region where a large number of the smallest mitochondria occurred. Although, during hypoxia astrocytic ATP content was severely reduced, after reoxygenation ATP content returned to near normoxic values and these changes mirrored mitochondrial superoxide production. Concomitant with these changes in astrocytic mitochondria, the number of astrocytic extensions declined only after 10-hours post-hypoxic reoxygenation. Overall, we posit a drastic mitochondrial network change that is triggered by a metabolic crisis during hypoxia; these changes are followed by mitochondrial degradation and retraction of astrocytic extensions during reoxygenation.
Collapse
Affiliation(s)
- Dominic D Quintana
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Jorge A Garcia
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Sujung Jun
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - John Z Cavendish
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
5
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
6
|
Murphy TR, Davila D, Cuvelier N, Young LR, Lauderdale K, Binder DK, Fiacco TA. Hippocampal and Cortical Pyramidal Neurons Swell in Parallel with Astrocytes during Acute Hypoosmolar Stress. Front Cell Neurosci 2017; 11:275. [PMID: 28979186 PMCID: PMC5611379 DOI: 10.3389/fncel.2017.00275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
Normal nervous system function is critically dependent on the balance of water and ions in the extracellular space (ECS). Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the ECS and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 min of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.
Collapse
Affiliation(s)
- Thomas R. Murphy
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - David Davila
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Nicholas Cuvelier
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Leslie R. Young
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Kelli Lauderdale
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| |
Collapse
|
7
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Cheung G, Chever O, Rouach N. Connexons and pannexons: newcomers in neurophysiology. Front Cell Neurosci 2014; 8:348. [PMID: 25408635 PMCID: PMC4219455 DOI: 10.3389/fncel.2014.00348] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 11/14/2022] Open
Abstract
Connexin hemichannels are single membrane channels which have been traditionally thought to work in pairs to form gap junction channels across two opposing cells. In astrocytes, gap junction channels allow direct intercellular communication and greatly facilitate the transmission of signals. Recently, there has been growing evidence demonstrating that connexin hemichannels, as well as pannexin channels, on their own are open in various conditions. They allow bidirectional flow of ions and signaling molecules and act as release sites for transmitters like ATP and glutamate into the extracellular space. While much attention has focused on the function of connexin hemichannels and pannexons during pathological situations like epilepsy, inflammation, neurodegeneration or ischemia, their potential roles in physiology is often ignored. In order to fully understand the dynamic properties and roles of connexin hemichannels and pannexons in the brain, it is essential to decipher whether they also have some physiological functions and contribute to normal cerebral processes. Here, we present recent studies in the CNS suggesting emerging physiological functions of connexin hemichannels and pannexons in normal neuronal activity and behavior. We also discuss how these pioneer studies pave the way for future research to extend the physiological relevance of connexons and pannexons, and some fundamental issues yet to be addressed.
Collapse
Affiliation(s)
- Giselle Cheung
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, France
| |
Collapse
|
9
|
Hubbard JA, Hsu MS, Fiacco TA, Binder DK. Glial cell changes in epilepsy: Overview of the clinical problem and therapeutic opportunities. Neurochem Int 2013; 63:638-51. [DOI: 10.1016/j.neuint.2013.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/20/2022]
|
10
|
Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM. Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res 2013; 5:3-16. [PMID: 24323726 DOI: 10.1007/s12975-013-0307-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
Cerebral edema is a major cause of morbidity and mortality following ischemic stroke, but its underlying molecular pathophysiology is incompletely understood. Recent data have revealed the importance of ion flux via channels and transporters expressed in the neurogliovascular unit in the development of ischemia-triggered cytotoxic edema, vasogenic edema, and hemorrhagic conversion. Disruption of homeostatic mechanisms governing cell volume regulation and epithelial/endothelial ion transport due to ischemia-associated energy failure results in the thermodynamically driven re-equilibration of solutes and water across the CSF-blood and blood-brain barriers that ultimately increases the brain's extravascular volume. Additionally, hypoxia, inflammation, and other stress-triggered increases in the functional expression of ion channels and transporters normally expressed at low levels in the neurogliovascular unit cause disruptions in ion homeostasis that contribute to ischemic cerebral edema. Here, we review the pathophysiological significance of several molecular mediators of ion transport expressed in the neurogliovascular unit, including targets of existing FDA-approved drugs, which might be potential nodes for therapeutic intervention.
Collapse
|
11
|
Chiu CD, Chen CCV, Shen CC, Chin LT, Ma HI, Chuang HY, Cho DY, Chu CH, Chang C. Hyperglycemia exacerbates intracerebral hemorrhage via the downregulation of aquaporin-4: temporal assessment with magnetic resonance imaging. Stroke 2013; 44:1682-9. [PMID: 23592763 DOI: 10.1161/strokeaha.113.675983] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) is associated with high mortality and neurological deficits, and concurrent hyperglycemia usually worsens clinical outcomes. Aquaporin-4 (AQP-4) is important in cerebral water movement. Our aim was to investigate the role of AQP-4 in hyperglycemic ICH. METHODS Hyperglycemia was induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg) in adult Sprague-Dawley male rats. ICH was induced by stereotaxic infusion of collagenase/heparin into the right striatum. One set of rats was repeatedly monitored by MRI at 1, 4, and 7 days after ICH induction so as to acquire information on the formation of hematoma and edema. Another set of rats was killed and brains were examined for differences in the degree of hemorrhage and edema, water content, blood-brain barrier destruction, and AQP-4 expression. RESULTS Hyperglycemia ICH rats exhibited increased brain water content, more severe blood-brain barrier destruction, and greater vasogenic edema as seen on diffusion-weighted MRI. Significant downregulation of AQP-4 was observed in STZ-treated rats after ICH as compared with non-STZ-treated rats. Apoptosis was greater on day 1 after ICH in STZ-treated rats. CONCLUSIONS The expression of AQP-4 in the brain is downregulated in hyperglycemic rats as compared with normoglycemic rats after ICH. This change is accompanied by increased vasogenic brain edema and more severe blood-brain barrier destruction.
Collapse
Affiliation(s)
- Cheng-Di Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reversible myoclonus in a patient undergoing transcervical hysteroscopic surgery. Neurol Sci 2013; 34:1815-7. [PMID: 23344744 DOI: 10.1007/s10072-013-1299-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
We describe a 58-year-old woman who underwent hysteroscopic myomectomy to treat a large submucosal leiomyoma. A hypotonic glycine solution was instilled to distend the uterus. At one hour after the distending medium infusion started for hysteroscopic resection an electrolytic imbalance developed. One hour later myoclonus developed predominantly involving the bilateral sternocleidomastoidei and abdominal muscles. The patient was alert and cooperative; jerks were spontaneous and triggered by sensory stimuli. The electroencephalographic and brain computed tomography was normal. The clinical characteristics of her myoclonus resemble reticular reflex myoclonus, a form of subcortical myoclonus originating from the lower brainstem reticular formation. Given her severe hyponatremia we conjecture that she had symptomatic metabolic myoclonus caused by electrolytic disturbance. The case report we present underlines the need to detect in time and promptly treat neurological symptoms such as myoclonus suggesting resorption syndrome, an uncommon event complicating transcervical hysteroscopic surgery and urologic procedures.
