1
|
Kim JT, Han SW, Youn DH, Jung H, Lee EH, Kang SM, Cho YJ, Jeon JP. Advanced hydrogel mesh platform with neural stem cells and human umbilical vein endothelial cells for enhanced axonal regeneration. APL Bioeng 2025; 9:026101. [PMID: 40181802 PMCID: PMC11964475 DOI: 10.1063/5.0244057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/15/2025] [Indexed: 04/05/2025] Open
Abstract
One of the major obstacles to neural recovery following intracerebral hemorrhage (ICH) is the cavity-like lesion that occurs at the site of the hemorrhage, which impedes axonal regeneration. Here, we aim to address this challenge by investigating the migratory mechanisms of neural stem cells (NSCs) within the cavity in vitro using a hydrogel and endothelial cells. Mouse NSCs (mNSCs) isolated from the subventricular and subgranular zones using the 3D hydrogel culture were evaluated for their neurogenic, extracellular matrix (ECM), and adhesion-related mRNA expression compared to microglia (BV2) and secretory factors of human umbilical vein endothelial cells (HUVECs) in vitro and in vivo conditions. A hydrogel mesh combining mNSCs and HUVECs was developed for its therapeutic potential. mNSCs exhibit high stemness, neurogenesis, and ECM remodeling capabilities. mNSCs demonstrated close interaction with HUVECs and the surrounding vascular structures in in vitro and in vivo studies. Furthermore, mNSCs could degrade high concentrations of fibrin to facilitate migration and adhesion. mNSCs and HUVECs formed mesh networks through cell-cell contacts and maintained the structure through Matrigel support, potentially ensuring sufficient survival and regeneration capabilities. Our proposed hydrogel mesh platform with mNSCs and HUVECs demonstrated successful maintenance of cell survival and provision of structural support for the delivered cells by promoting ECM remodeling and neurogenesis, which may aid in axonal regeneration in the cavity lesions following ICH.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Eun-Ho Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
2
|
Mordecka-Chamera K, Pałasz A, Suszka-Świtek A, Bogus K, Skałba W, Piwowarczyk-Nowak A, Worthington JJ, Pukowiec M, Sharma V, Filipczyk Ł. Cerebral ischemia-reperfusion induces the expression of phoenixin receptor (GPR173) and adult neurogenesis marker proteins in the rat striatum. Brain Inj 2025; 39:457-463. [PMID: 40248874 DOI: 10.1080/02699052.2024.2443004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 04/19/2025]
Abstract
OBJECTIVE Brain ischemia is considered an extremely potent stress factor at the cellular and molecular level which may lead to massive neuronal death. Alternatively, short brain ischemia and reperfusion (I/R) can actually stimulate neurogenesis, angiogenesis and peptidergic signaling. There is little known about the potential effect of I/R on brain expression of the novel neuropeptide; phoenixin (PNX) and its receptor GPR173. METHODS The study was carried out on adult male Wistar rats divided into seven groups: control, sham operation and 5 ischemic experimental groups across the time course of reperfusion. We examined mRNA and protein expression of GPR173 and neurogenesis markers Musashi-1, doublecortin (DCX), and Sox-2 in the striatum. RESULTS GPR-173 positive cells were found only in the ischemic hemisphere, where Musashi-1, DCX and Sox-2-positive cells were also observed. Gene expression analysis also showed a significant increase of GPR-173 mRNA level in the I/R striatum in comparison with the control one. Results confirm previous findings suggesting that I/R stimulates adult neurogenesis in the striatum and affects peptidergic signaling in this structure. CONCLUSIONS A very fast occurence of GPR-173 expression revealed in the striatum may potentially be exclusively related to neuroprotective neurochemical changes that occur in this region after I/R.
Collapse
Affiliation(s)
- Kinga Mordecka-Chamera
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Władysław Skałba
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Marta Pukowiec
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Chen X, Lin W, Tortorella MD. Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 53:100520. [PMID: 40230658 PMCID: PMC11995107 DOI: 10.1016/j.ahjo.2025.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
The development of vascularized organoids as novel modelling tools of the human cardio-cerebrovascular system for preclinical research has become an essential platform for studying human vascularized tissues/organs for development of personalized therapeutics during recent decades. Organ-on-chip technology is promising for investigating physiological in vitro responses in drug screening development and advanced disease models. Vascularized tissue/organ-on-a-chip benefits every step of drug discovery pipeline as a screening tool with close human genome relevance to investigate human systems biology. Simultaneously, cardio-cerebrovascular-on-chip-integrated microfluidic system serves as an alternative to preclinical animal research for studying (patho-)physiological processes of human blood vessels during embryonic development and cardio-cerebrovascular disease. Integrated with next-generation techniques, such as three-dimensional bioprinting of both cells and matrix, may enable vascularized organoid-on-chip-based novel drug development as personalized therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Cardiovascular Research Institute & Department of Physiology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Weiping Lin
- Barts and The London School of Medicine and Dentistry, Queen Mary University, London, UK
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
| | - Micky Daniel Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Zhang L, Zhang C, Chen R, Zhang J, Liu Y, Du Y, Gao X, Shang W, Xu R, Zhang X. Dl-3-n-Butylphthalide Promotes Neurogenesis in Ischemic Stroke Mice Through Wnt/β-Catenin Signaling Activation and Neurotrophic Factor Production. Mol Neurobiol 2025:10.1007/s12035-025-04884-8. [PMID: 40172819 DOI: 10.1007/s12035-025-04884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Synchronized neurogenesis and angiogenesis after stroke have been well documented, and inducing neurovascular remodeling may provide a promising strategy to promote tissue repair and functional recovery. Dl-3-n-Butylphthalide (NBP) was reported to exert a potent angiogenic activity in rodent models of stroke. However, little is currently known regarding the effects and mechanisms of NBP on neurogenesis in ischemic stroke. This study aimed to determine whether and how NBP promotes neurogenesis in cerebral ischemic injury. Adult C57BL/6 mice, subjected to distal middle cerebral artery occlusion (dMCAO), were treated with NBP. The efficacy of NBP was assessed using neurologic deficits and infarct volume. Immunofluorescent staining was applied to evaluate neurogenesis. The regulation of the Wnt/β-catenin signaling pathway and the expression of neurotrophic factors were detected by western blotting and qRT-PCR. Administration of NBP reduced infarct volume and ameliorated neurological deficits after stroke. NBP promoted the proliferation of NSCs in the SVZ, migration of neuroblasts along the corpus callosum, and differentiation of neuroblasts toward neurons in the peri-infarct zone, resulting in restored neural function. Moreover, we revealed that NBP-induced neurogenesis was associated with the activation of the Wnt/β-catenin pathway, which was reversed by DKK1. In addition, NBP increased the production of VEGF and BDNF. Our data have unveiled the potentials of NBP to promote neurogenesis and neural functional recovery after stroke, depending on Wnt/β-catenin signaling activation and neurotrophic factor production. Thus, NBP may be a promising candidate for delayed treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Jian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
| | - Ying Liu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xuan Gao
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P.R. China
| | - Wenyan Shang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Renhao Xu
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, P.R. China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050000, P.R. China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, P.R. China.
