1
|
Martins AC, Oliveira-Paula GH, Tinkov AA, Skalny AV, Tizabi Y, Bowman AB, Aschner M. Role of manganese in brain health and disease: Focus on oxidative stress. Free Radic Biol Med 2025; 232:306-318. [PMID: 40086492 PMCID: PMC11985276 DOI: 10.1016/j.freeradbiomed.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Manganese (Mn) is an essential trace element crucial for various physiological processes, but excessive exposure can lead to significant health concerns, particularly neurotoxicity. This review synthesizes current knowledge on Mn-induced oxidative stress and its role in cellular dysfunction and disease. We discuss how Mn promotes toxicity through multiple mechanisms, primarily through reactive oxygen species (ROS) generation, which leads to oxidative stress and disruption of cellular processes. The review examines key pathways affected by Mn toxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome activation, and epigenetic modifications. Recent studies have identified promising therapeutic compounds, including both synthetic and natural substances such as probucol, metformin, curcumin, resveratrol, and daidzein, which demonstrate protective effects through various mechanisms, including antioxidant enhancement, mitochondrial function preservation, and epigenetic pathway modulation. Understanding these mechanisms provides new insights into potential therapeutic strategies for Mn-induced disorders. This review also highlights future research directions, emphasizing the need for developing targeted therapies and investigating combination approaches to address multiple aspects of Mn toxicity simultaneously.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gustavo H Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, 20059, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Li Y, Yi J, Liu K, Liu X, Yangzom C, Pan J, Iqbal M, Hu L, Tang Z, Li Y, Zhang H. Mn 2O 3 NPs-induced liver injury is potentially associated with gut microbiota dysbiosis in broiler chicken. Food Chem Toxicol 2025; 202:115487. [PMID: 40288515 DOI: 10.1016/j.fct.2025.115487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Mn2O3 nanometer particles(Mn2O3 NPs), a new material, is widely used in medicine, electrochemical sensing and energy storage fields. The widespread use of Mn2O3 NPs has caused health concerns, and it is necessary to clarify the toxic mechanism of Mn2O3 NPs exposure. Our findings showed that Mn2O3 NPs exposure could lead to liver histological abnormalities, mitochondrial dysfunction in liver, as well as mitochondrial-mediated apoptosis, autophagy and mitochondrial dynamics disorder, and eventually lead to liver injury. At the same time, the ileal epithelium suffered physiological damage and inflammation after Mn2O3 NPs exposure, and the expression levels of genes and proteins related to intestinal barrier function (MUC1 ZO-1 Claudin1 and Occludin) were significantly down-regulated. Meanwhile, 16s sequencing analysis of intestinal bacteria showed that Mn2O3 NPs exposure caused significant changes in intestinal flora abundance. The Firmicutes/Bacteroidetes ratio increased, and the abundance of probiotics (Bacteroides, Bifidobacterium, Faecalibacterium) decreased, while the abundance of harmful bacteria (Streptococcus, Enterococcus, Pseudomonas) increased. The changes in these microflorae may potentially impact the development of liver injury. Altogether, these results provide novel insights into the potential mechanism of Mn2O3 NPs related hepatotoxicity induced by gut microbiota via the gut-liver axis, and contribute to a better interpretation of the health impact of Mn2O3 NPs.
Collapse
Affiliation(s)
- Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, Linzhi, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Vijayakumar P, Mou Y, Li X, Anil J, Revi N, Cheng KY, Mathew MT, Bijukumar D. CoCrMo nanoparticle induces neurotoxicity mediated via mitochondrial dysfunction: a study model for implant derived nanoparticle effects. Nanotoxicology 2024; 18:707-723. [PMID: 39673117 PMCID: PMC11789272 DOI: 10.1080/17435390.2024.2438118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Toxicity associated with elevated levels of cobalt-chromium-molybdenum (CoCrMo) nanoparticles in total hip replacement (THR) patients has been a rising concern. Recent investigations demonstrated that these particles can induce polyneuropathy in THR patients. The current study aims to address a detailed molecular investigation of CoCrMo nanoparticle-mediated mitochondrial dynamics using induced pluripotent stem cell-derived neurons (iPSC neurons). Telencephalic neurons from iPSCs were used in this study. A statistically significant dose-dependent reduction in membrane potential and mitochondrial superoxide generation was observed after CoCrMo nanoparticle treatment. The gene expression analysis confirmed that the oxidative-specific genes were significantly upregulated in particle-treated cells compared to untreated cells. When iPSCs were exposed to CoCrMo nanoparticles, there was a significant reduction in the area, perimeter, and length of mitochondria. Live cell imaging (mitochondrial tracking) revealed a significant reduction in mitochondrial movements in the presence of CoCrMo nanoparticles. Further protein expression confirmed increased mitochondrial fission in CoCrMo particle-treated cells by significantly upregulating Drp-1 protein and downregulating Mfn-2. In conclusion, the results show that CoCrMo nanoparticles can significantly alter neuronal mitochondrial dynamics. The disturbance in balance restricts mitochondrial movement, reduces energy production, increases oxidative stress, and can cause subsequent neurodegeneration.
