1
|
Yang R, Fu X, Li L, Wei Z, Zhou A, Wu H. Identification and Characterization of Chemical Compounds in Compound Shougong Powder by UHPLC-Q-TOF/MS E Combined With Multiple Data Processing Techniques. J Sep Sci 2025; 48:e70069. [PMID: 39740116 DOI: 10.1002/jssc.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Compound Shougong Powder (CSP) is a traditional Chinese medicine (TCM) preparation recognized for its efficacy in reducing swelling and relieving pain. It is primarily used clinically for the treatment of malignant tumors. However, research on the chemical compounds present in CSP remains limited. In this study, we employed ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MSE) combined with multiple data processing techniques to comprehensively characterize the chemical compounds in CSP. This included a multiple-point screening mass defect filtering (MDF), an enhanced method based on conventional MDF and boundary theory that creates a polygonal filtering zone by connecting numerous endpoints (n ≥ 5) to filter target components. Additional techniques utilized were extracted ion chromatogram (EIC), neutral loss filtering (NLF), diagnostic fragment ion filtering (DFIF), and direct identification methods considering retention time, fragmentation behavior, and reference standards. First, UHPLC-Q-TOF/MSE was applied for comprehensive profiling of CSP's chemical compounds. Then, R language combined with MZmine was used for data preprocessing, enabling the construction of an ion information list to extract valid data. Eventually, through these multiple data processing techniques, a total of 116 chemical compounds in CSP were identified, including 34 flavonoids, 38 saponins, seven stilbenes, six anthraquinones, 12 organic acids, 13 terpenoids, and six others. In summary, this study elucidates the chemical composition of CSP, contributing to the discovery of potential active ingredients for CSP. Additionally, the established strategy provided a powerful guide for the chemical characterization of TCM.
Collapse
Affiliation(s)
- Rui Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojie Fu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lanying Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ziqi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Chen L, Zhang H, Shang C, Hong Y. The Role and Applied Value of Mitochondria in Glioma-Related Research. CNS Neurosci Ther 2024; 30:e70121. [PMID: 39639571 PMCID: PMC11621238 DOI: 10.1111/cns.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondria, known as the "energy factory" of cells, are essential organelles with a double membrane structure and genetic material found in most eukaryotic cells. They play a crucial role in tumorigenesis and development, with alterations in mitochondrial structure and function in tumor cells leading to characteristics such as rapid proliferation, invasion, and drug resistance. Glioma, the most common brain tumor with a high recurrence rate and limited treatment options, has been linked to changes in mitochondrial structure and function. This review focuses on the bioenergetics, dynamics, metastasis, and autophagy of mitochondria in relation to glioma proliferation, as well as the potential use of mitochondria-targeting drugs in glioma treatment.
Collapse
Affiliation(s)
- Liwen Chen
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hui Zhang
- Department of Urology, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Chao Shang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
| | - Yang Hong
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Kotyńska J, Naumowicz M. Monitoring changes in the zeta potential and the surface charge of human glioblastoma cells and phosphatidylcholine liposomes induced by curcumin as a function of pH. Chem Biol Interact 2024; 402:111215. [PMID: 39197812 DOI: 10.1016/j.cbi.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Curcumin (CUR) has received worldwide attention for its beneficial effects on human health. Research report possible cytotoxic activity against various cancers, including glioblastoma. So far, little attention has been given to the binding properties of CUR to lipid membranes, which influences their electrical characteristics and can provide insight into their membrane-permeation abilities. Biophysical interactions between the polyphenol and in vitro models (liposomes and LN-18 human glioblastoma cells) were investigated by monitoring zeta potential and the membrane's surface charge as a function of pH. We focused on practical measurements and undertook a theoretical analysis of interactions in the natural cell membrane. We used the MTT assay to evaluate the viability of CUR-treated cells. Measurements performed using the Electrophoretic Light Scattering method demonstrated the dose-dependent effect of CUR on both membrane surface charge and zeta potential analyzed in vitro models. We determined theoretical parameters characterizing the cell membrane based on a quantitative description of the adsorption equilibria formed due to the binding of solution ions to the membrane of glioblastoma cells. The interaction of CUR with liposomes and human cancer cells is pH-dependent.
Collapse
Affiliation(s)
- Joanna Kotyńska
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
4
|
Zhang Z, Wu C, Liu N, Wang Z, Pan Z, Jiang Y, Tian J, Sun M. Modified Banxiaxiexin decoction benefitted chemotherapy in treating gastric cancer by regulating multiple targets and pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118277. [PMID: 38697407 DOI: 10.1016/j.jep.2024.118277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chao Wu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Cancer Institute of Integrative Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyuan Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyang Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yulang Jiang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Sheng F, Yang S, Li M, Wang J, Liu L, Zhang L. Research Progress on the Anti-Cancer Effects of Astragalus membranaceus Saponins and Their Mechanisms of Action. Molecules 2024; 29:3388. [PMID: 39064966 PMCID: PMC11280308 DOI: 10.3390/molecules29143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalus membranaceus saponins are the main components of A. membranaceus, a plant widely used in traditional Chinese medicine. Recently, research on the anti-cancer effects of A. membranaceus saponins has received increasing attention. Numerous in vitro and in vivo experimental data indicate that A. membranaceus saponins exhibit significant anti-cancer effects through multiple mechanisms, especially in inhibiting tumor cell proliferation, migration, invasion, and induction of apoptosis, etc. This review compiles relevant studies on the anti-cancer properties of A. membranaceus saponins from various databases over the past two decades. It introduces the mechanism of action of astragalosides, highlighting their therapeutic benefits in the management of cancer. Finally, the urgent problems in the research process are highlighted to promote A. membranaceus saponins as an effective drug against cancer.
Collapse
Affiliation(s)
- Feiya Sheng
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Siyu Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Jiaojiao Wang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Alkahtani S, S. AL-Johani N, Alarifi S, Afzal M. Cytotoxicity Mechanisms of Blue-Light-Activated Curcumin in T98G Cell Line: Inducing Apoptosis through ROS-Dependent Downregulation of MMP Pathways. Int J Mol Sci 2023; 24:ijms24043842. [PMID: 36835252 PMCID: PMC9961595 DOI: 10.3390/ijms24043842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
We examined the photodynamic activation of Curcumin under blue light in glioblastoma T98G cells. The therapeutic effect of Curcumin, in both the absence and presence of blue light, was measured by the MTT assay and apoptosis progression using flow cytometry. Fluorescence imaging was carried out to evaluate Curcumin uptake. Photodynamic activation of Curcumin (10 µM), in the presence of blue light, enhanced its cytotoxic effect, resulting in the activation of ROS-dependent apoptotic pathways in T98G cells. The gene expression studies showed the expression of matrixes metalloproteinase 2 (MMP2) and 9 (MMP9) decrease with Curcumin (10 µM) under blue light exposure, indicating possible proteolytic mechanisms. Moreover, the cytometric appearance displayed that the expressions of NF-κB and Nrf2 were found to be increased upon exposure to blue light, which revealed a significant induction of expression of nuclear factor as a result of blue-light-induced oxidative stress and cell death. These data further demonstrate that Curcumin exhibited a photodynamic effect via induction of ROS-mediated apoptosis in the presence of blue light. Our results suggest that the application of blue light enhances the therapeutic efficacy of Curcumin in glioblastoma because of the phototherapeutic effect.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S. AL-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Mejía-Rodríguez R, Romero-Trejo D, González RO, Segovia J. Combined treatments with AZD5363, AZD8542, curcumin or resveratrol induce death of human glioblastoma cells by suppressing the PI3K/AKT and SHH signaling pathways. Biochem Biophys Rep 2023; 33:101430. [PMID: 36714540 PMCID: PMC9876780 DOI: 10.1016/j.bbrep.2023.101430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a very aggressive tumor that presents vascularization, necrosis and is resistant to chemotherapy and radiotherapy. Current treatments are not effective eradicating GBM, thus, there is an urgent need to develop novel therapeutic strategies against GBM. AZD5363, AZD8542, curcumin and resveratrol, are widely studied for the treatment of cancer and in the present study we explored the effects of the administration of combined treatments with AZD5363, AZD8542, curcumin or resveratrol on human GBM cells. We found that the combined treatments with AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol inhibit the PI3K/AKT and SHH survival pathways by decreasing the activity of AKT, the reduction of the expression of SMO, pP70S6k, pS6k, GLI1, p21 and p27, and the activation of caspase-3 as a marker of apoptosis. These results provide evidence that the combined treatments AZD5363+AZD8542+Curcumin and AZD8542+Curcumin+Resveratrol have the potential to be an interesting option against GBM.
