1
|
Fei X, Wang L, Dou YN, Fei F, Zhang Y, Lv W, He X, Wu X, Chao W, Chen H, Wei J, Gao D, Fei Z. Extracellular vesicle encapsulated Homer1a as novel nanotherapeutics against intracerebral hemorrhage in a mouse model. J Neuroinflammation 2024; 21:85. [PMID: 38582897 PMCID: PMC10999083 DOI: 10.1186/s12974-024-03088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Homer1a and A2 astrocytes are involved in the regulation of inflammation induced by intracerebral hemorrhage (ICH). However, there is no anticipated treatment strategy based on the anti-inflammatory effect of Homer1a and A2 astrocytes. Here, we successfully induced A2 astrocytes in vitro, and then we report an efficient method to prepare Homer1a+ EVs derived from A2 astrocytes which making it more stable, safe, and targetable to injured neurons. Homer1a+ EVs promotes the conversion of A1 to A2 astrocytes in ICH mice. Homer1a+ EVs inhibits activation and nuclear translocation of NF-κB, thereby regulating transcription of IL-17A in neurons. Homer1a+ EVs inhibits the RAGE/NF-κB/IL-17 signaling pathway and the binding ability of IL-17A: IL17-AR and RAGE: DIAPH1. In addition, Homer1a+ EVs ameliorates the pathology, behavior, and survival rate in GFAPCreHomer1fl/-Homer1a± and NestinCreRAGEfl/fl ICH mice. Our study provides a novel insight and potential for the clinical translation of Homer1a+ EVs in the treatment of ICH.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Wangshu Chao
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| |
Collapse
|
2
|
Gralle M, Labrecque S, Salesse C, De Koninck P. Spatial dynamics of the insulin receptor in living neurons. J Neurochem 2020; 156:88-105. [PMID: 31886886 DOI: 10.1111/jnc.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Insulin signaling through the insulin receptor has long been studied in classic target organs, such as adipose tissue and skeletal muscle, where one of its effects is to increase glucose uptake. Insulin and insulin receptor are present in many areas of the brain, but the functions of brain insulin signaling outside feeding circuits are not well defined. It has been proposed that hippocampal insulin signaling is important for memory, that brain insulin signaling is deficient in Alzheimer's disease, and that intranasal insulin treatment improves cognition, but the mechanisms remain unclear and do not seem to involve increased glucose uptake by neurons. The molecular behavior of the insulin receptor itself is not well known in living neurons; therefore, we investigated the spatial dynamics of the insulin receptor on somatodendritic membranes of live rat hippocampal neurons in culture. Using single-molecule tracking of quantum dot-tagged insulin receptors and single-particle tracking photoactivation localization microscopy, we show that the insulin receptor is distributed over both dendritic shafts and spines. Using colocalization with synaptic markers, we also show that in contrast to the glutamate receptor subunit glutamate receptor subunit A1, the dynamics of the insulin receptor are not affected by association with excitatory synapses; however, the insulin receptor is immobilized by components of inhibitory synapses. The mobility of the insulin receptor is reduced both by low concentrations of the pro-inflammatory cytokine tumor necrosis factor α and by cholesterol depletion, suggesting an association with sphingolipid-rich membrane domains. On the other hand, the insulin receptor dynamics in hippocampal neurons are not affected by increased excitatory signaling. Finally, using real-time single-event quantification, we find evidence of strong insulin receptor exocytosis on dendritic shafts. Our results suggest an association of the neuronal insulin receptor with specific elements of the dendritic shaft, rather than excitatory synapses.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,CERVO Brain Research Center, Québec, QC, Canada
| | | | | | - Paul De Koninck
- CERVO Brain Research Center, Québec, QC, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Clifton NE, Trent S, Thomas KL, Hall J. Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. MOLECULAR NEUROPSYCHIATRY 2019; 5:147-161. [PMID: 31312636 DOI: 10.1159/000500267] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Buscemi L, Ginet V, Lopatar J, Montana V, Pucci L, Spagnuolo P, Zehnder T, Grubišić V, Truttman A, Sala C, Hirt L, Parpura V, Puyal J, Bezzi P. Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes. Cereb Cortex 2017; 27:2365-2384. [PMID: 27075036 PMCID: PMC5963825 DOI: 10.1093/cercor/bhw078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.
Collapse
Affiliation(s)
- Lara Buscemi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jan Lopatar
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luca Pucci
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Paola Spagnuolo
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Tamara Zehnder
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vladimir Grubišić
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita Truttman
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenz Hirt
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| |
Collapse
|
5
|
Duncan RS, Hwang SY, Koulen P. Effects of Vesl/Homer Proteins on Intracellular Signaling. Exp Biol Med (Maywood) 2016; 230:527-35. [PMID: 16118402 DOI: 10.1177/153537020523000803] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The clustering of signaling molecules at specialized cellular sites allows cells to effectively convert extracellular signals into intracellular signals and to produce a concerted functional output with specific temporal and spatial patterns. A prime example for these molecules and their effects on cellular signaling are the postsynaptic density proteins of the central nervous system. Recently, one group of these proteins, the Vesl/Homer protein family has received increased attention because of its unique molecular properties that allow both the clustering end functional modulation of a plethora of different binding Proteins. Within multlprotein signaling complexes, Vesl/Homer Proteins influence proteins as diverse as metabotropic glutamate receptors; transient receptor potential channels; intracellular calcium channels; the scaffolding protein, Shank; small GTPases; transcription factors; and cytoskeletal proteins. Furthermore, interaction with such functionally relevant proteins also links Vesl/Homer proteins indirectly to an even larger group of cellular effector proteins, putting the Vesl/Homer Proteins at the crossroads of several critical intracellular signaling processes. In addition to the initial reports of Vesl/Homer protein expression in the central nervous system, members of this protein family have now been identified in other excitable cells in various muscle types and in a large number of nonexcitable cells. The widespread expression of Vesl/Homer proteins in different organs and their functional importance in cellular protein signaling complexes is further evidenced by their conservation in organisms from Drosoohila to humans.