Collapse
Affiliation(s)
- Priyadarshini Vijayakumar
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Xuejun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Jahnavi Anil
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Neeraja Revi
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Kai-Yuan Cheng
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| |
Collapse
|
4
|
Croucher KM, Fleming SM. ATP13A2 (PARK9) and basal ganglia function. Front Neurol 2024; 14:1252400. [PMID: 38249738 PMCID: PMC10796451 DOI: 10.3389/fneur.2023.1252400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
ATP13A2 is a lysosomal protein involved in polyamine transport with loss of function mutations associated with multiple neurodegenerative conditions. These include early onset Parkinson's disease, Kufor-Rakeb Syndrome, neuronal ceroid lipofuscinosis, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. While ATP13A2 mutations may result in clinical heterogeneity, the basal ganglia appear to be impacted in the majority of cases. The basal ganglia is particularly vulnerable to environmental exposures such as heavy metals, pesticides, and industrial agents which are also established risk factors for many neurodegenerative conditions. Not surprisingly then, impaired function of ATP13A2 has been linked to heavy metal toxicity including manganese, iron, and zinc. This review discusses the role of ATP13A2 in basal ganglia function and dysfunction, potential common pathological mechanisms in ATP13A2-related disorders, and how gene x environment interactions may contribute to basal ganglia dysfunction.
Collapse
Affiliation(s)
- Kristina M. Croucher
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, United States
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
5
|
Wang C, Dai X, Xing C, Zhang C, Cao H, Guo X, Liu P, Yang F, Zhuang Y, Hu G. Hexavalent-Chromium-Induced Disruption of Mitochondrial Dynamics and Apoptosis in the Liver via the AMPK-PGC-1α Pathway in Ducks. Int J Mol Sci 2023; 24:17241. [PMID: 38139070 PMCID: PMC10743743 DOI: 10.3390/ijms242417241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| |
Collapse
|
6
|
Critical Involvement of Glial Cells in Manganese Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596185. [PMID: 34660781 PMCID: PMC8514895 DOI: 10.1155/2021/1596185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.
Collapse
|
7
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
8
|
Batschauer AR, Souza TL, Manuitt Brito PE, Neto FF, Oliveira Ribeiro CA, Ortolani-Machado CF. Behavioral and neurochemical effects in mice after one-generation exposure to low doses of manganese: Focus on offspring development. Chem Biol Interact 2021; 345:109532. [PMID: 34058180 DOI: 10.1016/j.cbi.2021.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
The risk of exposure to toxic metals is a known concern to human populations. The overexposure to Mn can lead to a pathological condition, with symptoms similar to Parkinson's disease. Although toxicity of Mn has been reported, studies in neonates are scarce but necessary, as Mn can cross biological barriers. The present study evaluated if chronic perinatal exposure to Mn at low doses lead to neurotoxic effects in mice, after direct and indirect exposure. Couples of mice were exposed to Mn (0.013, 0.13, and 1.3 mg kg-1.day-1) for 60 days prior to mating, as well as during gestation and lactation. The offspring was distributed into two groups: animals that were not exposed after weaning - parental exposure only (PE); and animals subject to additional 60-day exposure through gavages after weaning - parental and direct exposure (PDE). Neurological effects were evaluated by Mn quantification, behavior tests and biochemical markers in the brain. PDE animals had alterations in short/long-term memory and increased anxiety-like behavior. Exposure to Mn triggered a decrease of glutathione-s-transferase and increase of cholinesterase activity in different regions of the brain. These findings highlight the risk of exposure to low doses of Mn over a generation and at early stages of development.
Collapse
Affiliation(s)
- Amândia R Batschauer
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tugstênio L Souza
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Patrícia E Manuitt Brito
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ciro A Oliveira Ribeiro
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia F Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Pajarillo E, Nyarko-Danquah I, Adinew G, Rizor A, Aschner M, Lee E. Neurotoxicity mechanisms of manganese in the central nervous system. ADVANCES IN NEUROTOXICOLOGY 2021; 5:215-238. [PMID: 34263091 DOI: 10.1016/bs.ant.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Getinet Adinew
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
10
|
Zhan X, Wen G, Jiang E, Li F, Wu X, Pang H. Secretogranin III upregulation is involved in parkinsonian toxin-mediated astroglia activation. J Toxicol Sci 2020; 45:271-280. [PMID: 32404559 DOI: 10.2131/jts.45.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental neurotoxins such as paraquat (PQ), manganese, and 1-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are associated with a higher risk of Parkinson's disease (PD). These parkinsonian toxins exert certain common toxicological effects on astroglia; however, their role in the regulatory functions of astroglial secretory proteins remains unclear. In a previous study, we observed that secretogranin II (SCG2) and secretogranin III (SCG3), which are important components of the regulated secretory pathway, were elevated in PQ-activated U118 astroglia. In the current study, we used the parkinsonian toxins dopamine (DA), active metabolite of MPTP (MPP+), MnCl2, and lipopolysaccharide (LPS) as inducers, and studied the potential regulation of SCG2 and SCG3. Our results showed that all the parkinsonian toxins except LPS affected astroglial viability but did not cause apoptosis. Exposure to DA, MPP+, and MnCl2 upregulated glial fibrillary acidic protein (GFAP), a marker for astrocyte activation, and stimulated the levels of several astrocytic-derived factors. Further, DA, MPP+, and MnCl2 exposure impeded astroglial cell cycle progression. Moreover, the expression of SCG3 was elevated, while its exosecretion was inhibited in astroglia activated by parkinsonian toxins. The level of SCG2 remained unchanged. In combination with our previous findings, the results of this study indicate that SCG3 may act as a cofactor in astrocyte activation stimulated by various toxins, and the regulation of SCG3 could be involved in the toxicological mechanism by which parkinsonian toxins affect astroglia.
