1
|
Singh AA, Khan F, Song M. Alleviation of Neurological Disorders by Targeting Neurodegenerative-Associated Enzymes: Natural and Synthetic Molecules. Int J Mol Sci 2025; 26:4707. [PMID: 40429850 PMCID: PMC12112699 DOI: 10.3390/ijms26104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Neurological disorders, encompassing neurodegenerative and neuroinflammatory conditions, present significant public health and clinical challenges. Recent research has elucidated the pivotal role of various enzymes in the onset and progression of these disorders. This review explores the therapeutic potential of targeting these enzymes with natural and synthetic molecules. Key enzymes, including acetylcholinesterase, monoamine oxidase, beta-secretase, tau kinases, caspases, and cyclooxygenase-2, are implicated in diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Modulating these enzymes can alleviate symptoms, slow disease progression, or reverse pathological changes. Natural molecules derived from plants, microbes, seaweeds, and animals have long been noted for their therapeutic potential. Their ability to interact with specific enzymes with high specificity and minimal side effects makes them promising candidates for treatment. These natural agents provide a foundation for developing targeted therapies with improved safety profiles. Simultaneously, the development of synthetic chemistry has resulted in molecules designed to inhibit neurodegenerative enzymes with precision. This review examines the progress in creating small molecules, peptides, and enzyme inhibitors through sophisticated drug design techniques. It evaluates the efficacy, safety, and mechanisms of these synthetic agents, highlighting their potential for clinical application. The review offers a comprehensive overview of recent advancements in enzyme-targeted therapies for neurological disorders, covering both natural and synthetic molecules investigated in preclinical and clinical settings. It discusses the mechanisms through which these molecules exert their effects, the challenges faced in their development, and future research directions. By synthesizing current knowledge, this paper aims to illuminate the potential of enzyme-targeted interventions in managing neurological disorders, showcasing both the promise and limitations of these approaches.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
2
|
Yang J, Ma YM, Yang L, Li P, Jing L, Li PA, Zhang JZ. Quercetin alleviates cerebral ischemia and reperfusion injury in hyperglycemic animals by reducing endoplasmic reticulum stress through activating SIRT1. PLoS One 2025; 20:e0321006. [PMID: 40273147 PMCID: PMC12021246 DOI: 10.1371/journal.pone.0321006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 02/27/2025] [Indexed: 04/26/2025] Open
Abstract
Hyperglycemia aggravates cerebral ischemic reperfusion injury (CIRI). Neuroprotective drugs that are effective in reducing CIRI in animals with normoglycemic condition are ineffective in ameliorating CIRI under hyperglycemic condition. This study investigated whether quercetin alleviates hyperglycemic CIRI by inhibiting endoplasmic reticulum stress (ERS) through modulating the SIRT1 signaling pathway. A middle cerebral artery occlusion/reperfusion (MCAO/R) model was induced in STZ-injected hyperglycemic rats. High glucose and oxygen glucose deprivation/reoxygenation (OGD/R) models were established in HT22 cells. The results demonstrated that hyperglycemia exacerbated CIRI, and quercetin pretreatment decreased the neurological deficit score and cerebral infarct volume, and alleviated neuron damage in the cortex of the penumbra in hyperglycemic MCAO/R rats, indicating that quercetin could be a candidate for treating hyperglycemic CIRI. Moreover, quercetin pretreatment reduced apoptosis, inhibited the expression of the ERS marker proteins GRP78 and ATF6, and mitigated the expression of the ERS-mediated proapoptotic protein CHOP in hyperglycemic MCAO/R rats, suggesting that quercetin alleviated hyperglycemic CIRI by inhibiting ERS and ERS-mediated apoptosis. Furthermore, quercetin upregulated Sirt1 expression in HG+OGD/R treated HT22 cells and inhibited PERK, p-eIF2α, ATF4, and CHOP expression. In contrast, the SIRT1 selective inhibitor EX-527 blocked the effect of quercetin on protein expression in the SIRT1/PERK pathway and aggravated HT22 cell injury. These findings indicate that quercetin inhibits ERS-mediated apoptosis through modulating the SIRT1 and PERK pathway. In conclusion, quercetin alleviates hyperglycemic CIRI by inhibiting ERS-mediated apoptosis through activating SIRT1 that consequently suppressed ERS signaling.
Collapse
Affiliation(s)
- Jing Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yan-Mei Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lan Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Peng Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Jing
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise, College of Health and Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jian-Zhong Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Echeverry C, Pazos M, Torres-Pérez M, Prunell G. Plant-derived compounds and neurodegenerative diseases: Different mechanisms of action with therapeutic potential. Neuroscience 2025; 566:149-160. [PMID: 39725267 DOI: 10.1016/j.neuroscience.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of discrete groups of neurons causing severe disability. The main risk factor is age, hence their incidence is rapidly increasing worldwide due to the rise in life expectancy. Although the causes of the disease are not identified in about 90% of the cases, in the last decades there has been great progress in understanding the basis for neurodegeneration. Different pathological mechanisms including oxidative stress, mitochondrial dysfunction, alteration in proteostasis and inflammation have been addressed as important contributors to neuronal death. Despite our better understanding of the pathophysiology of these diseases, there is still no cure and available therapies only provide symptomatic relief. In an effort to discover new therapeutic approaches, natural products have aroused interest among researchers given their structural diversity and wide range of biological activities. In this review, we focus on three plant-derived compounds with promising neuroprotective potential that have been traditionally used by folk medicine: the flavonoid quercetin (QCT), the phytocannabinoid cannabidiol (CBD)and the tryptamine N,N-dimethyltryptamine (DMT). These compounds exert neuroprotective effects through different mechanisms of action, some overlapping, but each demonstrating a principal biological activity: QCT as an antioxidant, CBD as an anti-inflammatory, and DMT as a promoter of neuroplasticity. This review summarizes current knowledge on these activities, potential therapeutic benefits of these compounds and their limitations as candidates for neuroprotective therapies. We envision that treatments with QCT, CBD, and DMT could be effective either when combined or when targeting different stages of these diseases.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maximiliano Torres-Pérez
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
4
|
Javanbakht P, Talebinasab A, Asadi-Golshan R, Shabani M, Kashani IR, Mojaverrostami S. Effects of Quercetin against fluoride-induced neurotoxicity in the medial prefrontal cortex of rats: A stereological, histochemical and behavioral study. Food Chem Toxicol 2025; 196:115126. [PMID: 39613240 DOI: 10.1016/j.fct.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Exposure to high levels of fluoride leads to brain developmental and functional damage. Motor performance deficits, learning and memory dysfunctions are related to fluoride neurotoxicity in human and rodent studies. MATERIALS AND METHODS Here, we evaluated the effects of Quercetin treatment (25 mg/kg) against sodium fluoride-induced neurotoxicity (NaF, 200 ppm) in the medial prefrontal cortex (mPFC) of male adult rats based on oxidative markers, behavioral performances, mRNA expressions, and stereological parameters. After a 4-week experimental period, the brains of rats were collected and used for molecular and histological analysis. RESULTS We found that 4 weeks of NaF exposure decreased body weight, working memory, Brain-derived neurotrophic factor (BDNF) mRNA expression, total volume of mPFC, number of neurons and non-neuronal cells in the mPFC, and anti-oxidative markers (CAT, SOD, and GSH-Px), while increased lipid peroxidation, P53 mRNA expression and anxiety. Quercetin treatment could significantly reverse the neurotoxic effect of NaF in the mPFC. CONCLUSIONS In summary, Quercetin could decrease the detrimental effects of NaF in the mPFC of adult rats by improving antioxidant potency and consequently decreasing neuronal and non-neuronal apoptosis.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Talebinasab
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ayres LB, Furgala JT, Garcia CD. Deciphering antioxidant interactions via data mining and RDKit. Sci Rep 2025; 15:670. [PMID: 39753585 PMCID: PMC11699150 DOI: 10.1038/s41598-024-77948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 01/06/2025] Open
Abstract
Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures. Aiming to identify chemical features that can be correlated with specific responses, this report presents an analysis of 1243 mixtures of antioxidants reported in the literature. The analysis focuses on the most commonly reported compounds and mixtures and considers how various chemical descriptors (number of atoms, number of heavy atoms, number of heteroatoms, number of carbon atoms, number of oxygen atoms, number of nitrogen atoms, number of chloride atoms, polar surface area, molecular weight, number of aromatic rings, logP, and hydrogen bond counts) affect the response. Out of those, our analysis showed that hydrogen bonding plays an important role in determining how antioxidants interact, potentially affecting the overall behavior of mixtures. Far from drawing a universal conclusion about one particular mechanism; this article provides an overview of what has worked so far, delving into the possible chemical variables behind those interactions.