Collapse
|
13
|
Abstract
Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using (13)C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-(13)C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-(13)C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate-glutamine-GABA cycle.
Collapse
Affiliation(s)
- Teresa C. Delgado
- Intermediary Metabolism Group, Center for Neurosciences and Cell Biology of Coimbra, Coimbra, Portugal
- *Correspondence: Teresa C. Delgado, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal e-mail:
| |
Collapse
|
14
|
Tucker B, Olson JE. Glutamate receptor-mediated taurine release from the hippocampus during oxidative stress. J Biomed Sci 2010; 17 Suppl 1:S10. [PMID: 20804584 PMCID: PMC2994387 DOI: 10.1186/1423-0127-17-s1-s10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Hippocampal slices swell and release taurine during oxidative stress. The influence of cellular signalling pathways on this process is unclear. Glutamate signalling can facilitate volume regulation in other CNS preparations. Therefore, we hypothesize activation of taurine release by oxidative stress results from tissue swelling and is coupled to activation of glutamate receptors. Methods Rat hippocampi were incubated at room temperature for 2 hr in artificial cerebrospinal fluid (aCSF) equilibrated with 95% O2 plus 5% CO2. For some slices, 1 mM taurine was added to the aCSF to maintain normal tissue taurine content. Slices then were perfused with aCSF at 35° C and baseline data recorded before 2 mM H2O2 was added. For some studies, mannitol or inhibitors of glutamate receptors or the volume-regulated anion channel (VRAC) were added before and during H2O2 treatment. The intensity of light transmitted through the slice (the intrinsic optical signal, IOS) was determined at 1-min intervals. Samples of perfusate were collected at 2-min intervals and amino acid contents determined by HPLC. Data were analyzed by repeated measures ANOVA and post hoc Dunnett’s test with significance indicated for p<0.05. Results IOS of slices prepared without taurine treatment increased significantly by 3.3±1.3% (mean±SEM) during oxidative stress. Little taurine was detected in the perfusate of these slices and the rate of taurine efflux did not change during H2O2 exposure. The α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate antagonist, 25 µM CNQX, but not the N-methyl-D-aspartate (NMDA) receptor antagonist, 10 µM MK-801, inhibited the increase in IOS during H2O2 treatment. Taurine-treated slices exposed to H2O2 showed no change in IOS; however, taurine efflux increased by 335±178%. When these slices were perfused with hypertonic aCSF (350 mOsm) or exposed to the VRAC inhibitor, 20 µM DCPIB, no increase in the taurine efflux rate was observed during H2O2 exposure. Taurine-treated slices perfused with 10 µM MK-801 during H2O2 exposure showed a 4.6±1.9% increase in IOS but no increase in the taurine efflux rate. Conclusions Taurine efflux via VRAC is critical for volume regulation of hippocampal slices exposed to oxidative stress. This increased taurine efflux does not result from direct activation of the taurine release pathway by H2O2. NMDA receptor activation plays an important role in taurine release during oxidative stress.
Collapse
Affiliation(s)
- Brian Tucker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | | |
Collapse
|
15
|
New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children. Pediatr Nephrol 2010; 25:1225-38. [PMID: 19894066 PMCID: PMC2874061 DOI: 10.1007/s00467-009-1323-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/17/2009] [Accepted: 08/27/2009] [Indexed: 12/28/2022]
Abstract
Hyponatremia is the most common electrolyte abnormality encountered in children. In the past decade, new advances have been made in understanding the pathogenesis of hyponatremic encephalopathy and in its prevention and treatment. Recent data have determined that hyponatremia is a more serious condition than previously believed. It is a major comorbidity factor for a variety of illnesses, and subtle neurological findings are common. It has now become apparent that the majority of hospital-acquired hyponatremia in children is iatrogenic and due in large part to the administration of hypotonic fluids to patients with elevated arginine vasopressin levels. Recent prospective studies have demonstrated that administration of 0.9% sodium chloride in maintenance fluids can prevent the development of hyponatremia. Risk factors, such as hypoxia and central nervous system (CNS) involvement, have been identified for the development of hyponatremic encephalopathy, which can lead to neurologic injury at mildly hyponatremic values. It has also become apparent that both children and adult patients are dying from symptomatic hyponatremia due to inadequate therapy. We have proposed the use of intermittent intravenous bolus therapy with 3% sodium chloride, 2 cc/kg with a maximum of 100 cc, to rapidly reverse CNS symptoms and at the same time avoid the possibility of overcorrection of hyponatremia. In this review, we discuss how to recognize patients at risk for inadvertent overcorrection of hyponatremia and what measures should taken to prevent this, including the judicious use of 1-desamino-8d-arginine vasopressin (dDAVP).
Collapse
|
16
|
Moritz ML, Ayus JC. 100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis 2010; 25:91-6. [PMID: 20221678 DOI: 10.1007/s11011-010-9173-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/28/2010] [Indexed: 12/21/2022]
Abstract
Hyponatremic encephalopathy is a potentially lethal condition with numerous reports of death or permanent neurological injury. The optimal treatment for hyponatremic encephalopathy remains controversial. We have introduced a unified approach to the treatment of hyponatremic encephalopathy which uses 3% NaCl (513 mEq/L) bolus therapy. Any patient with suspected hyponatremic encephalopathy should receive a 2 cc/kg bolus of 3% NaCl with a maximum of 100 cc, which could be repeated 1-2 times if symptoms persist. The approach results in a controlled and immediate rise in serum sodium with little risk of inadvertent overcorrection.
Collapse
Affiliation(s)
- Michael L Moritz
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, The University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
| | | |
Collapse
|
17
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
18
|
Benfenati V, Ferroni S. Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience 2009; 168:926-40. [PMID: 20026249 DOI: 10.1016/j.neuroscience.2009.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 12/04/2009] [Accepted: 12/05/2009] [Indexed: 12/16/2022]
Abstract
The physiological ability of the mammalian CNS to integrate peripheral stimuli and to convey information to the body is tightly regulated by its capacity to preserve the ion composition and volume of the perineuronal milieu. It is well known that astroglial syncytium plays a crucial role in such process by controlling the homeostasis of ions and water through the selective transmembrane movement of inorganic and organic molecules and the equilibration of osmotic gradients. Astrocytes, in fact, by contacting neurons and cells lining the fluid-filled compartments, are in a strategic position to fulfill this role. They are endowed with ion and water channel proteins that are localized in specific plasma membrane domains facing diverse liquid spaces. Recent data in rodents have demonstrated that the precise dynamics of the astroglia-mediated homeostatic regulation of the CNS is dependent on the interactions between water channels and ion channels, and their anchoring with proteins that allow the formation of macromolecular complexes in specific cellular domains. Interplay can occur with or without direct molecular interactions suggesting the existence of different regulatory mechanisms. The importance of molecular and functional interactions is pinpointed by the numerous observations that as consequence of pathological insults leading to the derangement of ion and volume homeostasis the cell surface expression and/or polarized localization of these proteins is perturbed. Here, we critically discuss the experimental evidence concerning: (1) molecular and functional interplay of aquaporin 4, the major aquaporin protein in astroglial cells, with potassium and gap-junctional channels that are involved in extracellular potassium buffering. (2) the interactions of aquaporin 4 with chloride and calcium channels regulating cell volume homeostasis. The relevance of the crosstalk between water channels and ion channels in the pathogenesis of astroglia-related acute and chronic diseases of the CNS is also briefly discussed.