Collapse
Affiliation(s)
- R Scott Duncan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, USA
| | | | | |
Collapse
|
6
|
Inoue Y, Kamikubo Y, Ezure H, Ito J, Kato Y, Moriyama H, Otsuka N. Presynaptic protein Synaptotagmin1 regulates the neuronal polarity and axon differentiation in cultured hippocampal neurons. BMC Neurosci 2015; 16:92. [PMID: 26667128 PMCID: PMC4678605 DOI: 10.1186/s12868-015-0231-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/04/2015] [Indexed: 11/26/2022] Open
Abstract
Background Hippocampal neurons in the brain polarize to form multiple dendrites and one long axon. The formation of central synapses remains poorly understood. Although several of the intracellular proteins involved in the clustering of central neurotransmitter receptors and ion channels have been identified, the signals involved in pre- and postsynaptic differentiation remain elusive. Synaptotagmin1 is an abundant and important presynaptic vesicle protein that binds Ca2+ (J Biol Chem 277:7629–7632, 2002) in regulation of synaptic vesicle exocytosis at the synapse. Synapse consists of the formation of synaptic connections and requires precise coordination of Synaptotagmin1. It was reported Synaptotagmin1 plays an important roles in the formation of axonal filopodia and branches in chicken forebrain neurons (Dev Neurobiol 73:27–44, 2013). To determine if Synaptotagmin1 could have a role in formation of axon in hippocampal neurons, we investigated the effects of Synaptotagmin1 overexpression and knockdown using the shRNA on the growth and branching of the axons of primary hippocampal neurons. We showed that overexpression of Synaptotagmin1 leads to abnormal multiple axon formation in cultured rat hippocampal neurons. Results We first examined the effects of Synaptotagmin1 on the numbers of axon and dendrites. We found that the overexpression of Synaptotagmin1 led to the formation of multiple axons and induced an increase in the number of endogenous postsynaptic protein Homer1c clusters in cultured hippocampal neurons. Endogenous initial segment of axon was detected with anti-sodium channel (anti-NaCh) antibody and with anti-Tau1 (J Neurosci 24: 4605–4613, 2004). The endogenous initial segment of axon was stained with anti-NaCh antibodies and with anti-Tau1 antibodies. Then the numbers of prominence dyed positive were counted as axon. We attempted to specifically knockdown the endogenous Synaptotagmin1 with small hairpin RNAs (shRNAs). To further dissect the functions of endogenous Synaptotagmin1 in neuronal polarity, we used the shRNA of Synaptotagmin1 that specifically blocks the existence of endogenous Synaptotagmin1. When the shRNA of Synaptotagmin1 was introduced to the cells, the number of axons and dendrites did not change. Conclusions These results indicate that the accumulation of Synaptotagmin1 may play an important role in axon/dendrite differentiation.
Collapse
Affiliation(s)
- Yuriko Inoue
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Hiromitsu Ezure
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Junji Ito
- School of Nursing and Rehabilitation Sciences, Showa University Department of Nursing, Tokyo, 226-8555, Japan.
| | - Yu Kato
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Hiroshi Moriyama
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Naruhito Otsuka
- Department of Anatomy, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| |
Collapse
|
7
|
Distinct and simultaneously active plasticity mechanisms in mouse hippocampus during different phases of Morris water maze training. Brain Struct Funct 2014; 220:1273-90. [PMID: 24562414 DOI: 10.1007/s00429-014-0722-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/28/2014] [Indexed: 01/30/2023]
Abstract
Although the Morris water maze (MWM) is the most frequently used protocol to examine hippocampus-dependent learning in mice, not much is known about the spatio-temporal dynamics of underlying plasticity processes. Here, we studied molecular and cellular hippocampal plasticity mechanisms during early and late phases of spatial learning in the MWM. Quantitative in situ hybridization for the immediate early genes zif268 and Homer1a (H1a) revealed phase-dependent differences in their expression between areas CA1 and CA3. During the initial learning phase, CA1 expression levels of the molecular plasticity marker H1a, but not of the activity reporter gene zif268, were related to task proficiency; whereas no learning-specific changes could be detected in CA3. Simultaneously, the ratio of surface-expressed NMDAR subunits NR2A and NR2B was downregulated as measured by acute slice biotinylation assay, while the total number of surface NMDARs was unaltered. When intrinsic 'somatic' and synaptic plasticity in the CA1-region of hippocampal slices were examined, we found that early learning promotes intrinsic neuronal plasticity as manifested by a reduction of spike frequency adaptation and postburst afterhyperpolarization. At the synaptic level, however, maintenance of long-term potentiation (LTP) in all learning groups was impaired which is most likely due to 'intrinsic' learning-induced LTP which occluded any further electrically induced LTP. Late learning, in contrast, was characterized by re-normalized H1a, NR2A and NR2B expression and neuronal firing, yet a further strengthening of learning-induced LTP. Together, our data support a precisely timed cascade of complex molecular and subcellular transformations occurring from early to late MWM learning.