Collapse
Affiliation(s)
- Lucas B Ayres
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Justin T Furgala
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Carlos D Garcia
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.
| |
Collapse
|
6
|
Pourmasoumi P, Abdouss M, Farhadi M, Jameie SB, Khonakdar HA. Co-delivery of temozolomide and quercetin with folic acid-conjugated exosomes in glioblastoma treatment. Nanomedicine (Lond) 2024; 19:2271-2287. [PMID: 39360642 PMCID: PMC11487946 DOI: 10.1080/17435889.2024.2395234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Aim: The study aims to improve glioblastoma multiforme (GBM) treatment by combining temozolomide (TMZ) and quercetin (Qct), using folic acid (FA)-conjugated exosomes to overcome TMZ resistance and enhance blood-brain barrier (BBB) penetration.Methods: Exosomes were isolated and after characterizing and modifying their surfaces with FA, drug loading of TMZ and Qct into exosomes was done. In vitro assays, including cell viability tests, RT-PCR, Western-blotting and flow-cytometry, were performed using U87MG and U251MG GBM cell lines. In vivo analysis included administering exosome-drug formulations to glioblastoma-bearing Wistar rats, monitored through optical imaging and PET scans, followed by post-mortem immunohistochemistry and histological examination.Results: The results showed successful exosome isolation and FA conjugation, with drug release studies indicating accelerated release of TMZ and Qct in acidic conditions, enhancing cytotoxicity. Immunofluorescence indicated greater exosome uptake in GBM cells due to FA conjugation. Cell viability assays demonstrated increased toxicity of the combination therapy, correlating with elevated apoptosis. In vivo studies revealed significant tumor size reduction, alongside increased apoptosis and reduced angiogenesis, particularly in the TMZ-Qct-Exo-FA group.Conclusion: FA-conjugated exosomes loaded with TMZ and Qct represent a promising strategy to enhance GBM treatment efficacy by improving drug delivery, apoptosis induction and inhibiting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mona Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer & Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
- Max Bergman Center for Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
7
|
Wang D, Zhao XR, Li YF, Wang RL, Li XB, Wang CX, Li YW. Quercetin promotes the proliferation, migration, and invasion of trophoblast cells by regulating the miR-149-3p/AKT1 axis. Kaohsiung J Med Sci 2024; 40:903-915. [PMID: 39162596 DOI: 10.1002/kjm2.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) has a complex pathogenesis with an increasing prevalence and is one of the most intractable clinical challenges in the field of reproductive medicine. Quercetin (QCT) is an effective active ingredient extracted from Semen Cuscutae and Herba Taxilli used in traditional Chinese medicine for tonifyng the kidneys and promoting fetal restoration. Although QCT helps improve adverse pregnancy outcomes, the specific mechanism remains unclear. The trophoblast cell line HTR-8/SVneo cultured in vitro was treated with different concentrations of QCT, and the cell counting kit-8 assay, wound healing assay, transwell assay, and western blotting were used to evaluate the effects and mechanisms of QCT on the proliferation, migration, and invasion of HTR-8/SVneo cells, respectively. To assess the expression levels of miR-149-3p and AKT serine/threonine kinase 1 (AKT1), quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were performed. A dual-luciferase reporter assay was used to investigate the potential regulatory relationship between miR-149-3p and AKT1. Our results showed that QCT promoted the proliferation, migration, and invasion of trophoblast cells, promoted the expression of MMP2, MMP9, and vimentin, and downregulated the expression of E-cadherin. Mechanistically, QCT downregulated the expression of miR-149-3p and upregulated the expression of AKT1, and miR-149-3p directly targets AKT1, negatively regulating its expression. Overexpression of miR-149-3p and silencing of AKT1 counteracted the promotional effects of QCT on trophoblast proliferation, migration, and invasion. Taken together, QCT regulates the migration and invasion abilities of HTR-8/SVneo cells through the miR-149-3p/AKT1 axis, which may provide a promising therapeutic approach for RSA.
Collapse
Affiliation(s)
- Dan Wang
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| | - Xin-Rui Zhao
- Chinese Medicine College, Hong Kong Baptist University, Kowloon City, Hong Kong, China
| | - Yi-Fan Li
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| | - Rui-Lin Wang
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| | - Xue-Bing Li
- Department of Clinical Laboratory Centre, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| | - Chun-Xia Wang
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
- Department of Clinical Laboratory Centre, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| | - Yong-Wei Li
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
- Department of Clinical Laboratory Centre, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou City, Henan Province, China
| |
Collapse
|
8
|
Liu X, Guo Y, Pan J, Wu T, Zhao B, Wei S, Jiang W, Liu Y. Nanoparticles constructed from natural polyphenols are used in acute kidney injury. J Mater Chem B 2024; 12:8883-8896. [PMID: 39177039 DOI: 10.1039/d4tb00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Acute kidney injury (AKI) is a severe clinical syndrome characterized by rapid deterioration of renal function caused by a variety of pathogeneses. Natural polyphenols have been considered to have potential in the treatment of AKI due to their powerful antioxidant and anti-inflammatory activities, but their low bioavailability in vivo limits their efficacy. Polyphenol nanoparticles based on a nano-delivery system show good effects in reducing kidney injury, improving renal function and promoting renal tissue repair, and brings new hope and possibility for the treatment of AKI. This review provides an overview of the common characteristics, treatments, and associated adverse effects of AKI. The classification and bioavailability of polyphenols as well as their therapeutic role in AKI and potential possible effects are outlined. The potential therapeutic effects of polyphenol-based nanoparticles on AKI and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Xiaohua Liu
- Henan Science and Technology Innovation Promotion Center, Zhengzhou 450046, China
| | - Yike Guo
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangpeng Pan
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Tingting Wu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Bing Zhao
- Henan Finance University, Zhengzhou 450046, China
| | - Shuyi Wei
- Plastic Surgery Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.
| | - Wei Jiang
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Sun Z, Wei Y, Xu Y, Jiao J, Duan X. The use of traditional Chinese medicine in the treatment of non-alcoholic fatty liver disease: A review. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 12:100475. [DOI: 10.1016/j.prmcm.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
11
|
Calabrese EJ, Hayes AW, Pressman P, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Quercetin induces its chemoprotective effects via hormesis. Food Chem Toxicol 2024; 184:114419. [PMID: 38142767 DOI: 10.1016/j.fct.2023.114419] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Quercetin is a polyphenol present in numerous fruits and vegetables and therefore widely consumed by humans with average daily dietary intakes of 10-20 mg/day. It is also a popular dietary supplement of 250-1000 mg/day. However, despite the widespread consumer interest in quercetin, due to its possible chemopreventive properties, the extensively studied quercetin presents a highly diverse and complex array of biological effects. Consequently, the present paper provides the first assessment of quercetin-induced hormetic concentration/dose responses, their quantitative features and mechanistic foundations, and their biological, biomedical, clinical, and public health implications. The findings indicate that quercetin-induced hormetic dose responses are widespread, being independent of biological model, cell type, and endpoint. These findings have the potential to enlighten future experimental studies with quercetin especially with respect to study design parameters and may also affect the appraisal of possible public health benefits and risks associated with highly diverse consumer consumption practices.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
12
|
Bhimanwar RS, Kothapalli LP, Khawshi A. Evaluation of Quercetin's Bioenhancing Effect on Oral Pharmacokinetics of Rosuvastatin in Wistar Rats Using RP-HPLC Method. Cardiovasc Hematol Agents Med Chem 2024; 22:456-465. [PMID: 39431375 DOI: 10.2174/0118715257258735231016112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2024]
Abstract
BACKGROUND The absolute oral bioavailability of rosuvastatin (RST), a secondgeneration statin, is low i.e. 20% and only 10% is recovered as metabolite N-desmethy l rosuvistatin. Since it is a hydrophilic statin, RST relies on the organic anion transporting polypeptide- 1B1 (OATP-1B1), as the key mechanism for active transport into hepatocytes. Quercetin (QUE) being a bio enhancer and inhibitor of OATP1B1 can augment the bioavailability and pharmacokinetics of RST. OBJECTIVES The present study includes the development of a simple and validated bioanalytical Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) method for the estimation of RST and to study the effect of co-administration of QUE as a bio enhancer on its bioavailability. METHODS An analytical column of Kromasil 100, C18 (250 mm × 4.6 mm, 5 μm), was used for chromatographic separationand acetonitrile (ACN): acetic acid buffer pH 3.0 adjusted with glacial acetic acid (55:45 Vol. %) as mobile phase with flow rate 1.0 ml/min monitored at 242 nm. The ACN: methanol (50:50 Vol. %) was employed as the final solvent for extraction. The developed method has been successfully applied in a study on the pharmacokinetics of the drug RST in rats after co-administration of QUE, which was carried out using non-compartmental analysis in order to estimate the blood concentration of the drug. RESULTS The pharmacokinetics of RST was found to be altered significantly (highest concentration of RST in the blood (Cmax) = 67.3 ng/ml to 122.2 ng/ml) (p < 0.001), area under curve (AUC)0-t (p < 0.0001) and AUC0-inf (p = 0.0005) when co-administered with QUE at 120 min (tmax). CONCLUSION The results are in accordance with the fact that QUE increases plasma levels in rats through herb-drug interactions.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Lata P Kothapalli
