1
|
Johnson KJ, Johnson K, Grant A, Taglialatela G, Micci MA. Photobiomodulation therapy increases neural stem cell pool in aged 3xTg-AD mice. PLoS One 2025; 20:e0321668. [PMID: 40261888 PMCID: PMC12013953 DOI: 10.1371/journal.pone.0321668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Presently approved Alzheimer's Disease (AD) therapeutics are designed for targeted removal of the AD-related toxic protein aggregate amyloid-β (Aβ) and have only shown moderate efficacy at slowing disease progression. Reversal of cognitive decline requires both removal of toxic aggregates and repair of the cellular systems damaged by decades of exposure to these aggregates. Adult hippocampal neurogenesis (AHN) is one such system that is known to be affected early and severely in the development of AD. Moreover, preserved AHN is associated with cognitive resilience to AD neuropathology. Therefore, targeted therapies to improve or enhance neurogenesis should be considered in addition to the removal of toxic protein aggregates. Photobiomodulation (PBM) using 670 nm LED light has been shown to induce synaptic resilience to and removal of AD-related toxic protein aggregates. In this study, we aimed to assess the effect of PBM on a mouse model of advanced AD neuropathology. Transgenic 3xTg-AD mice (15- to 17-month old) were randomized to receive PBM or SHAM therapy for one month, followed by neuropathological assessments. Our results show that one month of PBM therapy reduces hyperphosphorylated tau burden and partially rescues AHN in aged 3xTg-AD mice as compared to SHAM-treated transgenic mice. These data support the notion that PBM has the potential to be an effective non-invasive therapy to help preserve AHN and reduce cognitive dysfunction in moderate to advanced AD.
Collapse
Affiliation(s)
- Kevin J. Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neurobiology, Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathia Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Auston Grant
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- The Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Mallick D, Acharjee A, Acharjee P, Trigun SK. Restoration of hippocampal adult neurogenesis by CDRI-08 (Bacopa monnieri extract) relates with the recovery of BDNF-TrkB levels in male rats with moderate grade hepatic encephalopathy. Int J Dev Neurosci 2024; 84:510-519. [PMID: 38795011 DOI: 10.1002/jdn.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024] Open
Abstract
Modulation of in vivo adult neurogenesis (AN) is an evolving concept in managing neurodegenerative diseases. CDRI-08, a bacoside-enriched fraction of Bacopa monnieri, has been demonstrated for its neuroprotective actions, but its effect on AN remains unexplored. This article describes the status of AN by monitoring neuronal stem cells (NSCs) proliferation, differentiation/maturation markers and BDNF-TrkB levels (NSCs signalling players) vs. the level of neurodegeneration and their modulations by CDRI-08 in the hippocampal dentate gyrus (DG) of male rats with moderate grade hepatic encephalopathy (MoHE). For NSC proliferation, 10 mg/kg b.w. 5-bromo-2'-deoxyuridine (BrdU) was administered i.p. during the last 3 days, and for the NSC differentiation study, it was given during the first 3 days to the control, the MoHE (developed by 100 mg/kg b.w. of thioacetamide i.p. up to 10 days) and to the MoHE male rats co-treated with 350 mg/kg b.w. CDRI-08. Compared with the control rats, the hippocampus DG region of MoHE rats showed significant decreases in the number of Nestin+/BrdU+ and SOX2+/BrdU+ (proliferating) and DCX+/BrdU+ and NeuN+/BrdU+ (differentiating) NSCs. This was consistent with a similar decline in BDNF+/TrkB+ NSCs. However, all these NSC marker positive cells were observed to be recovered to their control levels, with a concordant restoration of total cell numbers in the DG of the CDRI-08-treated MoHE rats. The findings suggest that the restoration of hippocampal AN by CDRI-08 is consistent with the recovery of BDNF-TrkB-expressing NSCs in the MoHE rat model of neurodegeneration.
Collapse
Affiliation(s)
- Debasmit Mallick
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, India
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Carniglia L, Turati J, Saba J, López Couselo F, Romero AC, Caruso C, Durand D, Lasaga M. Melanocortin-receptor 4 activation modulates proliferation and differentiation of rat postnatal hippocampal neural precursor cells. Neuropharmacology 2024; 257:110058. [PMID: 38960135 DOI: 10.1016/j.neuropharm.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Postnatal hippocampal neurogenesis is essential for learning and memory. Hippocampal neural precursor cells (NPCs) can be induced to proliferate and differentiate into either glial cells or dentate granule cells. Notably, hippocampal neurogenesis decreases dramatically with age, partly due to a reduction in the NPC pool and a decrease in their proliferative activity. Alpha-melanocyte-stimulating hormone (α-MSH) improves learning, memory, neuronal survival and plasticity. Here, we used postnatally-isolated hippocampal NPCs from Wistar rat pups (male and female combined) to determine the role of the melanocortin analog [Nle4, D-Phe7]-α-MSH (NDP-MSH) in proliferation and fate acquisition of NPCs. Incubation of growth-factor deprived NPCs with 10 nM NDP-MSH for 6 days increased the proportion of Ki-67- and 5-bromo-2'-deoxyuridine (BrdU)-positive cells, compared to the control group, and these effects were blocked by the MC4R antagonist JKC-363. NDP-MSH also increased the proportion of glial fibrillar acidic protein (GFAP)/Ki-67, GFAP/sex-determining region Y-box2 (SOX2) and neuroepithelial stem cell protein (NESTIN)/Ki-67-double positive cells (type-1 and type-2 precursors). Finally, NDP-MSH induced peroxisome proliferator-activated receptor (PPAR)-γ protein expression, and co-incubation with the PPAR-γ inhibitor GW9662 prevented the effect of NDP-MSH on NPC proliferation and differentiation. Our results indicate that in vitro activation of MC4R in growth-factor-deprived postnatal hippocampal NPCs induces proliferation and promotes the relative expansion of the type-1 and type-2 NPC pool through a PPAR-γ-dependent mechanism. These results shed new light on the mechanisms underlying the beneficial effects of melanocortins in hippocampal plasticity and provide evidence linking the MC4R and PPAR-γ pathways in modulation of hippocampal NPC proliferation and differentiation.
Collapse
Affiliation(s)
- Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Juan Turati
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Clara Romero
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Paraguay 2155, piso 10, CP 1121, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Li M, Jin Y, Xu Y, Sun Y, Yuan R, Zhang X, Qu S, Lv M, Liao M, Liang W, Zhang L, Chen X. From degraded to deciphered: ATAC-seq's application potential in forensic diagnosis. Int J Legal Med 2024; 138:1273-1285. [PMID: 38491322 DOI: 10.1007/s00414-024-03206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
In recent years, molecular biology-based diagnostic techniques have made remarkable strides and are now extensively utilized in clinical practice, providing invaluable insights for disease diagnosis and treatment. However, forensic medicine, especially forensic pathology, has witnessed relatively limited progress in the application of molecular biology technologies. A significant challenge in employing molecular techniques for forensic diagnoses lies in the quantitative and qualitative changes observed in diagnostic markers due to sample degradation-a recognized and formidable obstacle. Inspired by the success of DNA sequencing in forensic practices, which enables accurate individual identification even in cases involving degraded and deteriorated tissues and organs, we propose the application of the assay for transposase-accessible chromatin with sequencing (ATAC-seq) to identify targets at the transcriptional onset, exploring chromatin and DNA-level alterations for injury and disease inference in forensic samples. This study employs ATAC-seq to explore alterations in chromatin accessibility post-injury and their subsequent changes over a 2-h degradation period, employing traumatic brain injury (TBI) as a representative model. Our findings reveal high sensitivity of chromatin accessibility sites to injury, evidenced by shifts in thousands of peak positions post-TBI. Remarkably, these alterations remain largely unaffected by early degradation. Our results robustly endorse the notion that integrating and incorporating these specific loci for injury and disease diagnosis in forensic samples holds tremendous promise for practical application. We further validated the above results using human cortical tissue, which supported that early degradation did not significantly affect chromatin accessibility. This pioneering advancement in molecular diagnostic techniques may revolutionize the field of forensic science, especially forensic pathology.
Collapse
Affiliation(s)
- Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuntian Jin
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Sun
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ruixuan Yuan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Zhang
- Department of Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Roberts LD, Hornsby AK, Thomas A, Sassi M, Kinzett A, Hsiao N, David BR, Good M, Wells T, Davies JS. The 5:2 diet does not increase adult hippocampal neurogenesis or enhance spatial memory in mice. EMBO Rep 2023; 24:e57269. [PMID: 37987211 DOI: 10.15252/embr.202357269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
New neurones are generated throughout life in the mammalian brain in a process known as adult hippocampal neurogenesis (AHN). Since this phenomenon grants a high degree of neuroplasticity influencing learning and memory, identifying factors that regulate AHN may be important for ameliorating age-related cognitive decline. Calorie restriction (CR) has been shown to enhance AHN and improve memory, mediated by the stomach hormone, ghrelin. Intermittent fasting (IF), a dietary strategy offering more flexibility than conventional CR, has also been shown to promote aspects of AHN. The 5:2 diet is a popular form of IF; however, its effects on AHN are not well characterised. To address this, we quantified AHN in adolescent and adult wild-type and ghrelin-receptor-deficient mice following 6 weeks on a 5:2 diet. We report an age-related decline in neurogenic processes. However, the 5:2 diet does not increase AHN nor enhance memory performance, suggesting that this specific form of IF is ineffective in promoting brain plasticity to support learning.