Collapse
|
8
|
Tao-Cheng JH, Thein S, Yang Y, Reese TS, Gallant PE. Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation. Neuroscience 2014; 266:80-90. [PMID: 24530450 DOI: 10.1016/j.neuroscience.2014.01.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
Homer is a postsynaptic density (PSD) scaffold protein that is involved in synaptic plasticity, calcium signaling and neurological disorders. Here, we use pre-embedding immunogold electron microscopy to illustrate the differential localization of three Homer gene products (Homer 1, 2, and 3) in different regions of the mouse brain. In cross-sectioned PSDs, Homer occupies a layer ∼30-100nm from the postsynaptic membrane lying just beyond the dense material that defines the PSD core (∼30-nm-thick). Homer is evenly distributed within the PSD area along the lateral axis, but not at the peri-PSD locations within 60nm from the edge of the PSD, where type I-metabotropic glutamate receptors (mGluR1 and 5) are concentrated. This distribution of Homer matches that of Shank, another major PSD scaffold protein, but differs from those of other two major binding partners of Homer, type I mGluR and IP3 receptors. Many PSD proteins rapidly redistribute upon acute (2min) stimulation. To determine whether Homer distribution is affected by acute stimulation, we examined its distribution in dissociated hippocampal cultures under different conditions. Both the pattern and density of label for Homer 1, the isoform that is ubiquitous in hippocampus, remained unchanged under high K(+) depolarization (90mM for 2-5min), N-methyl-d-asparic acid (NMDA) treatment (50μM for 2min), and calcium-free conditions (EGTA at 1mM for 2min). In contrast, Shank and calcium/calmodulin-dependent kinase II (CaMKII) accumulate at the PSD upon NMDA treatment, and CaMKII is excluded from the PSD complex under low calcium conditions.
Collapse
Affiliation(s)
- J-H Tao-Cheng
- EM Facility, NINDS, NIH, Bethesda, MD, United States.
| | - S Thein
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - Y Yang
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - T S Reese
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - P E Gallant
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Wang Y, Fei Z, Ma YH, Liu WB, Zhu J, Zhang C, Lin W, Qu Y. VEGF upregulates Homer 1a gene expression via the mitogen-activated protein kinase cascade in cultured cortex neurons. Neurosci Lett 2012; 515:44-9. [DOI: 10.1016/j.neulet.2012.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 01/21/2023]
|
10
|
Roloff AM, Anderson GR, Martemyanov KA, Thayer SA. Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity. J Neurosci 2010; 30:3072-81. [PMID: 20181604 PMCID: PMC2843151 DOI: 10.1523/jneurosci.4603-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/23/2009] [Accepted: 01/13/2010] [Indexed: 12/31/2022] Open
Abstract
At hippocampal excitatory synapses, endocannabinoids (eCBs) mediate two forms of retrograde synaptic inhibition that are induced by postsynaptic depolarization or activation of metabotropic glutamate receptors (mGluRs). The homer family of molecular scaffolds provides spatial organization to regulate postsynaptic signaling cascades, including those activated by mGluRs. Expression of the homer 1a (H1a) immediate-early gene produces a short homer protein that lacks the domain required for homer oligomerization, enabling it to uncouple homer assemblies. Here, we report that H1a differentially modulates two forms of eCB-mediated synaptic plasticity, depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). EPSCs were recorded from cultured hippocampal neurons and DSE evoked by a 15 s depolarization to 0 mV and MSE evoked by a type I mGluR agonist. Expression of H1a enhanced DSE and inhibited MSE at the same synapse. Many physiologically important stimuli initiate H1a expression including brain-derived neurotrophic factor (BDNF). Treating hippocampal cultures with BDNF increased transcription of H1a and uncoupled homer 1c-GFP (green fluorescent protein) clusters. BDNF treatment blocked MSE and enhanced DSE. Thus, physiological changes in H1a expression gate the induction pathway for eCB-mediated synaptic plasticity by uncoupling mGluR from eCB production.