Collapse
Affiliation(s)
- Rosalinda Mejía-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Daniel Romero-Trejo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Rosa O. González
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico,Corresponding author. Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico.
| |
Collapse
|
8
|
Low ZX, Teo MYM, Nordin FJ, Dewi FRP, Palanirajan VK, In LLA. Biophysical Evaluation of Water-Soluble Curcumin Encapsulated in β-Cyclodextrins on Colorectal Cancer Cells. Int J Mol Sci 2022; 23:12866. [PMID: 36361655 PMCID: PMC9655158 DOI: 10.3390/ijms232112866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Curcumin (CUR), a curcuminoid originating from turmeric root, possesses diverse pharmacological applications, including potent anticancer properties. However, the use of this efficacious agent in cancer therapy has been limited due to low water solubility and poor bioavailability. To overcome these problems, a drug delivery system was established as an excipient allowing improved dispersion in aqueous media coupled with enhanced in vitro anticancer effects. Different analyses such as UV-vis spectroscopy, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), solubility and dissolution assays were determined to monitor the successful encapsulation of CUR within the inner cavity of a β-cyclodextrin (β-CD) complex. The results indicated that water solubility was improved by 205.75-fold compared to pure CUR. Based on cytotoxicity data obtained from MTT assays, the inclusion complex exhibited a greater decrease in cancer cell viability compared to pure CUR. Moreover, cancer cell migration rates were decreased by 75.5% and 38.92%, invasion rates were decreased by 37.7% and 35.7%, while apoptosis rates were increased by 26.3% and 14.2%, and both caused caspase 3 activation toward colorectal cancer cells (SW480 and HCT116 cells). This efficacious formulation that enables improved aqueous dispersion is potentially useful and can be extended for various chemotherapeutic applications. Preliminary toxicity evaluation also indicated that its composition can be safely used in humans for cancer therapy.
Collapse
Affiliation(s)
- Zhi Xuan Low
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Fariza Juliana Nordin
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Vijayaraj Kumar Palanirajan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Wanjale MV, Sunil Jaikumar V, Sivakumar KC, Ann Paul R, James J, Kumar GSV. Supramolecular Hydrogel Based Post-Surgical Implant System for Hydrophobic Drug Delivery Against Glioma Recurrence. Int J Nanomedicine 2022; 17:2203-2224. [PMID: 35599751 PMCID: PMC9122075 DOI: 10.2147/ijn.s348559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 01/04/2023] Open
Abstract
Purpose The brain, protected by the cranium externally and the blood–brain barrier (BBB) internally, poses challenges in chemotherapy of aggressive brain tumors. Maximal tumor resection followed by radiation and chemotherapy is the standard treatment protocol; however, a substantial number of patients suffer from recurrence. Systemic circulation of drugs causes myelodysplasia and other side effects. To address these caveats, we report facile synthesis of a polyester-based supramolecular hydrogel as a brain biocompatible implant for in situ delivery of hydrophobic drugs. Methods Polycaprolactone-diol (PCL) was linked to polyethyleneglycol-diacid (PEG) via an ester bond. In silico modeling indicated micelle-based aggregation of PCL-PEG co-polymer to form a supramolecular hydrogel. Brain biocompatibility was checked in Sprague Dawley rat brain cortex with MRI, motor function test, and histology. Model hydrophobic drugs carmustine and curcumin entrapment propelled glioma cells into apoptosis-based death evaluated by in vitro cytotoxicity assays and Western blot. In vivo post-surgical xenograft glioma model was developed in NOD-SCID mice and evaluated for efficacy to restrict aggressive regrowth of tumors. Results 20% (w/v) PCL-PEG forms a soft hydrogel that can cover the uneven and large surface area of a tumor resection cavity and maintain brain density. The PCL-PEG hydrogel was biocompatible, and well-tolerated upon implantation in rat brain cortex, for a study period of 12 weeks. We report for the first time the combination of carmustine and curcumin entrapped as model hydrophobic drugs, increasing their bioavailability and yielding synergistic apoptotic effect on glioma cells. Further in vivo study indicated PCL-PEG hydrogel with a dual cargo of carmustine and curcumin restricted aggressive regrowth post-resection significantly compared with control and animals with intravenous drug treatment. Conclusion PCL-PEG soft gel-based implant is malleable compared with rigid wafers used as implants, thus providing larger surface area contact. This stable, biocompatible, supramolecular gel without external crosslinking can find wide applications by interchanging formulation of various hydrophobic drugs to ensure and increase site-specific delivery, avoiding systemic circulation.
Collapse
Affiliation(s)
- Mrunal Vitthal Wanjale
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
- Research Scholar, Department of Biotechnology, Faculty of Applied Sciences & Technology, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Vishnu Sunil Jaikumar
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - K C Sivakumar
- Distributed Information Sub-Centre (Bioinformatics Centre), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Riya Ann Paul
- Research Scholar, Department of Biotechnology, Faculty of Applied Sciences & Technology, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
- Neuro-Stem Cell Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - Jackson James
- Neuro-Stem Cell Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
- Correspondence: GS Vinod Kumar, Tel +91 471 2781217, Fax +91 471 2348096, Email
| |
Collapse
|
10
|
Nosrati H, Seidi F, Hosseinmirzaei A, Mousazadeh N, Mohammadi A, Ghaffarlou M, Danafar H, Conde J, Sharafi A. Prodrug Polymeric Nanoconjugates Encapsulating Gold Nanoparticles for Enhanced X-Ray Radiation Therapy in Breast Cancer. Adv Healthc Mater 2022; 11:e2102321. [PMID: 34800003 DOI: 10.1002/adhm.202102321] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/13/2022]
Abstract
An optimal radiosensitizer with improved tumor retention has an important effect on tumor radiation therapy. Herein, gold nanoparticles (Au NPs) and drug-containing, mPEG-conjugated CUR (mPEG-CUR), self-assembled NPs (mPEG-CUR@Au) are developed and evaluated as a drug carrier and radiosensitizer in a breast cancer mice model. As a result, cancer therapy efficacy is improved significantly by applying all-in-one NPs to achieve synchronous chemoradiotherapy, as evidenced by studies evaluating cell viability, proliferation, and ROS production. In vivo anticancer experiments show that the mPEG-CUR@Au system improves the radiation sensitivity of 4T1 mammary carcinoma and completely abrogates breast cancer.