Collapse
Affiliation(s)
- Xiaoni Zhan
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| | - Gehua Wen
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, China
| | - Enzhu Jiang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| | | | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, China
| | - Hao Pang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| |
Collapse
|
11
|
Warren EB, Bryan MR, Morcillo P, Hardeman KN, Aschner M, Bowman AB. Manganese-induced Mitochondrial Dysfunction Is Not Detectable at Exposures Below the Acute Cytotoxic Threshold in Neuronal Cell Types. Toxicol Sci 2020; 176:446-459. [PMID: 32492146 PMCID: PMC7416316 DOI: 10.1093/toxsci/kfaa079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential metal, but excessive exposures have been well-documented to culminate in neurotoxicity. Curiously, the precise mechanisms of Mn neurotoxicity are still unknown. One hypothesis suggests that Mn exerts its toxicity by inhibiting mitochondrial function, which then (if exposure levels are high and long enough) leads to cell death. Here, we used a Huntington's disease cell model with known differential sensitivities to manganese-STHdhQ7/Q7 and STHdhQ111/Q111 cells-to examine the effects of acute Mn exposure on mitochondrial function. We determined toxicity thresholds for each cell line using both changes in cell number and caspase-3/7 activation. We used a range of acute Mn exposures (0-300 µM), both above and below the cytotoxic threshold, to evaluate mitochondria-associated metabolic balance, mitochondrial respiration, and substrate dependence. In both cell lines, we observed no effect on markers of mitochondrial function at subtoxic Mn exposures (below detectable levels of cell death), yet at supratoxic exposures (above detectable levels of cell death) mitochondrial function significantly declined. We validated these findings in primary striatal neurons. In cell lines, we further observed that subtoxic Mn concentrations do not affect glycolytic function or major intracellular metabolite quantities. These data suggest that in this system, Mn exposure impairs mitochondrial function only at concentrations coincident with or above the initiation of cell death and is not consistent with the hypothesis that mitochondrial dysfunction precedes or induces Mn cytotoxicity.
Collapse
Affiliation(s)
- Emily B Warren
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Miles R Bryan
- Departments of Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Keisha N Hardeman
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Aaron B Bowman
- Departments of Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
12
|
Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy 2020; 16:1506-1523. [PMID: 31690173 PMCID: PMC7469609 DOI: 10.1080/15548627.2019.1688488] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Epidemiological and clinical studies have long shown that exposure to high levels of heavy metals are associated with increased risks of neurodegenerative diseases. It is widely accepted that autophagic dysfunction is involved in pathogenesis of various neurodegenerative disorders; however, the role of heavy metals in regulation of macroautophagy/autophagy is unclear. Here, we show that manganese (Mn) induces a decline in nuclear localization of TFEB (transcription factor EB), a master regulator of the autophagy-lysosome pathway, leading to autophagic dysfunction in astrocytes of mouse striatum. We further show that Mn exposure suppresses autophagic-lysosomal degradation of mitochondria and induces accumulation of unhealthy mitochondria. Activation of autophagy by rapamycin or TFEB overexpression ameliorates Mn-induced mitochondrial respiratory dysfunction and reactive oxygen species (ROS) generation in astrocytes, suggesting a causal relation between autophagic failure and mitochondrial dysfunction in Mn toxicity. Taken together, our data demonstrate that Mn inhibits TFEB activity, leading to impaired autophagy that is causally related to mitochondrial dysfunction in astrocytes. These findings reveal a previously unappreciated role for Mn in dysregulation of autophagy and identify TFEB as a potential therapeutic target to mitigate Mn toxicity. ABBREVIATIONS BECN1: beclin 1; CTSD: cathepsin D; DMEM: Dulbecco's Modified Eagle Medium; GFAP: glial fibrillary acid protein; GFP: green fluorescent protein; HBSS: hanks balanced salt solution; LAMP: lysosomal-associated membrane protein; LDH: lactate dehydrogenase; Lys Inh: lysosomal inhibitors; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; Mn: manganese; MTOR: mechanistic target of rapamycin kinase; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PI: propidium iodide; ROS: reactive oxygen species; s.c.: subcutaneous; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jingqi Yan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Miles R. Bryan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rajat Singh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine