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Akshay Khawshi
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
13
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
14
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
15
|
Srivastava A, Kumari A, Jagdale P, Ayanur A, Pant AB, Khanna VK. Potential of Quercetin to Protect Cadmium Induced Cognitive Deficits in Rats by Modulating NMDA-R Mediated Downstream Signaling and PI3K/AKT-Nrf2/ARE Signaling Pathways in Hippocampus. Neuromolecular Med 2023; 25:426-440. [PMID: 37460789 DOI: 10.1007/s12017-023-08747-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/14/2023] [Indexed: 09/22/2023]
Abstract
Exposure to cadmium, a heavy metal distributed in the environment is a cause of concern due to associated health effects in population around the world. Continuing with the leads demonstrating alterations in brain cholinergic signalling in cadmium induced cognitive deficits by us; the study is focussed to understand involvement of N-Methyl-D-aspartate receptor (NMDA-R) and its postsynaptic signalling and Nrf2-ARE pathways in hippocampus. Also, the protective potential of quercetin, a polyphenolic bioflavonoid, was assessed in cadmium induced alterations. Cadmium treatment (5 mg/kg, body weight, p.o., 28 days) decreased mRNA expression and protein levels of NMDA receptor subunits (NR1, NR2A) in rat hippocampus, compared to controls. Cadmium treated rats also exhibited decrease in levels of NMDA-R associated downstream signalling proteins (CaMKIIα, PSD-95, TrkB, BDNF, PI3K, AKT, Erk1/2, GSK3β, and CREB) and increase in levels of SynGap in hippocampus. Further, decrease in protein levels of Nrf2 and HO1 associated with increase in levels of Keap1 exhibits alterations in Nrf2/ARE signalling in hippocampus of cadmium treated rats. Degeneration of pyramidal neurons in hippocampus was also evident on cadmium treatment. Simultaneous treatment with quercetin (25 mg/kg body weight p.o., 28 days) was found to attenuate cadmium induced changes in hippocampus. The results provide novel evidence that cadmium exposure may disrupt integrity of NMDA receptors and its downstream signaling targets by affecting the Nrf2/ARE signaling pathway in hippocampus and these could contribute in cognitive deficits. It is further interesting that quercetin has the potential to protect cadmium induced changes by modulating Nrf2/ARE signaling which was effective to control NMDA-R and PI3K/AKT cell signaling pathways.
Collapse
Affiliation(s)
- Anugya Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anima Kumari
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Regulatory Toxicology Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Regulatory Toxicology Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Aditya Bhushan Pant
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
16
|
Tronina T, Łużny M, Dymarska M, Urbaniak M, Kozłowska E, Piegza M, Stępień Ł, Janeczko T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 24:11857. [PMID: 37511613 PMCID: PMC10380404 DOI: 10.3390/ijms241411857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin is the most abundant flavonoid in food products, including berries, apples, cauliflower, tea, cabbage, nuts, onions, red wine and fruit juices. It exhibits various biological activities and is used for medical applications, such as treating allergic, inflammatory and metabolic disorders, ophthalmic and cardiovascular diseases, and arthritis. However, its low water solubility may limit quercetin's therapeutic potential. One method of increasing the solubility of active compounds is their coupling to polar molecules, such as sugars. The attachment of a glucose unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Entomopathogenic fungi are biocatalysts well known for their ability to attach glucose and its 4-O-methyl derivative to bioactive compounds, including flavonoids. We investigated the ability of cultures of entomopathogenic fungi belonging to Beauveria, Isaria, Metapochonia, Lecanicillium and Metarhizium genera to biotransform quercetin. Three major glycosylation products were detected: (1), 7-O-β-D-(4″-O-methylglucopyranosyl)-quercetin, (2) 3-O-β-D-(4″-O-methylglucopyranosyl)-quercetin and (3) 3-O-β-D-(glucopyranosyl)-quercetin. The results show evident variability of the biotransformation process, both between strains of the tested biocatalysts from different species and between strains of the same species. Pharmacokinetic and pharmacodynamic properties of the obtained compounds were predicted with the use of cheminformatics tools. The study showed that the obtained compounds may have applications as effective modulators of intestinal flora and may be stronger hepato-, cardio- and vasoprotectants and free radical scavengers than quercetin.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
17
|
Varlamova EG, Uspalenko NI, Khmil NV, Shigaeva MI, Stepanov MR, Ananyan MA, Timchenko MA, Molchanov MV, Mironova GD, Turovsky EA. A Comparative Analysis of Neuroprotective Properties of Taxifolin and Its Water-Soluble Form in Ischemia of Cerebral Cortical Cells of the Mouse. Int J Mol Sci 2023; 24:11436. [PMID: 37511195 PMCID: PMC10380368 DOI: 10.3390/ijms241411436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral ischemia, and, as a result, insult, attacks up to 15 million people yearly in the world. In this connection, the development of effective preventive programs and methods of therapy has become one of the most urgent problems in modern angiology and pharmacology. The cytoprotective action of taxifolin (TAX) in ischemia is well known, but its limitations are also known due to its poor solubility and low capacity to pass through the hematoencephalic barrier. Molecular mechanisms underlying the protective effect of TAX in complex systems such as the brain remain poorly understood. It is known that the main cell types of the brain are neurons, astrocytes, and microglia, which regulate the activity of each other through neuroglial interactions. In this work, a comparative study of cytoprotective mechanisms of the effect of TAX and its new water-soluble form aqua taxifolin (aqTAX) was performed on cultured brain cells under ischemia-like conditions (oxygen-glucose deprivation (OGD)) followed by the reoxygenation of the culture medium. The concentration dependences of the protective effects of both taxifolin forms were determined using fluorescence microscopy, PCR analysis, and vitality tests. It was found that TAX began to effectively inhibit necrosis and the late stages of apoptosis in the concentration range of 30-100 µg/mL, with aqTAX in the range of 10-30 µg/mL. At the level of gene expression, aqTAX affected a larger number of genes than TAX; enhanced the basic and OGD/R-induced expression of genes encoding ROS-scavenging proteins with a higher efficiency, as well as anti-inflammatory and antiapoptotic proteins; and lowered the level of excitatory glutamate receptors. As a result, aqTAX significantly inhibited the OGD-induced increase in the Ca2+ levels in the cytosol ([Ca2+]i) in neurons and astrocytes under ischemic conditions. After a 40 min preincubation of cells with aqTAX under hypoxic conditions, these Ca2+ signals were completely inhibited, resulting in an almost complete suppression of necrotic death of cerebral cortical cells, which was not observed with the use of classical TAX.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nina I Uspalenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Natalia V Khmil
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria I Shigaeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Maria A Timchenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
18
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023; 15:1578. [PMID: 37376027 DOI: 10.3390/pharmaceutics15061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
19
|
Savino R, Medoro A, Ali S, Scapagnini G, Maes M, Davinelli S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. J Clin Med 2023; 12:jcm12103520. [PMID: 37240625 DOI: 10.3390/jcm12103520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Although autism spectrum disorder (ASD) is a multifaceted neurodevelopmental syndrome, accumulating evidence indicates that oxidative stress and inflammation are common features of ASD. Flavonoids, one of the largest and best-investigated classes of plant-derived compounds, are known to exert antioxidant, anti-inflammatory, and neuroprotective effects. This review used a systematic search process to assess the available evidence on the effect of flavonoids on ASD. A comprehensive literature search was carried out in PubMed, Scopus, and Web of Science databases following the PRISMA guidelines. A total of 17 preclinical studies and 4 clinical investigations met our inclusion criteria and were included in the final review. Most findings from animal studies suggest that treatment with flavonoids improves oxidative stress parameters, reduces inflammatory mediators, and promotes pro-neurogenic effects. These studies also showed that flavonoids ameliorate the core symptoms of ASD, such as social deficits, repetitive behavior, learning and memory impairments, and motor coordination. However, there are no randomized placebo-controlled trials that support the clinical efficacy of flavonoids in ASD. We only found open-label studies and case reports/series, using only two flavonoids such as luteolin and quercetin. These preliminary clinical studies indicate that flavonoid administration may improve specific behavioral symptoms of ASD. Overall, this review is the first one to systematically report evidence for the putative beneficial effects of flavonoids on features of ASD. These promising preliminary results may provide the rationale for future randomized controlled trials aimed at confirming these outcomes.