Collapse
Affiliation(s)
- Hamed Nosrati
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Ali Hosseinmirzaei
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, 1150-082, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, 1150-082, Portugal
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Abstract
Around three out of one hundred thousand people are diagnosed with glioblastoma multiforme, simply called glioblastoma, which is the most common primary brain tumor in adults. With a dismal prognosis of a little over a year, receiving a glioblastoma diagnosis is oftentimes fatal. A major advancement in its treatment was made almost two decades ago when the alkylating chemotherapeutic agent temozolomide (TMZ) was combined with radiotherapy (RT). Little progress has been made since then. Therapies that focus on the modulation of autophagy, a key process that regulates cellular homeostasis, have been developed to curb the progression of glioblastoma. The dual role of autophagy (cell survival or cell death) in glioblastoma has led to the development of autophagy inhibitors and promoters that either work as monotherapies or as part of a combination therapy to induce cell death, cellular senescence, and counteract the ability of glioblastoma stem cells (GSCs) for initiating tumor recurrence. The myriad of cellular pathways that act upon the modulation of autophagy have created contention between two groups: those who use autophagy inhibition versus those who use promotion of autophagy to control glioblastoma growth. We discuss rationale for using current major therapeutics, their molecular mechanisms for modulation of autophagy in glioblastoma and GSCs, their potentials for making strides in combating glioblastoma progression, and their possible shortcomings. These shortcomings may fuel the innovation of novel delivery systems and therapies involving TMZ in conjunction with another agent to pave the way towards a new gold standard of glioblastoma treatment.
Collapse
Affiliation(s)
- Amanda J Manea
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
12
|
Senturk F, Cakmak S, Kocum IC, Gumusderelioglu M, Ozturk GG. GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Almatroodi SA, Syed MA, Rahmani AH. Potential Therapeutic Targets of Curcumin, Most Abundant Active Compound of Turmeric Spice: Role in the Management of Various Types of Cancer. Recent Pat Anticancer Drug Discov 2021; 16:3-29. [PMID: 33143616 DOI: 10.2174/1574892815999201102214602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin, an active compound of turmeric spice, is one of the most-studied natural compounds and has been widely recognized as a chemopreventive agent. Several molecular mechanisms have proven that curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as in the inhibition of the carcinogenesis process. OBJECTIVE To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. METHODS A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed Central, and Google scholar for the implication of curcumin in cancer management, along with a special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com, and www.freshpatents.com. RESULT Recent studies based on cancer cells have proven that curcumin has potential effects against cancer cells as it prevents the growth of cancer and acts as a cancer therapeutic agent. Besides, curcumin exerted anti-cancer effects by inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion, and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. CONCLUSION Accumulating evidences suggest that curcumin has the potential to inhibit cancer growth, induce apoptosis, and modulate various cell signaling pathway molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy, and safe dose in the management of various cancers.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Translational Research Lab, Jamia Millia Islamia, New Delhi 110025, India
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
14
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
15
|
Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021; 13:nu13030950. [PMID: 33809462 PMCID: PMC7998496 DOI: 10.3390/nu13030950] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin’s anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed.
Collapse
|
16
|
Chen T, Yang P, Jia Y. Molecular mechanisms of astragaloside‑IV in cancer therapy (Review). Int J Mol Med 2021; 47:13. [PMID: 33448320 PMCID: PMC7834967 DOI: 10.3892/ijmm.2021.4846] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
Radix Astragali (RA) is widely used in traditional Chinese medicine (TCM), and astragaloside IV (AS-IV) is the most critical component of RA. Previous studies have demonstrated that AS-IV exerts effects on the myocardium, nervous system and endocrine system, among others. In the present review article, data from studies conducted over the past 20 years were collated, which have evaluated the effects of AS-IV on tumors. The mechanisms of action of AS-IV on malignant cells both in vivo and in vitro were summarized and it was demonstrated that AS-IV plays a vital role, particularly in inhibiting tumor growth and metastasis, promoting the apoptosis of tumor cells, enhancing immune function and preventing drug resistance. Moreover, AS-IV controls several epithelial-mesenchymal transformation (EMT)-related and autophagy-related pathways, such as the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wnt/β-catenin, mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinase (ERK) and transforming growth factor-β (TGF-β)/SMAD signaling pathways, which are commonly affected in the majority of tumors. The present review provides new perspectives on the functions of AS-IV and its role as an adjuvant treatment in cancer chemotherapy.
Collapse
Affiliation(s)
- Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| |
Collapse
|
17
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
18
|
Roozbehi S, Dadashzadeh S, Sajedi RH. An enzyme-mediated controlled release system for curcumin based on cyclodextrin/cyclodextrin degrading enzyme. Enzyme Microb Technol 2020; 144:109727. [PMID: 33541570 DOI: 10.1016/j.enzmictec.2020.109727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/28/2022]
Abstract
In this study, an enzyme-triggered system based on β-cyclodextrin (β-CD) has been developed to achieve controlled release of hydrophobic drugs in the presence of maltogenic amylase (MAase). The inclusion complex formation of curcumin (CUR), as a model anticancer compound, with β-CD was characterized by fluorescence and Fourier transform infrared (FTIR) spectroscopy. CUR was loaded into β-CD with an encapsulation efficiency of approximately 30 %. The in vitro profiles of CUR release from β-CD showed that 100 % of the drug was released after one hour incubation in the presence of MAase with cyclodextrin degrading activity. Fluorescence microscopy images indicate a significantly greater cellular uptake of CUR using β-CD-CUR/MAase system compared to β-CD-CUR inclusion complex without MAase. The β-CD-CUR/MAase system exhibited lower IC50 values and greater anti-proliferative effects in comparison with free CUR and β-CD-CUR in MCF-7 and Huh-7 cancer cells. The results from fluorescence microscopy and flow cytometric assay using the acridine orange/ethidium bromide and Annexin V-PE/7-AAD staining suggest that the β-CD-CUR/MAase system exhibited higher cytotoxic and apoptotic effects on cancer cells compared to other formulations. This triggered release of CUR in the presence of MAase is owing to the β-CD degradation by MAase resulting ring opening and chain scission in β-CD. We demonstrate that this enzyme-mediated controlled release system has a potential application for controlled release of poorly water-soluble drugs or hydrophobic compounds such as CUR.
Collapse
Affiliation(s)
- Sahar Roozbehi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Vali-e-asr Ave., Niayesh Junction, PO Box: 14155-6153, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran.
| |
Collapse
|
19
|
Targeted anticancer prodrug therapy using dextran mediated enzyme–antibody conjugate and β-cyclodextrin-curcumin inclusion complex. Int J Biol Macromol 2020; 160:1029-1041. [DOI: 10.1016/j.ijbiomac.2020.05.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
|
20
|
Olanlokun JO, Olotu FA, Idowu OT, Agoni C, David MO, Soliman M, Olorunsogo OO. In vitro, in silico studies of newly isolated tetrahydro-4-(7-hydroxy-10-methoxy-6, 14-dimethyl-15-m-tolylpentadec-13-enyl) pyran-2-one and isobutyryl acetate compounds from Alstonia boonei stem bark. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Combination Therapy with Nanomicellar-Curcumin and Temozolomide for In Vitro Therapy of Glioblastoma Multiforme via Wnt Signaling Pathways. J Mol Neurosci 2020; 70:1471-1483. [PMID: 32666415 DOI: 10.1007/s12031-020-01639-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/16/2020] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is the most serious brain tumor and shows a high rate of drug resistance. Wnt signaling is a very important pathway in GBM that can activate/inhibit other pathways, such as apoptosis and autophagy. In this study, we evaluated the efficacy of a combination of temozolomide (TMZ) plus curcumin or nanomicellar-curcumin on the inhibition of GBM growth in vitro, via effects on autophagy, apoptosis, and the Wnt signaling pathway. Two concentrations of curcumin and nanomicellar-curcumin (i.e., 20 μM and 50 μM) alone, and in combination with TMZ (50 μM) were used to induce cytotoxicity in the U87 GBM cell line. Wnt signaling-, autophagy-, and apoptosis-related genes were assessed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blots. All treatments (except 20 μM curcumin alone) significantly decreased the viability of U87 cells compared to controls. Curcumin (50 μM), nanomicellar-curcumin alone and in combination with TMZ significantly decreased the invasion and migration of U87 cells. Autophagy-related proteins (Beclin 1, LC3-I, LC3-II) were significantly increased. Apoptosis-related proteins (Bcl-2 and caspase 8) were also significantly increased, while Bax protein was significantly decreased. The expression levels of Wnt pathway-associated genes (β-catenin, cyclin D1, Twist, and ZEB1) were significantly reduced.