Collapse
Affiliation(s)
- Luke D Roberts
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | | | - Alanna Thomas
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Martina Sassi
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Aimee Kinzett
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Nathan Hsiao
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Bethan R David
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
6
|
Wiseman JA, Dragunow M, I-H Park T. Cell Type-Specific Nuclei Markers: The Need for Human Brain Research to Go Nuclear. Neuroscientist 2023; 29:41-61. [PMID: 34459315 DOI: 10.1177/10738584211037351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identifying and interrogating cell type-specific populations within the heterogeneous milieu of the human brain is paramount to resolving the processes of normal brain homeostasis and the pathogenesis of neurological disorders. While brain cell type-specific markers are well established, most are localized on cellular membranes or within the cytoplasm, with limited literature describing those found in the nucleus. Due to the complex cytoarchitecture of the human brain, immunohistochemical studies require well-defined cell-specific nuclear markers for more precise and efficient quantification of the cellular populations. Furthermore, efficient nuclear markers are required for cell type-specific purification and transcriptomic interrogation of archived human brain tissue through nuclei isolation-based RNA sequencing. To sate the growing demand for robust cell type-specific nuclear markers, we thought it prudent to comprehensively review the current literature to identify and consolidate a novel series of robust cell type-specific nuclear markers that can assist researchers across a range of neuroscientific disciplines. The following review article collates and discusses several key and prospective cell type-specific nuclei markers for each of the major human brain cell types; it then concludes by discussing the potential applications of cell type-specific nuclear workflows and the power of nuclear-based neuroscientific research.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Paredes MF, Mora C, Flores-Ramirez Q, Cebrian-Silla A, Del Dosso A, Larimer P, Chen J, Kang G, Gonzalez Granero S, Garcia E, Chu J, Delgado R, Cotter JA, Tang V, Spatazza J, Obernier K, Ferrer Lozano J, Vento M, Scott J, Studholme C, Nowakowski TJ, Kriegstein AR, Oldham MC, Hasenstaub A, Garcia-Verdugo JM, Alvarez-Buylla A, Huang EJ. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science 2022; 375:eabk2346. [PMID: 35084970 DOI: 10.1126/science.abk2346] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Cristina Mora
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | | | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Ashley Del Dosso
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Phil Larimer
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Jiapei Chen
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Gugene Kang
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Susana Gonzalez Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Eric Garcia
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Julia Chu
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Ryan Delgado
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Jennifer A Cotter
- Department of Pathology, Children's Hospital Los Angeles, and Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | - Vivian Tang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jaime Ferrer Lozano
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Julia Scott
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy and Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Andrea Hasenstaub
- Department of Otolaryngology, University of California, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Voelker J, Voelker C, Engert J, Goemann N, Hagen R, Rak K. Spontaneous Calcium Oscillations through Differentiation: A Calcium Imaging Analysis of Rat Cochlear Nucleus Neural Stem Cells. Cells 2021; 10:2802. [PMID: 34685782 PMCID: PMC8534573 DOI: 10.3390/cells10102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022] Open
Abstract
Causal therapies for the auditory-pathway and inner-ear diseases are still not yet available for clinical application. Regenerative medicine approaches are discussed and examined as possible therapy options. Neural stem cells could play a role in the regeneration of the auditory pathway. In recent years, neural stem and progenitor cells have been identified in the cochlear nucleus, the second nucleus of the auditory pathway. The current investigation aimed to analyze cell maturation concerning cellular calcium activity. Cochlear nuclei from PND9 CD rats were microscopically dissected and propagated as neurospheres in free-floating cultures in stem-cell medium (Neurobasal, B27, GlutaMAX, EGF, bFGF). After 30 days, the dissociation and plating of these cells took place under withdrawal of the growth factors and the addition of retinoic acid, which induces neural cell differentiation. Calcium imaging analysis with BAPTA-1/Oregon Green was carried out at different times during the differentiation phase. In addition, the influence of different voltage-dependent calcium channels was analyzed through the targeted application of inhibitors of the L-, N-, R- and T-type calcium channels. For this purpose, comparative examinations were performed on CN NSCs, and primary CN neurons. As the cells differentiated, a significant increase in spontaneous neuronal calcium activity was demonstrated. In the differentiation stage, specific frequencies of the spontaneous calcium oscillations were measured in different regions of the individual cells. Initially, the highest frequency of spontaneous calcium oscillations was ascertainable in the maturing somata. Over time, these were overtaken by calcium oscillations in the axons and dendrites. Additionally, in the area of the growth cones, an increasing activity was determined. By inhibiting voltage-dependent calcium channels, their expression and function in the differentiation process were confirmed. A comparable pattern of maturation of these channels was found in CN NSCs and primary CN neurons. The present results show that neural stem cells of the rat cochlear nucleus differentiated not only morphologically but also functionally. Spontaneous calcium activities are of great relevance in terms of neurogenesis and integration into existing neuronal structures. These functional aspects of neurogenesis within the auditory pathway could serve as future targets for the exogenous control of neuronal regeneration.
Collapse
Affiliation(s)
- Johannes Voelker
- Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, Department of Oto-Rhino-Laryngology, University of Wuerzburg Josef-Schneider-Strasse 11, D-97080 Wuerzburg, Germany; (C.V.); (J.E.); (N.G.); (R.H.); (K.R.)
| | | | | | | | | | | |
Collapse
|
9
|
Nawarawong NN, Thompson KR, Guerin SP, Anasooya Shaji C, Peng H, Nixon K. Reactive, Adult Neurogenesis From Increased Neural Progenitor Cell Proliferation Following Alcohol Dependence in Female Rats. Front Neurosci 2021; 15:689601. [PMID: 34594180 PMCID: PMC8477003 DOI: 10.3389/fnins.2021.689601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Hippocampal neurodegeneration is a consequence of excessive alcohol drinking in alcohol use disorders (AUDs), however, recent studies suggest that females may be more susceptible to alcohol-induced brain damage. Adult hippocampal neurogenesis is now well accepted to contribute to hippocampal integrity and is known to be affected by alcohol in humans as well as in animal models of AUDs. In male rats, a reactive increase in adult hippocampal neurogenesis has been observed during abstinence from alcohol dependence, a phenomenon that may underlie recovery of hippocampal structure and function. It is unknown whether reactive neurogenesis occurs in females. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by 7 or 14 days of abstinence. Immunohistochemistry (IHC) was used to assess neural progenitor cell (NPC) proliferation (BrdU and Ki67), the percentage of increased NPC activation (Sox2+/Ki67+), the number of immature neurons (NeuroD1), and ectopic dentate gyrus granule cells (Prox1). On day seven of abstinence, ethanol-treated females showed a significant increase in BrdU+ and Ki67+ cells in the subgranular zone of the dentate gyrus (SGZ), as well as greater activation of NPCs (Sox2+/Ki67+) into active cycling. At day 14 of abstinence, there was a significant increase in the number of immature neurons (NeuroD1+) though no evidence of ectopic neurogenesis according to either NeuroD1 or Prox1 immunoreactivity. Altogether, these data suggest that alcohol dependence produces similar reactive increases in NPC proliferation and adult neurogenesis. Thus, reactive, adult neurogenesis may be a means of recovery for the hippocampus after alcohol dependence in females.