| |
Collapse
|
5
|
Tariq R, Hussain N, Bajwa MH, Aziz HF, Shamim MS, Enam SA. Multicentric low-grade glioma: A systematic review of a rare neuro-oncological disease. Clin Neurol Neurosurg 2025; 251:108821. [PMID: 40068356 DOI: 10.1016/j.clineuro.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Multicentric and multifocal gliomas are rare and mainly described in high-grade gliomas, however, they have rarely been reported with LGG in about 2-10 % of all cases. This study aims to identify the reported multicentric low-grade gliomas (mLGGs) in literature and review their pathologies, management, and outcomes. METHODS A systematic search using a pre-defined search strategy was conducted across three databases (PubMed, Cochrane Library, and Scopus). Following the PRISMA guidelines, relevant articles were selected. The data including demographic details, clinical presentations, lesion locations, pathology, neurosurgical interventions, extent of resection, adjuvant therapies, and survival outcomes were reported. RESULTS We identified 36 patients across 17 studies. Presenting symptoms varied, with seizures (27.7 %) and headaches (22.2 %) being the most common. Typical imaging features involve hypo- to isotense signals on T1-weighted images and hyperintensity on T2-weighted images, with MR spectroscopy aiding in differentiation. Histological consistency across tumor sites was observed in 29 cases, with some variability in a few. Survival was 66.6 % among patients, and initial reports in the 1960s indicated high mortality due to intracranial pressure shifts. Adjuvant therapies included chemotherapy (14 patients) and radiotherapy (9 patients), though many cases lacked complete therapy data. Although chemotherapy and radiotherapy lacked a significant impact on progression-free survival, early, extensive resection remains advocated, with a mean progression-free survival of 30.14 months. CONCLUSION Most of the current evidence surrounding mLGG consists of case reports with few retrospective case series. Early, extensive resection appears to be the most effective approach for managing mLGG, while adjuvant therapies have limited impact on progression-free survival, highlighting the need for more comprehensive molecular profiling to guide treatment. Further research into standardized protocols for adjuvant therapies and long-term outcomes is essential to optimize survival and improve management of unresectable or recurrent cases.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Nowal Hussain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohammad Hamza Bajwa
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Muhammad Shahzad Shamim
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
6
|
Morishita R, Nakanishi S, Yokoyama T, Hoshi N, Mantani Y. Histological study on the postnatal development of the nerve network in the rat ileal mucosa and submucosa. Cell Tissue Res 2025; 400:71-80. [PMID: 39945853 PMCID: PMC11965212 DOI: 10.1007/s00441-025-03949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 04/04/2025]
Abstract
We have previously reported detailed structures of the mucosal nerve network in the rat ileum, but the mechanisms underlying the development of this nerve network remain unclear. Therefore, we aimed to clarify the developmental process of the mucosal nerve network and submucosal neurons (SM-neurons) or ganglia (SMG), which are the main source of nerve fibers projected to the mucosa, in the rat ileum during the postnatal period. Immunohistochemistry against tubulin beta III (Tuj1) revealed that Tuj1-immunopositivities were more abundant in the lamina propria at 2 weeks old (2wk; pre-weaning) than at postnatal day 0 (P0) or 4 weeks old (4wk; post-weaning) and more frequent on the mesenteric side than on the antimesenteric side at 2wk. Hu antigen D (HuD)-immunopositive SM-neurons and SMG were also more abundantly localized on the mesenteric side than the antimesenteric side at P0 and 2wk. On the other hand, cells immunopositive for SRY-related HMG-box 10 (Sox10), which is the marker for enteric nervous system progenitor cells and enteric glial cells, were homogenously scattered in the submucosa throughout the entire circumference at all ages. Glial cell marker S100 calcium-binding protein B (S100β) in the submucosa was detected at all ages without any significant difference between the mesenteric and antimesenteric sides. These findings indicate that SMG formation and associated neurite extension into the mucosa in the rat ileum might occur preferentially on the mesenteric side by the weaning period, leading us to hypothesize that the mechanism by which the mucosal nerve network and SMG develop differs along the mesenteric-antimesenteric side axis.
Collapse
Affiliation(s)
- Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
7
|
Fujii R, Nambu Y, Sawant Shirikant N, Furube E, Morita M, Yoshimura R, Miyata S. Neuronal regeneration in the area postrema of adult mouse medulla oblongata following glutamate-induced neuronal elimination. Neuroscience 2024; 563:188-201. [PMID: 39521321 DOI: 10.1016/j.neuroscience.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neural stem cells and/or progenitor cells (NSCs/NPCs) in the subventricular and subgranular zones of the adult mammal forebrain generate new neurons and are involved in partial repair after injury. Recently, NSCs/NPCs were identified in the area postrema (AP) of the medulla oblongata of the hindbrain. In this study, we used the properties of fenestrate capillaries to observe specific neuronal elimination in the AP of adult mice and investigated subsequent neuronal regeneration by neurogenesis. Subcutaneous administration of monosodium glutamate (MSG) induced prominent Fos expression in HuC/D+ neurons in the AP 2 h after administration. MSG administration caused a marked decrease in HuC/D+ neuronal density by neuronal death 3 to 21 days after administration, which recovered to the control level 35 days later. After MSG administration, the density of TUNEL+ dying neurons and phagocytic microglia surrounding or engulfing neurons increased. Within 7 days of MSG administration, the number of BrdU+ Sox2+ and BrdU+ Math1+ cells increased markedly, and at least the BrdU+ Math1+ cells similarly increased for the next following 7 days. A remarkable number of HuC/D+ neurons with BrdU+ nuclei were observed 35 days after MSG administration. This study reveals that neurogenesis occurs in the AP of adult mice, recovering and maintaining normal neuronal density after neuronal death.
Collapse
Affiliation(s)
- Rena Fujii
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuri Nambu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nitin Sawant Shirikant
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Department of Anatomy, Asahikawa Medical University School of Medicine, Midorigaoka, Asahikawa, Hokkaido 078-8510, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
8
|
Wu N, Li W, Chen Q, Chen M, Chen S, Cheng C, Xie Y. Research Advances in Neuroblast Migration in Traumatic Brain Injury. Mol Neurobiol 2024; 61:1-13. [PMID: 38507029 DOI: 10.1007/s12035-024-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Neuroblasts were first derived from the adult mammalian brains in the 1990s by Reynolds et al. Since then, persistent neurogenesis in the subgranular zone (SGZ) of the hippocampus and subventricular zone (SVZ) has gradually been recognized. To date, reviews on neuroblast migration have largely investigated glial cells and molecular signaling mechanisms, while the relationship between vasculature and cell migration remains a mystery. Thus, this paper underlines the partial biological features of neuroblast migration and unravels the significance and mechanisms of the vasculature in the process to further clarify theoretically the neural repair mechanism after brain injury. Neuroblast migration presents three modes according to the characteristics of cells that act as scaffolds during the migration process: gliophilic migration, neurophilic migration, and vasophilic migration. Many signaling molecules, including brain-derived neurotrophic factor (BDNF), stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and angiopoietin-1 (Ang-1), affect vasophilic migration, synergistically regulating the migration of neuroblasts to target areas along blood vessels. However, the precise role of blood vessels in the migration of neuroblasts needs to be further explored. The in-depth study of neuroblast migration will most probably provide theoretical basis and breakthrough for the clinical treatment of brain injury diseases.
Collapse
Affiliation(s)
- Na Wu
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Wenlang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qiang Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Meng Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Siyuan Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| |
Collapse
|
9
|
Grinchevskaya LR, Salikhova DI, Silachev DN, Goldshtein DV. Neural and Glial Regulation of Angiogenesis in CNS in Ischemic Stroke. Bull Exp Biol Med 2024:10.1007/s10517-024-06219-4. [PMID: 39266920 DOI: 10.1007/s10517-024-06219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 09/14/2024]
Abstract
CNS diseases associated with compromised blood supply and/or vascular integrity are one of the leading causes of mortality and disability in adults worldwide and are also among 10 most common causes of death in children. Angiogenesis is an essential element of regeneration processes upon nervous tissue damage and can play a crucial role in neuroprotection. Here we review the features of cerebral vascular regeneration after ischemic stroke, including the complex interactions between endothelial cells and other brain cell types (neural stem cells, astrocytes, microglia, and oligodendrocytes). The mechanisms of reciprocal influence of angiogenesis and neurogenesis, the role of astrocytes in the formation of the blood-brain barrier, and roles of microglia and oligodendrocytes in vascular regeneration are discussed. Understanding the mechanisms of angiogenesis regulation in CNS is of critical importance for the development of new treatments of neurovascular pathologies.
Collapse
Affiliation(s)
- L R Grinchevskaya
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia
| | - D I Salikhova
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia.