Collapse
Affiliation(s)
- Alan M. Roloff
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Garret R. Anderson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Kirill A. Martemyanov
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
11
|
Miletic G, Driver AM, Miyabe-Nishiwaki T, Miletic V. Early changes in Homer1 proteins in the spinal dorsal horn are associated with loose ligation of the rat sciatic nerve. Anesth Analg 2009; 109:2000-7. [PMID: 19923532 DOI: 10.1213/ane.0b013e3181beea9b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plasticity in the spinal dorsal horn is thought to underlie, at least in part, pain behavior after peripheral nerve injury. Homer1 proteins play an important role in synaptic plasticity through an activity-dependent remodeling of the postsynaptic density (PSD). In this study, we examined the early consequences of the loose ligation of the sciatic nerve on the levels of Homer1a and Homer1b/c proteins in the PSD of spinal dorsal horn neurons. METHODS Male rats were randomly assigned to control, sham-operated, or ligated groups. Four hours after sciatic exposure or ligation, the animals were anesthetized and killed. Dorsal horn ipsilateral and contralateral quadrants were homogenized and centrifuged to obtain a PSD-containing LP1 fraction. Homer1 isoforms were identified in Western immunoblots. In some animals, Homer1 small interfering RNA (siRNA), nontarget siRNA, MK-801, or U01026 was injected intrathecally before surgery to assess the effects of this treatment on the levels of Homer1 isoforms and on 2 signs of injury-associated pain behavior, a shift in weight-bearing distribution and thermal hyperalgesia. RESULTS In ligated animals, the protein levels of Homer1a increased and those of Homer1b/c decreased in the ipsilateral LP1 fraction of the spinal dorsal horn. In contrast, no changes were detected in the contralateral LP1 fraction of ligated animals or the ipsilateral or contralateral LP1 fraction of sham-operated animals. Intrathecal injections of Homer1 siRNA, but not nontarget siRNA, 2 h before the ligation prevented the accumulation of Homer1a and loss of Homer1b/c in the ipsilateral LP1 fraction. The same pretreatment with Homer1 siRNA also alleviated both a shift in weight-bearing behavior and thermal hyperalgesia in the ligated animals. Intrathecal injections of MK-801 or U0126 15 min before the ligation similarly prevented the injury-associated changes in Homer1 protein levels and the behavioral signs of pain. CONCLUSION The ligation-associated changes in the protein levels of Homer1a and Homer1b/c in the ipsilateral PSD of spinal dorsal horn neurons may be an important early reflection of the injury-associated plasticity that in time leads to the development of persistent pain.
Collapse
Affiliation(s)
- Gordana Miletic
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706-1509, USA
| | | | | | | |
Collapse
|
12
|
Homer and the ryanodine receptor. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:91-102. [PMID: 19513708 DOI: 10.1007/s00249-009-0494-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Homer proteins have recently been identified as novel high-affinity ligands that modulate ryanodine receptor (RyR) Ca(2+) release channels in heart and skeletal muscle, through an EVH1 domain which binds to proline-rich regions in target proteins. Many Homer proteins can also self-associate through a coiled-coil domain that allows their multimerisation. In other tissues, especially neurons, Homer anchors proteins embedded in the surface membrane to the Ca(2+) release channel in the endoplasmic reticulum and can anchor membrane or cytosolic proteins to the cytoskeleton. Although this anchoring aspect of Homer function has not been extensively investigated in muscle, there are consensus sequences for Homer binding in the RyR and on many of the proteins that it interacts with in the massive RyR ion channel complex. In this review we explore the potential of Homer to contribute to a variety of cell processes in muscle and neurons that also involve RyR channels.
Collapse
|
13
|
Targeting Homer genes using adeno-associated viral vector: lessons learned from behavioural and neurochemical studies. Behav Pharmacol 2008; 19:485-500. [PMID: 18690104 DOI: 10.1097/fbp.0b013e32830c369f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over a decade of in-vitro data support a critical role for members of the Homer family of postsynaptic scaffolding proteins in regulating the functional architecture of glutamate synapses. Earlier studies of Homer knockout mice indicated a necessary role for Homer gene products in normal mesocorticolimbic glutamate transmission and behaviours associated therewith. The advent of adeno-associated viral vectors carrying cDNA for, or short hairpin RNA against, specific Homer isoforms enabled the site-directed targeting of Homers to neurons in the brain. This approach has allowed our groups to address developmental issues associated with conventional knockout mice, to confirm active roles for distinct Homer isoforms in regulating glutamate transmission in vivo, as well as in mediating a variety of behavioural processes. This review summarizes the existing data derived from our studies using adeno-associated viral vector-mediated neuronal targeting of Homer in rodents, implicating this family of proteins in drug and alcohol addiction, learning/memory and emotional processing.
