1
|
Ma G, Chan JM, Worthy KH, Rosa MG, Atapour N. Rapid degeneration and neurochemical plasticity of the lateral geniculate nucleus following lesions of the primary visual cortex in marmoset monkeys. CURRENT RESEARCH IN NEUROBIOLOGY 2025; 8:100141. [PMID: 39759967 PMCID: PMC11697716 DOI: 10.1016/j.crneur.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 01/07/2025] Open
Abstract
Lesions of the primary visual cortex (V1) cause retrograde neuronal degeneration, volume loss and neurochemical changes in the lateral geniculate nucleus (LGN). Here we characterised the timeline of these processes in adult marmoset monkeys, after various recovery times following unilateral V1 lesions. Observations in NeuN-stained sections obtained from animals with short recovery times (2, 3 or 14 days) showed that the volume and neuronal density in the LGN ipsilateral to the lesions were similar to those in the contralateral hemispheres. However, neuronal density in the lesion projection zone of LGN dropped rapidly thereafter, with approximately 50% of the population lost within a month post-lesion. This level of neuronal loss remained stable for over three years post-lesion. In comparison, shrinkage of the LGN volume progressed more gradually, not reaching a stable value until 6 months post lesion. We also determined the time course of the expression of the calcium-binding protein calbindin (CB) in magnocellular (M) and parvocellular (P) layer neurons, a form of neurochemical plasticity previously reported to be triggered by V1 lesions. We found that CB expression could be detected in surviving M and P neurons as early as two weeks after lesion, with the percentage of neurons showing this neurochemical phenotype gradually increasing over 6 months. Thus, neurochemical change precedes neuronal degeneration, suggesting it may be linked to a protective mechanism. This study highlights the limited time window for any possible interventions aimed at reducing secondary neuronal loss in the visual afferent pathways following damage to V1.
Collapse
Affiliation(s)
- Gaoyuan Ma
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Jonathan M. Chan
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Katrina H. Worthy
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Marcello G.P. Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Nafiseh Atapour
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
2
|
Santana NNM, da Silva MMO, Silva EHA, dos Santos SF, Bezerra LL, Escarião WKM, Vasiljevic GAM, Fiuza FP, Cavalcante JS, Engelberth RC. Neuronal number and somal volume in calbindin-expressing neurons of the marmoset dorsal lateral geniculate nucleus are preserved during aging. PLoS One 2025; 20:e0323906. [PMID: 40408448 PMCID: PMC12101782 DOI: 10.1371/journal.pone.0323906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/15/2025] [Indexed: 05/25/2025] Open
Abstract
Compelling evidence links age-related brain dysfunction and neurodegenerative processes to persistent disruptions in intracellular calcium (Ca2+) signaling, a central hypothesis in the Ca2+ theory of aging. Calbindin (CB), a classical Ca2+ buffer, has been implicated in region-specific susceptibility to aging-related effects. Specifically, CB-immunopositive (CB+) neurons have demonstrated an age-dependent decline in neuronal number across various cortical and subcortical regions. However, it remains unclear whether this decrease occur in the dorsal lateral geniculate nucleus (DLG), a crucial relay and modulatory center for visual processing. Additionally, the potential impact of aging on the cellular volume of CB+ neurons in the DLG has not been fully elucidated, albeit an age-dependent neuronal hypertrophy of this region has been reported. To address these questions, we investigated CB+ neurons in the DLG of six marmosets (Callithrix jacchus), aged between 29-143 months. Using design-based stereological techniques, we estimated the total number and somal volume of CB+ neurons in DLG layers. Our results revealed no signs of CB+ neuronal number loss and somal volumetric changes in aged DLG, particularly within the koniocellular layers, a stratum that primarily expresses CB and play a critical role in blue/yellow color vision. Altogether, our findings suggest a preserved neuronal number and cellular volume of the CB+ population during aging process in the marmoset DLG. Moreover, they provide a valuable basis for future investigations into the neuroprotective role of CB in visual processing during aging and open avenues for strategies designed to preserve vulnerable neuronal populations in age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Nelyane N. M. Santana
- Department of Physiology and Behavior, Laboratory of Neurochemical Studies, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Maria M. O. da Silva