Collapse
Affiliation(s)
- Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, 71122 Foggia, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
20
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
21
|
Liu MQ, Wang T, Wang QL, Zhou J, Wang BR, Zhang B, Wang KL, Zhu H, Zhang YH. Structure-guided discovery of food-derived GABA-T inhibitors as hunters for anti-anxiety compounds. Food Funct 2022; 13:12674-12685. [PMID: 36382616 DOI: 10.1039/d2fo01315k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With the acceleration of the pace of life, people may face all kinds of pressure, and anxiety has become a common mental issue that is seriously affecting human life. Safe and effective food-derived compounds may be used as anti-anxiety compounds. In this study, anti-anxiety compounds were collected and curated for database construction. Quantitative structure-activity relationship (QSAR) models were developed using a combination of various machine-learning approaches and chemical descriptors to predict natural compounds in food with anti-anxiety effects. High-throughput molecular docking was used to screen out compounds that could function as anti-anxiety molecules by inhibiting γ-aminobutyrate transaminase (GABA-T) enzyme, and 7 compounds were screened for in vitro activity verification. Pharmacokinetic analysis revealed three compounds (quercetin, lithocholic acid, and ferulic acid) that met Lipinski's Rule of Five and inhibited the GABA-T enzyme to alleviate anxiety in vitro. The established QSAR model combined with molecular docking and molecular dynamics was proved by the synthesis and discovery of novel food-derived anti-anxiety compounds.
Collapse
Affiliation(s)
- Meng-Qi Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Wang
- The Rutgers Center for Computational and Integrative Biology, Camden, New Jersey 08102, USA
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, USA
| | - Qin-Ling Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bao-Rong Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bing Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, New Jersey 08102, USA
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, USA
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
22
|
Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Farahighasreaboonasr F, Pakizeh F, Dana VG, Seif F. Quercetin as a JAK-STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett 2022; 27:60. [PMID: 35883021 PMCID: PMC9327369 DOI: 10.1186/s11658-022-00355-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is involved in many immunological processes, including cell growth, proliferation, differentiation, apoptosis, and inflammatory responses. Some of these processes can contribute to cancer progression and neurodegeneration. Owing to the complexity of this pathway and its potential crosstalk with alternative pathways, monotherapy as targeted therapy has usually limited long-term efficacy. Currently, the majority of JAK-STAT-targeting drugs are still at preclinical stages. Meanwhile, a variety of plant polyphenols, especially quercetin, exert their inhibitory effects on the JAK-STAT pathway through known and unknown mechanisms. Quercetin has shown prominent inhibitory effects on the JAK-STAT pathway in terms of anti-inflammatory and antitumor activity, as well as control of neurodegenerative diseases. This review discusses the pharmacological effects of quercetin on the JAK-STAT signaling pathway in solid tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | | | | | - Farid Pakizeh
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Ghobadi Dana
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Enghelab St., Aboureyhan St., Vahid Nazari Crossroad, P17, Tehran, Postal code: 1315795613 Iran
| |
Collapse
|
23
|
Acıkara OB, Karatoprak GŞ, Yücel Ç, Akkol EK, Sobarzo-Sánchez E, Khayatkashani M, Kamal MA, Kashani HRK. A Critical Analysis of Quercetin as the Attractive Target for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:795-817. [PMID: 34872486 DOI: 10.2174/1871527320666211206122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's Disease (PD) is a multifaceted disorder with various factors suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol-type flavonoid, is found in many fruits and vegetables and is recognised as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defence against oxidative stress. Other related mechanisms are activating Sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and Paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the present review aims to shed light on quercetin's beneficial effects and underlying mechanisms in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin is also discussed.
Collapse
Affiliation(s)
- Ozlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandoğan, 06100 Ankara, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Sydney, Australia
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System Disorders. Life (Basel) 2022; 12:life12040591. [PMID: 35455082 PMCID: PMC9027262 DOI: 10.3390/life12040591] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Quercetin is one of the most common, naturally occurring flavonoids, structurally classified to the flavonol subfamily. This compound, found in many edible and medicinal plants either as a free or glycosidated form, has been scientifically exploited for many years, and one could hardly expect it could be a hero of some additional story. Commonly recognized as an anti-inflammatory agent, quercetin not only limits capillary vessel permeability by inhibiting hyaluronidase but also blocks cyclooxygenases and lipoxygenases. As a typical flavonoid, it is also known for its antioxidant effect, which was confirmed by many in vitro and in vivo studies. Throughout the years, numerous other activities were reported for quercetin, including antidiabetic, anti-proliferative, or anti-viral. Of note, recent data have revealed its potential role as a therapeutic agent for several central nervous system disorders. This review provides an overview of available experimental data on quercetin and its complexes with respect to central nervous system diseases, with a main focus on some aspects that were not discussed previously, such as anti-anxiolytic effects, anti-Huntington’s disease activity, or therapeutic potential in brain cancer. Moreover, quercetin’s protective role in some of these diseases is discussed, especially as an anti-neuroinflammatory agent. Bearing in mind the poor bioavailability of this compound, possible options that would enhance its delivery to the site of action are also presented.
Collapse
|
25
|
Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100220. [PMID: 35403087 PMCID: PMC8759805 DOI: 10.1016/j.phyplu.2022.100220] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 04/15/2023]
Abstract
BACKGROUND Polyphenols and particularly flavonoids are of constant interest to the scientific community. Flavonoids are investigated for their biological and pharmacological purposes, notably as antioxidant, anticancer, antiviral and for their anti-inflammatory activities. Certainly, one of the best-known flavonols recognized for its therapeutic and preventive properties, is quercetin. Despite its biological interest, quercetin suffer from some drawbacks, mainly related to its bioavailability. Hence, its synthetic or biosynthetic derivatives have been the subject of intensive research. The health-promoting biological activities of flavonols and derivatives mainly arise from their capacity to disrupt the host-pathogen interactions and/or to regulate host cellular functions including oxidative processes and immunological responses. In the age of coronavirus pandemic, the anti-inflammatory and antiviral potential of flavonols should be put forward to explore these substances for decreasing the viral load and inflammatory storm caused by the infection. PURPOSE OF STUDY The present review will decipher and discuss the antioxidant, anti-inflammatory and antiviral capacities of major flavonol with a focus on the molecular basis and structure-activity relationships. STUDY DESIGN Current study used a combination of quercetin derivatives, pathway, antioxidant, anti-inflammatory, antiviral activities as keywords to retrieve the literature. This study critically reviewed the current literature and presented the ability of natural analogs of quercetin having superior antioxidant, anti-inflammatory and antiviral effects than the original molecule. RESULTS This review allowed the identification of relevant key structure-activity relationship elements and highlight approaches on the mechanisms governing the antioxidant, antiviral and anti-inflammatory activities. CONCLUSION Through a critical analysis of the literature, flavonols and more precisely quercetin derivatives reviewed and found to act simultaneously on inflammation, virus and oxidative stress, three key factors that may lead to life threatening diseases.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | | | - Anne-Laure Sandenon Seteyen
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Chailas Boina
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Pascale Guiraud
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Jimmy Sélambarom
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
26
|
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
27
|
Jang YJ, Byun S. Molecular targets of exercise mimetics and their natural activators. BMB Rep 2021; 54:581-591. [PMID: 34814977 PMCID: PMC8728540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/21/2025] Open
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multitargeting agent for mimicking the health-promoting effects of exercise. [BMB Reports 2021; 54(12): 581-591].