- Diabetes Research Center
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
13
|
Ishfaq M, Chen C, Bao J, Zhang W, Wu Z, Wang J, Liu Y, Tian E, Hamid S, Li R, Ding L, Li J. Baicalin ameliorates oxidative stress and apoptosis by restoring mitochondrial dynamics in the spleen of chickens via the opposite modulation of NF-κB and Nrf2/HO-1 signaling pathway during Mycoplasma gallisepticum infection. Poult Sci 2020; 98:6296-6310. [PMID: 31376349 PMCID: PMC8913776 DOI: 10.3382/ps/pez406] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma gallisepticum (MG) infection produces a profound inflammatory response in the respiratory tract and evade birds' immune recognition to establish a chronic infection. Previous reports documented that the flavonoid baicalin possess potent anti-inflammatory, and antioxidant activities. However, whether baicalin prevent immune dysfunction is largely unknown. In the present study, the preventive effects of baicalin were determined on oxidative stress generation and apoptosis in the spleen of chickens infected with MG. Histopathological examination showed abnormal morphological changes including cell hyperplasia, lymphocytes depletion, and the red and white pulp of spleen were not clearly visible in the model group. Oxidative stress-related parameters were significantly (P < 0.05) increased in the model group. However, baicalin treatment significantly (P < 0.05) ameliorated oxidative stress and partially alleviated the abnormal morphological changes in the chicken spleen compared to model group. Terminal deoxynucleotidyl transferase–mediated dUTP nick endlabeling assay results, mRNA, and protein expression levels of mitochondrial apoptosis-related genes showed that baicalin significantly attenuated apoptosis. Moreover, baicalin restored the mRNA expression of mitochondrial dynamics-related genes and maintain the balance between mitochondrial inner and outer membranes. Intriguingly, the protective effects of baicalin were associated with the upregulation of nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) pathway and suppression of nuclear factor-kappa B (NF-κB) pathway in the spleen of chicken. In summary, these findings indicated that baicalin promoted mitochondrial dynamics imbalance and effectively prevents oxidative stress and apoptosis in the splenocytes of chickens infected with MG.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jiaxin Bao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Erjie Tian
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Sattar Hamid
- Department of Animal health, The University of Agriculture, Peshawar 25130, Pakistan
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Liangjun Ding
- College of life Science, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| |
Collapse
|
14
|
Li J, Zhang B, Chang X, Gan J, Li W, Niu S, Kong L, Wu T, Zhang T, Tang M, Xue Y. Silver nanoparticles modulate mitochondrial dynamics and biogenesis in HepG2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113430. [PMID: 31685329 DOI: 10.1016/j.envpol.2019.113430] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/16/2019] [Accepted: 10/17/2019] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (AgNPs) are inevitably released into the environment owing to their widespread applications in industry and medicine. The potential of their toxicity has aroused a great concern. Previous studies have shown that AgNPs exposure in HepG2 cells is primarily related to the damage of mitochondria, which includes induction of mitochondrial swelling and increase of intracellular levels of reactive oxygen species (ROS), the collapse of mitochondrial membrane potential and induction of apoptosis through a mitochondrial pathway. In this study, the effects of AgNPs exposure in HepG2 cells on mitochondrial dynamics and biogenesis were investigated. AgNPs were found to induce mitochondrial morphological and structural alterations. The expressions of key proteins (Drp1, Fis1, OPA1, Mff, Mfn1, and Mfn2) related to mitochondrial fission/fusion event were changed. Especially the expression of fission-related protein 1 (p-Drp1) (Ser616) was significantly up-regulated, whereas the expression of mitochondrial biogenesis protein (PGC-1α) was reduced in AgNP-treated cells. Concomitantly, the expression of autophagy marker proteins (LC3B and p62) was increased. The results suggested that AgNPs could trigger cytotoxicity by targeting the mitochondria, resulting in the disruption of mitochondrial function, damage to the mitochondrial structure and morphology, interfering in mitochondrial dynamics and biogenesis. The mitochondria could be a critical target of AgNPs in cells. The functions of mitochondria could be used for assessing the cytotoxic effects associated with AgNPs in cells.