Collapse
Affiliation(s)
- Natalie N Nawarawong
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - K Ryan Thompson
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Steven P Guerin
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | | | - Hui Peng
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Kimberly Nixon
- College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
10
|
Micheli L, Creanza TM, Ceccarelli M, D'Andrea G, Giacovazzo G, Ancona N, Coccurello R, Scardigli R, Tirone F. Transcriptome Analysis in a Mouse Model of Premature Aging of Dentate Gyrus: Rescue of Alpha-Synuclein Deficit by Virus-Driven Expression or by Running Restores the Defective Neurogenesis. Front Cell Dev Biol 2021; 9:696684. [PMID: 34485283 PMCID: PMC8415876 DOI: 10.3389/fcell.2021.696684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
The dentate gyrus of the hippocampus and the subventricular zone are neurogenic niches where neural stem and progenitor cells replicate throughout life to generate new neurons. The Btg1 gene maintains the stem cells of the neurogenic niches in quiescence. The deletion of Btg1 leads to an early transient increase of stem/progenitor cells division, followed, however, by a decrease during adulthood of their proliferative capability, accompanied by apoptosis. Since a physiological decrease of neurogenesis occurs during aging, the Btg1 knockout mouse may represent a model of neural aging. We have previously observed that the defective neurogenesis of the Btg1 knockout model is rescued by the powerful neurogenic stimulus of physical exercise (running). To identify genes responsible for stem and progenitor cells maintenance, we sought here to find genes underlying this premature neural aging, and whose deregulated expression could be rescued by running. Through RNA sequencing we analyzed the transcriptomic profiles of the dentate gyrus isolated from Btg1 wild-type or Btg1 knockout adult (2-month-old) mice submitted to physical exercise or sedentary. In Btg1 knockout mice, 545 genes were deregulated, relative to wild-type, while 2081 genes were deregulated by running. We identified 42 genes whose expression was not only down-regulated in the dentate gyrus of Btg1 knockout, but was also counter-regulated to control levels by running in Btg1 knockout mice, vs. sedentary. Among these 42 counter-regulated genes, alpha-synuclein (Snca), Fos, Arc and Npas4 showed significantly greater differential regulation. These genes control neural proliferation, apoptosis, plasticity and memory and are involved in aging. In particular, Snca expression decreases during aging. We tested, therefore, whether an Snca-expressing lentivirus, by rescuing the defective Snca levels in the dentate gyrus of Btg1 knockout mice, could also reverse the aging phenotype, in particular the defective neurogenesis. We found that the exogenous expression of Snca reversed the Btg1 knockout-dependent decrease of stem cell proliferation as well as the increase of progenitor cell apoptosis. This indicates that Snca has a functional role in the process of neural aging observed in this model, and also suggests that Snca acts as a positive regulator of stem cell maintenance.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, Bari, Italy
| | - Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giacomo Giacovazzo
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicola Ancona
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, Bari, Italy
| | - Roberto Coccurello
- Preclinical Neuroscience, European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy.,Institute for Complex Systems, National Research Council, Rome, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
11
|
Different Neurogenic Potential in the Subnuclei of the Postnatal Rat Cochlear Nucleus. Stem Cells Int 2021; 2021:8871308. [PMID: 33880121 PMCID: PMC8046557 DOI: 10.1155/2021/8871308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
In patients suffering from hearing loss, the reduced or absent neural input induces morphological changes in the cochlear nucleus (CN). Neural stem cells have recently been identified in this first auditory relay. Afferent nerve signals and their impact on the immanent neural stem and progenitor cells already impinge upon the survival of early postnatal cells within the CN. This auditory brainstem nucleus consists of three different subnuclei: the anteroventral cochlear nucleus (AVCN), the posteroventral cochlear nucleus (PVCN), and the dorsal cochlear nucleus (DCN). Since these subdivisions differ ontogenetically and physiologically, the question arose whether regional differences exist in the neurogenic niche. CN from postnatal day nine Sprague-Dawley rats were microscopically dissected into their subnuclei and cultivated in vitro as free-floating cell cultures and as whole-mount organ cultures. In addition to cell quantifications, immunocytological and immunohistological studies of the propagated cells and organ preparations were performed. The PVCN part showed the highest mitotic potential, while the AVCN and DCN had comparable activity. Specific stem cell markers and the ability to differentiate into cells of the neural lineage were detected in all three compartments. The present study shows that in all subnuclei of rat CN, there is a postnatal neural stem cell niche, which, however, differs significantly in its potential. The results can be explained by the origin from different regions in the rhombic lip, the species, and the various analysis techniques applied. In conclusion, the presented results provide further insight into the neurogenic potential of the CN, which may prove beneficial for the development of new regenerative strategies for hearing loss.
Collapse
|
12
|
Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, Page CE, Sandoval K, Knox A, Connolly A, Huang EJ, Garcia-Verdugo JM, Oldham MC, Yang Z, Alvarez-Buylla A. Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J Neurosci 2021; 41:2554-2565. [PMID: 33762407 PMCID: PMC8018729 DOI: 10.1523/jneurosci.0676-20.2020] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Mercedes F Paredes
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Gugene Kang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Oier Pastor-Alonso
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Sean Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kadellyn Sandoval
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Anthony Knox
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Andrew Connolly
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Valencia 46980, Spain
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
13
|
Nelson LH, Peketi P, Lenz KM. Microglia Regulate Cell Genesis in a Sex-dependent Manner in the Neonatal Hippocampus. Neuroscience 2020; 453:237-255. [PMID: 33129890 DOI: 10.1016/j.neuroscience.2020.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023]
Abstract
Microglia, the innate immune cells of the brain, regulate brain development through many processes such as synaptic pruning, supporting cell genesis and phagocytosing living and dying cells. There are sex differences in these same developmental processes throughout the brain, thus microglia may contribute to brain sex differences. We examined whether microglia support a known sex difference in neonatal hippocampal neurogenesis and whether juvenile hippocampal neurogenesis was impacted by the loss of neonatal microglia. We used central infusion of liposomal clodronate to selectively deplete microglia and found decreased cell genesis in the male, but not female, dentate gyrus and hippocampus. We found that loss of microglia decreased cell genesis in the cortex and amygdala of both males and females. We assessed the expression of several cytokines and growth factors that have previously been shown to support cell genesis. We found that expression of Il1b and Tnf were decreased in the hippocampus due to microglia depletion however, there were no sex differences in the expression of any immune genes. In adolescence, there was an increase in the number of mitotic cells in the subgranular zone of the dentate gyrus of previously microglia depleted rats however, the number of newly-born neurons was unchanged in the adolescent animals. We also sought to determine whether there was a sex difference in the number of progenitor cells in the dentate gyrus in the neonatal period. We found no sex differences in the number of progenitor cells. Overall, these studies show that microglia are important for regulating region-specific sex differences in cell genesis in the developing brain.
Collapse
Affiliation(s)
- Lars H Nelson
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States.
| | - Pavan Peketi
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Kathryn M Lenz
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States; Department of Psychology, The Ohio State University, Columbus, OH, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Quantitative characterization of proliferative cells subpopulations in the hilus of the hippocampus of adult Wistar rats: an integrative study. J Mol Histol 2020; 51:437-453. [PMID: 32653982 DOI: 10.1007/s10735-020-09895-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The hilus plays an important role modulating the excitability of the hippocampal dentate gyrus (DG). It also harbors proliferative cells whose proliferation rate is modified during pathological events. However, the characterization of these cells, in terms of cellular identity, lineage, and fate, as well as the morphology and proportion of each cell subpopulation has been poorly studied. Therefore, a deeper investigation of hilar proliferative cells might expand the knowledge not only in the physiology, but in the pathophysiological processes related to the hippocampus too. The aim of this work was to perform an integrative study characterizing the identity of proliferative cells populations harbored in the hilus, along with morphology and proportion. In addition, this study provides comparative evidence of the subgranular zone (SGZ) of the DG. Quantified cells included proliferative, neural precursor, Type 1, oligodendrocyte progenitor (OPCs), neural progenitor (NPCs), and proliferative mature astrocytes in the hilus and SGZ of Wistar adult rats. Our results showed that 84% of the hilar proliferative cells correspond to neural precursor cells, OPCs and NPCs being the most abundant at 54 and 45%, respectively, unlike the SGZ, where OPCs represent only 11%. Proliferative mature astrocytes and Type 1-like cells were rarely observed in the hilus. Together, our results lay the basis for future studies focused on the lineage and fate of hilar proliferative cells and suggest that the hilus could be relevant to the formation of new cells that modulate multiple physiological processes governed by the hippocampus.
Collapse
|
15
|
Ceccarelli M, D’Andrea G, Micheli L, Tirone F. Interaction Between Neurogenic Stimuli and the Gene Network Controlling the Activation of Stem Cells of the Adult Neurogenic Niches, in Physiological and Pathological Conditions. Front Cell Dev Biol 2020; 8:211. [PMID: 32318568 PMCID: PMC7154047 DOI: 10.3389/fcell.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
In the adult mammalian brain new neurons are continuously generated throughout life in two niches, the dentate gyrus of the hippocampus and the subventricular zone. This process, called adult neurogenesis, starts from stem cells, which are activated and enter the cell cycle. The proliferative capability of stem cells progressively decreases during aging. The population of stem cells is generally quiescent, and it is not clear whether the potential for stem cells to expand is limited, or whether they can expand and then return to quiescence, remaining available for further activation. Certain conditions may deregulate stem cells quiescence and self-renewal. In fact we discuss the possibility of activation of stem cells by neurogenic stimuli as a function of the intensity of the stimulus (i.e., whether this is physiological or pathological), and of the deregulation of the system (i.e., whether the model is aged or carrying genetic mutations in the gene network controlling quiescence). It appears that when the system is aged and/or carrying mutations of quiescence-maintaining genes, preservation of the quiescent state of stem cells is more critical and stem cells can be activated by a neurogenic stimulus which is ineffective in normal conditions. Moreover, when a neurogenic stimulus is in itself a cause of brain damage (e.g., kainic acid treatment) the activation of stem cells occurs bypassing any inhibitory control. Plausibly, with strong neurogenic stimuli, such as kainic acid injected into the dentate gyrus, the self-renewal capacity of stem cells may undergo rapid exhaustion. However, the self-renewal capability of stem cells persists when normal stimuli are elicited in the presence of a mutation of one of the quiescence-maintaining genes, such as p16Ink4a, p21Cip1 or Btg1. In this case, stem cells become promptly activated by a neurogenic stimulus even during aging. This indicates that stem cells retain a high proliferative capability and plasticity, and suggests that stem cells are protected against the response to stimulus and are resilient to exhaustion. It will be interesting to assess at which functional degree of deregulation of the quiescence-maintaining system, stem cells will remain responsive to repeated neurogenic stimuli without undergoing exhaustion of their pool.