Collapse
Affiliation(s)
- V Benfenati
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN, National Research Council, Via Gobetti 101, 40129 Bologna, Italy
| | | |
Collapse
|
19
|
Kang M, Othmer HG. Spatiotemporal characteristics of calcium dynamics in astrocytes. CHAOS (WOODBURY, N.Y.) 2009; 19:037116. [PMID: 19792041 PMCID: PMC2852438 DOI: 10.1063/1.3206698] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 07/24/2009] [Indexed: 05/28/2023]
Abstract
Although Ca(i)(2+) waves in networks of astrocytes in vivo are well documented, propagation in vivo is much more complex than in culture, and there is no consensus concerning the dominant roles of intercellular and extracellular messengers [inositol 1,4,5-trisphosphate (IP(3)) and adenosine-5'-triphosphate (ATP)] that mediate Ca(i)(2+) waves. Moreover, to date only simplified models that take very little account of the geometrical struture of the networks have been studied. Our aim in this paper is to develop a mathematical model based on realistic cellular morphology and network connectivity, and a computational framework for simulating the model, in order to address these issues. In the model, Ca(i) (2+) wave propagation through a network of astrocytes is driven by IP(3) diffusion between cells and ATP transport in the extracellular space. Numerical simulations of the model show that different kinetic and geometric assumptions give rise to differences in Ca(i)(2+) wave propagation patterns, as characterized by the velocity, propagation distance, time delay in propagation from one cell to another, and the evolution of Ca(2+) response patterns. The temporal Ca(i)(2+) response patterns in cells are different from one cell to another, and the Ca(i)(2+) response patterns evolve from one type to another as a Ca(i)(2+) wave propagates. In addition, the spatial patterns of Ca(i)(2+) wave propagation depend on whether IP(3), ATP, or both are mediating messengers. Finally, two different geometries that reflect the in vivo and in vitro configuration of astrocytic networks also yield distinct intracellular and extracellular kinetic patterns. The simulation results as well as the linear stability analysis of the model lead to the conclusion that Ca(i)(2+) waves in astrocyte networks are probably mediated by both intercellular IP(3) transport and nonregenerative (only the glutamate-stimulated cell releases ATP) or partially regenerative extracellular ATP signaling.
Collapse
Affiliation(s)
- Minchul Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
20
|
Abstract
A number of exciting findings have been made in astrocytes during the past 15 years that have led many researchers to redefine how the brain works. Astrocytes are now widely regarded as cells that propagate Ca(2+) over long distances in response to stimulation, and, similar to neurons, release transmitters (called gliotransmitters) in a Ca(2+)-dependent manner to modulate a host of important brain functions. Although these discoveries have been very exciting, it is essential to place them in the proper context of the approaches used to obtain them to determine their relevance to brain physiology. This review revisits the key observations made in astrocytes that greatly impact how they are thought to regulate brain function, including the existence of widespread propagating intercellular Ca(2+) waves, data suggesting that astrocytes signal to neurons through Ca(2+)-dependent release of glutamate, and evidence for the presence of vesicular machinery for the regulated exocytosis of gliotransmitters.
Collapse
Affiliation(s)
- Todd A Fiacco
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
21
|
Integrated microring resonator biosensors for monitoring cell growth and detection of toxic chemicals in water. Biosens Bioelectron 2009; 24:3061-6. [PMID: 19380222 DOI: 10.1016/j.bios.2009.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/18/2009] [Accepted: 03/20/2009] [Indexed: 11/21/2022]
Abstract
Integrated microring resonators fabricated on silicon wafers were used as signal transducers to detect alterations in physical traits of attached live mammalian cells. Cell adhesion and growth events could be monitored by the shift in resonance frequency of the microring resonator. Toxic chemical-induced changes in cell motility were rapidly detected based on variations in the fluctuation of resonance frequency. Microring resonators modified with an endothelial cell line (MS1) adhered onto its surface were used to detect the presence of two toxic chemicals, viz. sodium pentachlorophenate and Aldicarb at concentrations above the military exposure guideline levels within a duration of 1 h.
Collapse
|
22
|
Verkhrasky A, Krishtal OA, Burnstock G. Purinoceptors on Neuroglia. Mol Neurobiol 2009; 39:190-208. [DOI: 10.1007/s12035-009-8063-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/24/2009] [Indexed: 02/06/2023]
|
23
|
Li G, Olson JE. Purinergic activation of anion conductance and osmolyte efflux in cultured rat hippocampal neurons. Am J Physiol Cell Physiol 2008; 295:C1550-60. [PMID: 18923056 DOI: 10.1152/ajpcell.90605.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of mammalian cells demonstrate regulatory volume decrease (RVD) following swelling caused by hyposmotic exposure. A critical signal initiating RVD is activation of nucleotide receptors by ATP. Elevated extracellular ATP in response to cytotoxic cell swelling during pathological conditions also may initiate loss of taurine and other intracellular osmolytes via anion channels. This study characterizes neuronal ATP-activated anion current and explores its role in net loss of amino acid osmolytes. To isolate anion currents, we used CsCl as the major electrolyte in patch electrode and bath solutions and blocked residual cation currents with NiCl(2) and tetraethylammonium. Anion currents were activated by extracellular ATP with a K(m) of 70 microM and increased over fourfold during several minutes of ATP exposure, reaching a maximum after 9.0 min (SD 4.2). The currents were blocked by inhibitors of nucleotide receptors and volume-regulated anion channels (VRAC). Currents showed outward rectification and inactivation at highly depolarizing membrane potentials, characteristics of swelling-activated anion currents. P2X agonists failed to activate the anion current, and an inhibitor of P2X receptors did not block the effect of ATP. Furthermore, current activation was observed with extracellular ADP and 2-(methylthio)adenosine 5'-diphosphate, a P2Y(1) receptor-specific agonist. Much less current activation was observed with extracellular UTP, suggesting the response is mediated predominantly by P2Y(1) receptors. ATP caused a dose-dependent loss of taurine and alanine that could be blocked by inhibitors of VRAC. ATP did not inhibit the taurine uptake transporter. Thus extracellular ATP triggers a loss of intracellular organic osmolytes via activation of anion channels. This mechanism may facilitate neuronal volume homeostasis during cytotoxic edema.