Collapse
Affiliation(s)
- Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Bangyong Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Junying Gan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenhua Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
Fernandes J, Chandler JD, Lili LN, Uppal K, Hu X, Hao L, Go YM, Jones DP. Transcriptome Analysis Reveals Distinct Responses to Physiologic versus Toxic Manganese Exposure in Human Neuroblastoma Cells. Front Genet 2019; 10:676. [PMID: 31396262 PMCID: PMC6668488 DOI: 10.3389/fgene.2019.00676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Manganese (Mn) is an essential trace element, which also causes neurotoxicity in exposed occupational workers. Mn causes mitochondrial toxicity; however, little is known about transcriptional responses discriminated by physiological and toxicological levels of Mn. Identification of such mechanisms could provide means to evaluate risk of Mn toxicity and also potential avenues to protect against adverse effects. To study the Mn dose-response effects on transcription, analyzed by RNA-Seq, we used human SH-SY5Y neuroblastoma cells exposed for 5 h to Mn (0 to 100 μM), a time point where no immediate cell death occurred at any of the doses. Results showed widespread effects on abundance of protein-coding genes for metabolism of reactive oxygen species, energy sensing, glycolysis, and protein homeostasis including the unfolded protein response and transcriptional regulation. Exposure to a concentration (10 μM Mn for 5 h) that did not result in cell death after 24-h increased abundance of differentially expressed genes (DEGs) in the protein secretion pathway that function in protein trafficking and cellular homeostasis. These include BET1 (Golgi vesicular membrane-trafficking protein), ADAM10 (ADAM metallopeptidase domain 10), and ARFGAP3 (ADP-ribosylation factor GTPase-activating protein 3). In contrast, 5-h exposure to 100 μM Mn, a concentration that caused cell death after 24 h, increased abundance of DEGs for components of the mitochondrial oxidative phosphorylation pathway. Integrated pathway analysis results showed that protein secretion gene set was associated with amino acid metabolites in response to 10 μM Mn, while oxidative phosphorylation gene set was associated with energy, lipid, and neurotransmitter metabolites at 100 μM Mn. These results show that differential effects of Mn occur at a concentration which does not cause subsequent cell death compared to a concentration that causes subsequent cell death. If these responses translate to effects on the secretory pathway and mitochondrial functions in vivo, differential activities of these systems could provide a sensitive basis to discriminate sub-toxic and toxic environmental and occupational Mn exposures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
16
|
Ommati MM, Heidari R, Ghanbarinejad V, Aminian A, Abdoli N, Niknahad H. The neuroprotective properties of carnosine in a mouse model of manganism is mediated via mitochondria regulating and antioxidative mechanisms. Nutr Neurosci 2019; 23:731-743. [PMID: 30856059 DOI: 10.1080/1028415x.2018.1552399] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective(s): Manganese (Mn) is an essential trace element physiologically incorporated in the structure of several vital enzymes. Despite its essentiality, excessive Mn exposure is toxic with brain tissue as the primary target organ. There is no specific and clinically available therapeutic/preventive option against Mn neurotoxicity. Carnosine is a neuropeptide with several physiological roles. The neuroprotective properties of this peptide have been evaluated in different experimental models. The current study was designed to investigate the effect of carnosine supplementation and its potential mechanisms of action in an animal model of Mn-induced neurotoxicity. Materials and Methods: Male C57BL/6 mice received Mn (100 mg/kg, s.c) alone and/or in combination with carnosine (10, 50, and 100 mg/kg, i.p). Several locomotor activity indices were monitored. Moreover, biomarkers of oxidative stress and mitochondrial function were assessed in the brain tissue of Mn-exposed animals. Results: Significant locomotor dysfunction was revealed in Mn-exposed animals. Furthermore, brain tissue biomarkers of oxidative stress were significantly increased, and mitochondrial indices of functionality were impaired in Mn-treated animals. It was found that carnosine supplementation (10, 50, and 100 mg/kg, i.p) alleviated the Mn-induced locomotor deficit. Moreover, this peptide mitigated oxidative stress biomarkers and preserved brain tissue mitochondrial functionality in the animal model of manganism. Conclusion: These data indicate that carnosine is a potential neuroprotective agent against Mn neurotoxicity. Antioxidative and mitochondria protecting effects of carnosine might play a fundamental role in its neuroprotective properties against Mn toxicity.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Peoples' Republic of China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmadreza Aminian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: implications for age-related macular degeneration. Arch Toxicol 2019; 93:1401-1415. [PMID: 30778631 DOI: 10.1007/s00204-019-02409-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a multifactorial retinal disease characterized by a progressive loss of central vision. Retinal pigment epithelium (RPE) degeneration is a critical event in AMD. It has been associated to A2E accumulation, which sensitizes RPE to blue light photodamage. Mitochondrial quality control mechanisms have evolved to ensure mitochondrial integrity and preserve cellular homeostasis. Particularly, mitochondrial dynamics involve the regulation of mitochondrial fission and fusion to preserve a healthy mitochondrial network. The present study aims to clarify the cellular and molecular mechanisms underlying photodamage-induced RPE cell death with particular focus on the involvement of defective mitochondrial dynamics. Light-emitting diodes irradiation (445 ± 18 nm; 4.43 mW/cm2) significantly reduced the viability of both unloaded and A2E-loaded human ARPE-19 cells and increased reactive oxygen species production. A2E along with blue light, triggered apoptosis measured by MC540/PI-flow cytometry and activated caspase-3. Blue light induced mitochondrial fusion/fission imbalance towards mitochondrial fragmentation in both non-loaded and A2E-loaded cells which correlated with the deregulation of mitochondria-shaping proteins level (OPA1, DRP1 and OMA1). To our knowledge, this is the first work reporting that photodamage causes mitochondrial dynamics deregulation in RPE cells. This process could possibly contribute to AMD pathology. Our findings suggest that the regulation of mitochondrial dynamics may be a valuable strategy for treating retinal degeneration diseases, such as AMD.