Collapse
|
22
|
Shahcheraghi SH, Zangui M, Lotfi M, Ghayour-Mobarhan M, Ghorbani A, Jaliani HZ, Sadeghnia HR, Sahebkar A. Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme. Curr Pharm Des 2020; 25:333-342. [PMID: 30864499 DOI: 10.2174/1381612825666190313123704] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor. Despite standard multimodality treatment, the highly aggressive nature of GBM makes it one of the deadliest human malignancies. The anti-cancer effects of dietary phytochemicals like curcumin provide new insights to cancer treatment. Evaluation of curcumin's efficacy against different malignancies including glioblastoma has been a motivational research topic and widely studied during the recent decade. In this review, we discuss the recent observations on the potential therapeutic effects of curcumin against glioblastoma. Curcumin can target multiple signaling pathways involved in developing aggressive and drug-resistant features of glioblastoma, including pathways associated with glioma stem cell activity. Notably, combination therapy with curcumin and chemotherapeutics like temozolomide, the GBM standard therapy, as well as radiotherapy has shown synergistic response, highlighting curcumin's chemo- and radio-sensitizing effect. There are also multiple reports for curcumin nanoformulations and targeted forms showing enhanced therapeutic efficacy and passage through blood-brain barrier, as compared with natural curcumin. Furthermore, in vivo studies have revealed significant anti-tumor effects, decreased tumor size and increased survival with no notable evidence of systemic toxicity in treated animals. Finally, a pharmacokinetic study in patients with GBM has shown a detectable intratumoral concentration, thereby suggesting a potential for curcumin to exert its therapeutic effects in the brain. Despite all the evidence in support of curcumin's potential therapeutic efficacy in GBM, clinical reports are still scarce. More studies are needed to determine the effects of combination therapies with curcumin and importantly to investigate the potential for alleviating chemotherapy- and radiotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Modern Sciences & Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Zangui
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Perrone L, Sampaolo S, Melone MAB. Bioactive Phenolic Compounds in the Modulation of Central and Peripheral Nervous System Cancers: Facts and Misdeeds. Cancers (Basel) 2020; 12:cancers12020454. [PMID: 32075265 PMCID: PMC7072310 DOI: 10.3390/cancers12020454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Efficacious therapies are not available for the cure of both gliomas and glioneuronal tumors, which represent the most numerous and heterogeneous primary cancers of the central nervous system (CNS), and for neoplasms of the peripheral nervous system (PNS), which can be divided into benign tumors, mainly represented by schwannomas and neurofibromas, and malignant tumors of the peripheral nerve sheath (MPNST). Increased cellular oxidative stress and other metabolic aspects have been reported as potential etiologies in the nervous system tumors. Thus polyphenols have been tested as effective natural compounds likely useful for the prevention and therapy of this group of neoplasms, because of their antioxidant and anti-inflammatory activity. However, polyphenols show poor intestinal absorption due to individual intestinal microbiota content, poor bioavailability, and difficulty in passing the blood-brain barrier (BBB). Recently, polymeric nanoparticle-based polyphenol delivery improved their gastrointestinal absorption, their bioavailability, and entry into defined target organs. Herein, we summarize recent findings about the primary polyphenols employed for nervous system tumor prevention and treatment. We describe the limitations of their application in clinical practice and the new strategies aimed at enhancing their bioavailability and targeted delivery.
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
- Department of Chemistry and Biology, University Grenoble Alpes, 38400 Saint-Martin-d’Hères, France
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00)1900 North 12th Street, Philadelphia, PA 19122-6078, USA
- Correspondence:
| |
Collapse
|
24
|
Shabaninejad Z, Pourhanifeh MH, Movahedpour A, Mottaghi R, Nickdasti A, Mortezapour E, Shafiee A, Hajighadimi S, Moradizarmehri S, Sadeghian M, Mousavi SM, Mirzaei H. Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 2020; 188:112040. [PMID: 31927312 DOI: 10.1016/j.ejmech.2020.112040] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM), a greatly aggressive malignancy of the brain, is correlated with a poor prognosis and low rate of survival. Up to now, chemotherapy and radiation therapy after surgical approaches have been the treatments increasing the survival rates. The low efficacy of mentioned therapies as well as their side-effects has forced researchers to explore an appropriate alternative or complementary treatment for glioblastoma. In experimental models, it has been shown that curcumin has therapeutic potentials to fight against GBM. Given that curcumin has pharmacological effects against cancer stem cells, as major causes of resistance to therapy in glioblastoma cells. Moreover, it has been showed that curcumin exerts its therapeutic effects on GBM cells via affecting on apoptosis, oxidant system, and inflammatory pathways. Curcumin would possess a synergistic impact with chemotherapeutic agents. Herein, we summarized the current findings on curcumin as therapeutic agent in the treatment of GBM.
Collapse
Affiliation(s)
- Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nickdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| |
Collapse
|
25
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
26
|
Zhou JW, Wang M, Sun NX, Qing Y, Yin TF, Li C, Wu D. Sulforaphane-induced epigenetic regulation of Nrf2 expression by DNA methyltransferase in human Caco-2 cells. Oncol Lett 2019; 18:2639-2647. [PMID: 31452747 DOI: 10.3892/ol.2019.10569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/24/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the mechanism underlying sulforaphane-mediated epigenetic regulation of nuclear factor-erythroid derived 2-like 2 (Nrf2) expression in human colon cancer. Proteins were extracted from normal Caco-2 cells using sulforaphane and 5-aza-2'-deoxycytidine (5-Aza) combined with trichostatin A (TSA). The mRNA and protein expression levels and activity of DNA methyltransferase 1 (DNMT1) were determined. Methylation-specific polymerase chain reaction and bisulfite genomic sequencing were also used to measure the methylation levels of CpG sites in the Nrf2 promoter region. Nrf2 expression was measured using reverse transcription-quantitative PCR and western blot analysis. The results demonstrated that sulforaphane did not affect DNMT1 mRNA expression levels. DNMT1 protein expression was inhibited by sulforaphane and 5-Aza co-treatment with TSA. Nrf2 promoter methylation decreased significantly in the sulforaphane group compared with the control group. Nrf2 promoter methylation level in the 5-Aza+TSA group was the lowest among all groups. Nrf2 mRNA levels exhibited significant differences between the sulforaphane-treated and control groups, as well as between the 5-Aza+TSA and control groups, and the sulforaphane-treated and 5-Aza+TSA groups. Nrf2 protein expression was also inhibited by sulforaphane, as well as 5-Aza co-treatment with TSA. The results revealed that sulforaphane may promote demethylation of the Nrf2 promoter region to increase activation of Nrf2, which induces chemoprevention of colon cancer.