Collapse
Affiliation(s)
| | | | | | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
16
|
Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiol Spectr 2020; 7. [PMID: 31322104 DOI: 10.1128/microbiolspec.bai-0020-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian nervous system is invaded by a number of intracellular bacterial pathogens which can establish and progress infection in susceptible individuals. Subsequent clinical manifestation is apparent with the impairment of the functional units of the nervous system, i.e., the neurons and the supporting glial cells that produce myelin sheaths around axons and provide trophic support to axons and neurons. Most of these neurotrophic bacteria display unique features, have coevolved with the functional sophistication of the nervous system cells, and have adapted remarkably to manipulate neural cell functions for their own advantage. Understanding how these bacterial pathogens establish intracellular adaptation by hijacking endogenous pathways in the nervous system, initiating myelin damage and axonal degeneration, and interfering with myelin maintenance provides new knowledge not only for developing strategies to combat neurodegenerative conditions induced by these pathogens but also for gaining novel insights into cellular and molecular pathways that regulate nervous system functions. Since the pathways hijacked by bacterial pathogens may also be associated with other neurodegenerative diseases, it is anticipated that detailing the mechanisms of bacterial manipulation of neural systems may shed light on common mechanisms, particularly of early disease events. This chapter details a classic example of neurodegeneration, that caused by Mycobacterium leprae, which primarily infects glial cells of the peripheral nervous system (Schwann cells), and how it targets and adapts intracellularly by reprogramming Schwann cells to stem cells/progenitor cells. We also discuss implications of this host cell reprogramming by leprosy bacilli as a model in a wider context.
Collapse
|
17
|
D’Andrea G, Ceccarelli M, Bernini R, Clemente M, Santi L, Caruso C, Micheli L, Tirone F. Hydroxytyrosol stimulates neurogenesis in aged dentate gyrus by enhancing stem and progenitor cell proliferation and neuron survival. FASEB J 2020; 34:4512-4526. [DOI: 10.1096/fj.201902643r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Giorgio D’Andrea
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE) University of Tuscia Viterbo Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology National Research Council (IBBC‐CNR) Monterotondo, Rome Italy
| |
Collapse
|
18
|
Isolation and Characterization of Neural Stem Cells from the Rat Inferior Colliculus. Stem Cells Int 2019; 2019:5831240. [PMID: 31781242 PMCID: PMC6875198 DOI: 10.1155/2019/5831240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
The inferior colliculus (IC) is a nucleus of the auditory pathway and its fourth relay station. It integrates afferent information from the superior olivary complex and the cochlear nucleus. To date, no causal therapeutic options are known for damaged neuronal structures in this area. Regenerative medicine offers a potential approach to causally treating hearing impairment. After neural stem cells had been identified in certain areas of the auditory pathway, the question arouses, whether the IC also has a neurogenic potential. Cells from the IC of postnatal day 6 rats were extracted and cultured as neurospheres. Cells in the neurospheres showed mitotic activity and positive stain of neural stem cell markers (Nestin, DCX, Atoh1, and Sox-2). In addition, single cells were differentiated into neuronal and glial cells shown by the markers β-III-tubulin, GFAP, and MBP. In summary, basic stem cell criteria could be detected and characterized in cells isolated from the IC of the rat. These findings will lead to a better understanding of the development of the auditory pathway and may also be relevant for identifying causal therapeutic approaches in the future.
Collapse
|
19
|
Petrik D, Encinas JM. Perspective: Of Mice and Men - How Widespread Is Adult Neurogenesis? Front Neurosci 2019; 13:923. [PMID: 31555083 PMCID: PMC6727861 DOI: 10.3389/fnins.2019.00923] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
These are exciting times for research on adult hippocampal neurogenesis (AHN). Debate and controversy regarding the existence of generation of new neurons in the adult, and even diseased human brain flourishes as articles against and in favor accumulate. Adult neurogenesis in the human brain is a phenomenon that does not share the qualities of quantum mechanics. The scientific community should agree that human AHN exists or does not, but not both at the same time. In this commentary, we discuss the latest research articles about hAHN and what their findings imply for the neurogenesis field.
Collapse
Affiliation(s)
- David Petrik
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Department of Physiological Genomics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juan M Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
20
|
Sorrells SF, Paredes MF, Velmeshev D, Herranz-Pérez V, Sandoval K, Mayer S, Chang EF, Insausti R, Kriegstein AR, Rubenstein JL, Manuel Garcia-Verdugo J, Huang EJ, Alvarez-Buylla A. Immature excitatory neurons develop during adolescence in the human amygdala. Nat Commun 2019; 10:2748. [PMID: 31227709 PMCID: PMC6588589 DOI: 10.1038/s41467-019-10765-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply decreases in infants. Using single nuclei RNA sequencing, we identify the transcriptional profile of immature excitatory neurons in the human amygdala between 4-15 years. We conclude that the human PL contains excitatory neurons that remain immature for decades, a possible substrate for persistent plasticity at the interface of the hippocampus and amygdala.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Dmitry Velmeshev
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071, Castelló de la Plana, Spain
| | - Kadellyn Sandoval
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Simone Mayer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine and CRIB, University of Castilla-La Mancha, 02006, Albacete, Spain
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - John L Rubenstein
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA, 94158-2324, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
21
|
Micheli L, D'Andrea G, Ceccarelli M, Ferri A, Scardigli R, Tirone F. p16Ink4a Prevents the Activation of Aged Quiescent Dentate Gyrus Stem Cells by Physical Exercise. Front Cell Neurosci 2019; 13:10. [PMID: 30792628 PMCID: PMC6374340 DOI: 10.3389/fncel.2019.00010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
In the neurogenic niches—the dentate gyrus of the hippocampus and the subventricular zone (SVZ) adjacent to lateral ventricles—stem cells continue to divide during adulthood, generating progenitor cells and new neurons, and to self-renew, thus maintaining the stem cell pool. During aging, the numbers of stem/progenitor cells in the neurogenic niches are reduced. The preservation of the neurogenic pool is committed to a number of antiproliferative genes, with the role of maintaining the quiescence of neural cells. The cyclin-dependent kinase inhibitor p16Ink4a, whose expression increases with age, controls the expansion of SVZ aging stem cells, since in mice its deficiency prevents the decline of neurogenesis in SVZ. No change of neurogenesis is however observed in the p16Ink4a-null dentate gyrus. Here, we hypothesized that p16Ink4a plays a role as a regulator of the self-renewal of the stem cell pool also in the dentate gyrus, and to test this possibility we stimulated the dentate gyrus neural cells of p16Ink4a-null aging mice with physical exercise, a powerful neurogenic activator. We observed that running highly induced the generation of new stem cells in the p16Ink4a-null dentate gyrus, forcing them to exit from quiescence. Stem cells, notably, are not induced to proliferate by running in wild-type (WT) mice. Moreover, p16Ink4a-null progenitor cells were increased by running significantly above the number observed in WT mice. The new stem and progenitor cells generated new neurons, and continued to actively proliferate in p16Ink4a-null mice longer than in the WT after cessation of exercise. Thus, p16Ink4a prevents aging dentate gyrus stem cells from being activated by exercise. Therefore, p16Ink4a may play a role in the maintenance of dentate gyrus stem cells after stimulus, by keeping a reserve of their self-renewal capacity during aging.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy.,Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Alessandra Ferri
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology (IFT), National Research Council, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. J Neurosci 2018; 39:1320-1331. [PMID: 30587544 DOI: 10.1523/jneurosci.1359-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023] Open
Abstract
Individuals with sleep apnea often exhibit changes in cognitive behaviors consistent with alterations in the hippocampus. It is hypothesized that adult neurogenesis in the dentate gyrus is an ongoing process that maintains normal hippocampal function in many mammalian species, including humans. However, the impact of chronic intermittent hypoxia (IH), a principal consequence of sleep apnea, on hippocampal adult neurogenesis remains unclear. Using a murine model, we examined the impact of 30 d of IH (IH30) on adult neurogenesis and synaptic plasticity in the dentate gyrus. Although IH30 did not affect paired-pulse facilitation, IH30 suppressed long-term potentiation (LTP). Immunohistochemical experiments also indicate that IH perturbs multiple aspects of adult neurogenesis. IH30 increased the number of proliferating Sox2+ neural progenitor cells in the subgranular zone yet reduced the number of doublecortin-positive neurons. Consistent with these findings, cell lineage tracing revealed that IH30 increased the proportion of radial glial cells in the subgranular zone, yet decreased the proportion of adult-born neurons in the dentate gyrus. While administration of a superoxide anion scavenger during IH did not prevent neural progenitor cell proliferation, it mitigated the IH-dependent suppression of LTP and prevented adult-born neuron loss. These data demonstrate that IH causes both reactive oxygen species-dependent and reactive oxygen species-independent effects on adult neurogenesis and synaptic plasticity in the dentate gyrus. Our findings identify cellular and neurophysiological changes in the hippocampus that may contribute to cognitive and behavioral deficits occurring in sleep apnea.SIGNIFICANCE STATEMENT Individuals with sleep apnea experience periods of intermittent hypoxia (IH) that can negatively impact many aspects of brain function. Neurons are continually generated throughout adulthood to support hippocampal physiology and behavior. This study demonstrates that IH exposure attenuates hippocampal long-term potentiation and reduces adult neurogenesis. Antioxidant treatment mitigates these effects indicating that oxidative signaling caused by IH is a significant factor that impairs synaptic plasticity and reduces adult neurogenesis in the hippocampus.