Collapse
Affiliation(s)
- Guangze Li
- Dept. of Emergency Medicine, Wright State Univ., Boonshoft School of Medicine, Kettering, OH 45429, USA
| | | |
Collapse
|
24
|
Zeng JW, Liu XH, Zhang JH, Wu XG, Ruan HZ. P2Y1 receptor-mediated glutamate release from cultured dorsal spinal cord astrocytes. J Neurochem 2008; 106:2106-18. [PMID: 18627435 DOI: 10.1111/j.1471-4159.2008.05560.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P2 receptors have been implicated in the release of neurotransmitter and proinflammatory cytokines by the response to neuroexcitatory substances in astrocytes. In the present study, we examined the mechanisms of ADP and adenosine 5'-O-2-thiodiphosphate (ADPbetaS, ADP analogue) on glutamate release from cultured dorsal spinal cord astrocytes by using confocal laser scanning microscopy and HPLC. Immunofluorescence activity showed that P2Y(1) receptor protein is expressed in cultured astrocytes. ADP and ADPbetaS-induced [Ca(2+)](i) increase and glutamate release are mediated by P2Y(1) receptor. Ca(2+) release from IP(3)-sensitive calcium stores and protein kinase C (PKC) activation is important for glutamate release from astrocytes. Furthermore, P2Y(1) receptor-evoked glutamate release is regulated by volume-sensitive Cl(-) channels and anion co-transporter, which open up the possibility that P2Y(1) receptor activation causes the increase of cell volume. Release of glutamate by ADPbetaS was abolished by 5-nitro-2 (3-phenyl propy lamino)-benzoate plus furosemide but was unaffected by botulinum toxin A. These observations indicate that P2Y(1) receptor-evoked glutamate may be mediated via volume-sensitive Cl(-) channel but not via exocytosis of glutamate containing vesicles. We speculate that P2Y(1) receptors-evoked glutamate efflux, occurring under pathological condition, may modulate the activity of synapses in spinal cord.
Collapse
Affiliation(s)
- Jun-Wei Zeng
- Department of Neurobiology, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
25
|
Yang CZ, Zhao R, Dong Y, Chen XQ, Yu ACH. Astrocyte and neuron intone through glutamate. Neurochem Res 2008; 33:2480-6. [PMID: 18563562 DOI: 10.1007/s11064-008-9758-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/20/2008] [Indexed: 01/10/2023]
Abstract
The unexpected finding of astrocytes to release glutamate as gliotransmitter challenges the traditional concepts on astrocyte being "passive" in CNS communications. Glutamate is the major excitatory transmitter in transferring information between neurons, but is now also known to activate astrocyte through transporters and receptors. Together with the sensitive swelling response, astrocytes could respond directly to glutamate and neuronal activity. Other new functions of astrocytes include modulation of synaptic plasticity and cerebral blood flow (CBF). The classic glutamate deplenishment through glutamine synthesis and CO(2) production does not account for the total glutamate internalized into astrocytes. This leads us to speculate there are many hidden functions of glutamate in neurons and astrocytes waiting to be discovered. In this review, we attempted to reexamine some of these new and older functions of glutamate and to reevaluate the roles of glutamate intoning these two cell types.
Collapse
Affiliation(s)
- Chun Zhang Yang
- Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100083, China
| | | | | | | | | |
Collapse
|
26
|
Nitric oxide and respiratory rhythm in mammals: a new modulator of phase transition? Biochem Soc Trans 2008; 35:1258-63. [PMID: 17956325 DOI: 10.1042/bst0351258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NO (nitric oxide) modulates several central pattern generators, but its role in respiratory rhythmogenesis and its mode of action on medullary respiratory neurons during normoxia are unknown. We analysed the actions of NO on the mammalian respiratory network at the system and cellular levels. Given systemically, the NO donor diethylamine NONOate increased post-inspiratory duration in vagus, phrenic and hypoglossal nerves, whereas blockade of NO generation with L-NAME (N(G)-nitro-L-arginine methyl ester) produced the opposite response. At the cellular level, we pressure-ejected the NO donor on to respiratory neurons. NO had both inhibitory and excitatory effects on all types of respiratory neurons. Inhibitory effects involved soluble guanylate cyclase, as they were blocked with ODQ (1H-[1,2,4]oxadiazolo[4,3a]quinoxalin-1-one), whereas excitations were antagonized by uric acid and possibly mediated via peroxynitrite. Importantly, NO facilitated both GABA (gamma-aminobutyric acid)- and NMDA (N-methyl-D-aspartate)-induced neuronal responses, but this was restricted to post-inspiratory and pre-inspiratory neurons; other neuron types showed additive effects only. Our results support NO as modulator of centrally generated respiratory activity and specifically of ligand-mediated responses in respiratory neuron types involved in respiratory phase transition.
Collapse
|
27
|
Florenzano F, Viscomi MT, Amadio S, D'Ambrosi N, Volonté C, Molinari M. Do ATP and NO interact in the CNS? Prog Neurobiol 2007; 84:40-56. [PMID: 18036717 DOI: 10.1016/j.pneurobio.2007.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/01/2007] [Accepted: 10/05/2007] [Indexed: 02/08/2023]
Abstract
Enzymatically derived NO and extracellular ATP are receiving greater attention due to their role as messengers in the CNS during different physiological and pathological processes. Ionotropic (P2XR) and metabotropic (P2YR) purinergic receptors mediate ATP effects and are present throughout the body. Particularly P2XR are crucial for brain plasticity mechanisms, and are involved in the pathogenesis of different CNS illnesses. NO does not have a specific receptor and its actions are directly dependent on the production on demand by different nitric oxide synthase isoforms. NO synthesizing enzymes are present virtually in all tissues, and NO influences multifarious physiological and pathological functions. Interestingly, various are the tissue and organs modulated by both ATP and NO, such as the immune, brain and vascular systems. Moreover, direct interactions between purinergic and nitrergic mechanisms outside the CNS are well documented, with several studies also indicating that ATP and NO do participate to the same CNS functions. In the past few years, further experimental evidence supported the physiological and pathological relevance of ATP and NO direct interactions in the CNS. The aim of the present review is to provide an account of the available information on the interplay between purinergic and nitrergic systems, focussing on the CNS. The already established relevance of ATP and NO in different pathological processes would predict that the knowledge of ATP/NO cross-talk mechanisms would support pharmacological approaches toward the development of novel ATP/NO combined pharmacological agents.
Collapse
Affiliation(s)
- F Florenzano
- Experimental Neurorehabilitation Laboratory, I.R.C.C.S. Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Schipke CG, Heidemann A, Skupin A, Peters O, Falcke M, Kettenmann H. Temperature and nitric oxide control spontaneous calcium transients in astrocytes. Cell Calcium 2007; 43:285-95. [PMID: 17698190 DOI: 10.1016/j.ceca.2007.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 02/02/2023]
Abstract
Transient spontaneous increases in the intracellular Ca2+ concentration have been frequently observed in astrocytes in cell culture and in acutely isolated slices from several brain regions. Recent in vivo experiments, however, reported only a low frequency of spontaneous Ca2+ events in astrocytes. Since the ex vivo experiments were usually performed at temperatures lower than physiological body temperature, we addressed the question whether temperature could influence the spontaneous Ca2+ activity in astrocytes. Indeed, comparing the frequency and spike width of spontaneous Ca2+ transients in astrocytes at temperatures between 20 and 37 degrees C in culture as well as in acute cortical slices from mouse brain, revealed that spontaneous Ca2+ responses occurred frequently at low temperature and became less frequent at higher temperature. Moreover, the single Ca2+ events had a longer duration at low temperature. We found that nitric oxide (NO) mimicked the increase in spontaneous Ca2+ activity and that an NO-synthase inhibitor attenuated the effect of lowering the temperature. Thus, temperature and NO are major determinants of spontaneous astrocytic Ca2+ signalling.