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
28
|
Siervo M, Shannon OM, Llewellyn DJ, Stephan BC, Fontana L. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radic Biol Med 2021; 176:105-117. [PMID: 34562607 DOI: 10.1016/j.freeradbiomed.2021.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The traditional Mediterranean diet (MedDiet), rich in minimally processed plant foods and fish, has been widely recognized to be one of the healthiest diets. Data from multiple randomized clinical trials have demonstrated its powerful effect against oxidative stress, inflammation and the development and progression of cardiovascular disease, type 2 diabetes, and other metabolic conditions that play a crucial role in the pathogenesis of neurodegenerative diseases. The protecting effects of the MedDiet against cognitive decline have been investigated in several observational and experimental studies. Data from observational studies suggest that the MedDiet may represent an effective dietary strategy for the early prevention of dementia, although these findings require further substantiation in clinical trials which have so far produced inconclusive results. Moreover, as we discuss in this review, accumulating data emphasizes the importance of: 1) maintaining an optimal nutritional and metabolic status for the promotion of healthy cognitive aging, and 2) implementing cognition-sparing dietary and lifestyle interventions during early time-sensitive windows before the pathological cascades turn into an irreversible state. In summary, components of the MedDiet pattern, such as essential fatty acids, polyphenols and vitamins, have been associated with reduced oxidative stress and the current evidence from observational studies seems to assign to the MedDiet a beneficial role in promoting brain health; however, results from clinical trials have been inconsistent. While we advocate for longitudinal analyses and for larger and longer clinical trials to be conducted, we assert our interim support to the use of the MedDiet as a protective dietary intervention for cognitive function based on its proven cardiovascular and metabolic benefits.
Collapse
Affiliation(s)
- Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK; Alan Turing Institute, London, UK
| | - Blossom Cm Stephan
- Institute of Mental Health, The University of Nottingham Medical School, Nottingham, UK
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| |
Collapse
|
29
|
Quercetin Alleviates Red Bull Energy Drink-Induced Cerebral Cortex Neurotoxicity via Modulation of Nrf2 and HO-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9482529. [PMID: 34754366 PMCID: PMC8572608 DOI: 10.1155/2021/9482529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
The current work was aimed at evaluating the ameliorative role of quercetin (QR) on the possible toxicity of Red Bull energy drink (RB-Ed) in the cerebral cortex of rats. To achieve the goal, the rats were allocated into 4 groups. The first group received distilled water as control. Groups II and III were given Red Bull energy drink alone and in combination with quercetin, respectively. The fourth group served as recovery to group II. The experimental duration was four weeks for all groups whereas the recovery period of group IV was two weeks. QR upregulated the mRNA and protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) genes, which can protect against RB-Ed neurotoxicity. Moreover, by reducing the thiobarbituric acid reactive substance and increasing the total antioxidant capacity levels, QR protected rats' cerebral cortex against Red Bull energy drink-induced oxidative damage. Quercetin also inhibited RB-Ed-induced histomorphological degeneration which was confirmed by the increase in the intact neurons and the rise in the neuron-specific enolase immunoreaction. QR increased the reduction of the brain-derived neurotrophic factor that was elicited by RB-Ed and acts as an anti-inflammatory agent by reducing the proinflammatory marker, interleukin 1 beta and DNA damage markers, heat shock protein 70, and 8-hydroxydeoxyguanosine. It could be concluded that the alleviating impacts of QR on RB-Ed neurotoxicity in rats could be related to the modulation of Nrf2 and HO-1 which in turn affects the redox status.
Collapse
|
30
|
Souza KS, Moreira LS, Silva BT, Oliveira BPM, Carvalho AS, Silva PS, Verri WA, Sá-Nakanishi AB, Bracht L, Zanoni JN, Gonçalves OH, Bracht A, Comar JF. Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats. Life Sci 2021; 284:119910. [PMID: 34453939 DOI: 10.1016/j.lfs.2021.119910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022]
Abstract
AIMS Quercetin has been investigated as an agent to treat rheumatoid arthritis. At high doses it improves inflammation and the antioxidant status of arthritic rats, but it also exerts mitochondriotoxic and pro-oxidant activities. Beneficial effects of quercetin have not been found at low doses because of its chemical instability and low bioavailability. In the hope of overcoming these problems this study investigated the effects of long-term administration of quercetin-loaded pectin/casein microparticles on the oxidative status of liver and brain of rats with adjuvant-induced arthritis. MAIN METHODS Particle morphology was viewed with transmission electron microscopy and the encapsulation efficiency was measured indirectly by X-ray diffraction. Quercetin microcapsules (10 mg/Kg) were orally administered to rats during 60 days. Inflammation indicators and oxidative stress markers were measured in addition to the respiratory activity and ROS production in isolated mitochondria. KEY FINDINGS Quercetin was efficiently encapsulated inside the polymeric matrix, forming a solid amorphous solution. The administration of quercetin microparticles to arthritic rats almost normalized protein carbonylation, lipid peroxidation, the levels of reactive oxygen species as well as the reduced glutathione content in both liver and brain. The paw edema in arthritic rats was not responsive, but the plasmatic activity of ALT and the mitochondrial respiration were not affected by quercetin, indicating absence of mitochondriotoxic or hepatotoxic actions. SIGNIFICANCE Quercetin-loaded pectin/casein microcapsules orally administered at a low dose improve oxidative stress of arthritic rats without a strong anti-inflammatory activity. This supports the long-term use of quercetin as an antioxidant agent to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Kaiany S Souza
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Lucas S Moreira
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Bruna Thais Silva
- Department of Morphological Sciences, University of Maringá, PR, Brazil
| | - Byanca P M Oliveira
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Amarilis S Carvalho
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Patrícia S Silva
- Department of Chemical Engineering, State University of Maringa, PR, Brazil
| | - Waldiceu A Verri
- Post-Graduation Program of Experimental Pathology, State University of Londrina, PR, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology - Federal University of Technology - Paraná, Campo Mourão, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringa, PR, Brazil.
| |
Collapse
|
31
|
Huang R, Zhu Z, Wu Q, Bekhit AEDA, Wu S, Chen M, Wang J, Ding Y. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer's disease. Crit Rev Food Sci Nutr 2021; 63:2388-2406. [PMID: 34553662 DOI: 10.1080/10408398.2021.1975093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Recently, sustained neuroinflammatory response in microglia and astrocytes has been found to cause the deposition of amyloid beta plaques and the hyperphosphorylation of tau protein, thereby accelerating AD progression. The lipoxin A4-transcription factor nuclear factor-kappa B and mitogen-activated protein kinase pathways have been shown to play important roles in the regulation of inflammatory processes. There is growing research-based evidence suggesting that dietary whole-plant foods, such as mushrooms and berries, may be used as inhibitors for anti-neuroinflammation. The beneficial effects of whole-plant foods were mainly attributed to their high contents of functional macromolecules including polysaccharides, polyphenols, and bioactive peptides. This review provides up-to-date information on important molecular signaling pathways of neuroinflammation and discusses the anti-neuroinflammatory effects of whole-plant foods. Further, a critical evaluation of plants' macromolecular components that have the potential to prevent and/or relieve AD is provided. This work will contribute to better understanding the pathogenetic mechanism of neuroinflammation in AD and provide new approaches for AD therapy.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Zhenjun Zhu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China
| | | | - Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | - Yu Ding
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
32
|
Soofiyani SR, Hosseini K, Forouhandeh H, Ghasemnejad T, Tarhriz V, Asgharian P, Reiner Ž, Sharifi-Rad J, Cho WC. Quercetin as a Novel Therapeutic Approach for Lymphoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3157867. [PMID: 34381559 PMCID: PMC8352693 DOI: 10.1155/2021/3157867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
Lymphoma is a name for malignant diseases of the lymphatic system including Hodgkin's lymphoma and non-Hodgkin's lymphoma. Although several approaches are used for the treatment of these diseases, some of them are not successful and have serious adverse effects. Therefore, other effective treatment methods might be interesting. Studies have indicated that plant ingredients play a key role in treating several diseases. Some plants have already shown a potential therapeutic effect on many malignant diseases. Quercetin is a flavonoid found in different plants and could be useful in the treatment of different malignant diseases. Quercetin has its antimalignant effects through targeting main survival pathways activated in tumor cells. In vitro/in vivo experimental studies have demonstrated that quercetin possesses a cytotoxic effect on lymphoid cancer cells. Regardless of the optimum results that have been obtained from both in vitro/in vivo studies, few clinical studies have analyzed the antitumor effects of quercetin in lymphoid cancers. Thus, it seems that more clinical studies should introduce quercetin as a therapeutic, alone or in combination with other chemotherapy agents. Here, in this study, we reviewed the anticancer effects of quercetin and highlighted the potential therapeutic effects of quercetin in various types of lymphoma.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
33
|
Rahmadi M, Suasana D, Lailis SR, Ratri DMN, Ardianto C. The effects of quercetin on nicotine-induced reward effects in mice. J Basic Clin Physiol Pharmacol 2021; 32:327-333. [PMID: 34214359 DOI: 10.1515/jbcpp-2020-0418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Tobacco smoking remains the primary cause of preventable mortality and morbidity in the world. The complexity of the nicotine dependency process included the withdrawal effect that triggers recurrence being the main problem. Quercetin, known as an antioxidant, binds free radicals and modulates endogenous antioxidants through Nrf2 activations is expected as a potential agent to reduce the risk of nicotine dependence. This research aims to evaluate quercetin's effects on reducing the risk of nicotine addiction. METHODS Conditioned Place Preference (CPP) with a biased design was used to evaluate nicotine's reward effects in male Balb/C mice. Preconditioning test was performed on day 1; conditioning test was done twice daily on day 2-4 by administering quercetin (i.p.) 50 mg/kg along with nicotine (s.c.) 0.5 mg/kg or Cigarette Smoke Extract (CSE) (s.c.) contained nicotine 0.5 mg/kg; and postconditioning test was performed on day 5 continue with extinction test on day 6, 8, 10, 12, and reinstatement test on day 13. The duration spent in each compartment was recorded and analyzed. RESULTS Nicotine 0.5 mg/kg and CSE 0.5 mg/kg significantly induced reward effects (p<0.05). There was no decrease of reward effect during the extinction-reinstatement stage of the postconditioning phase (p>0.05), while quercetin 50 mg/kg both induced along with nicotine or CSE was able to inhibit the reward effect of nicotine (p>0.05). CONCLUSIONS Quercetin reduced the risk of nicotine dependence and has a potential effect to use as a therapy for nicotine dependence, especially as a preventive agent.