- Department of Physiology and Behavior, Laboratory of Neurochemical Studies, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Department of Physiology and Behavior, Laboratory of Neurochemical Studies, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Department of Physiology and Behavior, Laboratory of Neurochemical Studies, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro L.F. Bezerra
- Department of Physiology and Behavior, Laboratory of Neurochemical Studies, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Wellydo K. M. Escarião
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Gabriel A. M. Vasiljevic
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Felipe P. Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Jeferson S. Cavalcante
- Department of Physiology and Behavior, Laboratory of Neurochemical Studies, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara Engelberth
- Department of Physiology and Behavior, Laboratory of Neurochemical Studies, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
Scott JT, Mendivez Vasquez BL, Stewart BJ, Panacheril DD, Rajit DKJ, Fan AY, Bourne JA. CalliCog is an open-source cognitive neuroscience toolkit for freely behaving nonhuman primates. CELL REPORTS METHODS 2025; 5:101034. [PMID: 40339574 DOI: 10.1016/j.crmeth.2025.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
Nonhuman primates (NHPs) are pivotal for unlocking the complexities of human cognition, yet traditional cognitive studies remain constrained to specialized laboratories. To address this gap, we present CalliCog: an open-source, scalable in-cage platform tailored for experiments in small freely behaving primate species such as the common marmoset (Callithrix jacchus). CalliCog includes modular operant chambers that operate autonomously and integrate seamlessly with home cages, eliminating human intervention. Our results showcase the power of CalliCog to train experimentally naive marmosets in touchscreen-based cognitive tasks. Across two independent facilities, marmosets achieved touchscreen proficiency within 2 weeks and successfully completed tasks probing behavioral flexibility and working memory. Moreover, CalliCog enabled precise synchronization of behavioral data with electrocorticography (ECoG) recordings from freely moving animals, opening new frontiers for neurobehavioral research. By making CalliCog openly accessible, we aim to democratize cognitive experimentation with small NHPs, narrowing the translational gap between preclinical models and human cognition.
Collapse
Affiliation(s)
- Jack T Scott
- Section on Cellular and Cognitive Neurodevelopment, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Brian J Stewart
- Section on Cellular and Cognitive Neurodevelopment, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Dylan D Panacheril
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Darren K J Rajit
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Angela Y Fan
- Section on Cellular and Cognitive Neurodevelopment, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Section on Cellular and Cognitive Neurodevelopment, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Ceccarelli F, Londei F, Arena G, Genovesio A, Ferrucci L. Home-Cage Training for Non-Human Primates: An Opportunity to Reduce Stress and Study Natural Behavior in Neurophysiology Experiments. Animals (Basel) 2025; 15:1340. [PMID: 40362154 PMCID: PMC12071079 DOI: 10.3390/ani15091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Research involving non-human primates remains a cornerstone in fields such as biomedical research and systems neuroscience. However, the daily routines of laboratory work can induce stress in these animals, potentially compromising their well-being and the reliability of experimental outcomes. To address this, many laboratories have adopted home-cage training protocols to mitigate stress caused by routine procedures such as transport and restraint-a factor that can impact both macaque physiology and experimental validity. This review explores the primary methods and experimental setups employed in home-cage training, highlighting their potential not only to address ethical concerns surrounding animal welfare but also to reduce training time and risks for the researchers. Furthermore, by combining home-cage training with wireless recordings, it becomes possible to expand research opportunities in behavioral neurophysiology with non-human primates. This approach enables the study of various cognitive processes in more naturalistic settings, thereby increasing the ecological validity of scientific findings through innovative experimental designs that thoroughly investigate the complexity of the animals' natural behavior.
Collapse
Affiliation(s)
- Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| | - Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (F.L.); (G.A.)