- Research Centre for Medical Genetics, Moscow, Russia.
| | - D N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D V Goldshtein
- Research Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
10
|
Michór P, Renardson L, Li S, Boltze J. Neurorestorative Approaches for Ischemic StrokeChallenges, Opportunities, and Recent Advances. Neuroscience 2024; 550:69-78. [PMID: 38763225 DOI: 10.1016/j.neuroscience.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Despite recent advances in acute stroke management, most patients experiencing a stroke will suffer from residual brain damage and functional impairment. Addressing those residual deficits would require neurorestoration, i.e., rebuilding brain tissue to repair the structural brain damage caused by stroke. However, there are major pathobiological, anatomical and technological hurdles making neurorestorative approaches remarkably challenging, and true neurorestoration after larger ischemic lesions could not yet be achieved. On the other hand, there has been steady advancement in our understanding of the limits of tissue regeneration in the adult mammalian brain as well as of the fundamental organization of brain tissue growth during embryo- and ontogenesis. This has been paralleled by the development of novel animal models to study stroke, advancement of biomaterials that can be used to support neurorestoration, and in stem cell technologies. This review gives a detailed explanation of the major hurdles so far preventing the achievement of neurorestoration after stroke. It will also describe novel concepts and advancements in biomaterial science, brain organoid culturing, and animal modeling that may enable the investigation of post-stroke neurorestorative approaches in translationally relevant setups. Finally, there will be a review of recent achievements in experimental studies that have the potential to be the starting point of research and development activities that may eventually bring post-stroke neurorestoration within reach.
Collapse
Affiliation(s)
- Paulina Michór
- University of Warwick, School of Life Sciences, Coventry CV4 7AL, United Kingdom
| | - Lydia Renardson
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, United Kingdom
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Johannes Boltze
- University of Warwick, School of Life Sciences, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
11
|
Purvis EM, Garcia-Epelboim AD, Krizman EN, O’Donnell JC, Cullen DK. A three-dimensional tissue-engineered rostral migratory stream as an in vitro platform for subventricular zone-derived cell migration. Front Bioeng Biotechnol 2024; 12:1410717. [PMID: 38933539 PMCID: PMC11199690 DOI: 10.3389/fbioe.2024.1410717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In the brains of most adult mammals, neural precursor cells (NPCs) from the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to replace olfactory bulb interneurons. Following brain injury, published studies have shown that NPCs can divert from the SVZ-RMS-OB route and migrate toward injured brain regions, but the quantity of arriving cells, the lack of survival and terminal differentiation of neuroblasts into neurons, and their limited capacity to re-connect into circuitry are insufficient to promote functional recovery in the absence of therapeutic intervention. Our lab has fabricated a biomimetic tissue-engineered rostral migratory stream (TE-RMS) that replicates some notable structural and functional components of the endogenous rat RMS. Based on the design attributes for the TE-RMS platform, it may serve as a regenerative medicine strategy to facilitate sustained neuronal replacement into an injured brain region or an in vitro tool to investigate cell-cell communication and neuroblast migration. Previous work has demonstrated that the TE-RMS replicates the basic structure, unique nuclear shape, cytoskeletal arrangement, and surface protein expression of the endogenous rat RMS. Here, we developed an enhanced TE-RMS fabrication method in hydrogel microchannels that allowed more robust and high-throughput TE-RMS assembly. We report unique astrocyte behavior, including astrocyte bundling into the TE-RMS, the presence of multiple TE-RMS bundles, and observations of discontinuities in TE-RMS bundles, when microtissues are fabricated in agarose microchannels containing different critical curved or straight geometric features. We also demonstrate that we can harvest NPCs from the SVZ of adult rat brains and that EGFP+ cells migrate in chain formation from SVZ neurospheres through the TE-RMS in vitro. Overall, the TE-RMS can be utilized as an in vitro platform to investigate the pivotal cell-cell signaling mechanisms underlying the synergy of molecular cues involved in immature neuronal migration and differentiation.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrés D. Garcia-Epelboim
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth N. Krizman
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Shen H, Ma Y, Qiao Y, Zhang C, Chen J, Zhang R. Application of Deferoxamine in Tissue Regeneration Attributed to Promoted Angiogenesis. Molecules 2024; 29:2050. [PMID: 38731540 PMCID: PMC11085206 DOI: 10.3390/molecules29092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Ran Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing 210009, China
| |
Collapse
|
13
|
Clark KJ, Lubin EE, Gonzalez EM, Sangree AK, Layo-Carris DE, Durham EL, Ahrens-Nicklas RC, Nomakuchi TT, Bhoj EJ. NeuroTri2-VISDOT: An open-access tool to harness the power of second trimester human single cell data to inform models of Mendelian neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578438. [PMID: 38352329 PMCID: PMC10862881 DOI: 10.1101/2024.02.01.578438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.
Collapse
Affiliation(s)
- Kelly J. Clark
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Emily E. Lubin
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Elizabeth M. Gonzalez
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Annabel K. Sangree
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | | | | | - Rebecca C. Ahrens-Nicklas
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| | | | - Elizabeth J. Bhoj
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| |
Collapse
|
14
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
15
|
Xiong F, Wei S, Wu S, Jiang W, Li B, Xuan H, Xue Y, Yuan H. Aligned Electroactive Electrospun Fibrous Scaffolds for Peripheral Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41385-41402. [PMID: 37606339 DOI: 10.1021/acsami.3c09237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Effective repair and functional recovery of large peripheral nerve deficits are urgent clinical needs. A biofunctional electroactive scaffold typically acts as a "bridge" for the repair of large nerve defects. In this study, we constructed a biomimetic piezoelectric and conductive aligned polypyrrole (PPy)/polydopamine (PDA)/poly-l-lactic acid (PLLA) electrospun fibrous scaffold to improve the hydrophilicity and cellular compatibility of PLLA and restore the weakened piezoelectric effect of PDA, which is beneficial in promoting Schwann cell differentiation and dorsal root ganglion neuronal extension and alignment. The aligned PPy/PDA/PLLA fibrous scaffold bridged the sciatic nerve of Sprague-Dawley rats with a 10 mm deficit, prevented autotomy, and promoted nerve regeneration and functional recovery, thereby activating the calcium and AMP-activated protein kinase signaling pathways. Therefore, electroactive fibrous scaffolds exhibit great potential for neural tissue regeneration.
Collapse
Affiliation(s)
- Feng Xiong
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Shuo Wei
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Shuyuan Wu
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Wei Jiang
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Biyun Li
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Ye Xue
- School of Life Sciences, Nantong University, 226019 Nantong, China
| | - Huihua Yuan
- School of Life Sciences, Nantong University, 226019 Nantong, China
| |
Collapse
|
16
|
Lopez-Virgen V, Gonzalez-Morales O, Gonzalez-Perez O. The ventricular-subventricular, subgranular and subcallosal zones: three niches of neural stem cells in the postnatal brain. Exp Brain Res 2023; 241:1463-1470. [PMID: 37083843 DOI: 10.1007/s00221-023-06621-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
In the postnatal brain, three regions show high mitotic activity. These brain areas are neurogenic niches, and each niche harbors a microenvironment favorable for the proliferation and differentiation of neural stem cells. These multipotential cells maintain the capacity to self-renew and generate intermediate precursors that will differentiate into neuronal and glial lineages (astrocytes and oligodendrocytes). The most well-studied niches are the ventricular-subventricular zone (V-SVZ) of the lateral ventricles, the subgranular zone (SGZ) of the dentate gyrus in the hippocampus, and the subcallosal zone (SCZ), located in the limit between the corpus callosum and the hippocampal formation. The discovery of these three neurogenic niches has gained much interest in the field because they may be a therapeutic alternative in neural regeneration and neurodegenerative disorders. In this review, we describe in brief all these regions and explain their potential impact on solving some neurological conditions.