Collapse
Affiliation(s)
- Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Dian Suasana
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Silvy Restuning Lailis
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | | | - Chrismawan Ardianto
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
34
|
Saleh Al-Maamari JN, Rahmadi M, Panggono SM, Prameswari DA, Pratiwi ED, Ardianto C, Balan SS, Suprapti B. The effects of quercetin on the expression of SREBP-1c mRNA in high-fat diet-induced NAFLD in mice. J Basic Clin Physiol Pharmacol 2021; 32:637-644. [PMID: 34214346 DOI: 10.1515/jbcpp-2020-0423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES The study aimed to determine the effect of quercetin on the expression of primary regulator gene involved in lipogenesis and triglycerides synthesis in the liver, and the sterol regulatory binding protein-1c (SREBP-1c) mRNA in non-alcoholic fatty liver disease (NAFLD) with a high-fat diet (HFD) model. METHODS Fifty-six Balb/c mice were divided into seven groups: standard feed; HFD; HFD and quercetin 50 mg/kg for 28 days; HFD and quercetin 100 mg/kg BW for 28 days; HFD and quercetin 50 mg/kg for 14 days; HFD and quercetin 100 mg/kg for 14 days; HFD and repaired fed for 14 days. Quercetin was administered intraperitoneally. The animals were sacrificed 24 h after the last treatment; the liver was taken for macroscopic, histopathological staining using hematoxylin-eosin and reverse transcription-PCR analysis sample. RESULTS HFD significantly increased the expression of SREBP-1c mRNA; meanwhile, quercetin and repaired feed significantly reduced the expression of SREBP-1c mRNA in the liver. Quercetin at a dose of 50 mg/kg and 100 mg/kg also improved liver cells' pathological profile in high-fat diet NAFLD. CONCLUSIONS The present study suggests that quercetin has an inhibitory effect on SREBP-1c expression and improved liver pathology in NAFLD mice.
Collapse
Affiliation(s)
| | - Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Sisca Melani Panggono
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Devita Ardina Prameswari
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Eka Dewi Pratiwi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Santhra Segaran Balan
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Budi Suprapti
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
35
|
Ulya T, Ardianto C, Anggreini P, Budiatin AS, Setyawan D, Khotib J. Quercetin promotes behavioral recovery and biomolecular changes of melanocortin-4 receptor in mice with ischemic stroke. J Basic Clin Physiol Pharmacol 2021; 32:349-355. [PMID: 34214302 DOI: 10.1515/jbcpp-2020-0490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/03/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Ischemic stroke is known as a common causes of disability, lower psychological well-being as well as preventable death. The pathogenesis of ischemic stroke process becomes worse immediately after oxidative stress occurs. One of the flavonoids with antioxidant abilities is quercetin. This study was aimed to investigate quercetin administration on the behavioral functions (motor and sensory) and expression of melanocortin-4 receptor (MC4R) in mice with ischemic stroke. METHODS Male ICR mice were divided into sham, stroke, stroke with quercetin 100, 150, and 200 mg/kg. The stroke model was performed by blocking the left common carotid artery for 2 h. Quercetin was intraperitoneally administered daily for seven days. Evaluation was conducted during two weeks after induction using ladder rung walking test and narrow beam test for motoric function and adhesive removal tape test for sensory function. On day-14 mice were sacrificed, MC4R expression in the dorsal striatum was determined using RT-PCR. RESULTS Stroke decreased the motor, sensory function and MC4R mRNA expression in dorsal striatum. Quercetin improved motor and sensory function, and upregulated expression of MC4R. CONCLUSIONS Quercetin administration after ischemic stroke improves behavioral function, possibly through the upregulation of MC4R in the brain.
Collapse
Affiliation(s)
- Tuhfatul Ulya
- Department of Clinical Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Putri Anggreini
- Department of Clinical Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Dwi Setyawan
- Department of Pharmaceutics, Airlangga University, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
36
|
Javadinia SS, Abbaszadeh-Goudarzi K, Mahdian D, Hosseini A, Ghalenovi M, Javan R. A review of the protective effects of quercetin-rich natural compounds for treating ischemia-reperfusion injury. Biotech Histochem 2021; 97:237-246. [PMID: 34157912 DOI: 10.1080/10520295.2021.1937701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ischemia-reperfusion (IR) injury causes dysfunction of tissues and organs, and oxidative stress plays an important role. During IR, reactive oxygen species (ROS) are increased. Antioxidants are used to decrease ROS associated with IR. We review the protective effects of quercetin-rich natural antioxidants against IR. We searched PubMed, ScienceDirect, Scopus and Cochrane databases using the keywords: ischemic reperfusion, quercetin, antioxidant and herbal medicine. The effects of quercetin during IR have been reported for animal models in vitro and in vivo. Quercetin-rich plants including Abelmoschus esculentus, coriander, Hypericum perforatum, onion, Psidium guajava, buckwheat and Rosa laevigata Michx have been used to reduce oxidative stress damage to various organs during IR.
Collapse
Affiliation(s)
- Sara Sadat Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kazem Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Ghalenovi
- Faculty of Midwifery, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Roghayeh Javan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
37
|
Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, Liu J, Xiao G. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neurosci Ther 2021; 27:1012-1022. [PMID: 34151523 PMCID: PMC8339528 DOI: 10.1111/cns.13695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular dilation with normal or high intracranial pressure. The current regular treatment for hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure and complications. Meanwhile, considering that the current nonsurgical treatments of hydrocephalus can only relieve the symptoms but cannot eliminate this complication caused by primary brain injuries, the exploration of more effective therapies has become the focus for many researchers. In this article, the current research status and progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to provide new orientations for animal research and clinical practice.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoqiang Wang
- Department of Pediatric NeurosurgeryXinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Changwu Tan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuchang Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi Tang
- Department of NeurosurgeryHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Zhiping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
38
|
Cardozo V, Vaamonde L, Parodi-Talice A, Zuluaga MJ, Agrati D, Portela M, Lima A, Blasina F, Dajas F, Bedó G. Multitarget neuroprotection by quercetin: Changes in gene expression in two perinatal asphyxia models. Neurochem Int 2021; 147:105064. [PMID: 33951501 DOI: 10.1016/j.neuint.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) causes mortality and long-term neurologic morbidities in newborns, affecting pathways related to energy failure, excitotoxicity and oxidative stress that often lead to cell death. The whole process of HIE injury is coupled to changes in the expression of a great array of proteins. A nanoliposomal preparation of the flavonoid quercetin has been shown to exert neuroprotective effects in perinatal asphyxia models. This study aimed to identify neonatal HIE markers and explore the effect of quercetin administration in two perinatal asphyxia models: newborn rats and piglets. In the rat model, nanoliposomal quercetin administration reduced mortality after asphyxia. In the piglet model, quercetin partially overrode the reduction of HIF-1α mRNA levels in the cortex induced by asphyxia. Quercetin administration also reduced increased level of HO-1 mRNA in asphyctic piglets. These results suggest that quercetin neuroprotection might be involved in the regulation of HIF-1α, HO-1 and their targets. A proteomic approach revealed that the glycolytic pathway is strongly regulated by quercetin in both species. We also identified a set of proteins differentially expressed that could be further considered as markers. In piglets, this set includes Acidic Leucine-rich nuclear phosphoprotein 32 (ANP32A), associated with nervous system differentiation, proteins related with death pathways and alpha-enolase which can be converted to neuron-specific enolase, a glycolytic enzyme that may promote neuroprotection. In newborn rats, other promising proteins associated with neurogenesis and neuroprotection emerged, such as dihydropyrimidinase-related proteins, catalytic and regulatory subunits of phosphatases and heterogeneous nuclear ribonucleoprotein K (hnRNPK). Our results show that a nanoliposomal preparation of quercetin, with protective effect in two HIE mammal models, modulates the expression of proteins involved in energy metabolism and other putative neuroprotective signals in the cortex. Identification of these signals could reveal potential molecular pathways involved in disease onset and the novel quercetin neuroprotective strategy.