Collapse
Affiliation(s)
- Carola G Schipke
- Charité University Medicine Berlin, Department of Psychiatry and Psychotherapy, CBF, Eschenallee 3, 14050 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Fiacco TA, Agulhon C, Taves SR, Petravicz J, Casper KB, Dong X, Chen J, McCarthy KD. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 2007; 54:611-26. [PMID: 17521573 DOI: 10.1016/j.neuron.2007.04.032] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 03/09/2007] [Accepted: 04/27/2007] [Indexed: 11/16/2022]
Abstract
Astrocytes are considered the third component of the synapse, responding to neurotransmitter release from synaptic terminals and releasing gliotransmitters--including glutamate--in a Ca(2+)-dependent manner to affect neuronal synaptic activity. Many studies reporting astrocyte-driven neuronal activity have evoked astrocyte Ca(2+) increases by application of endogenous ligands that directly activate neuronal receptors, making astrocyte contribution to neuronal effect(s) difficult to determine. We have made transgenic mice that express a Gq-coupled receptor only in astrocytes to evoke astrocyte Ca(2+) increases using an agonist that does not bind endogenous receptors in brain. By recording from CA1 pyramidal cells in acute hippocampal slices from these mice, we demonstrate that widespread Ca(2+) elevations in 80%-90% of stratum radiatum astrocytes do not increase neuronal Ca(2+), produce neuronal slow inward currents, or affect excitatory synaptic activity. Our findings call into question the developing consensus that Ca(2+)-dependent glutamate release by astrocytes directly affects neuronal synaptic activity in situ.
Collapse
Affiliation(s)
- Todd A Fiacco
- Department of Pharmacology, 1004 Mary Ellen Jones Building CB# 7365, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
31
|
Falcão AS, Silva RFM, Fernandes A, Brito MA, Brites D. Influence of hypoxia and ischemia preconditioning on bilirubin damage to astrocytes. Brain Res 2007; 1149:191-9. [PMID: 17376407 DOI: 10.1016/j.brainres.2007.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 02/16/2007] [Accepted: 02/18/2007] [Indexed: 10/23/2022]
Abstract
Hypoxia-ischemia in the perinatal period is a common cause of neurologic disability in children and is often associated with neonatal morbidity and mortality. Another frequent condition of the newborn is hyperbilirubinemia and it is well known that deposition of unconjugated bilirubin (UCB) in the central nervous system can damage nerve cells and cause encephalopathy. Interestingly, some studies report the onset of cerebral hypoxia-ischemia as a risk factor for UCB encephalopathy, since that condition often precedes neonatal hyperbilirubinemia. However, the cellular mechanisms triggered by hypoxia-ischemia that may enforce UCB deleterious effects are not well elucidated. Therefore, we designed this study to investigate whether hypoxia (HP) or combined oxygen-glucose deprivation (OGD) followed by reoxygenation, modifies glial cell susceptibility to UCB injury. Thus, cultured astrocytes were exposed to HP or OGD for 4 h and returned to normoxic conditions for another 12 h prior to incubation with UCB for 4 h. HP and OGD effects in UCB toxicity were compared to normoxic conditions. Our results demonstrate that HP and OGD preconditioning increase the vulnerability of glial cells to UCB damage by enhancing some of the deleterious effects of UCB, namely cell death by both apoptosis and necrosis. This preconditioning also augments the UCB-induced stimulation of an inflammatory response by an effect that involves the activation of the nuclear factor kappaB activation. These findings provide a novel basis for the increased risk of brain damage in jaundiced newborns that were previously exposed to hypoxia or ischemia during the perinatal period, namely during delivery.
Collapse
Affiliation(s)
- Ana S Falcão
- Centro de Patogénese Molecular-UBMBE, Faculdade de Farmácia, University of Lisbon, Av. Forças Armadas, 1600-083 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
32
|
Eisner A, Toomey MD, Falardeau J, Samples JR, Vetto JT. Differential effects of tamoxifen and anastrozole on optic cup size in breast cancer survivors. Breast Cancer Res Treat 2007; 106:161-70. [PMID: 17260092 PMCID: PMC2045691 DOI: 10.1007/s10549-006-9486-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 12/07/2006] [Indexed: 11/18/2022]
Abstract
Introduction The main purpose of this study was to determine whether the optic cups of tamoxifen users and anastrozole users differ in size, with the cups of the tamoxifen users being smaller. Methods Optic nerve head (ONH) topography was measured using a commercially available, confocal scanning laser ophthalmoscope for three populations of amenorrheic women ages 40–69 years: subjects using (1) tamoxifen (20 mg/day) or (2) anastrozole (1 mg/day) for ≤ 2 years as adjuvant therapy after successful primary treatment for breast cancer, and (3) control subjects with no breast cancer histories and not using any hormonal medication. All subjects had excellent visual acuity and healthy eyes, based on conventional photographic assessment. Results The cup volumes of the tamoxifen users were shown to be significantly smaller than the cup volumes of the anastrozole users, which were indistinguishable from normal. Because the cup volumes of the tamoxifen users decreased markedly with age at about 50 years and because anastrozole is indicated only for post-menopausal women, comparisons were reassessed for subjects older than 50 years. For these subjects, the cup volumes of the tamoxifen users averaged less than half of the volumes for each of the other two subject groups, and significant between-group differences existed in both the lateral (cup area) and axial (cup depth) directions. In contrast, any between-group differences at the ONH margin were small and not significant. Conclusions The results of this study suggest that the ONH be assessed biomorphometrically for tamoxifen users reporting visual change that cannot be attributed to non-tamoxifen causes. The ability of modern intraocular imaging techniques to reveal anatomic change on the order of tens of microns may be useful for assessing tamoxifen-induced effects occurring simultaneously elsewhere in the brain, particularly since the presence of small cups is consistent with the possibility of tamoxifen-induced astrocytic swelling.
Collapse
Affiliation(s)
- Alvin Eisner
- Neurological Sciences Institute , Oregon Health & Science University, West Campus, 505 NW 185th Avenue, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
33
|
Eisner A, O'Malley JP, Incognito LJ, Toomey MD, Samples JR. Small optic cup sizes among women using tamoxifen: assessment with scanning laser ophthalmoscopy. Curr Eye Res 2006; 31:367-79. [PMID: 16603470 DOI: 10.1080/02713680600602547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE There is a substantial literature showing that the selective estrogen receptor modulator tamoxifen can block swelling-activated chloride channels, such as those in astrocytes. This study aimed to test the hypothesis that anatomic characteristics consistent with swelling may be measured within the optic nerve head (ONH) of tamoxifen users whose ONH appearance is considered within normal limits. METHODS Indices of ONH topography were measured using the Heidelberg Retina Tomograph II (HRT) for two populations of women ages 40-69 years: (1) subjects using tamoxifen (20 mg/day) as adjuvant therapy after successful primary treatment for breast cancer and (2) control subjects not using any hormonal medication. All subjects had excellent visual acuity (with 20/20 or better in the test eye), and all appeared to be free of eye disease, as based on conventional photographic assessment. The study design was cross-sectional. The various ONH indices were assessed as functions of the duration of tamoxifen use. RESULTS The optic cups of short-term tamoxifen users (<or=2 years) were significantly smaller in both the lateral and axial directions than the optic cups of the control subjects. Of the 27 short-term users, 23 had cup volumes smaller than the median value for the control subjects. The cup sizes of long-term users (> 2 years, <or=5 years) were not distinguishable from those of the control subjects. The presence of small cups among short-term users did not depend on subjects' medical histories prior to tamoxifen use. Disk margin indices were not related significantly to the duration of tamoxifen use. CONCLUSIONS Small cup sizes consistent with localized subclinical swelling are not rare among short-term tamoxifen users. Thus, small cups are not likely to be a manifestation of a cumulative-dose toxicity. Instead, they probably result from other causes, possibly involving the action of tamoxifen on estrogen receptors. Further investigation with longitudinal and interventional methodologies is needed to definitively interpret the results.