Collapse
Affiliation(s)
- Jia-Wei Zhou
- Medical School, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Wang
- Department of of Geriatric Gastroenterology, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of General Practice, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Nuan-Xin Sun
- Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Qing
- Department of General Practice, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Teng-Fei Yin
- Department of General Practice, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cui Li
- Department of General Practice, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Wu
- Department of General Surgery, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
27
|
ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9051542. [PMID: 31217841 PMCID: PMC6536988 DOI: 10.1155/2019/9051542] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) promote carcinogenesis by inducing genetic mutations, activating oncogenes, and raising oxidative stress, which all influence cell proliferation, survival, and apoptosis. Cancer cells display redox imbalance due to increased ROS level compared to normal cells. This unique feature in cancer cells may, therefore, be exploited for targeted therapy. Over the past few decades, natural compounds have attracted attention as potential cancer therapies because of their ability to maintain cellular redox homeostasis with minimal toxicity. Preclinical studies show that bioactive dietary polyphenols exert antitumor effects by inducing ROS-mediated cytotoxicity in cancer cells. These bioactive compounds also regulate cell proliferation, survival, and apoptotic and antiapoptotic signalling pathways. In this review, we discuss (i) how ROS is generated and (ii) regulated and (iii) the cell signalling pathways affected by ROS. We also discuss (iv) the various dietary phytochemicals that have been implicated to have cancer therapeutic effects through their ROS-related functions.
Collapse
|
28
|
Trotta T, Panaro MA, Prifti E, Porro C. Modulation of Biological Activities in Glioblastoma Mediated by Curcumin. Nutr Cancer 2019; 71:1241-1253. [PMID: 31007066 DOI: 10.1080/01635581.2019.1604978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curcumin is an alkaloid with various pharmacologic properties; numerous investigations have suggested that in the Central Nervous System, Curcumin has anti-inflammatory, antimicrobial, antioxidant, and antitumor effects. Gliomas are the most common primary intracranial tumors in adults. The prognosis of glioblastoma is still dismal. In this review, we profile that Curcumin could suppress cell proliferation and induce apoptosis of cancer cells and genomic modulation. In particular, Curcumin could exert its therapeutic effect via modulating miRNA, affecting a variety of miRNAs involved in the response to cancer therapy. The combination of Curcumin with chemotherapeutic drugs or radiotherapy could prime the sensitivity of cancer cells to chemotherapy or radiotherapy. We also discuss the use of exosomes as Curcumin delivery vehicles. In this context, exosomes containing Curcumin may change the behavior of recipient cells by targeting a sequence of cellular and molecular pathways. Hence, the application of exosomes containing Curcumin may prove to be an emerging area of research in cancer therapy.
Collapse
Affiliation(s)
- Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari , Bari , Italy
| | - Elona Prifti
- Department of Clinical Materies, University of Elbasan "Aleksander Xhuvani", Faculty of Medical and Technical Science , Albania
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| |
Collapse
|
29
|
Amani S, Bagheri Garmarudi A, Rahmani N, Khanmohammadi M. The β-cyclodextrin-modified nanosized ZSM-5 zeolite as a carrier for curcumin. RSC Adv 2019; 9:32348-32356. [PMID: 35530794 PMCID: PMC9072959 DOI: 10.1039/c9ra04739e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/24/2020] [Accepted: 08/13/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, the nanosized ZSM-5 zeolite was synthesized based on a fractional factorial experimental design by a hydrothermal method to study the optimum conditions for the synthesis and formation of the ZSM-5 zeolite by employing different conditions. The samples were synthesized without any organic template, and different conditions, such as the molar composition of the synthesis gel and reaction time, were applied in a wide range. Then, the samples were analysed by X-ray diffraction to investigate the formation of the zeolite ZSM-5, and the results were compared to obtain the optimum conditions for its synthesis. The obtained samples were characterized by SEM, FTIR spectroscopy and TGA. Then, the functionalization of nano zeolite ZSM-5 crystals with β-cyclodextrin (β-CD) was investigated. The zeolite surface was first functionalized with amino groups using an amino alkoxysilane. Then, toluene diisocyanate was reacted with the amino-terminated ZSM-5 zeolite crystals and used for the incorporation of β-CD via its remaining isocyanate groups. After this, a drug delivery system (DDS) was prepared based on the cyclodextrin-modified zeolite with the curcumin anticancer drug, and its formation was studied under experimental conditions. The results of in vitro studies show that this drug delivery system has better characteristics than free curcumin in terms of stability and anti-proliferative and anti-inflammatory effects. Herein, the nanosized ZSM-5 zeolite was synthesized based on a fractional factorial experimental design by a hydrothermal method to study the optimum conditions for the synthesis and formation of the ZSM-5 zeolite by employing different conditions.![]()
Collapse
Affiliation(s)
- Shahin Amani
- Department of Chemistry
- Faculty of Science
- Imam Khomeini International University
- Qazvin
- Iran
| | - Amir Bagheri Garmarudi
- Department of Chemistry
- Faculty of Science
- Imam Khomeini International University
- Qazvin
- Iran
| | - Niloofar Rahmani
- Department of Chemistry
- Faculty of Science
- Imam Khomeini International University
- Qazvin
- Iran
| | | |
Collapse
|
30
|
Park KS, Yoon SY, Park SH, Hwang JH. Anti-Migration and Anti-Invasion Effects of Curcumin via Suppression of Fascin Expression in Glioblastoma Cells. Brain Tumor Res Treat 2019; 7:16-24. [PMID: 31062527 PMCID: PMC6504753 DOI: 10.14791/btrt.2019.7.e28] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background The natural compound curcumin was known to inhibit migration and invasion of glioblastoma (GBM) cells. Fascin, a kind of actin-binding proteins, is correlated with migration and invasion of GBM cells. The purpose of this study was to investigate anti-migration and anti-invasion effects of curcumin via suppression of fascin expression in GBM cells. Methods U87 cell line was used as an experimental model of GBM. Fascin was quantified by Western blot analysis. And, the signal transducer and activator of transcription 3 (STAT3), known to play an important role in migration and invasion of tumor cells, were analyzed by sandwich-ELISA. Migration and invasion capacities were assessed by attachment, migration and invasion assays. Cellular morphology was demonstrated by immunofluorescence. Results At various concentrations of curcumin and exposure times, fascin expression decreased. After temporarily exposure to 10 µM/L curcumin during 6 hours as less invasive concentration and time, fascin expression temporarily decreased at 12 hours (18.4%, p=0.024), and since then recovered. And, the change of phosphrylated STAT3 level also reflected the temporarily decreased pattern of fascin expression at 12 hours (19.7%, p=0.010). Attachment, migration, and invasion capacities consistently decreased at 6, 12, and 24 hours. And, immunofluorescence showed the change of shape and the reduction of filopodia formation in cells. Conclusion Curcumin is likely to suppress the fascin expression in GBM cells, and this might be a possible mechanism for anti-migration and anti-invasion effects of Curcumin via inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Ki Su Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang Youl Yoon
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Hyun Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
31
|
Hesari A, Rezaei M, Rezaei M, Dashtiahangar M, Fathi M, Rad JG, Momeni F, Avan A, Ghasemi F. Effect of curcumin on glioblastoma cells. J Cell Physiol 2018; 234:10281-10288. [DOI: 10.1002/jcp.27933] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- AmiReza Hesari
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine Arak University of Medical Sciences Arak Iran
| | - Marzieh Rezaei
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Maryam Rezaei
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Maryam Dashtiahangar
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Mozhgan Fathi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Jeyran Ganji Rad
- Department of Biology Islamic Azad University of Science Researchs Gorgan Iran
| | - Fatemeh Momeni
- Thalassemia & Hemoglobinopathy Research Center Health Research Institute, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Faezeh Ghasemi
- Molecular and Medicine Research Center, Department of Biotechnology, Faculty of Medicine Arak University of Medical Sciences Arak Iran
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine Tehran Iran
| |
Collapse
|
32
|
Schneider JR, Kulason KO, Khan MB, White TG, Kwan K, Faltings L, Kobets AJ, Chakraborty S, Ellis JA, Ortiz RA, Filippi CG, Langer DJ, Boockvar JA. Commentary: Advances in Glioblastoma Therapies: A Collaborative Effort Between Physicians and the Biotechnology Industry. Neurosurgery 2018; 83:E162-E168. [PMID: 29889276 DOI: 10.1093/neuros/nyy253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julia R Schneider
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Kay O Kulason
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Muhammad Babar Khan