Collapse
Affiliation(s)
- Verónica Lopez-Virgen
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Av. Universidad 333, 28040, Colima, COL, México
| | - Oscar Gonzalez-Morales
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 45201, Zapopan, JAL, Mexico
| | - Oscar Gonzalez-Perez
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Colima, Av. Universidad 333, 28040, Colima, COL, México.
| |
Collapse
|
17
|
Labusek N, Mouloud Y, Köster C, Diesterbeck E, Tertel T, Wiek C, Hanenberg H, Horn PA, Felderhoff-Müser U, Bendix I, Giebel B, Herz J. Extracellular vesicles from immortalized mesenchymal stromal cells protect against neonatal hypoxic-ischemic brain injury. Inflamm Regen 2023; 43:24. [PMID: 37069694 PMCID: PMC10108458 DOI: 10.1186/s41232-023-00274-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Human mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) revealed neuroprotective potentials in various brain injury models, including neonatal encephalopathy caused by hypoxia-ischemia (HI). However, for clinical translation of an MSC-EV therapy, scaled manufacturing strategies are required, which is challenging with primary MSCs due to inter- and intra-donor heterogeneities. Therefore, we established a clonally expanded and immortalized human MSC line (ciMSC) and compared the neuroprotective potential of their EVs with EVs from primary MSCs in a murine model of HI-induced brain injury. In vivo activities of ciMSC-EVs were comprehensively characterized according to their proposed multimodal mechanisms of action. METHODS Nine-day-old C57BL/6 mice were exposed to HI followed by repetitive intranasal delivery of primary MSC-EVs or ciMSC-EVs 1, 3, and 5 days after HI. Sham-operated animals served as healthy controls. To compare neuroprotective effects of both EV preparations, total and regional brain atrophy was assessed by cresyl-violet-staining 7 days after HI. Immunohistochemistry, western blot, and real-time PCR were performed to investigate neuroinflammatory and regenerative processes. The amount of peripheral inflammatory mediators was evaluated by multiplex analyses in serum samples. RESULTS Intranasal delivery of ciMSC-EVs and primary MSC-EVs comparably protected neonatal mice from HI-induced brain tissue atrophy. Mechanistically, ciMSC-EV application reduced microglia activation and astrogliosis, endothelial activation, and leukocyte infiltration. These effects were associated with a downregulation of the pro-inflammatory cytokine IL-1 beta and an elevated expression of the anti-inflammatory cytokines IL-4 and TGF-beta in the brain, while concentrations of cytokines in the peripheral blood were not affected. ciMSC-EV-mediated anti-inflammatory effects in the brain were accompanied by an increased neural progenitor and endothelial cell proliferation, oligodendrocyte maturation, and neurotrophic growth factor expression. CONCLUSION Our data demonstrate that ciMSC-EVs conserve neuroprotective effects of primary MSC-EVs via inhibition of neuroinflammation and promotion of neuroregeneration. Since ciMSCs can overcome challenges associated with MSC heterogeneity, they appear as an ideal cell source for the scaled manufacturing of EV-based therapeutics to treat neonatal and possibly also adult brain injury.
Collapse
Affiliation(s)
- Nicole Labusek
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Eva Diesterbeck
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Josephine Herz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
18
|
Yu Q, Jian Z, Yang D, Zhu T. Perspective insights into hydrogels and nanomaterials for ischemic stroke. Front Cell Neurosci 2023; 16:1058753. [PMID: 36761147 PMCID: PMC9902513 DOI: 10.3389/fncel.2022.1058753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Ischemic stroke (IS) is a neurological disorder prevalent worldwide with a high disability and mortality rate. In the clinic setting, tissue plasminogen activator (tPA) and thrombectomy could restore blood flow of the occlusion region and improve the outcomes of IS patients; however, these therapies are restricted by a narrow time window. Although several preclinical trials have revealed the molecular and cellular mechanisms underlying infarct lesions, the translatability of most findings is unsatisfactory, which contributes to the emergence of new biomaterials, such as hydrogels and nanomaterials, for the treatment of IS. Biomaterials function as structural scaffolds or are combined with other compounds to release therapeutic drugs. Biomaterial-mediated drug delivery approaches could optimize the therapeutic effects based on their brain-targeting property, biocompatibility, and functionality. This review summarizes the advances in biomaterials in the last several years, aiming to discuss the therapeutic potential of new biomaterials from the bench to bedside. The promising prospects of new biomaterials indicate the possibility of an organic combination between materialogy and medicine, which is a novel field under exploration.
Collapse
Affiliation(s)
- Qingbo Yu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Zhang Jian
- Sichuan Provincial Maternity and Child Health Care Hospital, Women’s and Children’s Hospital Affiliated of Chengdu Medical College, Chengdu, China
| | - Dan Yang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, China
| | - Tao Zhu
- Laboratory of Anesthesia & Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Tao Zhu,
| |
Collapse
|
19
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
20
|
Monsour M, Garbuzova-Davis S, Borlongan CV. Patching Up the Permeability: The Role of Stem Cells in Lessening Neurovascular Damage in Amyotrophic Lateral Sclerosis. Stem Cells Transl Med 2022; 11:1196-1209. [PMID: 36181767 PMCID: PMC9801306 DOI: 10.1093/stcltm/szac072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating disease with poor prognosis. The pathophysiology of ALS is commonly debated, with theories involving inflammation, glutamate excitotoxity, oxidative stress, mitochondria malfunction, neurofilament accumulation, inadequate nutrients or growth factors, and changes in glial support predominating. These underlying pathological mechanisms, however, act together to weaken the blood brain barrier and blood spinal cord barrier, collectively considered as the blood central nervous system barrier (BCNSB). Altering the impermeability of the BCNSB impairs the neurovascular unit, or interdependent relationship between the brain and advances the concept that ALS is has a significant neurovascular component contributing to its degenerative presentation. This unique categorization of ALS opens a variety of treatment options targeting the reestablishment of BCNSB integrity. This review will critically assess the evidence implicating the significant neurovascular components of ALS pathophysiology, while also offering an in-depth discussion regarding the use of stem cells to repair these pathological changes within the neurovascular unit.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Corresponding author: Cesar V. Borlongan, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
21
|
Paro MR, Chakraborty AR, Angelo S, Nambiar S, Bulsara KR, Verma R. Molecular mediators of angiogenesis and neurogenesis after ischemic stroke. Rev Neurosci 2022; 34:425-442. [PMID: 36073599 DOI: 10.1515/revneuro-2022-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
The mechanisms governing neurological and functional recovery after ischemic stroke are incompletely understood. Recent advances in knowledge of intrinsic repair processes of the CNS have so far translated into minimal improvement in outcomes for stroke victims. Better understanding of the processes underlying neurological recovery after stroke is necessary for development of novel therapeutic approaches. Angiogenesis and neurogenesis have emerged as central mechanisms of post-stroke recovery and potential targets for therapeutics. Frameworks have been developed for conceptualizing cerebral angiogenesis and neurogenesis at the tissue and cellular levels. These models highlight that angiogenesis and neurogenesis are linked to each other and to functional recovery. However, knowledge of the molecular framework linking angiogenesis and neurogenesis after stroke is limited. Studies of potential therapeutics typically focus on one mediator or pathway with minimal discussion of its role within these multifaceted biochemical processes. In this article, we briefly review the current understanding of the coupled processes of angiogenesis and neurogenesis after stroke. We then identify the molecular mediators and signaling pathways found in pre-clinical studies to upregulate both processes after stroke and contextualizes them within the current framework. This report thus contributes to a more-unified understanding of the molecular mediators governing angiogenesis and neurogenesis after stroke, which we hope will help guide the development of novel therapeutic approaches for stroke survivors.