Collapse
Affiliation(s)
- Alvin Eisner
- Nerological Sciences Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| | | | | | | | | |
Collapse
|
34
|
Hwang IK, Yoo KY, Nam YS, Choi JH, Lee IS, Kwon YG, Kang TC, Kim YS, Won MH. Mineralocorticoid and glucocorticoid receptor expressions in astrocytes and microglia in the gerbil hippocampal CA1 region after ischemic insult. Neurosci Res 2006; 54:319-27. [PMID: 16473422 DOI: 10.1016/j.neures.2005.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/23/2005] [Accepted: 12/27/2005] [Indexed: 11/28/2022]
Abstract
In the present study, we observed expression and changes of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the gerbil hippocampal CA1 region, but not in the CA2/3 region, after 5 min of transient forebrain ischemia. In blood, corticosterone levels were increased biphasically at 30 min and 12 h after ischemia/reperfusion, and thereafter its levels were decreased. In the sham-operated group, MR and GR immunoreactivities were weakly detected in the CA1 region. By 3 days after ischemia, MR and GR were not significantly altered in the CA1 region: at 12 h after ischemia, GR was expressed in a few neurons in the CA1 region, whereas MR was not expressed in any neurons after ischemic insult. From 4 days after ischemia, MR and GR immunoreactivities were detected in astrocytes and microglia in the CA1 region, and at 7 days after ischemia, MR and GR immunoreactivities peaked in the hippocampal CA1 region. At this time, 55% of astrocytes and 30% of microglia showed MR immunoreactivity, and 20% of astrocytes and 40% of microglia showed GR immunoreactivity. Western blot analyses showed that the pattern of changes in MR and GR protein levels was similar to the immunohistochemical changes observed after transient forebrain ischemia. From 4 days after ischemia, MR and GR protein levels were increased time-dependently after ischemia. In conclusion, enhanced MR and GR expressions in astrocytes and microglia were detected in the hippocampal CA1 region 4-7 days after ischemia/reperfusion. At this time, GR immunoreactivity was abundant in microglia, whereas MR immunoreactivity was prominent in astrocytes. The specific distribution of corticosteroid receptors in the astrocytes and microglia may be associated with the differences of MR and GR functions against ischemic damage.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Allen NJ, Barres BA. Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 2005; 15:542-8. [PMID: 16144764 DOI: 10.1016/j.conb.2005.08.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/24/2005] [Indexed: 12/12/2022]
Abstract
Glial cells are now emerging from the shadows cast by their more excitable CNS counterparts. Within the developing nervous system, astrocytes and Schwann cells actively help to promote synapse formation and function, and have even been implicated in synapse elimination. In the adult brain, astrocytes respond to synaptic activity by releasing transmitters that modulate synaptic activity. Thus, glia are active participants in brain function. Many questions remain about the identity of glial-neuronal signals and their significance.
Collapse
Affiliation(s)
- Nicola J Allen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
36
|
Wilson JX, Dragan M. Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes. Free Radic Biol Med 2005; 39:990-8. [PMID: 16198226 DOI: 10.1016/j.freeradbiomed.2005.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 05/04/2005] [Accepted: 05/12/2005] [Indexed: 11/29/2022]
Abstract
Sepsis causes brain dysfunction. Because neurotransmission requires high ascorbate and low dehydroascorbic acid (DHAA) concentrations in brain extracellular fluid, the effect of septic insult on ascorbate recycling (i.e., uptake and reduction of DHAA) and export was investigated in primary rat and mouse astrocytes. DHAA raised intracellular ascorbate to physiological levels but extracellular ascorbate only slightly. Septic insult by lipopolysaccharide and interferon-gamma increased ascorbate recycling in astrocytes permeabilized with saponin but decreased it in those with intact plasma membrane. The decrease was due to inhibition of the glucose transporter (GLUT1) that translocates DHAA because septic insult slowed uptake of the nonmetabolizable GLUT1 substrate 3-O-methylglucose. Septic insult also abolished stimulation by glutamate of ascorbate export. Specific nitric oxide synthase (NOS) inhibitors and nNOS and iNOS deficiency failed to alter the effects of septic insult. Inhibitors of NADPH oxidase generally did not protect against septic insult, because only one of those tested (diphenylene iodonium) increased GLUT1 activity and ascorbate recycling. We conclude that astrocytes take up DHAA and use it to synthesize ascorbate that is exported in response to glutamate. This mechanism may provide the antioxidant on demand to neurons under normal conditions, but it is attenuated after septic insult.
Collapse
Affiliation(s)
- John X Wilson
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada N6A 5C1.
| | | |
Collapse
|
37
|
Kang N, Xu J, Xu Q, Nedergaard M, Kang J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 2005; 94:4121-30. [PMID: 16162834 DOI: 10.1152/jn.00448.2005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A paroxysmal depolarization shift (PDS) has been suggested to be a hallmark for epileptic activity in partial-onset seizures. By monitoring membrane potentials and currents in pairs of pyramidal neurons and astrocytes with dual patch-clamp recording and exocytosis of vesicles from astrocytes with two-photon laser scanning microscopy in hippocampal slices, we found that infusion of inositol 1,4,5-trisphosphate (IP(3)) into astrocytes by patch pipettes induced astrocytic glutamate release that triggered a transient depolarization (TD) and epileptiform discharges in CA1 pyramidal neurons. The TD is due to a tetrodotoxin (TTX)-insensitive slowly decaying transient inward current (STC). Astrocytic glutamate release simultaneously triggers both the STC in pyramidal neurons and a transport current (TC) in astrocytes. The neuronal STC is mediated by ionotropic glutamate receptors leading to the TD and epileptiform discharges; while the astrocytic TC is a glutamate reuptake current resulting from transporting released glutamate into the patched astrocyte. Fusion of a large vesicle in astrocytes was immediately followed by an astrocytic TC, suggesting that the fused vesicle contains glutamate. Both fusion of large vesicles and astrocytic TCs were blocked by tetanus toxin (TeNT), suggesting that astrocytic glutamate release is via SNARE-dependent exocytosis of glutamate-containing vesicles. In the presence of TTX, the epileptogenic reagent, 4-AP, also induced similar neuronal STCs and astrocytic TCs, suggesting that astrocytic glutamate release may play an epileptogenic role in initiation of epileptic seizures under pathological conditions. Our study provides a novel mechanism, astrocytic release of glutamate, for seizure initiation.