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Timothy G White
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Kevin Kwan
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Lukas Faltings
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Andrew J Kobets
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Shamik Chakraborty
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Jason A Ellis
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Rafael A Ortiz
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Christopher G Filippi
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York.,Department of Neuroradiology, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - David J Langer
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - John A Boockvar
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
33
|
Squillaro T, Schettino C, Sampaolo S, Galderisi U, Di Iorio G, Giordano A, Melone MAB. Adult-onset brain tumors and neurodegeneration: Are polyphenols protective? J Cell Physiol 2018; 233:3955-3967. [PMID: 28884813 DOI: 10.1002/jcp.26170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022]
Abstract
Aging is a primary risk factor for both neurodegenerative disorders (NDs) and tumors such as adult-onset brain tumors. Since NDs and tumors are severe, disabling, progressive and often incurable conditions, they represent a pressing problem in terms of human suffering and economic costs to the healthcare systems. The current challenge for physicians and researchers is to develop new therapeutic strategies in both areas to improve the patients' quality of life. In addition to genetics and environmental stressors, the increase in cellular oxidative stress as one of the potential common etiologies has been reported for both disorders. Recently, the scientific community has focused on the beneficial effects of dietary antioxidant classes, known as nutraceuticals, such as carotenoids, vitamins, and polyphenols. Among these compounds, polyphenols are considered to be one of the most bioactive agents in neurodegeneration and tumor prevention. Despite the beneficial activity of polyphenols, their poor bioavailability and inefficient delivery systems are the main factors limiting their use in medicine and functional food. The development of polymeric nanoparticle-based delivery systems able to encapsulate and preserve polyphenolic compounds may represent a promising tool to enhance their stability, solubility, and cell membrane permeation. In the present review we provide an overview of the main polyphenolic compounds used for ND and brain tumor prevention and treatment that explores their mechanisms of action, recent clinical findings and principal factors limiting their application in medicine.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carla Schettino
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simone Sampaolo
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Di Iorio
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
- Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Chen M, Cai F, Zha D, Wang X, Zhang W, He Y, Huang Q, Zhuang H, Hua ZC. Astragalin-induced cell death is caspase-dependent and enhances the susceptibility of lung cancer cells to tumor necrosis factor by inhibiting the NF-кB pathway. Oncotarget 2018; 8:26941-26958. [PMID: 28199969 PMCID: PMC5432309 DOI: 10.18632/oncotarget.15264] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/22/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonoids are naturally occurring polyphenolic compounds and are among the most promising anticancer agents. Here, we demonstrate that the flavonoid astragalin (AG), also known as kaempferol-3-O-β-D-glucoside, induces cell death. This was prevented by the caspase inhibitors z-DEVD-FMK and z-LEHD-FMK. AG-induced cell death was associated with an increase in the Bax:Bcl-2 ratio and amplified by the inhibition of extracellular signal-regulated kinase (ERK)-1/2 and Akt signaling. Meanwhile, AG suppressed LPS-induced NF-κB activation. Additional studies revealed that AG inhibited tumor necrosis factor-alpha (TNFα)-induced NF-κB activity. AG also potentiated TNFα-induced apoptosis in A549 cells. Furthermore, using a mouse xenograft model, we demonstrated that AG suppressed tumor growth and induced cancer cell apoptosis in vivo. Taken together, these results suggest that AG may be a promising cancer therapeutic drug that warrants further investigation into its potential clinical applications.
Collapse
Affiliation(s)
- Minghui Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Daolong Zha
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xueshi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjing Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yan He
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Qilai Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.,Changzhou High-Tech Research Institute of Nanjing University and Target Pharma Laboratory, Changzhou, Jiangsu, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University and Target Pharma Laboratory, Changzhou, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
Cai F, Chen M, Zha D, Zhang P, Zhang X, Cao N, Wang J, He Y, Fan X, Zhang W, Fu Z, Lai Y, Hua ZC, Zhuang H. Curcumol potentiates celecoxib-induced growth inhibition and apoptosis in human non-small cell lung cancer. Oncotarget 2017; 8:115526-115545. [PMID: 29383179 PMCID: PMC5777791 DOI: 10.18632/oncotarget.23308] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Combinatorial therapies that target multiple signaling pathways may provide improved therapeutic responses over monotherapies. Celecoxib and curcumol are two highly hydrophobic drugs which show bioavailability problems due to their poor aqueous solubility. In the present study, we evaluated the effects of celecoxib and curcumol alone and in combination on cell proliferation, invasion, migration, cell cycle and apoptosis induction in non-small cell lung cancer (NSCLC) cells using in vitro and in vivo experiments. Our data showed that the sensitivity of a combined therapy using low concentration of celecoxib and curcumol was higher than that of celecoxib or curcumol alone. Suppression of NF-κB transcriptional activity, activation of caspase-9/caspase-3, cell cycle G1 arrest, and inhibition of survival MAPK and PI3K/AKT signaling pathway contributed to the synergistic effects of this combination therapy for induction of apoptosis. Additionally, either celecoxib alone or in combination with curcumol inhibited NSCLC cell migration and invasion by suppressing FAK and matrix metalloproteinase-9 activities. Furthermore, the combined treatment reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. Our results confirm and provide mechanistic insights into the prominent anti-proliferative activities of celecoxib and/or curcumol on NSCLC cells, which provide a rationale for further detailed preclinical and potentially clinical studies of this combination for the therapy of lung cancer.
Collapse
Affiliation(s)
- Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Minghui Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Daolong Zha
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peng Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jishuang Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yan He
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xinxin Fan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Wenjing Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Zhongping Fu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Nanjing Industrial Innovation Center for Pharmaceutical Biotechnology, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Dewangan AK, Perumal Y, Pavurala N, Chopra K, Mazumder S. Preparation, characterization and anti-inflammatory effects of curcumin loaded carboxymethyl cellulose acetate butyrate nanoparticles on adjuvant induced arthritis in rats. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Landeros JM, Belmont-Bernal F, Pérez-González AT, Pérez-Padrón MI, Guevara-Salazar P, González-Herrera IG, Guadarrama P. A two-step synthetic strategy to obtain a water-soluble derivative of curcumin with improved antioxidant capacity and in vitro cytotoxicity in C6 glioma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:351-362. [DOI: 10.1016/j.msec.2016.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|
38
|
Sun M, Ye Y, Xiao L, Duan X, Zhang Y, Zhang H. Anticancer effects of ginsenoside Rg3 (Review). Int J Mol Med 2017; 39:507-518. [PMID: 28098857 DOI: 10.3892/ijmm.2017.2857] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 10/20/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer is a life-threatening disease with an alarmingly increased annual mortality rate globally. Although various therapies are employed for cancer, the final effect is not satisfactory. Chemotherapy is currently the most commonly used treatment option. However, the unsatisfactory efficacy, severe side-effects and drug resistance hinder the therapeutic efficacy of chemotherapeutic drugs. There is increasing evidence indicating that ginsenoside Rg3, a naturally occurring phytochemical, plays an important role in the prevention and treatment of cancer. The suggested mechanisms mainly include the induction of apoptosis, and the inhibition of proliferation, metastasis and angiogenesis, as well as the promotion of immunity. In addition, ginsenoside Rg3 can be used as an adjuvant to conventional cancer therapies, improving the efficacy and/or reducing adverse effects via synergistic activities. Ginsenoside Rg3 may be a widely applied natural medicine against cancer. To date however, there is no systematic summary available of the anticancer effects of ginsenoside Rg3. Therefore, in this review, all available literature over the past 10 years was reviewed and discussed in order to facilitate further research of ginsenoside Rg3.