Collapse
Affiliation(s)
- Mitch R Paro
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Arijit R Chakraborty
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Sophia Angelo
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Shyam Nambiar
- University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, USA
| | - Ketan R Bulsara
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Division of Neurosurgery, University of Connecticut Health, 135 Dowling Way, Farmington, CT 06030, USA
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
22
|
Porter DDL, Henry SN, Ahmed S, Rizzo AL, Makhlouf R, Gregg C, Morton PD. Neuroblast migration along cellular substrates in the developing porcine brain. Stem Cell Reports 2022; 17:2097-2110. [PMID: 35985331 PMCID: PMC9481921 DOI: 10.1016/j.stemcr.2022.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
In the past decade it has become evident that neuroblasts continue to supply the human cortex with interneurons via unique migratory streams shortly following birth. Owing to the size of the human brain, these newborn neurons must migrate long distances through complex cellular landscapes to reach their final locations. This process is poorly understood, largely because of technical difficulties in acquiring and studying neurotypical postmortem human samples along with diverging developmental features of well-studied mouse models. We reasoned that migratory streams of neuroblasts utilize cellular substrates, such as blood vessels, to guide their trek from the subventricular zone to distant cortical targets. Here, we evaluate the association between young interneuronal migratory streams and their preferred cellular substrates in gyrencephalic piglets during the developmental equivalent of human birth, infancy, and toddlerhood. Migratory streams of neuroblasts are preserved through postnatal swine development Evidence of young neocortical interneurons within migratory streams Neuroblasts are tightly associated with vascular and astrocytic cellular substrates Harm to migratory interneurons or their substrates may have lifelong consequences
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sara N Henry
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sadia Ahmed
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Amy L Rizzo
- Office of the University Veterinarian & Animal Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Collin Gregg
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
23
|
Yan Y, Dai W, Mei Q. Multicentric Glioma: An Ideal Model to Reveal the Mechanism of Glioma. Front Oncol 2022; 12:798018. [PMID: 35747806 PMCID: PMC9209746 DOI: 10.3389/fonc.2022.798018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
As a special type of glioma, multicentric glioma provides an ideal pathological model for glioma research. According to the stem-cell-origin theory, multiple lesions of multicentric glioma share the same neuro-oncological origin, both in gene level and in cell level. Although the number of studies focusing on genetic evolution in gliomas with the model of multicentric gliomas were limited, some mutations, including IDH1 mutations, TERTp mutations and PTEN deletions, are found to be at an early stage in the process of genetic aberrance during glioma evolution based on the results of these studies. This article reviews the clinical reports and genetic studies of multicentric glioma, and intends to explain the various clinical phenomena of multicentric glioma from the perspective of genetic aberrance accumulation and tumor cell evolution. The malignant degree of a glioma is determined by both the tumorigenicity of early mutant genes, and the stemness of early suffered cells.
Collapse
Affiliation(s)
- Yong Yan
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Dai
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyong Mei
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
Systemic Maternal Human sFLT1 Overexpression Leads to an Impaired Foetal Brain Development of Growth-Restricted Foetuses upon Experimental Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3024032. [PMID: 35693702 PMCID: PMC9184195 DOI: 10.1155/2022/3024032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
The pregnancy disorder preeclampsia (PE) is characterized by maternal hypertension, increased level of circulating antiangiogenic soluble fms-like tyrosine kinase-1 (sFLT1), and reduced placental perfusion, leading to foetal growth restriction (FGR) and preterm birth. All these adverse effects are associated with neurocognitive disorders in the offspring. However, the direct interplay between increased antiangiogenesis during PE and disturbed foetal brain development independent of prematurity has not been investigated yet. To examine foetal brain development in sFLT1-related PE, hsFLT1/rtTA-transgenic mice with systemic (maternal or maternal/fetoplacental) human sFLT1 (hsFLT1) overexpression since 10.5 days postconception (dpc) were used, and histological and molecular analyses of foetal brains were performed at 18.5 dpc. Consequences of elevated hsFLT1 on placental/foetal vascularization and hypoxia of placentas and foetal brains were analysed using the hypoxia markers pimonidazole and hemeoxygenase-1 (HO-1). Immunohistochemical analysis revealed increased hypoxia in placentas of PE-affected pregnancies. Moreover, an increase in HO-1 expression was observed upon elevated hsFLT1 in placentas and foetal brains. PE foetuses revealed asymmetrical FGR by increased brain/liver weight ratio. The brain volume was reduced combined with a reduction in the cortical/hippocampal area and an increase of the caudate putamen and its neuroepithelium, which was associated with a reduced cell density in the cortex and increased cell density in the caudate putamen upon hsFLT1 overexpression. Mild influences were observed on brain vasculature shown by free iron deposits and mRNA changes in Vegf signalling. Of note, both types of systemic hsFLT1 overexpression (indirect: maternal or direct: maternal/fetoplacental) revealed similar changes with increasing severity of impaired foetal brain development. Overall, circulating hsFLT1 in PE pregnancies impaired uteroplacental perfusion leading to disturbed foetal oxygenation and brain injury. This might be associated with a disturbed cell migration from the caudate putamen neuroepithelium to the cortex which could be due to disturbed cerebrovascular adaption.
Collapse
|
25
|
Kolbinger A, Kestner RI, Jencio L, Schäufele TJ, Vutukuri R, Pfeilschifter W, Scholich K. Behind the Wall-Compartment-Specific Neovascularisation during Post-Stroke Recovery in Mice. Cells 2022; 11:1659. [PMID: 35626695 PMCID: PMC9139871 DOI: 10.3390/cells11101659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a highly prevalent vascular disease leading to oxygen- and glucose deprivation in the brain. In response, ischemia-induced neovascularization occurs, which is supported by circulating CD34+ endothelial progenitor cells. Here, we used the transient middle cerebral artery occlusion (tMCAO) mouse model to characterize the spatio-temporal alterations within the ischemic core from the acute to the chronic phase using multiple-epitope-ligand cartography (MELC) for sequential immunohistochemistry. We found that around 14 days post-stroke, significant angiogenesis occurs in the ischemic core, as determined by the presence of CD31+/CD34+ double-positive endothelial cells. This neovascularization was accompanied by the recruitment of CD4+ T-cells and dendritic cells as well as IBA1+ and IBA1- microglia. Neighborhood analysis identified, besides pericytes only for T-cells and dendritic cells, a statistically significant distribution as direct neighbors of CD31+/CD34+ endothelial cells, suggesting a role for these cells in aiding angiogenesis. This process was distinct from neovascularization of the peri-infarct area as it was separated by a broad astroglial scar. At day 28 post-stroke, the scar had emerged towards the cortical periphery, which seems to give rise to a neuronal regeneration within the peri-infarct area. Meanwhile, the ischemic core has condensed to a highly vascularized subpial region adjacent to the leptomeningeal compartment. In conclusion, in the course of chronic post-stroke regeneration, the astroglial scar serves as a seal between two immunologically active compartments-the peri-infarct area and the ischemic core-which exhibit distinct processes of neovascularization as a central feature of post-stroke tissue remodeling. Based on our findings, we propose that neovascularization of the ischemic core comprises arteriogenesis as well as angiogenesis originating from the leptomenigeal vasculature.
Collapse
Affiliation(s)
- Anja Kolbinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
| | - Roxane Isabelle Kestner
- Department of Neurology, Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (R.I.K.); (L.J.)
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
| | - Lara Jencio
- Department of Neurology, Hospital of the Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (R.I.K.); (L.J.)
| | - Tim J. Schäufele
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
| | - Rajkumar Vutukuri
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
| | - Waltraud Pfeilschifter
- Institute of Pharmacology and Toxicology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (R.V.); (W.P.)