Collapse
|
14
|
Szumlinski KK, Ary AW, Lominac KD. Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 2008; 75:112-33. [PMID: 17765204 PMCID: PMC2204062 DOI: 10.1016/j.bcp.2007.07.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic, relapsing disorder, characterized by an uncontrollable motivation to seek and use drugs. Converging clinical and preclinical observations implicate pathologies within the corticolimbic glutamate system in the genetic predisposition to, and the development of, an addicted phenotype. Such observations pose cellular factors regulating glutamate transmission as likely molecular candidates in the etiology of addiction. Members of the Homer family of proteins regulate signal transduction through, and the trafficking of, glutamate receptors, as well as maintain and regulate extracellular glutamate levels in corticolimbic brain regions. This review summarizes the existing data implicating the Homer family of protein in acute behavioral and neurochemical sensitivity to drugs of abuse, the development of drug-induced neuroplasticity, as well as other behavioral and cognitive pathologies associated with an addicted state.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Behavioral and Neural Genetics Laboratory, Department of Psychology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| | | | | |
Collapse
|
15
|
Inoue Y, Udo H, Inokuchi K, Sugiyama H. Homer1a regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. Neuroscience 2007; 150:841-52. [PMID: 18006237 DOI: 10.1016/j.neuroscience.2007.09.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/30/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022]
Abstract
Activity-dependent re-organizations of central synapses are thought to play important roles in learning and memory. Although the precise mechanisms of how neuronal activities modify synaptic connections remain to be elucidated, the activity-induced neuronal proteins such as Homer1a may contribute to the onset of synaptic remodeling. To further understand the physiological roles of Homer1a, we first examined prolonged effects of neuronal stimulation capable of inducing Homer1a on the distribution of a postsynaptic protein Homer1c by live imaging and immunostaining. We found that glutamate stimulation induced a biphasic change in the distribution of Homer1c, in which the postsynaptic clusters of Homer1c defused initially after 30 min to 1 h, and then reassembled more than the original level after 4-8 h. When other synaptic proteins (postsynaptic density-95 (PSD95), Filamentous actin (F-actin), glutamate receptors, synaptotagmin, synaptophysin and synapsin) were analyzed by immunocytochemical methods, the distribution of these proteins also showed a similar biphasic pattern, suggesting that glutamate stimulation induces a global alteration in synaptic structures. To further dissect the functions of Homer1a in the activity-induced synaptic remodeling, the short hairpin RNA (shRNA) vectors that specifically block the expression of endogenous Homer1a were constructed. When the shRNA of Homer1a was introduced to the cells, the activity-induced changes were almost completely suppressed. The expression of surface glutamate receptor 2 was also inhibited, suggesting that Homer1a may modulate the efficacy of synaptic transmission. Furthermore, we found that Homer1a contributes to the presynaptic remodeling in a retrograde manner. Our data indicate that Homer1a regulates the activity-induced biphasic changes of post- and pre-synaptic sites.
Collapse
Affiliation(s)
- Y Inoue
- Department of Biology, Graduate School of Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
16
|
Abstract
The Homer family of adaptor proteins consists of three members in mammals, and homologs are also known in other animals but not elsewhere. They are predominantly localized at the postsynaptic density in mammalian neurons and act as adaptor proteins for many postsynaptic density proteins. As a result of alternative splicing each member has several variants, which are classified primarily into the long and short forms. The long Homer forms are constitutively expressed and consist of two major domains: the amino-terminal target-binding domain, which includes an Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) homology 1 (EVH1) domain, and the carboxy-terminal self-assembly domain containing a coiled-coil structure and leucine zipper motif. Multimers of long Homer proteins, coupled through their carboxy-terminal domains, are thought to form protein clusters with other postsynaptic density proteins, which are bound through the amino-terminal domains. Such Homer-mediated clustering probably regulates or facilitates signal transduction or cross-talk between target proteins. The short Homer forms lack the carboxy-terminal domain; they are expressed in an activity-dependent manner as immediate-early gene products, possibly disrupting Homer clusters by competitive binding to target proteins. Homer proteins are also involved in diverse non-neural physiological functions.
Collapse
Affiliation(s)
- Yoko Shiraishi-Yamaguchi
- Laboratory for Molecular Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Teiichi Furuichi
- Laboratory for Molecular Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Kammermeier PJ, Worley PF. Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors. Proc Natl Acad Sci U S A 2007; 104:6055-60. [PMID: 17389377 PMCID: PMC1851615 DOI: 10.1073/pnas.0608991104] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons.
Collapse
Affiliation(s)
- Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA.
| | | |
Collapse
|
18
|
Stokely ME, Hwang SY, Hwang JY, Fan B, King MA, Inokuchi K, Koulen P. Polycystin-1 can interact with homer 1/Vesl-1 in postnatal hippocampal neurons. J Neurosci Res 2007; 84:1727-37. [PMID: 17016857 DOI: 10.1002/jnr.21076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystin-1 (PC-1) has been identified as critical to development of the nervous system, but the significance of PC-1 expression in neurons remains undefined, and little is known of its roles outside the kidney, where mutation results in autosomal dominant polycystic kidney disease (ADPKD). In kidney, PC-1 interacts with cadherins, catenins, and its cognate calcium channel polycystin-2 (PC-2), which in turn interacts with a number of actin-regulatory proteins. Because some of the proteins that interact with PC-1 in kidney also participate in synaptic remodeling and plasticity in the hippocampus, we decided to test PC-1's potential to interact with a recently discovered type of plasticity-associated protein (homer 1a/Vesl-1S) in postnatal mouse hippocampus. Homer 1a/Vesl-1S is an activity-induced protein believed to participate in synaptic remodeling/plasticity responses to temporal lobe seizure and learning. Here we report the following. 1) PC-1 contains a homer-binding motif (PPxxF), which lies within its purported cytoplasmic domain. 2) Immunoreactivity for PC-1 (PC-1-ir) is highly colocalized with homer 1a immunoreactivity (H1a-ir) in primary cultured hippocampal neurons. 3) PC-1-ir and H1a-ir are present and appear to be colocalized in mouse hippocampus but not cortex on postnatal day 2 (P2), when higher frequencies of spontaneous activity are normal for hippocampus compared with cortex. 4) An endogenous PC-1-ir band with the correct size for the reported C-terminal G-protein-sensitive domain cleavage product of PC-1 (approximately 150 kDa) coimmunoprecipitates with endogenous homer 1/Vesl-1 proteins from mouse brain, suggesting that PC-1 can interact with homer 1/Vesl-1 proteins in postnatal hippocampal neurons.