Collapse
|
23
|
Paredes MF, Sorrells SF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez Martin AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A. Does Adult Neurogenesis Persist in the Human Hippocampus? Cell Stem Cell 2018; 23:780-781. [PMID: 30526879 PMCID: PMC6800191 DOI: 10.1016/j.stem.2018.11.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shawn F Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arantxa Cebrian-Silla
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia 46980, Spain
| | - Kadellyn Sandoval
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dashi Qi
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David James
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Simone Mayer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia Chang
- David Geffen School of Medicine, Department of Neurosurgery, Intellectual Development and Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurtis I Auguste
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gary W Mathern
- Departments of Neurosurgery and Psychiatry & BioBehavioral Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia 46980, Spain
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018; 143:181-193. [PMID: 30236533 DOI: 10.1016/j.brainresbull.2018.09.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Of wide interest for health is the relation existing between depression, a very common psychological illness, accompanied by anxiety and reduced ability to concentrate, and adult neurogenesis. We will focus on two neurogenic stimuli, fluoxetine and physical exercise, both endowed with the ability to activate adult neurogenesis in the dentate gyrus of the hippocampus, known to be required for learning and memory, and both able to counteract depression. Fluoxetine belongs to the class of selective serotonin reuptake inhibitor (SSRI) antidepressants, which represent the most used pharmacological therapy; physical exercise has also been shown to effectively counteract depression symptoms in rodents as well as in humans. While there is evidence that the antidepressant effect of fluoxetine requires its pro-neurogenic action, exerted by promoting proliferation, differentiation and survival of progenitor cells of the hippocampus, on the other hand fluoxetine exerts also neurogenesis-independent antidepressant effects by influencing the plasticity of the new neurons generated. Similarly, the antidepressant action of running also correlates with an increase of hippocampal neurogenesis and plasticity, although the gene pathways involved are only partially coincident with those of fluoxetine, such as those involved in serotonin metabolism and synapse formation. We further discuss how extra-neurogenic actions are also suggested by the fact that, unlike running, fluoxetine is unable to stimulate neurogenesis during aging, but still displays antidepressant effects. Moreover, in specific conditions, fluoxetine or running activate not only progenitor but also stem cells, which normally are not stimulated; this fact reveals how stem cells have a long-term, hidden ability to self-renew and, more generally, that neurogenesis is subject to complex controls that may play a role in depression, such as the type of neurogenic stimulus or the state of the local niche. Finally, we discuss how fluoxetine or running are effective in counteracting depression originated from stress or neurodegenerative diseases.
Collapse
|
25
|
Micheli L, Ceccarelli M, D'Andrea G, Costanzi M, Giacovazzo G, Coccurello R, Caruso C, Tirone F. Fluoxetine or Sox2 reactivate proliferation-defective stem and progenitor cells of the adult and aged dentate gyrus. Neuropharmacology 2018; 141:316-330. [PMID: 30142401 DOI: 10.1016/j.neuropharm.2018.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
The dentate gyrus of the hippocampus and the subventricular zone are neurogenic niches where the production of new neurons from glia-like stem cells continues throughout adult life. It is not clear whether the pool of stem cells is fated to be exhausted or is conserved until old age. We observed that the antiproliferative gene Btg1 maintains the quiescence of stem cells, and its ablation causes an increase of stem/progenitor cells proliferation in neonatal mice followed by progressive loss of proliferation during adulthood. Fluoxetine is an antidepressant, which exerts a powerful neurogenic effect on dentate gyrus progenitor cells, but is ineffective on stem cells. Here we show that adult dentate gyrus stem cells in the Btg1 knockout mice, with reduced self-renewal and proliferative capability, can be reactivated by fluoxetine, which increases their number greatly above the level of control or fluoxetine-treated wild-type mice. The increase of mitotic index above wild-type in Btg1 knockout fluoxetine-treated stem cells indicates that fluoxetine forces quiescent stem cells to enter the cycle. Stem cell proliferation undergoes continuous reactivation until fluoxetine is administered. Remarkably, fluoxetine reactivates proliferation-defective stem cells also in aged Btg1 knockout mice (15-month-old), an effect absent in wild-type aged mice. Moreover, overexpression of Sox2 retrovirally transduced in Btg1 knockout dentate gyrus cells significantly increases the number of neuroblasts, indicating that Sox2 is able to promote the self-renewal of proliferation-defective stem cells. Overall, the deletion of an antiproliferative gene, such as Btg1, reveals that dentate gyrus stem cells retain a hidden plasticity for self-renewal also in old age, in agreement with a model of permanent self-renewal.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy; Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell'Università S.n.c., 01100, Viterbo, Italy.
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, Piazza Delle Vaschette 101, 00193, Rome, Italy.
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell'Università S.n.c., 01100, Viterbo, Italy.
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
26
|
Abnormal hippocampal neurogenesis in Parkinson’s disease: relevance to a new therapeutic target for depression with Parkinson’s disease. Arch Pharm Res 2018; 41:943-954. [DOI: 10.1007/s12272-018-1063-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
27
|
Retinoic Acid Is Required for Neural Stem and Progenitor Cell Proliferation in the Adult Hippocampus. Stem Cell Reports 2018; 10:1705-1720. [PMID: 29805108 PMCID: PMC5993652 DOI: 10.1016/j.stemcr.2018.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/19/2023] Open
Abstract
Neural stem and precursor cell (NSPC) proliferation in the rodent adult hippocampus is essential to maintain stem cell populations and produce new neurons. Retinoic acid (RA) signaling is implicated in regulation of adult hippocampal neurogenesis, but its exact role in control of NSPC behavior has not been examined. We show RA signaling in all hippocampal NSPC subtypes and that inhibition of RA synthesis or signaling significantly decreases NSPC proliferation via abrogation of cell-cycle kinetics and cell-cycle regulators. RA signaling controls NSPC proliferation through hypoxia inducible factor-1α (HIF1α), where stabilization of HIF1α concurrent with disruption of RA signaling can prevent NSPC defects. These studies demonstrate a cell-autonomous role for RA signaling in hippocampal NSPCs that substantially broadens RA's function beyond its well-described role in neuronal differentiation.
Collapse
|
28
|
Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang E, Gutierrez Martin AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018; 555:377-381. [PMID: 29513649 PMCID: PMC6179355 DOI: 10.1038/nature25975] [Citation(s) in RCA: 978] [Impact Index Per Article: 139.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved.
Collapse
Affiliation(s)
- Shawn F. Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
- Department of Neurological Surgery, University of California San Francisco, California 94143, USA
| | - Mercedes F. Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
- Department of Neurology, University of California San Francisco, California 94143, USA
| | - Arantxa Cebrian-Silla
- Laboratorio de Neurobiología Comparada. Instituto Cavanilles. Universidad de Valencia, CIBERNED, Valencia, 46980, Spain
| | - Kadellyn Sandoval
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
- Department of Neurology, University of California San Francisco, California 94143, USA
| | - Dashi Qi
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, P.R. 200032 China
| | - Kevin W. Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
| | - David James
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
| | - Simone Mayer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
- Department of Neurology, University of California San Francisco, California 94143, USA
| | - Julia Chang
- David Geffen School of Medicine, Department of Neurosurgery, Intellectual Development and Disabilities Research Center, University of California Los Angeles, California USA
| | - Kurtis I. Auguste
- Department of Neurological Surgery, University of California San Francisco, California 94143, USA
| | - Edward Chang
- Department of Neurological Surgery, University of California San Francisco, California 94143, USA
| | | | - Arnold R. Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
- Department of Neurology, University of California San Francisco, California 94143, USA
| | - Gary W. Mathern
- Departments of Neurosurgery and Psychiatry & BioBehavioral Medicine, David Geffen School of Medicine, University of California Los Angeles, California USA
| | - Michael C. Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
- Department of Neurological Surgery, University of California San Francisco, California 94143, USA
| | - Eric J. Huang
- Department of Pathology, University of California San Francisco, California 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada. Instituto Cavanilles. Universidad de Valencia, CIBERNED, Valencia, 46980, Spain
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, P.R. 200032 China
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California 94143, USA
- Department of Neurological Surgery, University of California San Francisco, California 94143, USA
| |
Collapse
|
29
|
Le Maître TW, Dhanabalan G, Bogdanovic N, Alkass K, Druid H. Effects of Alcohol Abuse on Proliferating Cells, Stem/Progenitor Cells, and Immature Neurons in the Adult Human Hippocampus. Neuropsychopharmacology 2018; 43:690-699. [PMID: 29052615 PMCID: PMC5809795 DOI: 10.1038/npp.2017.251] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023]
Abstract
In animal studies, impaired adult hippocampal neurogenesis is associated with behavioral pathologies including addiction to alcohol. We hypothesize that alcohol abuse may have a detrimental effect on the neurogenic pool of the dentate gyrus in the human hippocampus. In this study we investigate whether alcohol abuse affects the number of proliferating cells, stem/progenitor cells, and immature neurons in samples from postmortem human hippocampus. The specimens were isolated from deceased donors with an on-going alcohol abuse, and from controls with no alcohol overconsumption. Mid-hippocampal sections were immunostained for Ki67, a marker for cell proliferation, Sox2, a stem/progenitor cell marker, and DCX, a marker for immature neurons. Immunoreactivity was counted in alcoholic subjects and compared with controls. Counting was performed in the three layers of dentate gyrus: the subgranular zone, the granular cell layer, and the molecular layer. Our data showed reduced numbers of all three markers in the dentate gyrus in subjects with an on-going alcohol abuse. This reduction was most prominent in the subgranular zone, and uniformly distributed across the distances from the granular cell layer. Furthermore, alcohol abusers showed a more pronounced reduction of Sox2-IR cells than DCX-IR cells, suggesting that alcohol primarily causes a depletion of the stem/progenitor cell pool and that immature neurons are secondarily affected. These results are in agreement with observations of impaired adult hippocampal neurogenesis in animal studies and lend further support for the association between hippocampal dysfunction and alcohol abuse.