- Department of Neurology and Clinical Neurophysiology, Municipal Hospital Lüneburg, D-21339 Lüneburg, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt Goethe-University, D-60590 Frankfurt am Main, Germany; (A.K.); (T.J.S.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Collins MN, Zamboni F, Serafin A, Escobar A, Stepanian R, Culebras M, Reis RL, Oliveira JM. Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging. IN VITRO MODELS 2022; 1:129-150. [PMID: 39872806 PMCID: PMC11756503 DOI: 10.1007/s44164-022-00013-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/30/2025]
Abstract
Stimulating brain tissue regeneration is a major challenge after central nervous system (CNS) injury, such as those observed from trauma or cerebrovascular accidents. Full regeneration is difficult even when a neurogenesis-associated repair response may occur. Currently, there are no effective treatments to stimulate brain tissue regeneration. However, biomaterial scaffolds are showing promising results, where hydrogels are the materials of choice to develop these supportive scaffolds for cell carriers. Their combination with growth factors, such as brain-derived neurotrophic factor (BDNF), basic fibroblast growth factor (bFGF), or vascular endothelial growth factor (VEGF), together with other cell therapy strategies allows the prevention of further neuronal death and can potentially lead to the direct stimulation of neurogenesis and vascularisation at the injured site. Imaging of the injured site is particularly critical to study the reestablishment of neural cell functionality after brain tissue injury. This review outlines the latest key advances associated with different strategies aiming to promote the neuroregeneration, imaging, and functional recovery of brain tissue. Graphical abstract
Collapse
Affiliation(s)
- Maurice N. Collins
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
- SFI AMBER, University of Limerick, Limerick, Ireland
| | - Fernanda Zamboni
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Aleksandra Serafin
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ane Escobar
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Romain Stepanian
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
| | - Mario Culebras
- School of Engineering and Bernal Institute, University of Limerick, Limerick, Ireland
- SFI AMBER, University of Limerick, Limerick, Ireland
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, University of Minho, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães Portugal
| |
Collapse
|
27
|
Garcia FJ, Sun N, Lee H, Godlewski B, Mathys H, Galani K, Zhou B, Jiang X, Ng AP, Mantero J, Tsai LH, Bennett DA, Sahin M, Kellis M, Heiman M. Single-cell dissection of the human brain vasculature. Nature 2022; 603:893-899. [PMID: 35158371 PMCID: PMC9680899 DOI: 10.1038/s41586-022-04521-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Despite the importance of the cerebrovasculature in maintaining normal brain physiology and in understanding neurodegeneration and drug delivery to the central nervous system1, human cerebrovascular cells remain poorly characterized owing to their sparsity and dispersion. Here we perform single-cell characterization of the human cerebrovasculature using both ex vivo fresh tissue experimental enrichment and post mortem in silico sorting of human cortical tissue samples. We capture 16,681 cerebrovascular nuclei across 11 subtypes, including endothelial cells, mural cells and three distinct subtypes of perivascular fibroblast along the vasculature. We uncover human-specific expression patterns along the arteriovenous axis and determine previously uncharacterized cell-type-specific markers. We use these human-specific signatures to study changes in 3,945 cerebrovascular cells from patients with Huntington's disease, which reveal activation of innate immune signalling in vascular and glial cell types and a concomitant reduction in the levels of proteins critical for maintenance of blood-brain barrier integrity. Finally, our study provides a comprehensive molecular atlas of the human cerebrovasculature to guide future biological and therapeutic studies.
Collapse
Affiliation(s)
- Francisco J Garcia
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Na Sun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Hyeseung Lee
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brianna Godlewski
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyriaki Galani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Blake Zhou
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ayesha P Ng
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julio Mantero
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
28
|
Ma Y, Yang S, He Q, Zhang D, Chang J. The Role of Immune Cells in Post-Stroke Angiogenesis and Neuronal Remodeling: The Known and the Unknown. Front Immunol 2022; 12:784098. [PMID: 34975872 PMCID: PMC8716409 DOI: 10.3389/fimmu.2021.784098] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Following a cerebral ischemic event, substantial alterations in both cellular and molecular activities occur due to ischemia-induced cerebral pathology. Mounting evidence indicates that the robust recruitment of immune cells plays a central role in the acute stage of stroke. Infiltrating peripheral immune cells and resident microglia mediate neuronal cell death and blood-brain barrier disruption by releasing inflammation-associated molecules. Nevertheless, profound immunological effects in the context of the subacute and chronic recovery phase of stroke have received little attention. Early attempts to curtail the infiltration of immune cells were effective in mitigating brain injury in experimental stroke studies but failed to exert beneficial effects in clinical trials. Neural tissue damage repair processes include angiogenesis, neurogenesis, and synaptic remodeling, etc. Post-stroke inflammatory cells can adopt divergent phenotypes that influence the aforementioned biological processes in both endothelial and neural stem cells by either alleviating acute inflammatory responses or secreting a variety of growth factors, which are substantially involved in the process of angiogenesis and neurogenesis. To better understand the multiple roles of immune cells in neural tissue repair processes post stroke, we review what is known and unknown regarding the role of immune cells in angiogenesis, neurogenesis, and neuronal remodeling. A comprehensive understanding of these inflammatory mechanisms may help identify potential targets for the development of novel immunoregulatory therapeutic strategies that ameliorate complications and improve functional rehabilitation after stroke.
Collapse
Affiliation(s)
- Yinzhong Ma
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qianyan He
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dianhui Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
29
|
Elorza Ridaura I, Sorrentino S, Moroni L. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101837. [PMID: 34693660 PMCID: PMC8655224 DOI: 10.1002/advs.202101837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 05/10/2023]
Abstract
Neurovascular disorders, which involve the vascular and nervous systems, are common. Research on such disorders usually focuses on either vascular or nervous components, without looking at how they interact. Adopting a neurovascular perspective is essential to improve current treatments. Therefore, comparing molecular processes known to be involved in both systems separately can provide insight into promising areas of future research. Since development and regeneration share many mechanisms, comparing signaling molecules involved in both the developing vascular and nervous systems and shedding light to those that they have in common can reveal processes, which have not yet been studied from a regenerative perspective, yet hold great potential. Hence, this review discusses and compares processes involved in the development of the vascular and nervous systems, in order to provide an overview of the molecular mechanisms, which are most promising with regards to treatment for neurovascular disorders. Vascular endothelial growth factor, semaphorins, and ephrins are found to hold the most potential, while fibroblast growth factor, bone morphogenic protein, slits, and sonic hedgehog are shown to participate in both the developing vascular and nervous systems, yet have not been studied at the neurovascular level, therefore being of special interest for future research.
Collapse
Affiliation(s)
- Idoia Elorza Ridaura
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefano Sorrentino
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| |
Collapse
|
30
|
Sorrentino S, Polini A, Arima V, Romano A, Quattrini A, Gigli G, Mozetic P, Moroni L. Neurovascular signals in amyotrophic lateral sclerosis. Curr Opin Biotechnol 2021; 74:75-83. [PMID: 34800850 DOI: 10.1016/j.copbio.2021.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS) is a complex anatomic-functional unit that synergically works to maintain organs/tissues homeostasis of the entire body. NVS alterations have recently emerged as a common distinct feature in the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Despite their undeniable involvement, neurovascular signalling pathways remain still far unknown in ALS. This review underlines the importance of endothelial, mural, and fibroblast cells as novel targets for ALS investigation and identifies in the interplay between neuronal and vascular systems the way to disclose novel molecular mechanisms behind the pathogenesis of ALS.
Collapse
Affiliation(s)
- Stefano Sorrentino
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Polini
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Valentina Arima
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Romano
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Angelo Quattrini
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giuseppe Gigli
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Pamela Mozetic
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lorenzo Moroni
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229ER, Maastricht, The Netherlands.
| |
Collapse
|
31
|
Liu Y, Long L, Zhang F, Hu X, Zhang J, Hu C, Wang Y, Xu J. Microneedle-mediated vascular endothelial growth factor delivery promotes angiogenesis and functional recovery after stroke. J Control Release 2021; 338:610-622. [PMID: 34481025 DOI: 10.1016/j.jconrel.2021.08.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke is still the major cause of disability worldwide. Although vascular endothelial growth factor (VEGF) is able to promote both angiogenesis and functional recovery, its use is limited by needle-induced injury, nonhomogenous VEGF distribution, and limited VEGF retention in the brain after intracranial or intravenous injection. Here, we first present a gelatin methacryloyl (GelMA) microneedle (MN)-based platform for the sustained and controlled local delivery of an adeno-associated virus (AAV) expressing human VEGF (AAV-VEGF) that achieves homogenous distribution and high transfection efficiency in ischemic brains. An ischemic stroke model was established in adult rats, and MNs loaded with AAV-VEGF were epicortically inserted into both the ischemic core and penumbra of these rats one day after the onset of ischemia. One week later, the inflammatory response and microneedle biocompatibility were assessed by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. Eight weeks later, angiogenesis and neural stem cell proliferation and migration were assessed. GelMA MN implantation did not elicit an obvious inflammatory response and had good biocompatibility in the brain. AAV-green fluorescent protein (GFP)-loaded MNs could achieve successful transfection and homogeneous distribution in the brain cortex three weeks postoperatively. MNs loaded with AAV-VEGF increased VEGF expression and enhanced functional angiogenesis and neurogenesis. In summary, MNs might emerge as a promising platform for delivering various therapeutics to treat ischemic stroke and repair other neurologically diseased tissues.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
Kamimura D, Tanaka Y, Hasebe R, Murakami M. Bidirectional communication between neural and immune systems. Int Immunol 2021; 32:693-701. [PMID: 31875424 DOI: 10.1093/intimm/dxz083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
The immune and nervous systems share many features, including receptor and ligand expression, enabling efficient communication between the two. Accumulating evidence suggests that the communication is bidirectional, with the neural system regulating immune cell functions and vice versa. Steroid hormones from the hypothalamus-pituitary-adrenal gland axis are examples of systemic regulators for this communication. Neural reflexes describe regional regulation mechanisms that are a historically new concept that helps to explain how the neural and body systems including immune system communicate. Several recently identified neural reflexes, including the inflammatory reflex and gateway reflex, significantly impact the activation status of the immune system and are associated with inflammatory diseases and disorders. Either pro-inflammatory or anti-inflammatory effects can be elicited by these neural reflexes. On the other hand, the activities of immune cells during inflammation, for example the secretion of inflammatory mediators, can affect the functions of neuronal systems via neural reflexes and modulate biological outputs via specific neural pathways. In this review article, we discuss recent advances in the understanding of bidirectional neuro-immune interactions, with a particular focus on neural reflexes.