Collapse
Affiliation(s)
- Martha E Stokely
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Sakamoto K, Yoshida S, Ikegami K, Minakami R, Kato A, Udo H, Sugiyama H. Homer1c interacts with Hippi and protects striatal neurons from apoptosis. Biochem Biophys Res Commun 2007; 352:1-5. [PMID: 17107665 DOI: 10.1016/j.bbrc.2006.10.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 10/09/2006] [Indexed: 11/18/2022]
Abstract
By the two hybrid screening of mouse brain cDNA library, we identified Hppi, a cell death-promoting protein, as a binding partner of postsynaptic scaffold protein Homer1c. Hippi interacted specifically with Homer1c but not with its homologue Homer2. It was reported that Hippi, when complexed with Hip1, induces the apoptosis in striatal neurons and may cause Huntington's disease. We found that this apoptotic effect of Hippi was specific to the striatum and was not observed in hippocampal neurons. Furthermore, the apoptotic effect of Hippi was prevented when Homer1c was co-expressed in cultured striatal neurons. The protective effect of Homer1c was diminished when Hippi binding domain was deleted. These results suggest that Homer1c may play an important role in the mechanisms of neuronal death in the striatum.
Collapse
Affiliation(s)
- K Sakamoto
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Ambesi-Impiombato A, Panariello F, Dell'aversano C, Tomasetti C, Muscettola G, de Bartolomeis A. Differential expression ofHomer 1 gene by acute and chronic administration of antipsychotics and dopamine transporter inhibitors in the rat forebrain. Synapse 2007; 61:429-39. [PMID: 17372981 DOI: 10.1002/syn.20385] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuronal expression of immediate-early genes in response to a drug is a powerful screening tool for dissecting anatomical and functional brain circuitry affected by psychoactive compounds. We examined the effect of dopaminergic perturbation on two Homer 1 gene splice variants, Homer 1a and ania-3, in rat forebrain. Rats were treated with the "typical" antipsychotic haloperidol, the "atypical" quetiapine, or the selective dopamine transporter (DAT) inhibitor GBR 12909 in acute and chronic paradigms. Our results show that the high affinity dopamine D(2) receptor antagonist haloperidol strongly induces Homer 1 gene expression in the caudate-putamen, whereas quetiapine, a fast D2R dissociating antagonist, does not. This confirms that Homer 1 may be considered a predictor of "atypicality" of antipsychotic compounds in acute and also chronic regimens. Chronic treatment with GBR 12909 showed a strong induction in the parietal cortex, resembling the activation of "sensitization" circuitry by stimulants. Finally, we describe a differential spatial induction pattern of Homer 1 gene within the caudate-putamen by typical antipsychotics and DAT blockers, and propose a novel method to quantitate it.
Collapse
Affiliation(s)
- Alberto Ambesi-Impiombato
- Laboratory of Molecular Psychiatry and Psychopharmacotherapy, Section of Psychiatry, Department of Neuroscience, University School of Medicine Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Tanaka M, Duncan RS, McClung N, Yannazzo JAS, Hwang SY, Marunouchi T, Inokuchi K, Koulen P. Homer proteins control neuronal differentiation through IP(3) receptor signaling. FEBS Lett 2006; 580:6145-50. [PMID: 17064693 DOI: 10.1016/j.febslet.2006.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 09/30/2006] [Accepted: 10/04/2006] [Indexed: 11/16/2022]
Abstract
Neurons expand, sustain or prune their dendritic trees during ontogenesis [Cline, H.T. (2001). Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118-126; Wong, W.T. and Wong, R.O.L. (2000) Rapid dendritic movements during synapse formation and rearrangement. Curr. Opin. Neurobiol. 10, 118-124] which critically depends on neuronal activity [Wong, W.T., Faulkner-Jones, B.E., Sanes, J.R. and Wong, R.O.L. (2000) Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024-5036; Li, Z., Van Aelst, L. and Cline, H.T. (2000) Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat. Neurosci. 3, 217-225; Wong, W.T. and Wong, R.O.L. (2001) Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nat. Neurosci. 4, 351-352.] and sub-cellular Ca(2+) signals [Lohmann, C., Myhr, K.L. and Wong, R.O. (2002) Transmitter-evoked local calcium release stabilizes developing dendrites, Nature 418, 177-181.]. The role of synaptic clustering proteins connecting both processes is unclear. Here, we show that expression levels of Vesl-1/Homer 1 isoforms critically control properties of Ca(2+) release from intracellular stores and dendritic morphology of CNS neurons. Vesl-1L/Homer 1c, an isoform with a functional WH1 and coiled-coil domain, but not isoforms missing these features were capable of potentiating intracellular calcium signaling activity indicating that such regulatory interactions function as a general paradigm in cellular differentiation and are subject to changes in expression levels of Vesl/Homer isoforms.