Collapse
Affiliation(s)
- Tara Wardi Le Maître
- Forensic Medicine Laboratory, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Nenad Bogdanovic
- Neurogeriatric Clinic, Theme Aging, Karolinska University Hospital, Stockholm Sweden
| | - Kanar Alkass
- Forensic Medicine Laboratory, Department of Oncology-Pathology, Stockholm, Sweden
| | - Henrik Druid
- Forensic Medicine Laboratory, Department of Oncology-Pathology, Stockholm, Sweden,Forensic Medicine Laboratory, Department of Oncology-Pathology, Retzius väg 3, SE-171 77, Stockholm, Sweden, Tel: +46 (0)8 425 877 70, E-mail:
| |
Collapse
|
30
|
Panaliappan TK, Wittmann W, Jidigam VK, Mercurio S, Bertolini JA, Sghari S, Bose R, Patthey C, Nicolis SK, Gunhaga L. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development 2018; 145:145/2/dev153791. [PMID: 29352015 PMCID: PMC5825848 DOI: 10.1242/dev.153791] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression. Summary: Analysis of Sox2 mutant mouse and Sox2 CRISPR-targeted chick embryos reveals that Sox2 controls the establishment of sensory progenitors in the olfactory epithelium by suppressing Bmp4 and upregulating Hes5 expression.
Collapse
Affiliation(s)
| | - Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Jessica A Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Soufien Sghari
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Raj Bose
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
31
|
Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and oligodendrocytic properties. Sci Rep 2017; 7:13915. [PMID: 29066783 PMCID: PMC5654978 DOI: 10.1038/s41598-017-14246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Dogs can be used as a translational animal model to close the gap between basic discoveries in rodents and clinical trials in humans. The present study compared the species-specific properties of satellite glial cells (SGCs) of canine and murine dorsal root ganglia (DRG) in situ and in vitro using light microscopy, electron microscopy, and immunostainings. The in situ expression of CNPase, GFAP, and glutamine synthetase (GS) has also been investigated in simian SGCs. In situ, most canine SGCs (>80%) expressed the neural progenitor cell markers nestin and Sox2. CNPase and GFAP were found in most canine and simian but not murine SGCs. GS was detected in 94% of simian and 71% of murine SGCs, whereas only 44% of canine SGCs expressed GS. In vitro, most canine (>84%) and murine (>96%) SGCs expressed CNPase, whereas GFAP expression was differentially affected by culture conditions and varied between 10% and 40%. However, GFAP expression was induced by bone morphogenetic protein 4 in SGCs of both species. Interestingly, canine SGCs also stimulated neurite formation of DRG neurons. These findings indicate that SGCs represent an exceptional, intermediate glial cell population with phenotypical characteristics of oligodendrocytes and astrocytes and might possess intrinsic regenerative capabilities in vivo.
Collapse
|
32
|
|
33
|
Micheli L, Ceccarelli M, Gioia R, D'Andrea G, Farioli-Vecchioli S, Costanzi M, Saraulli D, Cestari V, Tirone F. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2. Front Cell Neurosci 2017; 11:186. [PMID: 28740463 PMCID: PMC5502263 DOI: 10.3389/fncel.2017.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Roberta Gioia
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Marco Costanzi
- Department of Human Sciences, Libera Università Maria SS. Assunta (LUMSA)Rome, Italy
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy.,Department of Human Sciences, Libera Università Maria SS. Assunta (LUMSA)Rome, Italy
| | - Vincenzo Cestari
- Department of Psychology, Sapienza Università di RomaRome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| |
Collapse
|
34
|
Nierode GJ, Perea BC, McFarland SK, Pascoal JF, Clark DS, Schaffer DV, Dordick JS. High-Throughput Toxicity and Phenotypic Screening of 3D Human Neural Progenitor Cell Cultures on a Microarray Chip Platform. Stem Cell Reports 2016; 7:970-982. [PMID: 28157485 PMCID: PMC5106528 DOI: 10.1016/j.stemcr.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023] Open
Abstract
A 3D cell culture chip was used for high-throughput screening of a human neural progenitor cell line. The differential toxicity of 24 compounds was determined on undifferentiated and differentiating NPCs. Five compounds led to significant differences in IC50 values between undifferentiated and differentiating cultures. This platform has potential use in phenotypic screening to elucidate molecular toxicology on human stem cells. Demonstrated chip platform for HTS of protein expression and toxicity of 3D cultures Dose-response viability and proliferation of a 24-compound library on human NPC lines Assessed differential toxicity between progenitors and differentiating progeny Identified five compounds more toxic to undifferentiated progenitors
Collapse
Affiliation(s)
- Gregory J Nierode
- Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian C Perea
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sean K McFarland
- Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Jorge F Pascoal
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Douglas S Clark
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - David V Schaffer
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Jonathan S Dordick
- Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
35
|
Shepherd DJ, Tsai SY, O'Brien TE, Farrer RG, Kartje GL. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats. Front Neurosci 2016; 10:467. [PMID: 27803646 PMCID: PMC5067305 DOI: 10.3389/fnins.2016.00467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis.
Collapse
Affiliation(s)
- Daniel J Shepherd
- Neuroscience Institute, Loyola University Chicago Health Sciences DivisionMaywood, IL, USA; Research Service, Edward Hines Jr. VA HospitalHines, IL, USA
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital Hines, IL, USA
| | - Timothy E O'Brien
- Department of Mathematics and Statistics, Loyola University Chicago Chicago, IL, USA
| | - Robert G Farrer
- Research Service, Edward Hines Jr. VA Hospital Hines, IL, USA
| | - Gwendolyn L Kartje
- Neuroscience Institute, Loyola University Chicago Health Sciences DivisionMaywood, IL, USA; Research Service, Edward Hines Jr. VA HospitalHines, IL, USA; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Health Sciences DivisionMaywood, IL, USA
| |
Collapse
|
36
|
Briley D, Ghirardi V, Woltjer R, Renck A, Zolochevska O, Taglialatela G, Micci MA. Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci Rep 2016; 6:27812. [PMID: 27298190 PMCID: PMC4906289 DOI: 10.1038/srep27812] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
Rare individuals remain cognitively intact despite the presence of neuropathology usually associated with fully symptomatic Alzheimer’s disease (AD), which we refer to as Non-Demented with Alzheimer’s disease Neuropathology (NDAN). Understanding the involved mechanism(s) of their cognitive resistance may reveal novel strategies to treat AD-related dementia. In the pursuit of this goal, we determined the number of hippocampal neural stem cells (NSCs) and investigated the expression of several miRNAs in NDAN and AD subjects. Laser-capture microdissection of autopsy human hippocampus DG and qRT-PCR miRNA analyses were combined with immunofluorescence in this study. The number of SOX2+ NSCs in the DG was significantly increased in NDAN individuals as compared to AD subjects. Further, the prevalence of SOX2+ NSCs was found to correlate with cognitive capacity. Neurogenesis-regulating miRNAs were decreased in NDAN individuals as compared to AD patients. An increased number of NSCs and new neurons in NDAN individuals is associated with a unique expression of regulating miRNAs and strongly support a role of neurogenesis in mediating, in part, the ability of these individuals to resist the pathological burden of AD.
Collapse
Affiliation(s)
- David Briley
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Valeria Ghirardi
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health &Science University, OR, USA
| | - Alicia Renck
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Olga Zolochevska
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
37
|
Mansouri S, Nejad R, Karabork M, Ekinci C, Solaroglu I, Aldape KD, Zadeh G. Sox2: regulation of expression and contribution to brain tumors. CNS Oncol 2016; 5:159-73. [PMID: 27230973 DOI: 10.2217/cns-2016-0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumors of the CNS are composed of a complex mixture of neoplastic cells, in addition to vascular, inflammatory and stromal components. Similar to most other tumors, brain tumors contain a heterogeneous population of cells that are found at different stages of differentiation. The cancer stem cell hypothesis suggests that all tumors are composed of subpopulation of cells with stem-like properties, which are capable of self-renewal, display resistance to therapy and lead to tumor recurrence. One of the most important transcription factors that regulate cancer stem cell properties is SOX2. In this review, we focus on SOX2 and the complex network of signaling molecules and transcription factors that regulate its expression and function in brain tumor initiating cells. We also highlight important findings in the literature about the role of SOX2 in glioblastoma and medulloblastoma, where it has been more extensively studied.
Collapse
Affiliation(s)
- Sheila Mansouri
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Romina Nejad
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Merve Karabork
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Can Ekinci
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Ihsan Solaroglu
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey.,School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kenneth D Aldape
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Gelareh Zadeh
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, M5T 2S8, Canada
| |
Collapse
|
38
|
Kuhn HG, Eisch AJ, Spalding K, Peterson DA. Detection and Phenotypic Characterization of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:a025981. [PMID: 26931327 PMCID: PMC4772100 DOI: 10.1101/cshperspect.a025981] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of adult neurogenesis have greatly expanded in the last decade, largely as a result of improved tools for detecting and quantifying neurogenesis. In this review, we summarize and critically evaluate detection methods for neurogenesis in mammalian and human brain tissue. Besides thymidine analog labeling, cell-cycle markers are discussed, as well as cell stage and lineage commitment markers. Use of these histological tools is critically evaluated in terms of their strengths and limitations, as well as possible artifacts. Finally, we discuss the method of radiocarbon dating for determining cell and tissue turnover in humans.