Collapse
Affiliation(s)
- Ning Kang
- Department. of Cell Biology and Anatomy, New York Medical College, Valhalla, 10595, USA
| | | | | | | | | |
Collapse
|
38
|
Ally A, Nauli SM, Maher TJ. Molecular changes in nNOS protein expression within the ventrolateral medulla following transient focal ischemia affect cardiovascular functions. Brain Res 2005; 1055:73-82. [PMID: 16084499 DOI: 10.1016/j.brainres.2005.06.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
The majority of human strokes involve an occlusion of the middle cerebral artery and subsequent damage to the brain tissues it perfuses. We have previously reported that reflex cardiovascular changes during a static muscle contraction are attenuated following transient middle cerebral artery occlusion (MCAO) and reperfusion [A. Ally, S.M. Nauli, T.J. Maher, Cardiovascular responses and neurotransmission in the ventrolateral medulla during skeletal muscle contraction following transient middle cerebral artery occlusion and reperfusion, Brain Res. 952 (2002) 176-187]. We hypothesized that the attenuation is a result of altered expression of neuronal nitric oxide synthase (nNOS) within the rostral (RVLM) and caudal ventrolateral medulla (CVLM). In this study, we have compared cardiovascular responses and nNOS protein expression within the four quadrants, i.e., left and right sides of both RVLM and CVLM in sham-operated rats (n = 10) and in rats with a temporary 90-min left-sided MCAO followed by 24 h reperfusion (n = 10). Increases in mean arterial pressure during a static muscle contraction were significantly attenuated in MCAO rats when compared to sham rats. The transient ischemia reduced nNOS expression within the ipsilateral RVLM quadrant compared to the contralateral RVLM or RVLM quadrants of control rats. In contrast, compared to sham rats and the right CVLM quadrant of MCAO rats, nNOS expression was significantly augmented in the ipsilateral CVLM in left-sided MCAO rats. These data suggest that the attenuation of cardiovascular responses during static muscle contraction in MCAO rats is partly due to a reduction in nNOS expression within the ipsilateral RVLM and an overexpression of nNOS abundance within the ipsilateral CVLM. Results demonstrate that nNOS expression within the medulla plays a significant role in mediating cardiovascular responses during static exercise in intact and pathophysiological conditions.
Collapse
Affiliation(s)
- Ahmmed Ally
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, 901 South Flagler Drive, West Palm Beach, FL 33416, USA.
| | | | | |
Collapse
|
39
|
Chiang CY, Zhang S, Xie YF, Hu JW, Dostrovsky JO, Salter MW, Sessle BJ. Endogenous ATP involvement in mustard-oil-induced central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). J Neurophysiol 2005; 94:1751-60. [PMID: 15901761 DOI: 10.1152/jn.00223.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central sensitization represents a sustained hypersensitive state of dorsal horn nociceptive neurons that can be evoked by peripheral inflammation or injury to nerves and tissues. It reflects neuroplastic changes such as increases in neuronal spontaneous activity, receptive field size, and responses to suprathreshold stimuli and a decrease in activation threshold. We recently demonstrated that purinergic receptor mechanisms in trigeminal subnucleus caudalis (Vc; medullary dorsal horn) are also involved in the initiation and maintenance of central sensitization in brain stem nociceptive neurons of trigeminal subnucleus oralis. The aim of the present study was to investigate whether endogenous ATP is involved in the development of central sensitization in Vc itself. The experiments were carried out on urethan/alpha-chloralose anesthetized and immobilized rats. Single neurons were recorded and identified as nociceptive-specific (NS) in the deep laminae of Vc. During continuous saline superfusion (0.6 ml/h it) over the caudal medulla, Vc neuronal central sensitization was readily induced by mustard oil application to the tooth pulp. However, this mustard-oil-induced central sensitization could be completely blocked by continuous intrathecal superfusion of the wide-spectrum P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2, 4-disulphonic acid tetra-sodium (33-100 microM) and by apyrase (an ectonucleotidase enzyme, 30 units/ml). Superfusion of the selective P2X1, P2X3 and P2X(2/3) receptor antagonist 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (6-638 microM) partially blocked the Vc central sensitization. The two P2X receptor antagonists did not significantly affect the baseline nociceptive properties of the Vc neurons. These findings implicate endogenous ATP as an important mediator contributing to the development of central sensitization in nociceptive neurons of the deep laminae of the dorsal horn.
Collapse
Affiliation(s)
- C Y Chiang
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Gow IF, Thomson J, Davidson J, Shennan DB. The effect of a hyposmotic shock and purinergic agonists on K+(Rb+) efflux from cultured human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1712:52-61. [PMID: 15890311 DOI: 10.1016/j.bbamem.2005.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 02/18/2005] [Accepted: 04/06/2005] [Indexed: 11/22/2022]
Abstract
The effect of a hyposmotic shock and extracellular ATP on the efflux of K(+)(Rb(+)) from human breast cancer cell lines (MDA-MB-231 and MCF-7) has been examined. A hyposmotic shock increased the fractional efflux of K(+)(Rb(+)) from MDA-MB-231 cells via a pathway which was unaffected by Cl(-) replacement. Apamin, charybdotoxin or removing extracellular Ca(2+) had no effect on volume-activated K(+)(Rb(+)) efflux MDA-MB-231 cells. An osmotic shock also stimulated K(+)(Rb(+)) efflux from MCF-7 cells but to a much lesser extent than found with MDA-MB-231 cells. ATP-stimulated K(+)(Rb(+)) efflux from MDA-MB-231 cells in a dose-dependent fashion but had little effect on K(+)(Rb(+)) release from MCF-7 cells. ATP-stimulated K(+)(Rb(+)) efflux was only inhibited slightly by replacing Cl(-) with NO(3)(-). Removal of external Ca(2+) during treatment with ATP reduced the fractional efflux of K(+)(Rb(+)) in a manner suggesting a role for cellular Ca(2+) stores. Charybdotoxin, but neither apamin nor iberiotoxin, inhibited ATP-stimulated K(+)(Rb(+)) release from MDA-MB-231 cells. Suramin inhibited the ATP-activated efflux of K(+)(Rb(+)). UTP also stimulated K(+)(Rb(+)) efflux from MDA-MB-231 cells whereas ADP, AMP and adenosine were without effect. A combination of an osmotic shock and ATP increased the fractional efflux of K(+)(Rb(+)) to a level greater than the sum of the individual treatments. It appears that the hyposmotically-activated and ATP-stimulated K(+) efflux pathways are separate entities. However, there may be a degree of 'crosstalk' between the two pathways.