Collapse
Affiliation(s)
- V Cardozo
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - L Vaamonde
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Parodi-Talice
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay; Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - M J Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - D Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - M Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - F Blasina
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay.
| | - F Dajas
- Dept. Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - G Bedó
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
39
|
Neurological Alterations and Testicular Damages in Aging Induced by D-Galactose and Neuro and Testicular Protective Effects of Combinations of Chitosan Nanoparticles, Resveratrol and Quercetin in Male Mice. COATINGS 2021. [DOI: 10.3390/coatings11040435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aging is a neurological disease that is afforded by incidence of oxidative stress. Chitosan has received global interests due to its wide medical uses. Quercetin (Q) is a bioflavonoid and widely distributed in vegetables and fruits. Resveratrol is considered as a potent antioxidant and is a component of a wide range of foods. The using of either chitosan nanopartciles (CH-NPs), querectin (Q), and resveratrol (RV) to reduce the oxidative stress and biochemical alterations on brain and testicular tissues induced by D-galactose (DG) (100 mg/Kg) were the aim of the present study. This study investigated the probable protective effects of CH-NPs in two doses (140,280 mg/Kg), Q (20 mg/Kg) and RV (20 mg/Kg), against DG induced aging and neurological alterations. Brain antioxidant capacity as malonaldehyde (MDA), catalase (CAT), and glutathione reductase (GRx), as well as histopathological damages of the brain and testicular tissues were measured. The DG treated group had significantly elevated the oxidative stress markers by 96% and 91.4% in brain and testicular tissues respectively and lower significantly the antioxidant enzyme activities of both brain and testicular tissues than those of the control group by 86.95%, 69.27%, 83.07%, and 69.43%. Groups of DG that treated with a combination of CH-NPs in two doses, Q and RV, the levels of oxidative stress marker declined significantly by 68.70%, 76.64% in brain tissues and by 74.07% and 76.61% in testicular tissues, and the enzymatic antioxidants increased significantly by 75.55%, 79.24%, 62.32%, and 61.97% as compared to the DG group. The present results indicate that CH-NPs, Q, and RV have protective effects against DG-induced brain and testis tissue damage at the biochemical and histopathological levels. Mechanisms of this protective effect of used compounds against neurological and testicular toxicity may be due to the enhanced brain and testis antioxidant capacities.
Collapse
|
40
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
41
|
Quercetin Efficiently Alleviates TNF-α-Stimulated Injury by Signal Transducer and Activator of Transcription 1 and Mitogen-Activated Protein Kinase Pathway in H9c2 Cells: A Protective Role of Quercetin in Myocarditis. J Cardiovasc Pharmacol 2021; 77:570-577. [PMID: 33657050 DOI: 10.1097/fjc.0000000000001000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/29/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT This study aimed to evaluate the protective effect of quercetin and its in-depth mechanism in TNF-α-stimulated cardiomyocytes. The differential expression of TNF-alpha (TNF-α) and signal transducer and activator of transcription 1 (STAT1) was analyzed based on the GEO database. H9c2 cells were stimulated with TNF-α to simulate myocarditis. Cell counting kit-8 assay and flow cytometry assay were performed to detect the cell viability and apoptosis. ELISA was used to measure the levels of proinflammatory cytokines (IL-6 and IL-17A) and anti-inflammatory cytokine (IL-10). STAT1 expression was downregulated by transfection with si-STAT1, and its expression was detected using quantitative real-time polymerase chain reaction and Western blot. Western blot was also performed to assess the expression of the mitogen-activated protein kinase (MAPK) pathway-related factors. In this article, TNF-α was highly expressed in patients with myocarditis, and TNF-α (20 μg/mL) declined the viability of H9c2 cells. Quercetin pretreatment partially alleviated the decrease of cell viability, the increase of apoptosis, and the release of inflammatory cytokines (IL-10, IL-6, and IL-17A) induced by TNF-α. In addition, TNF-α increased STAT1 expression, but quercetin prevented the TNF-α-increased STAT1 level. Remarkably, knockdown of STAT1 enhanced the protective effect of quercetin on TNF-α-injured H9c2 cells. Moreover, quercetin restrained the TNF-α-induced activation of the MAPK pathway. Also, the inhibitory effect of quercetin on the pathway was aggravated by STAT1 lacking. In summing, quercetin plays a protective role in TNF-α-stimulated H9c2 cell injury, which may be related to the regulation of STAT1 and MAPK pathway.
Collapse
|
42
|
Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:25. [PMID: 33495733 PMCID: PMC7816146 DOI: 10.1186/s43094-020-00161-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Natural plants and plant-derived formulations have been used by mankind from the ancient period of time. For the past few years, many investigations elaborated the therapeutic potential of various secondary chemicals present in the plants. Literature revealed that the various secondary metabolites, viz. phenolics and flavonoids, are responsible for a variety of therapeutic action in humans. MAIN BODY In the present review, an attempt has been made to compile the exploration of natural phenolic compounds with major emphasis on flavonoids and their therapeutic potential too. Interestingly, long-term intake of many dietary foods (rich in phenolics) proved to be protective against the development and management of diabetes, cancer, osteoporosis, cardiovascular diseases and neurodegenerative diseases, etc. CONCLUSION This review presents an overview of flavonoid compounds to use them as a potential therapeutic alternative in various diseases and disorders. In addition, the present understanding of phenolics and flavonoids will serve as the basis for the next scientific studies.
Collapse
Affiliation(s)
- Rakesh E. Mutha
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Anilkumar U. Tatiya
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Sanjay J. Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| |
Collapse
|
43
|
Orhan IE. Cholinesterase Inhibitory Potential of Quercetin towards Alzheimer's Disease - A Promising Natural Molecule or Fashion of the Day? - A Narrowed Review. Curr Neuropharmacol 2021; 19:2205-2213. [PMID: 33213346 PMCID: PMC9185776 DOI: 10.2174/1570159x18666201119153807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 11/22/2022] Open
Abstract
Natural substances are known to have strong protective effects against neurodegenerative diseases. Among them, phenolic compounds, especially flavonoids, come to the fore with their neuroprotective effects. Since quercetin, which is found in many medicinal plants and foods, is also taken through diet, its physiological effects on humans are imperative. Many studies have been published up to date on the neuroprotective properties of quercetin, a flavanol derivative. However, there is no review published so far summarizing the effect of quercetin on the cholinesterase (ChE) enzymes related to the cholinergic hypothesis, which is one of the pathological mechanisms of Alzheimer's Disease (AD). However, ChE inhibitors, regardless of natural or synthetic, play a vital role in the treatment of AD. Although the number of studies on the ChE inhibitory effect of quercetin is limited, it deserves to be discussed in a review article. With this sensitivity, the neuroprotective effect of quercetin against AD through ChE inhibition was scrutinized in the current review study. In addition, studies on the bioavailability of quercetin and its capacity to cross the blood-brain barrier and how this capacity and bioavailability can be increased were given. Generally, studies containing data published in recent years were obtained from search engines such as PubMed, Scopus, and Medline and included herein. Consequently, quercetin should not be considered as a fashionable natural compound and should be identified as a promising compound, especially with increased bioavailability, for the treatment of AD.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330Ankara, Turkey
| |
Collapse
|
44
|
Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, Ashraf GM, Aleya L. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886:173412. [DOI: 10.1016/j.ejphar.2020.173412] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
|
45
|
α-Bisabolol, a Dietary Bioactive Phytochemical Attenuates Dopaminergic Neurodegeneration through Modulation of Oxidative Stress, Neuroinflammation and Apoptosis in Rotenone-Induced Rat Model of Parkinson's disease. Biomolecules 2020; 10:biom10101421. [PMID: 33049992 PMCID: PMC7599960 DOI: 10.3390/biom10101421] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
Rotenone (ROT), a plant-derived pesticide is a well-known environmental neurotoxin associated with causation of Parkinson’s disease (PD). ROT impairs mitochondrial dysfunction being mitochondrial complex-I (MC-1) inhibitor and perturbs antioxidant-oxidant balance that contributes to the onset and development of neuroinflammation and neurodegeneration in PD. Due to the scarcity of agents to prevent the disease or to cure or halt the progression of symptoms of PD, the focus is on exploring agents from naturally occurring dietary phytochemicals. Among numerous phytochemicals, α-Bisabolol (BSB), natural monocyclic sesquiterpene alcohol found in many ornamental flowers and edible plants garnered attention due to its potent pharmacological properties and therapeutic potential. Therefore, the present study investigated the neuroprotective effects of BSB in a rat model of ROT-induced dopaminergic neurodegeneration, a pathogenic feature of PD and underlying mechanism targeting oxidative stress, inflammation and apoptosis. BSB treatment significantly prevented ROT-induced loss of dopaminergic neurons and fibers in the substantia nigra and striatum respectively. BSB treatment also attenuated ROT-induced oxidative stress evidenced by inhibition of MDA formation and GSH depletion as well as improvement in antioxidant enzymes, SOD and catalase. BSB treatment also attenuated ROT-induced activation of the glial cells as well as the induction and release of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and inflammatory mediators (iNOS and COX-2) in the striatum. In addition to countering oxidative stress and inflammation, BSB also attenuated apoptosis of dopaminergic neurons by attenuating downregulation of anti-apoptotic protein Bcl-2 and upregulation of pro-apoptotic proteins Bax, cleaved caspases-3 and 9. Further, BSB was observed to attenuate mitochondrial dysfunction by inhibiting mitochondrial lipid peroxidation, cytochrome-C release and reinstates the levels/activity of ATP and MC-I. The findings of the study demonstrate that BSB treatment salvaged dopaminergic neurons, attenuated microglia and astrocyte activation, induction of inflammatory mediators, proinflammatory cytokines and reduced the expression of pro-apoptotic markers. The in vitro study on ABTS radical revealed the antioxidant potential of BSB. The results of the present study are clearly suggestive of the neuroprotective effects of BSB through antioxidant, anti-inflammatory and anti-apoptotic properties in ROT-induced model of PD.