Collapse
Affiliation(s)
- H Georg Kuhn
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Kirsty Spalding
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Daniel A Peterson
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
39
|
Platel JC, Bordey A. The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience 2015; 323:20-8. [PMID: 26546469 DOI: 10.1016/j.neuroscience.2015.10.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/22/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
A few decades ago it was discovered that two regions of the adult brain retain the ability to generate new neurons. These regions include the subgranular zone of the hippocampal dentate gyrus and the ventricular-subventricular zone (V-SVZ) located at the border of the lateral ventricle. In the V-SVZ, it was discovered that neural progenitor cells (NPCs) share many features of mature astrocytes and are often referred as V-SVZ astrocytes. We will first describe the markers, the morphology, and the neurophysiological characteristics of the mouse V-SVZ astrocytes. We will then discuss the fact that V-SVZ astrocytes constitute a mixed population with respect to their neurogenic properties, e.g., quiescent versus activated state, neurogenic fate, and transcription factors expression. Finally, we will describe two functions of V-SVZ astrocytes, their metabolic coupling to blood vessels and their neurogenic-supportive role consisting of providing guidance and survival cues to migrating newborn neurons.
Collapse
Affiliation(s)
- J C Platel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Marseille, IBDM, UMR7288, Marseille, France.
| | - A Bordey
- Department of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
40
|
Galvez-Contreras AY, Gonzalez-Castaneda RE, Campos-Ordonez T, Luquin S, Gonzalez-Perez O. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation. Eur J Neurosci 2015; 43:139-47. [PMID: 26370587 DOI: 10.1111/ejn.13079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Abstract
Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal.
Collapse
Affiliation(s)
- Alma Y Galvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Rocio E Gonzalez-Castaneda
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Tania Campos-Ordonez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| | - Sonia Luquin
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| |
Collapse
|
41
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
42
|
Kenney-Herbert E, Al-Mayhani T, Piccirillo SGM, Fowler J, Spiteri I, Jones P, Watts C. CD15 Expression Does Not Identify a Phenotypically or Genetically Distinct Glioblastoma Population. Stem Cells Transl Med 2015; 4:822-31. [PMID: 26019225 DOI: 10.5966/sctm.2014-0047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 02/23/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED : Recent research has focused on the hypothesis that the growth and regeneration of glioblastoma (GB) is sustained by a subpopulation of self-renewing stem-like cells. This has led to the prediction that molecular markers for cancer stem cells in GB may provide a treatment target. One candidate marker is CD15: we wanted to determine if CD15 represented a credible stem cell marker in GB. We first demonstrated that CD15-positive (CD15+) cells were less proliferative than their CD15-negative (CD15-) counterparts in 10 patient GB tumors. Next we compared the proliferative activity of CD15+ and CD15- cells in vitro using tumor-initiating primary GB cell lines (TICs) and found no difference in proliferative behavior. Furthermore, TICs sorted for CD15+ and CD15- were not significantly different cytogenetically or in terms of gene expression profile. Sorted single CD15+ and CD15- cells were equally capable of reconstituting a heterogeneous population containing both CD15+ and CD15- cells over time, and both CD15+ and CD15- cells were able to generate tumors in vivo. No difference was found in the phenotypic or genomic behavior of CD15+ cells compared with CD15- cells from the same patient. Moreover, we found that in vitro, cells were able to interconvert between the CD15+ and CD15- states. Our data challenge the utility of CD15 as a cancer stem cell marker. SIGNIFICANCE The data from this study contribute to the ongoing debate about the role of cancer stem cells in gliomagenesis. Results showed that CD15, a marker previously thought to be a cancer stem-like marker in glioblastoma, could not isolate a phenotypically or genetically distinct population. Moreover, isolated CD15-positive and -negative cells were able to generate mixed populations of glioblastoma cells in vitro.
Collapse
Affiliation(s)
- Emma Kenney-Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Talal Al-Mayhani
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Sara G M Piccirillo
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Joanna Fowler
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Inmaculada Spiteri
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Philip Jones
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Colin Watts
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
43
|
Campbell JG, Miller DC, Cundiff DD, Feng Q, Litofsky NS. Neural stem/progenitor cells react to non-glial cns neoplasms. SPRINGERPLUS 2015; 4:53. [PMID: 25713758 PMCID: PMC4328003 DOI: 10.1186/s40064-015-0807-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/08/2015] [Indexed: 12/01/2022]
Abstract
It is well established that the normal human brain contains populations of neural stem/progenitor cells. Recent studies suggest that they migrate toward a variety of CNS tissue injuries. In an investigation of the potential role of neural stem cells in the pathogenesis of primary CNS lymphomas (NHL-CNS), we observed that neural stem/progenitor cells appeared to accumulate at the border of the tumors with the brain and in the advancing edge of the tumors, in a pattern similar to that seen with reactive gliosis. We identified neural stem/progenitor cells using standard immunohistochemical markers thereof, including CD133, nestin, Group II Beta-tubulin, Musashi1, and the transcription factor Sox2, in neurosurgically obtained specimens of NHL-CNS metastatic carcinoma , and metastatic melanoma . We had similar results with each of these markers but found that Sox2 antibodies provided the clearest and most robust labeling of the cells at the borders of these non-glial tumors. To exclude that the immunoreactive cells were actually neoplastic, double-label immunohistochemistry for Sox2 and CD20 (for NHL-CNS), Sox2 and cytokeratin (CAM5.2, for carcinomas), or Sox2 and HMB45 (for melanomas) showed that in each tumor type, Sox2-immunoreactive cells adjacent to and among the tumor cells were separate from neoplastic cells. Sox2/GFAP double-labeling revealed a consistent pattern of Sox2 immunopositivity both in reactive GFAP-immunopositive astrocytes and in GFAP-negative cells, at the interface of tumor and non-neoplastic brain. These results suggest that neural stem/progenitor cells migrate to non-glial neoplasms in the CNS, are a source of reactive astrocytes, and that Sox2 is a reliable immunohistochemical marker for these cells.
Collapse
Affiliation(s)
- Jack Griffin Campbell
- Department of Surgery, Division of Neurological Surgery, The University of Missouri School of Medicine, Columbia, Missouri USA
| | - Douglas C Miller
- Department of Pathology & Anatomical Sciences, The University of Missouri School of Medicine, M263 Medical Science Building, One Hospital Drive, Columbia, MO 65212 USA
| | - Diane D Cundiff
- Department of Pathology & Anatomical Sciences, The University of Missouri School of Medicine, M263 Medical Science Building, One Hospital Drive, Columbia, MO 65212 USA
| | - Qi Feng
- Department of Surgery, Division of Neurological Surgery, The University of Missouri School of Medicine, Columbia, Missouri USA
| | - N Scott Litofsky
- Department of Surgery, Division of Neurological Surgery, The University of Missouri School of Medicine, Columbia, Missouri USA
| |
Collapse
|
44
|
Chew LJ, DeBoy CA, Senatorov VV. Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. J Neurosci Methods 2014; 236:125-47. [PMID: 25169049 PMCID: PMC4171043 DOI: 10.1016/j.jneumeth.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, United States.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, United States
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
45
|
BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS One 2014; 9:e110668. [PMID: 25330173 PMCID: PMC4201562 DOI: 10.1371/journal.pone.0110668] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Astrocytes constitute a major cell population in the brain with a myriad of essential functions, yet we know remarkably little about the signaling pathways and mechanisms that direct astrocyte maturation. To explore the signals regulating astrocyte development, we prospectively purified and cultured immature postnatal rodent astrocytes. We identified fibroblast growth factors (FGFs) and bone morphogenetic proteins (BMPs) as robust trophic factors for immature astrocytes. We showed that astrocytes respond directly to BMPs via phosphorylation of the smad1/5/8 pathway. In vitro, BMP signaling promoted immature astrocytes to adopt multiple characteristics of mature astrocytes, including a more process-bearing morphology, aquaporin-4 (AQP4) and S100β immunoreactivity, limited proliferation, and strong downregulation of epidermal growth factor receptor (EGFR). In vivo, activation of the smad1/5/8 pathway in astrocytes was seen during early postnatal development, but inhibition of astrocyte proliferation was not observed. These insights can aid in the further dissection of the mechanisms and pathways controlling astrocyte biology and development.