Collapse
|
18
|
Heme Oxygenase-1 protects astroglia against manganese-induced oxidative injury by regulating mitochondrial quality control. Toxicol Lett 2018; 295:357-368. [DOI: 10.1016/j.toxlet.2018.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
|
19
|
Xu Z, Jin X, Pan T, Liu T, Wan N, Li S. Antagonistic effects of selenium on cadmium-induced apoptosis by restoring the mitochondrial dynamic equilibrium and energy metabolism in chicken spleens. Oncotarget 2017; 8:52629-52641. [PMID: 28881757 PMCID: PMC5581056 DOI: 10.18632/oncotarget.17539] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the mechanism of cadmium-induced apoptosis in chicken spleens and the antagonistic effects of selenium. We duplicated the selenium-cadmium interaction model and examined the expression of apoptosis-, immune-, mitochondrial dynamics- and energy metabolism-related genes. The results demonstrated that after treatment with cadmium, the frequency of apoptosis was significantly increased, and the morphological characteristics of apoptosis were observed. The expression of pro-apoptotic genes was increased, and that of anti-apoptotic genes was decreased. The mRNA levels of tumor necrosis factor-α and interlenkin-1β were observably increased, but the interlenkin-2 and interferon-γ levels were markedly decreased. Furthermore, the mRNA and protein levels of dynamin-related protein 1 and mitochondrial fission factor were significantly enhanced, whereas mitofusin 1, mitofusin 2, and optic atrophy 1 were markedly decreased. The expression of hexokinase 1, hexokinase 2, aconitase 2, lactate dehydrogenase A, lactate dehydrogenase B, succinatedehydrogenase B, pyruvate kinase and phosphofructokinase were also reduced. Selenium supplements remarkably attenuated cadmium-induced effects (p < 0.05). Based on the above results, conclude that the cadmium treatment promoted a mitochondrial dynamic imbalance and reduced energy metabolism, leading to apoptosis and immune dysfunction in chicken spleens, and selenium had an antagonistic effect on Cd-induced apoptosis.
Collapse
Affiliation(s)
- Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
20
|
Gorojod RM, Alaimo A, Porte Alcon S, Saravia F, Kotler ML. Interplay between lysosomal, mitochondrial and death receptor pathways during manganese-induced apoptosis in glial cells. Arch Toxicol 2017; 91:3065-3078. [DOI: 10.1007/s00204-017-1936-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/12/2017] [Indexed: 10/19/2022]
|
21
|
Liu X, Yang J, Lu C, Jiang S, Nie X, Han J, Yin L, Jiang J. Downregulation of Mfn2 participates in manganese-induced neuronal apoptosis in rat striatum and PC12 cells. Neurochem Int 2017; 108:40-51. [PMID: 28232070 DOI: 10.1016/j.neuint.2017.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/24/2022]
Abstract
Manganese (Mn) is a widely distributed trace element that is essential for normal brain function and development. However, chronic exposure to excessive Mn has been known to lead to neuronal loss and manganism, a disease with debilitating motor and cognitive deficits, whose clinical syndrome resembling idiopathic Parkinson's disease (IPD). However, the precise molecular mechanism underlying Mn neurotoxicity remains largely unclear. Accumulating evidence indicates that abnormal mitochondrial functionality is an early and causal event in Mn-induced neurodegeneration and apoptosis. Here, we investigated whether Mitofusin 2 (Mfn2), a highly conserved dynamin-related protein (DRP), played a role in the regulation of Mn-induced neuronal apoptosis. We revealed that Mfn2 was significantly dysregulated in rat striatum and PC12 neuronal-like cells following Mn exposure. Western blot analysis revealed that the expression of Mfn2 was remarkably decreased following different concentrations of Mn exposure. Immunohistochemistry analysis confirmed a remarkable downregulation of Mfn2 in rat striatum after Mn exposure. Immunofluorescent staining showed that Mfn2 was expressed predominantly in neurons, and neuronal loss of Mfn2 was associated with the expression of active caspase-3 following Mn exposure. Importantly, overexpression of Mfn2 apparently attenuated Mn-induced neuronal apoptosis. Notably, treatment with caspase-3 inhibitor Ac-DEVD-CH could not rescue Mn-induced downregulation of Mfn2, suggesting that Mn-induced mfn2 occurs prior to neuronal apoptosis. Taken together, these results indicated that down-regulated expression of Mfn2 might contribute to the pathological processes underlying Mn neurotoxicity.