Collapse
Affiliation(s)
- Daisuke Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
33
|
Zhao L, Liu JW, Shi HY, Ma YM. Neural stem cell therapy for brain disease. World J Stem Cells 2021; 13:1278-1292. [PMID: 34630862 PMCID: PMC8474718 DOI: 10.4252/wjsc.v13.i9.1278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/28/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovascular diseases, and traumatic brain injuries, are among the major disorders influencing human health, currently with no effective therapy. Due to the low regeneration capacity of neurons, insufficient secretion of neurotrophic factors, and the aggravation of ischemia and hypoxia after nerve injury, irreversible loss of functional neurons and nerve tissue damage occurs. This damage is difficult to repair and regenerate the central nervous system after injury. Neural stem cells (NSCs) are pluripotent stem cells that only exist in the central nervous system. They have good self-renewal potential and ability to differentiate into neurons, astrocytes, and oligodendrocytes and improve the cellular microenvironment. NSC transplantation approaches have been made for various neurodegenerative disorders based on their regenerative potential. This review summarizes and discusses the characteristics of NSCs, and the advantages and effects of NSCs in the treatment of brain diseases and limitations of NSC transplantation that need to be addressed for the treatment of brain diseases in the future.
Collapse
Affiliation(s)
- Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jian-Wei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui-Yan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Ya-Min Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
34
|
Zhang Y, Xie B, Yuan Y, Zhou T, Xiao P, Wu Y, Shang Y, Yuan S, Zhang J. (R,S)-Ketamine Promotes Striatal Neurogenesis and Sensorimotor Recovery Through Improving Poststroke Depression–Mediated Decrease in Atrial Natriuretic Peptide. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:90-100. [PMID: 36324997 PMCID: PMC9616367 DOI: 10.1016/j.bpsgos.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Poststroke social isolation could worsen poststroke depression and dampen neurogenesis. (R,S)-ketamine has antidepressant and neuroprotective effects; however, its roles and mechanisms in social isolation–mediated depressive-like behaviors and sensorimotor recovery remain unclear. Methods Mice were subjected to transient middle cerebral artery occlusion, and then were pair-housed with ovariectomized female mice or were housed isolated (ISO) starting at 3 days postischemia. ISO mice received 2 weeks of (R,S)-ketamine treatment starting at 14 days postischemia. Primary ependymal epithelial cells and choroid plexus epithelial cells were cultured and treated with recombinant human atrial natriuretic peptide (ANP) protein. Results The poststroke social isolation model was successfully established using middle cerebral artery occlusion combined with poststroke isolation, as demonstrated by a more prominent depression-like phenotype in ISO mice compared with pair-housed mice. (R,S)-ketamine reversed ISO-mediated depressive-like behaviors and increased ANP levels in the atrium. The depression-like phenotype was negatively correlated with ANP levels in both the atrium and plasma. Atrial GLP-1 and GLP-1 receptor signaling was essential to the promoting effects of (R,S)-ketamine on the synthesis and secretion of ANP from the atrium in ISO mice. (R,S)-ketamine also increased ANP and TGF-β1 levels in the choroid plexus of ISO mice. Recombinant human ANP increased TGF-β1 levels in both the primarily cultured ependymal epithelial cells and choroid plexus epithelial cells. Furthermore, (R,S)-ketamine increased TGF-β1 levels in the ischemic hemisphere and promoted striatal neurogenesis and sensorimotor recovery via ANP in ISO mice. Conclusions (R,S)-ketamine alleviated poststroke ISO-mediated depressive-like behaviors and thus promoted striatal neurogenesis and sensorimotor recovery via ANP.
Collapse
|
35
|
An implantable human stem cell-derived tissue-engineered rostral migratory stream for directed neuronal replacement. Commun Biol 2021; 4:879. [PMID: 34267315 PMCID: PMC8282659 DOI: 10.1038/s42003-021-02392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into lesions has improved recovery in rodent studies. We previously developed techniques for fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here, we demonstrate that astrocyte-like-cells can be derived from adult human gingiva mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emulating the brain’s most efficient means for directing neuroblast migration, the TE-RMS offers a promising new approach to neuroregenerative medicine. O’Donnell et al. describe their Tissue-Engineered Rostral Migratory Stream (TE-RMS) comprised of human astrocyte-like cells that can be derived from adult gingival stem cells within one week, which reorganizes into bundles of bidirectional, longitudinally-aligned astrocytes to emulate the endogenous RMS. Establishing immature neuronal migration in vitro and in vivo, their study demonstrates surgical feasibility and proof-of-concept evidence for this nascent technology.
Collapse
|
36
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
37
|
Matsui TK, Tsuru Y, Hasegawa K, Kuwako KI. Vascularization of human brain organoids. STEM CELLS (DAYTON, OHIO) 2021; 39:1017-1024. [PMID: 33754425 DOI: 10.1002/stem.3368] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Human brain organoids are three-dimensional tissues that are generated in vitro from pluripotent stem cells and recapitulate the early development of the human brain. Brain organoids consist mainly of neural lineage cells, such as neural stem/precursor cells, neurons, astrocytes, and oligodendrocytes. However, all human brain organoids lack vasculature, which plays indispensable roles not only in brain homeostasis but also in brain development. In addition to the delivery of oxygen and nutrition, accumulating evidence suggests that the vascular system of the brain regulates neural differentiation, migration, and circuit formation during development. Therefore, vascularization of human brain organoids is of great importance. Current trials to vascularize various organoids include the adjustment of cultivation protocols, the introduction of microfluidic devices, and the transplantation of organoids into immunodeficient mice. In this review, we summarize the efforts to accomplish vascularization and perfusion of brain organoids, and we discuss these attempts from a forward-looking perspective.
Collapse
Affiliation(s)
- Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Yuichiro Tsuru
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Koichi Hasegawa
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
38
|
Nemchek V, Haan EM, Mavros R, Macuiba A, Kerr AL. Voluntary exercise ameliorates the good limb training effect in a mouse model of stroke. Exp Brain Res 2021; 239:687-697. [PMID: 33388904 DOI: 10.1007/s00221-020-05994-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of long-term disability in the United States, making research on rehabilitation imperative. Stroke rehabilitation typically focuses on recovery of the impaired limb, although this process is tedious. Compensatory use of the intact limb after stroke is more efficient, but it is known to negatively impact the impaired limb. Exercise may help with this problem; research has shown that exercise promotes neuronal growth and prevents cell death. This study used a mouse model to investigate if post-stroke exercise could prevent deterioration of the function of the impaired limb despite compensatory training of the intact limb. Results showed that mice that exercised, in combination with intact limb training, demonstrated improved functional outcome compared to mice that received no training or compensatory limb training only. These findings suggest that exercise can prevent the deterioration of impaired limb functional outcome that is typically seen with intact limb use.