Collapse
|
46
|
Neuronal expression of SOX2 is enriched in specific hypothalamic cell groups. J Chem Neuroanat 2014; 61-62:153-60. [PMID: 25263324 DOI: 10.1016/j.jchemneu.2014.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 02/04/2023]
Abstract
The transcription factor SOX2 has many established roles in neural development but is generally considered to have limited activity in the adult brain. As part of a study of neuronal phenotypes in the adult rodent hypothalamus, we have now used immunohistochemical analysis to investigate the expression of SOX2 in the adult rat and mouse hypothalamus. Our analysis has revealed that SOX2 protein is extensively expressed in cells of the suprachiasmatic nucleus (SCN). Co-localization with the nuclear marker proteins NeuN and MeCP2 confirmed SOX2 expression in mature neurons of the rat SCN, and the functional integrity of these SOX2+ neurons was also confirmed by demonstrating co-localization with light-induced EGR1 protein. In addition to the SCN, we have also revealed a population of SOX2+/(NeuN+/MeCP2+) neurons in the rat periventricular nucleus (PeN). However, in other hypothalamic nuclei such as the supraoptic nucleus (SON) SOX2+ cells were rare. In extra-hypothalamic areas, SOX2+ cells were also scarce although we have confirmed populations of non-neuronal SOX2+ cells in both the rat sub-ventricular zone (SVZ) and sub-granular zone (SGZ) of the hippocampus. In addition, we have identified an extensive, novel population of non-neuronal SOX2+ cells in the rat subfornical organ (SFO). Our findings provide further evidence of 'immature' phenotypes in rodent SCN neurons and, given the extensive expression of SOX2 across these hypothalamic neurons, may identify a common regulatory factor that maintains this unusual neuronal phenotype. Conservation of SCN SOX2 expression in both rat and mouse indicates a functional requirement for this transcription factor that may be integral to the role of these SCN neurons in mediating daily physiological rhythms.
Collapse
|
47
|
Xia M, Zhu Y. The regulation of Sox2 and Sox9 stimulated by ATP in spinal cord astrocytes. J Mol Neurosci 2014; 55:131-140. [PMID: 25115708 DOI: 10.1007/s12031-014-0393-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023]
Abstract
After spinal cord injury (SCI), the level of adenosine triphosphate (ATP) and extracellular matrix (ECM) is increased. Formation of the glial scar is a complex process that is primarily attributed to astrocytic proliferation, and the fibrotic scar results from ECM deposition. In our previous researches, ATP and fibronectin was able to separately stimulate the proliferation of astrocytes. Moreover, fibronectin increases the expression of P2Y1 receptor and offers more binding sites for ATP, which aggravates the proliferation. Meanwhile, ATP was also able to stimulate the release of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), but fibronectin does not. Recently, it has been reported that over-expressing P2Y1 receptor could promote the level of Sox9. However, the regulation of Sox genes by ATP is still little known in spinal cord astrocytes. In the present study, we discovered that ATP was able to increase the expression of Sox2 and Sox9; fibronectin did not have this direct function. Sox9 was only involved in the proliferation increased by ATP, and Sox2 influenced the release of IL-6 stimulated by ATP. Understanding the critical role of Sox2 and Sox9 mediated by ATP may provide a potential target for therapeutic intervention in spinal cord injury.
Collapse
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, No. 155 Nanjing Bei Street Heping District, Shenyang, People's Republic of China, 110001.
| | - Yue Zhu
- Department of Orthopaedics, The First Hospital of China Medical University, No. 155 Nanjing Bei Street Heping District, Shenyang, People's Republic of China, 110001.
| |
Collapse
|
48
|
Bond AM, Peng CY, Meyers EA, McGuire T, Ewaleifoh O, Kessler JA. BMP signaling regulates the tempo of adult hippocampal progenitor maturation at multiple stages of the lineage. Stem Cells 2014; 32:2201-14. [PMID: 24578327 DOI: 10.1002/stem.1688] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/24/2014] [Accepted: 02/18/2014] [Indexed: 01/15/2023]
Abstract
Novel environmental stimuli, such as running and learning, increase proliferation of adult hippocampal neural stem cells (NSCs) and enlarge the population of new neurons. However, it remains unclear how increased numbers of new neurons can be generated in a time frame far shorter than the time required for proliferating stem cells to generate these neurons. Here, we show that bone morphogenetic protein (BMP) signaling in the subgranular zone regulates the tempo of neural progenitor cell (NPC) maturation by directing their transition between states of quiescence and activation at multiple stages along the lineage. Virally mediated overexpression of BMP4 caused NPC cell cycle exit and slowed the normal maturation of NPCs, resulting in a long-term reduction in neurogenesis. Conversely, overexpression of the BMP inhibitor noggin promoted NPC cell cycle entry and accelerated NPC maturation. Similarly, BMP receptor type 2 (BMPRII) ablation in Ascl1(+) intermediate NPCs accelerated their maturation into neurons. Importantly, ablation of BMPRII in GFAP(+) stem cells accelerated maturation without depleting the NSC pool, indicating that an increased rate of neurogenesis does not necessarily diminish the stem cell population. Thus, inhibition of BMP signaling is a mechanism for rapidly expanding the pool of new neurons in the adult hippocampus by tipping the balance between quiescence/activation of NPCs and accelerating the rate at which they mature into neurons.
Collapse
Affiliation(s)
- Allison M Bond
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
49
|
Oliver-De La Cruz J, Carrión-Navarro J, García-Romero N, Gutiérrez-Martín A, Lázaro-Ibáñez E, Escobedo-Lucea C, Perona R, Belda-Iniesta C, Ayuso-Sacido A. SOX2+ cell population from normal human brain white matter is able to generate mature oligodendrocytes. PLoS One 2014; 9:e99253. [PMID: 24901457 PMCID: PMC4047120 DOI: 10.1371/journal.pone.0099253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/13/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES A number of neurodegenerative diseases progress with a loss of myelin, which makes them candidate diseases for the development of cell-replacement therapies based on mobilisation or isolation of the endogenous neural/glial progenitor cells, in vitro expansion, and further implantation. Cells expressing A2B5 or PDGFRA/CNP have been isolated within the pool of glial progenitor cells in the subcortical white matter of the normal adult human brain, all of which demonstrate glial progenitor features. However, the heterogeneity and differentiation potential of this pool of cells is not yet well established. METHODS We used diffusion tensor images, histopathology, and immunostaining analysis to demonstrate normal cytoarchitecture and the absence of abnormalities in human temporal lobe samples from patients with mesial temporal sclerosis. These samples were used to isolate and enrich glial progenitor cells in vitro, and later to detect such cells in vivo. RESULTS We have identified a subpopulation of SOX2+ cells, most of them co-localising with OLIG2, in the white matter of the normal adult human brain in vivo. These cells can be isolated and enriched in vitro, where they proliferate and generate immature (O4+) and mature (MBP+) oligodendrocytes and, to a lesser extent, astrocytes (GFAP+). CONCLUSION Our results demonstrate the existence of a new glial progenitor cell subpopulation that expresses SOX2 in the white matter of the normal adult human brain. These cells might be of use for tissue regeneration procedures.
Collapse
Affiliation(s)
- Jorge Oliver-De La Cruz
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
| | - Josefa Carrión-Navarro
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
| | - Noemí García-Romero
- Nanomedicine Laboratory, Instituto Madrileño de Estudios Avanzados IMDEA nanoscience, Madrid, Spain
| | | | - Elisa Lázaro-Ibáñez
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
- Division of Biopharmaceuticals and Pharmacokinetics, University of Helsinki, Helsinki, Finland
| | - Carmen Escobedo-Lucea
- Division of Biopharmaceuticals and Pharmacokinetics, University of Helsinki, Helsinki, Finland
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
| | - Cristobal Belda-Iniesta
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
- Nanomedicine Laboratory, Instituto Madrileño de Estudios Avanzados IMDEA nanoscience, Madrid, Spain
| | - Angel Ayuso-Sacido
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
- Division of Biopharmaceuticals and Pharmacokinetics, University of Helsinki, Helsinki, Finland
- Nanomedicine Laboratory, Instituto Madrileño de Estudios Avanzados IMDEA nanoscience, Madrid, Spain
- * E-mail:
| |
Collapse
|
50
|
Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, Martin M, Nguyen TD, Nguyen TNQ, Gries M, Faßbender K, Conconi MT, Parnigotto PP, Schäfer KH. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med 2014; 18:1429-43. [PMID: 24780093 PMCID: PMC4124026 DOI: 10.1111/jcmm.12292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) has to respond to continuously changing microenvironmental challenges within the gut and is therefore dependent on a neural stem cell niche to keep the ENS functional throughout life. In this study, we hypothesize that this stem cell niche is also affected during inflammation and therefore investigated lipopolysaccharides (LPS) effects on enteric neural stem/progenitor cells (NSPCs). NSPCs were derived from the ENS and cultured under the influence of different LPS concentrations. LPS effects upon proliferation and differentiation of enteric NSPC cultures were assessed using immunochemistry, flow cytometry, western blot, Multiplex ELISA and real-time PCR. LPS enhances the proliferation of enteric NSPCs in a dose-dependent manner. It delays and modifies the differentiation of these cells. The expression of the LPS receptor toll-like receptor 4 on NSPCs could be demonstrated. Moreover, LPS induces the secretion of several cytokines. Flow cytometry data gives evidence for individual subgroups within the NSPC population. ENS-derived NSPCs respond to LPS in maintaining at least partially their stem cell character. In the case of inflammatory disease or trauma where the liberation and exposure to LPS will be increased, the expansion of NSPCs could be a first step towards regeneration of the ENS. The reduced and altered differentiation, as well as the induction of cytokine signalling, demonstrates that the stem cell niche may take part in the LPS-transmitted inflammatory processes in a direct and defined way.
Collapse
Affiliation(s)
- Anne Schuster
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|