Collapse
Affiliation(s)
- Mengyao Sun
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Ling Xiao
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Xinya Duan
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Yongming Zhang
- Department of Cardiothoracic Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| |
Collapse
|
39
|
Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep 2016; 6:35468. [PMID: 27752089 PMCID: PMC5067669 DOI: 10.1038/srep35468] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023] Open
Abstract
Apigenin (APG) is an edible plant-derived flavonoid that shows modest antitumor activities in vitro and in vivo. APG treatment results in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between APG and TRAIL in non-small cell lung cancer (NSCLC) cells. We observed a synergistic effect between APG and TRAIL on apoptosis of NSCLC cells. A549 cells and H1299 cells were resistant to TRAIL treatment alone. The presence of APG sensitized NSCLC cells to TRAIL-induced apoptosis by upregulating the levels of death receptor 4 (DR4) and death receptor 5 (DR5) in a p53-dependent manner. Consistently, the pro-apoptotic proteins Bad and Bax were upregulated, while the anti-apoptotic proteins Bcl-xl and Bcl-2 were downregulated. Meanwhile, APG suppressed NF-κB, AKT and ERK activation. Treatment with specific small-molecule inhibitors of these pathways enhanced TRAIL-induced cell death, mirroring the effect of APG. Furthermore, using a mouse xenograft model, we demonstrated that the combined treatment completely suppressed tumor growth as compared with APG or TRAIL treatment alone. Our results demonstrate a novel strategy to enhance TRAIL-induced antitumor activity in NSCLC cells by APG via inhibition of the NF-κB, AKT and ERK prosurvival regulators.
Collapse
|
40
|
Rodriguez GA, Shah AH, Gersey ZC, Shah SS, Bregy A, Komotar RJ, Graham RM. Investigating the therapeutic role and molecular biology of curcumin as a treatment for glioblastoma. Ther Adv Med Oncol 2016; 8:248-60. [PMID: 27482284 PMCID: PMC4952019 DOI: 10.1177/1758834016643518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Despite the aggressive standard of care for patients with glioblastoma multiforme, survival rates typically do not exceed 2 years. Therefore, current research is focusing on discovering new therapeutics or rediscovering older medications that may increase the overall survival of patients with glioblastoma. Curcumin, a component of the Indian natural spice, turmeric, also known for its antioxidant and anti-inflammatory properties, has been found to be an effective inhibitor of proliferation and inducer of apoptosis in many cancers. The goal of this study was to investigate the expanded utility of curcumin as an antiglioma agent. METHODS Using the PubMed MeSH database, we conducted a systematic review of the literature to include pertinent studies on the growth inhibitory effects of curcumin on glioblastoma cell lines based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS A total of 19 in vitro and five in vivo studies were analyzed. All of the studies indicated that curcumin decreased glioblastoma cell viability through various pathways (i.e. decrease in prosurvival proteins such as nuclear factor κB, activator protein 1, and phosphoinositide 3 kinase, and upregulation of apoptotic pathways like p21, p53, and executor caspase 3). Curcumin treatment also increased animal survival compared with control groups. CONCLUSIONS Curcumin inhibits proliferation and induces apoptosis in certain subpopulations of glioblastoma tumors, and its ability to target multiple signaling pathways involved in cell death makes it an attractive therapeutic agent. As such, it should be considered as a potent anticancer treatment. Further experiments are warranted to elucidate the use of a bioavailable form of curcumin in clinical trials.
Collapse
Affiliation(s)
- Gregor A Rodriguez
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zachary C Gersey
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sumedh S Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amade Bregy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina M Graham
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Room 5-23, Miami, FL 33136, USA
| |
Collapse
|
41
|
Dinić J, Novaković M, Podolski-Renić A, Vajs V, Tešević V, Isaković A, Pešić M. Structural differences in diarylheptanoids analogues from Alnus viridis and Alnus glutinosa influence their activity and selectivity towards cancer cells. Chem Biol Interact 2016; 249:36-45. [PMID: 26944434 DOI: 10.1016/j.cbi.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/03/2016] [Accepted: 02/26/2016] [Indexed: 12/21/2022]
Abstract
Diarylheptanoids represent a group of plant secondary metabolites that possess multiple biological properties and are increasingly recognized for their therapeutic potential. A comparative study was performed on structurally analogous diarylheptanoids isolated from the bark of green (Alnus viridis) and black alder (Alnus glutinosa) to address their biological effects and determine structure-activity relationship. The structures and configurations of all compounds were elucidated by NMR, HR-ESI-MS, UV and IR. Diarylheptanoids actions were studied in human non-small cell lung carcinoma cells (NCI-H460) and normal keratinocytes (HaCaT). A. viridis compounds 3v, 5v, 8v and 9v that possess a carbonyl group at C-3 were considerably more potent than compounds without this group. A. viridis/A. glutinosa analogue pairs, 5v/5g and 9v/9g, which differ in the presence of 3' and 3″-OH groups, were evaluated for anticancer activity and selectivity. 5v and 9v that do not possess 3' and 3″-OH groups showed significantly higher cytotoxicity compared to analogues 5g and 9g. In addition, these two A. viridis compounds induced a more prominent apoptosis in both cell lines and an increase in subG0 cell cycle phase, compared to their A. glutinosa analogues. 5v and 9v treatment triggered intracellular superoxide anion accumulation and notably decreased mitochondrial transmembrane potential. In HaCaT cells, 9v and 9g with a 4,5 double bond caused a more prominent loss of mitochondrial transmembrane potential compared to 5v and 5g which possess a 5-methoxy group instead. Although green alder diarylheptanoids 5v and 9v displayed higher cytotoxicity, their analogues from black alder 5g and 9g could be more favorable for therapeutic use since they were more active in cancer cells than in normal keratinocytes. These results indicate that minor differences in the chemical structure can greatly influence the effect of diarylheptanoids on apoptosis and redox status and determine their selectivity towards cancer cells.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research, Department of Neurobiology, University of Belgrade, Despota Stefana 142, Belgrade, Serbia.
| | - Miroslav Novaković
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Ana Podolski-Renić
- Institute for Biological Research, Department of Neurobiology, University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| | - Vlatka Vajs
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Vele Tešević
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Aleksandra Isaković
- Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia
| | - Milica Pešić
- Institute for Biological Research, Department of Neurobiology, University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| |
Collapse
|
42
|
Luthra PM, Lal N. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur J Med Chem 2016; 109:23-35. [DOI: 10.1016/j.ejmech.2015.11.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
|
43
|
Guntuku L, Naidu VGM, Yerra VG. Mitochondrial Dysfunction in Gliomas: Pharmacotherapeutic Potential of Natural Compounds. Curr Neuropharmacol 2016; 14:567-83. [PMID: 26791479 PMCID: PMC4981742 DOI: 10.2174/1570159x14666160121115641] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it`s high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market.
Collapse
Affiliation(s)
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | | |
Collapse
|
44
|
Natural Compounds Modulating Mitochondrial Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:527209. [PMID: 26167193 PMCID: PMC4489008 DOI: 10.1155/2015/527209] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications.