Collapse
Affiliation(s)
- Victoria Nemchek
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL, USA
| | - Emma M Haan
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Rachel Mavros
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Amanda Macuiba
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Abigail L Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL, USA.
| |
Collapse
|
39
|
Abstract
Brain structures change shape dramatically during development. Elucidating the mechanisms of morphogenesis provides insights relevant to understanding brain function in health and disease. The tension-based morphogenesis (TBM) hypothesis posits that mechanical tension along axons, dendrites, and glial processes contributes to many aspects of central nervous system morphogenesis. Since TBM was proposed in 1997, extensive evidence supports a role for tension in diverse cellular phenomena, but tension’s role in cortical folding has been controversial. An extensively revised version of the TBM model for cerebral cortex addresses limitations of the original model, incorporates new features, and can be tested by many experimental approaches. For cerebellar cortex, a revised model accounts for many aspects of its development and adult architecture. Mechanical tension along the length of axons, dendrites, and glial processes has been proposed as a major contributor to morphogenesis throughout the nervous system [D. C. Van Essen, Nature 385, 313–318 (1997)]. Tension-based morphogenesis (TBM) is a conceptually simple and general hypothesis based on physical forces that help shape all living things. Moreover, if each axon and dendrite strive to shorten while preserving connectivity, aggregate wiring length would remain low. TBM can explain key aspects of how the cerebral and cerebellar cortices remain thin, expand in surface area, and acquire their distinctive folds. This article reviews progress since 1997 relevant to TBM and other candidate morphogenetic mechanisms. At a cellular level, studies of diverse cell types in vitro and in vivo demonstrate that tension plays a major role in many developmental events. At a tissue level, I propose a differential expansion sandwich plus (DES+) revision to the original TBM model for cerebral cortical expansion and folding. It invokes tangential tension and “sulcal zipping” forces along the outer cortical margin as well as tension in the white matter core, together competing against radially biased tension in the cortical gray matter. Evidence for and against the DES+ model is discussed, and experiments are proposed to address key tenets of the DES+ model. For cerebellar cortex, a cerebellar multilayer sandwich (CMS) model is proposed that can account for many distinctive features, including its unique, accordion-like folding in the adult, and experiments are proposed to address its specific tenets.
Collapse
|
40
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
A Developmental Analysis of Juxtavascular Microglia Dynamics and Interactions with the Vasculature. J Neurosci 2020; 40:6503-6521. [PMID: 32661024 DOI: 10.1523/jneurosci.3006-19.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex.SIGNIFICANCE STATEMENT We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development.
Collapse
|
42
|
Akter M, Kaneko N, Sawamoto K. Neurogenesis and neuronal migration in the postnatal ventricular-subventricular zone: Similarities and dissimilarities between rodents and primates. Neurosci Res 2020; 167:64-69. [PMID: 32553727 DOI: 10.1016/j.neures.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The ventricular-subventricular zone (V-SVZ) is located in the walls of the lateral ventricles and produces new neurons in the postnatal brain of mammals, including humans. Immature new neurons called "neuroblasts" generated by neural stem cells in the V-SVZ migrate toward their final destinations and contribute to brain development and plasticity. In this review, we describe recent progress in understanding the similarities and dissimilarities in postnatal neurogenesis and neuronal migration between rodents and primates. In rodents, most new V-SVZ-derived neurons migrate along the rostral migratory stream towards the olfactory bulb, where they differentiate into interneurons. In contrast, in humans, the extensive migration of new neurons towards the neocortex continues for several months after birth and might be involved in the development of the expanded neocortex. The mode of migration and the fate of neuroblasts seem to change depending on their environment, destination, and roles in the brain. A better understanding of these similarities and differences between rodents and primates will help translate important findings from animal models and may contribute to the development of clinical strategies for brain repair.
Collapse
Affiliation(s)
- Mariyam Akter
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
43
|
Chou CH, Modo M. Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment. Brain Res Bull 2020; 158:9-19. [PMID: 32092433 PMCID: PMC7103513 DOI: 10.1016/j.brainresbull.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Angiogenesis-mediated neovascularization correlates with recovery after intracerebral implantation of neural stem cells (NSCs) in stroke. To elucidate NSCs' mechanism of action, it is essential to understand how these interact with the brain's vasculature after implantation. Using an all-human endothelial cell (EC, D3 cell line) and NSC (STROC05 and CTXOE03) co-culture model, fluorescently activated cell sorting (FACS) was used to isolate each cell type for a comparison of gene expression between monocultures of undifferentiated proliferating and differentiated non-proliferating cells. Gene expression for angiogenic factors (vascular endothelial growth factor, platelet derived growth factor, angiopoietin), as well as cell survival (brain derived neurotrophic factor, fibroblast growth factor) and migration (stromal cell-derived factor-1a) were measured and contrasted with the corresponding receptors on each cell type. The cellular source of extracellular matrix defining the basement membrane (vitronectin, fibronectin, laminin, collagen I and IV) and neuropil (hyaluronic acid, aggrecan, neurocan, thrombospondin, nidogen and brain associated link protein-1) was evaluated for NSCs and ECs. Co-culturing dramatically changed the expression profiles of each cell type in comparison to undifferentiated, but also differentiated cells. These results indicate that monocultures provide a poor model to investigate the cellular signaling involved in a tissue repair response. Co-cultures of NSCs and ECs forming vasculature-like structures (VLS) provide a more complex model to investigate NSC-induced neovascularization. These in vitro studies are essential to tease out individual cell signaling in NSCs and ECs to develop a mechanistic understanding of the efficacy of NSCs as a therapeutic for stroke.
Collapse
Affiliation(s)
- Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
44
|
Abstract
The blood-brain barrier (BBB) protects the vertebrate central nervous system from harmful blood-borne, endogenous and exogenous substances to ensure proper neuronal function. The BBB describes a function that is established by endothelial cells of CNS vessels in conjunction with pericytes, astrocytes, neurons and microglia, together forming the neurovascular unit (NVU). Endothelial barrier function is crucially induced and maintained by the Wnt/β-catenin pathway and requires intact NVU for proper functionality. The BBB and the NVU are characterized by a specialized assortment of molecular specializations, providing the basis for tightening, transport and immune response functionality.The present chapter introduces state-of-the-art knowledge of BBB structure and function and highlights current research topics, aiming to understanding in more depth the cellular and molecular interactions at the NVU, determining functionality of the BBB in health and disease, and providing novel potential targets for therapeutic BBB modulation. Moreover, we highlight recent advances in understanding BBB and NVU heterogeneity within the CNS as well as their contribution to CNS physiology, such as neurovascular coupling, and pathophysiology, is discussed. Finally, we give an outlook onto new avenues of BBB research.
Collapse
Affiliation(s)
- Fabienne Benz
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio Pulmonary System (CPI), Partner Site Frankfurt, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
45
|
Abstract
Increased microvessel density in the peri-infarct region has been reported and has been correlated with longer survival times in ischemic stroke patients and has improved outcomes in ischemic animal models. This raises the possibility that enhancement of angiogenesis is one of the strategies to facilitate functional recovery after ischemic stroke. Blood vessels and neuronal cells communicate with each other using various mediators and contribute to the pathophysiology of cerebral ischemia as a unit. In this mini-review, we discuss how angiogenesis might couple with axonal outgrowth/neurogenesis and work for functional recovery after cerebral ischemia. Angiogenesis occurs within 4 to 7 days after cerebral ischemia in the border of the ischemic core and periphery. Post-ischemic angiogenesis may contribute to neuronal remodeling in at least two ways and is thought to contribute to functional recovery. First, new blood vessels that are formed after ischemia are thought to have a role in the guidance of sprouting axons by vascular endothelial growth factor and laminin/β1-integrin signaling. Second, blood vessels are thought to enhance neurogenesis in three stages: 1) Blood vessels enhance proliferation of neural stem/progenitor cells by expression of several extracellular signals, 2) microvessels support the migration of neural stem/progenitor cells toward the peri-infarct region by supplying oxygen, nutrients, and soluble factors as well as serving as a scaffold for migration, and 3) oxygenation induced by angiogenesis in the ischemic core is thought to facilitate the differentiation of migrated neural stem/progenitor cells into mature neurons. Thus, the regions of angiogenesis and surrounding tissue may be coupled, representing novel treatment targets.
Collapse
Affiliation(s)
- Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
46
|
Takarada-Iemata M, Westenskow PD, Muramatsu R. Neurovascular interaction. Neurochem Int 2019; 129:104506. [DOI: 10.1016/j.neuint.2019.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|