Collapse
Affiliation(s)
- Masahiko Tanaka
- Division of Cell Biology, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lominac KD, Oleson EB, Pava M, Klugmann M, Schwarz MK, Seeburg PH, During MJ, Worley PF, Kalivas PW, Szumlinski KK. Distinct roles for different Homer1 isoforms in behaviors and associated prefrontal cortex function. J Neurosci 2006; 25:11586-94. [PMID: 16354916 PMCID: PMC6726036 DOI: 10.1523/jneurosci.3764-05.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Homer1 mutant mice exhibit behavioral and neurochemical abnormalities that are consistent with an animal model of schizophrenia. Because the Homer1 gene encodes both immediate early gene (IEG) and constitutively expressed (CC) gene products, we used the local infusion of adeno-associated viral vectors carrying different Homer1 transcriptional variants into the prefrontal cortex (PFC) to distinguish between the roles for IEG and CC Homer1 isoforms in the "schizophrenia-like" phenotype of Homer1 mutant mice. PFC overexpression of the IEG Homer1 isoform Homer1a reversed the genotypic differences in behavioral adaptation to repeated stress, whereas overexpression of the constitutively expressed Homer1 isoform Homer1c reversed the genotypic differences in sensorimotor and cognitive processing, as well as cocaine behavioral sensitivity. Homer1a overexpression did not influence PFC basal glutamate content but blunted the glutamate response to cocaine in wild-type mice. In contrast, Homer1c overexpression reversed the genotypic difference in PFC basal glutamate content and enhanced cocaine-induced elevations in glutamate. These data demonstrate active and distinct roles for Homer1a and Homer1c isoforms in the PFC in the mediation of behavior, in the maintenance of basal extracellular glutamate, and in the regulation of PFC glutamate release relevant to schizophrenia and stimulant abuse comorbidity.
Collapse
Affiliation(s)
- Kevin D Lominac
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sgambato-Faure V, Xiong Y, Berke JD, Hyman SE, Strehler EE. The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun 2006; 343:630-7. [PMID: 16554037 PMCID: PMC3873836 DOI: 10.1016/j.bbrc.2006.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 03/06/2006] [Indexed: 01/30/2023]
Abstract
The Homer family of scaffold proteins couples NMDA receptors to metabotropic glutamate receptors and links extracellular signals to calcium release from intracellular stores. Ania-3 is a member of the Homer family and is rapidly inducible in brain in response to diverse stimuli. Here, we report the identification of the plasma membrane Ca2+ ATPase (PMCA) as a novel Ania-3/Homer-associated protein. Ania-3/Homer interacts with the b-splice forms of all PMCAs (PMCA1b, 2b, 3b, and 4b) via their PDZ domain-binding COOH-terminal tail. Ectopically expressed Ania-3 colocalized with the PMCA at the plasma membrane of polarized MDCK epithelial cells, and endogenous Ania-3/Homer and PMCA2 are co-expressed in the soma and dendrites of primary rat hippocampal neurons. The interaction between Ania-3/Homer and PMCAs may represent a novel mechanism by which local calcium signaling and hence synaptic function can be modulated in neurons.
Collapse
Affiliation(s)
- Véronique Sgambato-Faure
- Molecular Plasticity Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yuning Xiong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Joshua D. Berke
- Molecular Plasticity Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Steven E. Hyman
- Molecular Plasticity Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Harvard University, Cambridge, MA, USA
| | - Emanuel E. Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
24
|
Miyabe T, Miletic G, Miletic V. Loose ligation of the sciatic nerve in rats elicits transient up-regulation of Homer1a gene expression in the spinal dorsal horn. Neurosci Lett 2006; 398:296-9. [PMID: 16448751 DOI: 10.1016/j.neulet.2006.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/06/2006] [Accepted: 01/06/2006] [Indexed: 11/18/2022]
Abstract
Changes in the expression of many genes underlie injury-elicited plasticity in the spinal dorsal horn. Homer1 is a recently identified gene that appears to play a critical role in the expression of synaptic plasticity in several brain regions, including the hippocampus. In this study we investigated the early consequences of chronic constriction injury of the sciatic nerve on Homer1 gene expression in the spinal dorsal horn. Significant increases in Homer1a mRNA levels in the ipsilateral dorsal horn were detected at 4h post-ligation, and these levels remained elevated at 8h before returning to baseline values by 24h after the ligation. In contrast, the levels of Homer1b/c mRNA did not change at any of these selected post-ligation times. The ligation-associated induction of Homer1a was dependent on activation of NMDA receptors and the extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway. The non-competitive NMDA-receptor antagonist, MK-801, and a specific inhibitor of the ERK1/2 pathway, U0126, significantly attenuated the injury-elicited increases in Homer1a mRNA when compared to saline-treated animals. These data provide the first evidence for a potential role of Homer1a in peripheral nerve injury-elicited plasticity in the spinal dorsal horn. These data also imply that the early and transient up-regulation of Homer1a gene expression may be an important contributor to the eventual development of neuropathic pain.