Collapse
|
45
|
Erfani-Moghadam V, Nomani A, Zamani M, Yazdani Y, Najafi F, Sadeghizadeh M. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells. Int J Nanomedicine 2014; 9:5541-5554. [PMID: 25489242 PMCID: PMC4257051 DOI: 10.2147/ijn.s63762] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Curcumin is a potent natural anticancer agent, but its effectiveness is limited by properties such as very low solubility, high rate of degradation, and low rate of absorption of its hydrophobic molecules in vivo. To date, various nanocarriers have been used to improve the bioavailability of this hydrophobic biomaterial. This study investigates the encapsulation of curcumin in a novel nanostructure of monomethoxy poly(ethylene glycol)-oleate (mPEG-OA) and its anticancer effect. Tests were done to determine the critical micelle concentration (CMC), encapsulation efficiency, drug-loading efficiency, and cytotoxicity (against U87MG brain carcinoma cells and HFSF-PI3 cells as normal human fibroblasts) of some nanodevice preparations. The results of fluorescence microscopy and cell-cycle analyses indicated that the in vitro bioavailability of the encapsulated curcumin was significantly greater than that of free curcumin. Cytotoxicity evaluations showed that half maximal inhibitory concentrations of free curcumin and curcumin-loaded mPEG-OA for the U87MG cancer cell line were 48 μM and 24 μM, respectively. The Annexin-V-FLUOS assay was used to quantify the apoptotic effect of the prepared nanostructures. Apoptosis induction was observed in a dose-dependent manner after curcumin-loaded mPEG-OA treatments. Two common self-assembling structures, micelles and polymersomes, were observed by atomic force microscopy and dynamic light scattering, and the abundance of each structure was dependent on the concentration of the diblock copolymer. The mPEG-OA micelles had a very low CMC (13.24 μM or 0.03 g/L). Moreover, atomic force microscopy and dynamic light scattering showed that the curcumin-loaded mPEG-OA polymersomes had very stable structures, and at concentrations 1,000 times less than the CMC, at which the micelles disappear, polymersomes were the dominant structures in the dispersion with a reduced size distribution below 150 nm. Overall, the results from these tests revealed that this nanocarrier can be considered as an appropriate drug delivery system for delivering curcumin to cancer cells.
Collapse
Affiliation(s)
- Vahid Erfani-Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Biotechnology, Faculty of Advanced Medical Technology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Zamani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
46
|
Hossain MM, Ray SK. EWS Knockdown and Taxifolin Treatment Induced Differentiation and Removed DNA Methylation from p53 Promoter to Promote Expression of Puma and Noxa for Apoptosis in Ewing's Sarcoma. ACTA ACUST UNITED AC 2014; 5:1092-1113. [PMID: 27547487 PMCID: PMC4989871 DOI: 10.4236/jct.2014.512114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ewing’s sarcoma is a pediatric tumor that mainly occurs in soft tissues and bones. Malignant characteristics of Ewing’s sarcoma are correlated with expression of EWS oncogene. We achieved knockdown of EWS expression using a plasmid vector encoding EWS short hairpin RNA (shRNA) to increase anti-tumor mechanisms of taxifolin (TFL), a new flavonoid, in human Ewing’s sarcoma cells in culture and animal models. Immunofluorescence microscopy and flow cytometric analysis showed high expression of EWS in human Ewing’s sarcoma SK-N-MC and RD-ES cell lines. EWS shRNA plus TFL inhibited 80% cell viability and caused the highest decreases in EWS expression at mRNA and protein levels in both cell lines. Knockdown of EWS expression induced morphological features of differentiation. EWS shRNA plus TFL caused more alterations in molecular markers of differentiation than either agent alone. EWS shRNA plus TFL caused the highest decreases in cell migration with inhibition of survival, angiogenic and invasive factors. Knockdown of EWS expression was associated with removal of DNA methylation from p53 promoter, promoting expression of p53, Puma, and Noxa. EWS shRNA plus TFL induced the highest amounts of apoptosis with activation of extrinsic and intrinsic pathways in both cell lines in culture. EWS shRNA plus TFL also inhibited growth of Ewing’s sarcoma tumors in animal models due to inhibition of differentiation inhibitors and angiogenic and invasive factors and also induction of activation of caspase-3 for apoptosis. Collectively, knockdown of EWS expression increased various anti-tumor mechanisms of TFL in human Ewing’s sarcoma in cell culture and animal models.
Collapse
Affiliation(s)
- Mohammad Motarab Hossain
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Swapan Kumar Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
47
|
Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI, Pedraza-Chaverrí J. Mitochondria as a Target in the Therapeutic Properties of Curcumin. Arch Pharm (Weinheim) 2014; 347:873-84. [DOI: 10.1002/ardp.201400266] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/02/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Joyce Trujillo
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| | | | - Cecilia Zazueta
- Department of Cardiovascular Medicine; Instituto Nacional de Cardiología Ignacio Chávez; México D.F. Mexico
| | | | - Yolanda Irasema Chirino
- Unidad de Biomedicina; Facultad de Estudios Superiores Iztacala; UNAM; Estado de México Mexico
| | - José Pedraza-Chaverrí
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| |
Collapse
|
48
|
Karimian H, Moghadamtousi SZ, Fadaeinasab M, Golbabapour S, Razavi M, Hajrezaie M, Arya A, Abdulla MA, Mohan S, Ali HM, Noordin MI. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1481-97. [PMID: 25278746 PMCID: PMC4179756 DOI: 10.2147/dddt.s68818] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3±0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway.
Collapse
Affiliation(s)
- Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Shahram Golbabapour
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahboubeh Razavi
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maryam Hajrezaie
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Syam Mohan
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hapipah Mohd Ali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
49
|
Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine 2014; 9:403-417. [PMID: 24531649 PMCID: PMC3894954 DOI: 10.2147/ijn.s48136] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma is an invasive tumor of the central nervous system. Tumor recurrence resulting from ineffective current treatments, mainly due to the blood-brain barrier, highlights the need for innovative therapeutic alternatives. The recent availability of nanotechnology represents a novel targeted strategy in cancer therapy. Natural products have received considerable attention for cancer therapy because of general lower side effects. Curcumin is a new candidate for anticancer treatment, but its low bioavailability and water solubility represent the main disadvantages of its use. Here, curcumin was efficiently encapsulated in a nontoxic nanocarrier, termed dendrosome, to overcome these problems. Dendrosomal curcumin was prepared as 142 nm spherical structures with constant physical and chemical stability. The inhibitory role of dendrosomal curcumin on the proliferation of U87MG cells, a cellular model of glioblastoma, was evaluated by considering master genes of pluripotency and regulatory miRNA (microribonucleic acid). Methylthiazol tetrazolium assay and flow cytometry were used to detect the antiproliferative effects of dendrosomal curcumin. Annexin-V-FLUOS and caspase assay were used to quantify apoptosis. Real-time polymerase chain reaction was used to analyze the expression of OCT4 (octamer binding protein 4) gene variants (OCT4A, OCT4B, and OCT4B1), SOX-2 (SRY [sex determining region Y]-box 2), Nanog, and miR-145. Dendrosomal curcumin efficiently suppresses U87MG cells growth with no cytotoxicity related to dendrosome. Additionally, the accumulation of cells in the SubG1 phase was observed in a time- and dose-dependent manner as well as higher rates of apoptosis after dendrosomal curcumin treatment. Conversely, nonneoplastic cells were not affected by this formulation. Dendrosomal curcumin significantly decreased the relative expression of OCT4A, OCT4B1, SOX-2, and Nanog along with noticeable overexpression of miR-145 as the upstream regulator. This suggests that dendrosomal curcumin reduces the proliferation of U87MG cells through the downregulation of OCT4 (octamer binding protein 4) variants and SOX-2 (SRY [sex determining region Y]-box 2) in an miR-145-dependent manner.
Collapse
Affiliation(s)
| | - Benedetta Isacchi
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | | | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | | | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Esmael Babaei
- Department of Biology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
50
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|