Collapse
Affiliation(s)
- Xinhang Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jianbin Yang
- Department of Public Health, The Second People's Hospital of Nantong, Nantong, Jiangsu Province, People's Republic of China
| | - Chunhua Lu
- Department of Occupational Health and Occupational Diseases, Nantong Center for Disease Control and Prevention, Nantong, Jiangsu Province, People's Republic of China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jingling Han
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Lifeng Yin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| |
Collapse
|
22
|
Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 2017; 482:388-398. [PMID: 28212723 PMCID: PMC5382988 DOI: 10.1016/j.bbrc.2016.10.126] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause "manganism", a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Gawlik M, Gawlik MB, Smaga I, Filip M. Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep 2016; 69:322-330. [PMID: 28183032 DOI: 10.1016/j.pharep.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exposure to Mn results in a neurological syndrome known as manganism. METHODS We examined how 4-week Mn exposure (20mg/kg MnCl2po, 5days/week) induces neurotoxic effects in rats. Oxidized-to-reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, catalase (CAT) activity, vitamin E content and caspase-3 activity were measured in several rat brain structures. Further, we examined protective effects of the polyphenols: resveratrol (R) or quercetin (QCT) against Mn-induced neurotoxicity. RESULTS After exposure to Mn, we found a rise in GSSG/GSH ratio and a reduction in SOD activity in the rat striatum (STR), while in the nucleus accumbens (NAC) decreases in alpha-tocopherol content and in SOD activity were noted. In the frontal cortex (FCX), an enhancement in GSSG/GSH ratio and a reduction in SOD and CAT activities were observed. In the cerebellum (CER), a significant increase in the caspase-3 activity paralleled a rise in the GSSG/GSH ratio and a diminution of SOD activity. In the rat hippocampus (HIP), Mn evoked an enhancement in GSSG/GSH ratio. There were no changes in the MDA levels. Pretreatment with R and QCT protected against the Mn-induced (i) enhancement in GSSG/GSH ratio in the STR, (ii) decreases in the NAC alpha-tocopherol content and (iii) reduction in SOD activity in FCX, NAC and CER. CONCLUSION Repeated Mn administration induces toxic effects in several rat brain structures and treatment with R and QCT may be a potential therapeutic strategy to attenuate the metal neurotoxicity.
Collapse
Affiliation(s)
- Maciej Gawlik
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Małgorzata B Gawlik
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Kraków, Poland
| |
Collapse
|
24
|
Bora S, Erdogan MA, Armagan G, Sevgili E, Dagcı T. Vinpocetine and Vasoactive Intestinal Peptide Attenuate Manganese-Induced Toxicity in NE-4C Cells. Biol Trace Elem Res 2016; 174:410-418. [PMID: 27206668 DOI: 10.1007/s12011-016-0742-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Increased concentration of manganese (Mn) in the brain is known to be associated with excitotoxicity and neuroinflammation. Vinpocetine, an alkaloid derived from the plant Vinca minor L., basically shows its effect via phosphodiesterase inhibition and voltage-dependent Na+ channels. Vasoactive intestinal peptide (VIP) has gastrointestinal, vasomotor, muscular, and neuroprotective effects. The aim of this study was to examine the potential protective effects of vinpocetine and VIP against Mn toxicity in NE-4C neural stem cells (NSCs). VIP treatment at 1 μM and vinpocetine treatment at 2 μM concentrations were sufficient to yield maximum protection, and these concentrations were adopted in the following experiments. In this study, Mn treatment significantly increased lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) production, and triggered cell death in NE-4C cultures. However, significant reduction in LDH release was observed following vinpocetine or VIP treatments when compared with control. Similar to these findings, vinpocetine or VIP treatments significantly reduced membrane degradation induced by Mn (p < 0.001). Moreover, vinpocetine attenuated Mn-induced decrease of mitochondrial membrane potential. Similarly, proapoptotic protein bax and ROS production significantly decreased in cells after incubation with vinpocetine (p = 0.01) or VIP in the presence of Mn (p < 0.001). Our study provides the evidence that both vinpocetine and VIP may exert protective effects via modulating oxidative stress and apoptosis in Mn-induced neurodegeneration in NE-4C cells.
Collapse
Affiliation(s)
- Saylav Bora
- Department of Physiology, School of Medicine, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Mumin Alper Erdogan
- Department of Physiology, School of Medicine, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| | - Elvin Sevgili
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| | - Taner Dagcı
- Department of Physiology, School of Medicine, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
25
|
Bonke E, Siebels I, Zwicker K, Dröse S. Manganese ions enhance mitochondrial H 2O 2 emission from Krebs cycle oxidoreductases by inducing permeability transition. Free Radic Biol Med 2016; 99:43-53. [PMID: 27474449 DOI: 10.1016/j.freeradbiomed.2016.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 11/24/2022]
Abstract
Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn2+ ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (IIQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn2+ and different respiratory chain inhibitors led to a dynamically increasing H2O2emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca2+ increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle.
Collapse
Affiliation(s)
- Erik Bonke
- Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ilka Siebels
- Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Klaus Zwicker
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Stefan Dröse
- Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Agarwal S, Yadav A, Tiwari SK, Seth B, Chauhan LKS, Khare P, Ray RS, Chaturvedi RK. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation. J Biol Chem 2016; 291:15923-39. [PMID: 27252377 DOI: 10.1074/jbc.m115.709493] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 11/06/2022] Open
Abstract
The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and neurodegeneration in the hippocampus.