Collapse
Affiliation(s)
- Takako Miyabe
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | |
Collapse
|
25
|
Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK, Schwartz MK, Seeburg PH, Seeberg PH, Worley PF, Kalivas PW. Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. GENES BRAIN AND BEHAVIOR 2005; 4:273-88. [PMID: 16011574 DOI: 10.1111/j.1601-183x.2005.00120.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Homer proteins are involved in the functional assembly of postsynaptic density proteins at glutamatergic synapses and are implicated in learning, memory and drug addiction. Here, we report that Homer1-knockout (Homer1-KO) mice exhibit behavioral and neurochemical abnormalities that are consistent with the animal models of schizophrenia. Relative to wild-type mice, Homer1-KO mice exhibited deficits in radial arm maze performance, impaired prepulse inhibition, enhanced 'behavioral despair', increased anxiety in a novel objects test, enhanced reactivity to novel environments, decreased instrumental responding for sucrose and enhanced MK-801- and methamphetamine-stimulated motor behavior. No-net-flux in vivo microdialysis revealed a decrease in extracellular glutamate content in the nucleus accumbens and an increase in the prefrontal cortex. Moreover, in Homer1-KO mice, cocaine did not stimulate a rise in frontal cortex extracellular glutamate levels, suggesting hypofrontality. These behavioral and neurochemical data derived from Homer1 mutant mice are consistent with the recent association of schizophrenia with a single-nucleotide polymorphism in the Homer1 gene and suggest that the regulation of extracellular levels of glutamate within limbo-corticostriatal structures by Homer1 gene products may be involved in the pathogenesis of this neuropsychiatric disorder.
Collapse
Affiliation(s)
- K K Szumlinski
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miletic G, Miyabe T, Gebhardt KJ, Miletic V. Increased levels of Homer1b/c and Shank1a in the post-synaptic density of spinal dorsal horn neurons are associated with neuropathic pain in rats. Neurosci Lett 2005; 386:189-93. [PMID: 16002212 DOI: 10.1016/j.neulet.2005.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/31/2005] [Accepted: 06/04/2005] [Indexed: 11/20/2022]
Abstract
Activity-dependent plasticity in the spinal dorsal horn may underlie the development of neuropathic pain following peripheral nerve injury. In this study we examined whether the expression and loss of behavioral signs of neuropathic pain were associated with changes in the content of the scaffolding proteins Homer and Shank in the post-synaptic density (PSD) of the spinal dorsal horn. In animals exhibiting thermal hyperalgesia and differential weight-bearing behavior 7 days after loose ligation of the sciatic nerve the levels of Homer1b/c and Shank1a were significantly greater than in control, uninjured or sham-operated animals. These greater levels were specifically a reflection of increases in the injured, ipsilateral and not contralateral dorsal horn. In contrast, there were no differences in the PSD content of Homer1b/c and Shank1a in the dorsal horn of control or sham-operated animals and ligated animals in which the thermal hyperalgesia and differential weight-bearing behavior had disappeared 28 days after the loose ligation. These data revealed a close association between the expression and loss of allodynia and hyperalgesia with changes in the levels of Homer1b/c and Shank1a in the spinal dorsal horn. The reversible shift in the content of scaffolding proteins in the PSD may have important implications for the development of injury-elicited neuropathic pain.
Collapse
Affiliation(s)
- Gordana Miletic
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706-1102, USA
| | | | | | | |
Collapse
|
27
|
Ishibashi T, Ogawa S, Hashiguchi Y, Inoue Y, Udo H, Ohzono H, Kato A, Minakami R, Sugiyama H. A Novel Protein Specifically Interacting with Homer2 Regulates Ubiquitin-Proteasome Systems. ACTA ACUST UNITED AC 2005; 137:617-23. [PMID: 15944415 DOI: 10.1093/jb/mvi074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Homer family proteins are encoded by three genes, homer1, 2 and 3. Most of these proteins are expressed constitutively in nervous systems and accumulated in postsynaptic regions. However, the functional significance of these proteins, especially the significance of the distinction among the proteins encoded by homer1, 2 and 3, is still obscure. In the present study, we isolated a cDNA clone encoding a novel protein by two-hybrid system screening using the C-terminal half of Homer2b as the bait. This protein, termed 2B28, has 297 amino acid residues and contains three major domains: a UBA domain, a coiled-coil region, and a UBX domain. When expressed in HEK293T cells, 2B28 showed colocalization with uniquitin and enhanced the expression levels of IkappaB or Homer1a proteins, which are known to be degraded by proteasomes, indicating that 2B28 is involved in ubiquitin-proteasome functions. 2B28 specifically interacted and colocalized with Homer2 proteins, but not with Homer1 proteins. So far, we have identified no counterpart of 2B28 for Homer1 experimentally or in the protein databases. These results suggest that the specific interaction of 2B28 with Homer2 may play a role in regulation of protein degradation by ubiquitin-proteasome systems and that this function may be specific to Homer2 proteins among Homer family proteins.
Collapse
Affiliation(s)
- Takamasa Ishibashi
- Department of Biology, Graduate School of Science, Kyushu University, Higashi-ku, Fukuoka 812-8581
| | | | | | | | | | | | | | | | | |
Collapse
|