Collapse
Affiliation(s)
- I F Gow
- Hannah Research Institute, Ayr, Scotland, UK.
| | | | | | | |
Collapse
|
41
|
Watts J, Fowler L, Whitton PS, Pearce B. Release of arginine, glutamate and glutamine in the hippocampus of freely moving rats: Involvement of nitric oxide. Brain Res Bull 2005; 65:521-8. [PMID: 15862924 DOI: 10.1016/j.brainresbull.2005.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/01/2005] [Accepted: 03/07/2005] [Indexed: 11/26/2022]
Abstract
Using in vivo microdialysis, we have monitored the release of three amino acids (arginine, glutamate and glutamine) in the hippocampus of freely moving rats in response to various drugs. In response to N-methyl-d-aspartate (NMDA) infusion, extracellular glutamate was increased, glutamine was decreased and arginine remained unchanged. By contrast, alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) elicited an increase in arginine release but had no effect on either glutamate or glutamine. When S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was infused into the hippocampus, an increase in glutamate, a decrease in glutamine and no change in arginine were recorded. The effect of SNAP on extracellular glutamine levels was reversed by prior infusion of the guanylate cyclase inhibitor oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), however its effect on glutamate release was unchanged. Interestingly, SNAP was found to promote the release of arginine in the presence of ODQ. We also assessed the effect of two nitric oxide synthase inhibitors, N-nitro-l-arginine methylester (l-NAME) and 7-nitroindazole (7-NI), on the release of these amino acids. l-NAME was found to increase arginine and glutamate levels but decrease those of glutamine. In contrast, 7-NI reduced the release of all three amino acids. The results presented here confirm some but not all of the findings previously obtained using in vitro preparations. In addition, they suggest that complex relationships exist between the release of these amino acids, and that endogenous NO plays an important role in regulating their release.
Collapse
Affiliation(s)
- Jo Watts
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|
42
|
Abstract
Extracellular [K+] can range within 2.5-3.5 mM under normal conditions to 50-80 mM under ischemic and spreading depression events. Sustained exposure to elevated [K+]o has been shown to cause significant neuronal death even under conditions of abundant glucose supply. Astrocytes are well equipped to buffer this initial insult of elevated [K] through extensive gap junctional coupling, Na+/K+ pump activity (with associated glycogen and glycolytic potential), and endfoot siphoning capability. Their abundant energy availability and alkalinizing mechanisms help sustain Na+/K+ ATPase activity under ischemic conditions. Furthermore, passive K+ uptake mechanisms and water flux mediated through aquaporin-4 channels in endfoot processes are important energy-independent mechanisms. Unfortunately, as the length of ischemic episode is prolonged, these mechanisms increase to a point where they begin to have repercussions on other important cellular functions. Alkalinizing mechanisms induce an elevation of [Na+]i, increasing the energy demand of Na+/K+ ATPase and leading to eventual detrimental reversal of the Na+/glutamate- cotransporter and excitotoxic damage. Prolonged ischemia also results in cell swelling and activates volume regulatory processes that release excessive excitatory amino acids, further exacerbating excitotoxic injury. In the days following ischemic injury, reactive astrocytes demonstrate increased cell size and process thickness, leading to improved spatial buffering capacity in regions outside the lesion core where there is better neuronal survival. There is a substantial heterogeneity among reactive astrocytes, with some close to the lesion showing decreased buffering capacity. However, it appears that both Na+/K+ ATPase activity (along with energy production processes) as well as passive K+ uptake mechanisms are upregulated in gliotic tissue outside the lesion to enhance the above-mentioned homeostatic mechanisms.
Collapse
Affiliation(s)
- Jerome A Leis
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lane K Bekar
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Walz
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
43
|
Obrosova IG, Mabley JG, Zsengellér Z, Charniauskaya T, Abatan OI, Groves JT, Szabó C. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J 2004; 19:401-3. [PMID: 15611153 DOI: 10.1096/fj.04-1913fje] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nitrosative stress, that is, enhanced peroxynitrite formation, has been documented in both experimental and clinical diabetic neuropathy (DN), but its pathogenetic role remains unexplored. This study evaluated the role for nitrosative stress in two animal models of type 1 diabetes: streptozotocin-diabetic mice and diabetic NOD mice. Control (C) and streptozotocin-diabetic (D) mice were treated with and without the potent peroxynitrite decomposition catalyst FP15 (5 mg kg(-1) d(-1)) for 1 wk after 8 wk without treatment. Sciatic nerve nitrotyrosine (a marker of peroxynitrite-induced injury) and poly(ADP-ribose) immunoreactivities were present in D and absent in C and D+FP15. FP15 treatment corrected sciatic motor and hind-limb digital sensory nerve conduction deficits and sciatic nerve energy state in D, without affecting those variables in C. Nerve glucose and sorbitol pathway intermediate concentrations were similarly elevated in D and D+FP15 vs C. In diabetic NOD mice, a 7-day treatment with either 1 or 3 mg kg(-1) d(-1) FP15 reversed increased tail-flick latency (a sign of reduced pain sensitivity); the effect of the higher dose was significant as early as 3 days after beginning of the treatment. In conclusion, nitrosative stress plays a major role in DN in, at least, type 1 diabetes. This provides the rationale for development of agents counteracting peroxynitrite formation and promoting peroxynitrite decomposition, and their evaluation in DN.
Collapse
Affiliation(s)
- Irina G Obrosova
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004; 129:877-96. [PMID: 15561405 DOI: 10.1016/j.neuroscience.2004.09.053] [Citation(s) in RCA: 428] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Astrocytes are highly complex cells that respond to a variety of external stimulations. One of the chief functions of astrocytes is to optimize the interstitial space for synaptic transmission by tight control of water and ionic homeostasis. Several lines of work have, over the past decade, expanded the role of astrocytes and it is now clear that astrocytes are active participants in the tri-partite synapse and modulate synaptic activity in hippocampus, cortex, and hypothalamus. Thus, the emerging concept of astrocytes includes both supportive functions as well as active modulation of neuronal output. Glutamate plays a central role in astrocytic-neuronal interactions. This excitatory amino acid is cleared from the neuronal synapses by astrocytes via glutamate transporters, and is converted into glutamine, which is released and in turn taken up by neurons. Furthermore, metabotropic glutamate receptor activation on astrocytes triggers via increases in cytosolic Ca(2+) a variety of responses. For example, calcium-dependent glutamate release from the astrocytes modulates the activity of both excitatory and inhibitory synapses. In vivo studies have identified the astrocytic end-foot processes enveloping the vessel walls as the center for astrocytic Ca(2+) signaling and it is possible that Ca(2+) signaling events in the cellular component of the blood-brain barrier are instrumental in modulation of local blood flow as well as substrate transport. The hormonal regulation of water and ionic homeostasis is achieved by the opposing effects of vasopressin and atrial natriuretic peptide on astroglial water and chloride uptake. In conjuncture, the brain appears to have a distinct astrocytic perivascular system, involving several potassium channels as well as aquaporin 4, a membrane water channel, which has been localized to astrocytic endfeet and mediate water fluxes within the brain. The multitask functions of astrocytes are essential for higher brain function. One of the major challenges for future studies is to link receptor-mediated signaling events in astrocytes to their roles in metabolism, ion, and water homeostasis.
Collapse
Affiliation(s)
- M Simard
- Utah Diabetes Center, 615 Arapeen Drive, Suite 100, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|