Collapse
Affiliation(s)
- Swati Agarwal
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Anuradha Yadav
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Shashi Kant Tiwari
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Brashket Seth
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Lalit Kumar Singh Chauhan
- the Central Instrumentation Facility, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Puneet Khare
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and
| | - Ratan Singh Ray
- the Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group
| | - Rajnish Kumar Chaturvedi
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| |
Collapse
|
27
|
Gorojod RM, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler ML. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med 2015; 87:237-51. [PMID: 26163003 DOI: 10.1016/j.freeradbiomed.2015.06.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to be considered in future research concerning Manganism therapies.
Collapse
Affiliation(s)
- R M Gorojod
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-oncología. Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina.
| | - A Alaimo
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-oncología. Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina.
| | - S Porte Alcon
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-oncología. Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina.
| | - C Pomilio
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.
| | - F Saravia
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.
| | - M L Kotler
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-oncología. Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
28
|
Rudgalvyte M, Peltonen J, Lakso M, Nass R, Wong G. RNA-Seq Reveals Acute Manganese Exposure Increases Endoplasmic Reticulum Related and Lipocalin mRNAs in Caenorhabditis elegans. J Biochem Mol Toxicol 2015; 30:97-105. [PMID: 26418576 PMCID: PMC5054866 DOI: 10.1002/jbt.21768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 01/13/2023]
Abstract
Manganese (Mn) is an essential nutrient; nonetheless, excessive amounts can accumulate in brain tissues causing manganism, a severe neurological condition. Previous studies have suggested oxidative stress, mitochondria dysfunction, and impaired metabolism pathways as routes for Mn toxicity. Here, we used the nematode Caenorhabditis elegans to analyze gene expression changes after acute Mn exposure using RNA‐Seq. L1 stage animals were exposed to 50 mM MnCl2 for 30 min and analyzed at L4. We identified 746 up‐ and 1828 downregulated genes (FDR corrected p < 0.05; two‐fold change) that included endoplasmic reticulum related abu and fkb family genes, as well as six of seven lipocalin‐related (lpr) family members. These were also verified by qRT‐PCR. RNA interference of lpr‐5 showed a dramatic increase in whole body vulnerability to Mn exposure. Our studies demonstrate that Mn exposure alters gene transcriptional levels in different cell stress pathways that may ultimately contribute to its toxic effects.
Collapse
Affiliation(s)
- Martina Rudgalvyte
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Merja Lakso
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Garry Wong
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland. .,Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau S.A.R., 999078, China.
| |
Collapse
|
29
|
Bonke E, Zwicker K, Dröse S. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II. Arch Biochem Biophys 2015; 580:75-83. [DOI: 10.1016/j.abb.2015.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 12/28/2022]
|
30
|
Wang T, Li X, Yang D, Zhang H, Zhao P, Fu J, Yao B, Zhou Z. ER stress and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo. Neurotoxicology 2015; 48:109-19. [PMID: 25732873 DOI: 10.1016/j.neuro.2015.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 01/14/2015] [Accepted: 02/20/2015] [Indexed: 11/28/2022]
Abstract
Manganese (Mn) is an essential trace element found in many enzymes, however, excessive Mn-exposure can result in manganism which is similar to Parkinson's movement disorder. The mechanisms of manganism are not well-known. The present in vivo study was carried out to determine whether endoplasmic reticulum stress (ER stress) and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity. Sixty-four SD rats were randomly divided into four groups and were administered intraperitoneally with normal saline (NS, as control) or MnCl₂ (7.5, 15 and 30 mg/kg body weight, respectively) for 4 weeks. We found that MnCl₂ dose-dependently accumulate in striatal. HE staining and TUNEL assay results indicated that MnCl₂ induced striatal neurocytes apoptosis in both male and female rats. The alterations of ultrastructures showed that MnCl₂ resulted in chromatin condensation, mitochondria and ER tumefaction in rat striatal neurocytes. Furthermore, MnCl₂ increased the expressions of p-IRE-1, ATF-6α, PERK, GRP78, Sigma-1R, CHOP, Bim, Bax, caspase-12 and caspase-3, and decreased the expression of Bcl-2 in rat striatal neurocytes. In conclusion, MnCl₂ could induce ER stress and ER stress-mediated apoptosis in rat striatal neurocytes, which might be one of the important mechanisms of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Ting Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; The seventh people hospital of Zhengzhou, Zhengzhou Henan 450000, China
| | - Xuehui Li
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Dongxu Yang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Hongtao Zhang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Peng Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Juanling Fu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Biyun Yao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| | - Zongcan Zhou
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
31
|
Chen P, Chakraborty S, Peres TV, Bowman AB, Aschner M. Manganese-induced Neurotoxicity: From C. elegans to Humans. Toxicol Res (Camb) 2014; 4:191-202. [PMID: 25893090 DOI: 10.1039/c4tx00127c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson's disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sudipta Chakraborty
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA ; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville TN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|