Collapse
|
46
|
Aggarwal A, Sharma N, Khera A, Sandhir R, Rishi V. Quercetin alleviates cognitive decline in ovariectomized mice by potentially modulating histone acetylation homeostasis. J Nutr Biochem 2020; 84:108439. [DOI: 10.1016/j.jnutbio.2020.108439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
|
47
|
Sato S, Mukai Y. Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity. J Inflamm Res 2020; 13:421-431. [PMID: 32848440 PMCID: PMC7425105 DOI: 10.2147/jir.s228361] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity has become a major risk factor for the development of chronic diseases such as insulin resistance, type 2 diabetes mellitus, and cardiovascular disease. Moreover, obesity induces chronic inflammation in adipose tissue, liver, skeletal muscle, and the vascular system. Quercetin is the major representative of the flavonoid subclass of flavonols, which is ubiquitously contained within natural plants such as green tea, and vegetables, including onions and apples. Researchers have focused greater attention to the beneficial physiological roles of quercetin, which has anti-oxidative, anti-inflammatory, and anti-fibrotic effects on insulin resistance and atherosclerosis in obesity-related diseases. Also, the anti-inflammatory effects of quercetin on intestinal microbiota have been demonstrated in obesity. In addition, there is increasing evidence that quercetin is associated with epigenetic activities in cancer, and in maternal undernutrition during gestation and lactation. In this review, we focus on the chemical properties of quercetin, its dietary sources in obesity, and its anti-inflammatory effects on insulin resistance, atherosclerosis, intestinal microbiota, and maternal under-nutrition with epigenetic activity.
Collapse
Affiliation(s)
- Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori 030-8505, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa 238-8522, Japan
| |
Collapse
|
48
|
Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity Via Pro-Oxidant Properties. Int J Mol Sci 2020; 21:E3561. [PMID: 32443552 PMCID: PMC7279003 DOI: 10.3390/ijms21103561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Amyloid β (Aβ) aggregation has been the focus for a therapeutic target for the treatment of AD. Naturally occurring polyphenols have an inhibitory effect on Aβ aggregation and have attracted a lot of attention for the development of treatment strategies which could mitigate the symptoms of AD. However, considerable evidence has shown that the pro-oxidant mechanisms of polyphenols could have a deleterious effect. Our group has established an assay system to evaluate the pro-oxidant characteristics of chemical compounds, based on their reactivity with DNA. In this review, we have summarized the anti-Aβ aggregation and pro-oxidant properties of polyphenols. These findings could contribute to understanding the mechanism underlying the potential risk of polyphenols. We would like to emphasize the importance of assessing the pro-oxidant properties of polyphenols from a safety point of view.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| |
Collapse
|
49
|
Rivière G, Oueslati S, Gayral M, Créchet JB, Nhiri N, Jacquet E, Cintrat JC, Giraud F, van Heijenoort C, Lescop E, Pethe S, Iorga BI, Naas T, Guittet E, Morellet N. NMR Characterization of the Influence of Zinc(II) Ions on the Structural and Dynamic Behavior of the New Delhi Metallo-β-Lactamase-1 and on the Binding with Flavonols as Inhibitors. ACS OMEGA 2020; 5:10466-10480. [PMID: 32426604 PMCID: PMC7226869 DOI: 10.1021/acsomega.0c00590] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) has recently emerged as a global threat because of its ability to confer resistance to all common β-lactam antibiotics. Understanding the molecular basis of β-lactam hydrolysis by NDM is crucial for designing NDM inhibitors or β-lactams resistant to their hydrolysis. In this study, for the first time, NMR was used to study the influence of Zn(II) ions on the dynamic behavior of NDM-1. Our results highlighted that the binding of Zn(II) in the NDM-1 active site induced several structural and dynamic changes on active site loop 2 (ASL2) and L9 loops and on helix α2. We subsequently studied the interaction of several flavonols: morin, quercetin, and myricetin were identified as natural and specific inhibitors of NDM-1. Quercetin conjugates were also synthesized in an attempt to increase the solubility and bioavailability. Our NMR investigations on NDM-1/flavonol interactions highlighted that both Zn(II) ions and the residues of the NDM-1 ASL1, ASL2, and ASL4 loops are involved in the binding of flavonols. This is the first NMR interaction study of NDM-1/inhibitors, and the models generated using HADDOCK will be useful for the rational design of more active inhibitors, directed against NDM-1.
Collapse
Affiliation(s)
- Gwladys Rivière
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Saoussen Oueslati
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Maud Gayral
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay
(ICMMO), CNRS, Université Paris Sud, Université Paris-Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | | | - Naïma Nhiri
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Service
de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif/Yvette, France
| | - François Giraud
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Carine van Heijenoort
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Stéphanie Pethe
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Bogdan I. Iorga
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- . Phone:(33)145212019 or (33)145213030. Fax: (33)145216340
| | - Eric Guittet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Nelly Morellet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
- . Phone:(33)169823762. Fax: (33)169823784
| |
Collapse
|
50
|
Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants (Basel) 2020; 9:antiox9010061. [PMID: 31936711 PMCID: PMC7022568 DOI: 10.3390/antiox9010061] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are naturally occurring micronutrients that are present in many food sources. Besides being potent antioxidants, these molecules may also possess anti-inflammatory properties. Many studies have highlighted their potential role in the prevention and treatment of various pathological conditions connected to oxidative stress and inflammation (e.g., cancer, and cardiovascular and neurodegenerative disorders). Neurodegenerative diseases are globally one of the main causes of death and represent an enormous burden in terms of human suffering, social distress, and economic costs. Recent data expanded on the initial antioxidant-based mechanism of polyphenols’ action by showing that they are also able to modulate several cell-signaling pathways and mediators. The proposed benefits of polyphenols, either as protective/prophylactic substances or as therapeutic molecules, may be achieved by the consumption of a natural polyphenol-enriched diet, by their use as food supplements, or with formulations as pharmaceutical drugs/nutraceuticals. It has also been proved that the health effects of polyphenols depend on the consumed amount and their bioavailability. However, their overconsumption may raise safety concerns due to the accumulation of high levels of these molecules in the organism, particularly if we consider the loose regulatory legislation regarding the commercialization and use of food supplements. This review addresses the main beneficial effects of food polyphenols, and focuses on neuroprotection and the safety issues related to overconsumption.
Collapse
|