| |
Collapse
|
5
|
Bertrand M, Karkuszewski M, Kersten R, Orban de Xivry JJ, Pruszynski JA. String-pulling by the common marmoset. J Neurophysiol 2025; 133:1222-1233. [PMID: 40095478 DOI: 10.1152/jn.00561.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
Coordinated hand movements used to grasp and manipulate objects are crucial for many daily activities, such as tying shoelaces or opening jars. Recently, the string-pulling task, which involves cyclically reaching, grasping, and pulling a string, has been used to study coordinated hand movements in rodents and humans. Here, we characterize how adult common marmosets perform the string-pulling task and describe changes in performance across the lifespan. Marmosets (n = 15, 7 females) performed a string-pulling task for a food reward using an instrumented apparatus attached to their home-cage. Movement kinematics were acquired using markerless video tracking and we assessed individual hand movements and bimanual coordination using standard metrics. Marmosets oriented their gaze toward the string above their hands and readily performed the task regardless of sex or age. The task required little training and animals routinely engaged in multiple pulling trials per session, despite not being under water or food control. All marmosets showed consistent pulling speed and similar hand movements regardless of age. Adult marmosets exhibited a clear hand effect, performing straighter and faster movements with their right hand despite showing idiosyncratic hand preference according to a traditional food retrieval assay. Hand effects were also evident for younger animals but seemed attenuated in the older animals. In terms of bimanual coordination, all adult marmosets demonstrated alternating movement pattern for vertical hand positions. Two younger and two older marmosets exhibited idiosyncratic coordination patterns even after substantial experience. In general, younger and older animals exhibited higher variability in bimanual coordination than adults.NEW & NOTEWORTHY Bimanual coordination is crucial for daily activities. In this study, we characterized how common marmosets performed the string-pulling task without extensive training, regardless of sex or age, and naturally exhibited a cyclical alternating pattern of hand movements. Although the overall behavior was similar across ages, younger and older marmosets demonstrated higher variability in bimanual coordination. These results establish the string-pulling task as a reliable tool for studying bimanual coordination and its underlying neural substrates.
Collapse
Affiliation(s)
- Mathilde Bertrand
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | | | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Jean-Jacques Orban de Xivry
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Magrou L, Theodoni P, Arnsten AFT, Rosa MGP, Wang XJ. From comparative connectomics to large-scale working memory modeling in macaque and marmoset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643781. [PMID: 40166341 PMCID: PMC11956980 DOI: 10.1101/2025.03.17.643781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Although macaques and marmosets are both primates of choice for studying the brain mechanisms of cognition, they differ in key aspects of anatomy and behavior. Interestingly, recent connectomic analysis revealed that strong top-down projections from the prefrontal cortex to the posterior parietal cortex, present in macaques and important for executive function, are absent in marmosets. Here, we propose a consensus mapping that bridges the two species' cortical atlases and allows for direct area-to-area comparison of their connectomes, which are then used to build comparative computational large-scale modeling of the frontoparietal circuit for working memory. We found that the macaque model exhibits resilience against distractors, a prerequisite for normal working memory function. By contrast, the marmoset model is sensitive to distractibility commonly observed behaviorally in this species. Surprisingly, this contrasting trend can be swapped by scaling intrafrontal and frontoparietal connections. Finally, the relevance to primate ethology and evolution is discussed.
Collapse
Affiliation(s)
- Loïc Magrou
- Center for Neural Science, New York University, New York, 10003, NY, USA
- Department of Neurobiology, University of Chicago, Chicago, 60637, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, 60637, IL, USA
- These authors contributed equally
| | - Panagiota Theodoni
- Department of Philosophy, National and Kapodistrian University of Athens, Athens, 157 84, Greece
- Department of Psychology, Panteion University of Social and Political Sciences, Athens, 176 71, Greece
- College Year in Athens, Athens, 116 35, Greece
- Faculty of Pure and Applied Sciences, Nicosia, 2231, Cyprus
- These authors contributed equally
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, 06510, CT, USA
| | - Marcello G. P. Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, 3168, VIC, Australia
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, 10003, NY, USA
- Lead contact
| |
Collapse
|
7
|
Cheng C, Huang Z, Zhang R, Huang G, Wang H, Tang L, Wang X. A real-time, multi-subject three-dimensional pose tracking system for the behavioral analysis of non-human primates. CELL REPORTS METHODS 2025; 5:100986. [PMID: 39965567 PMCID: PMC11955267 DOI: 10.1016/j.crmeth.2025.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
The ability to track the positions and poses of multiple animals in three-dimensional (3D) space in real time is highly desired by non-human primate (NHP) researchers in behavioral and systems neuroscience. This capability enables the analysis of social behaviors involving multiple NHPs and supports closed-loop experiments. Although several animal 3D pose tracking systems have been developed, most are difficult to deploy in new environments and lack real-time analysis capabilities. To address these limitations, we developed MarmoPose, a deep-learning-based, real-time 3D pose tracking system for multiple common marmosets, an increasingly critical NHP model in neuroscience research. This system can accurately track the 3D poses of multiple marmosets freely moving in their home cage with minimal hardware requirements. By employing a marmoset skeleton model, MarmoPose can further optimize 3D poses and estimate invisible body locations. Additionally, MarmoPose achieves high inference speeds and enables real-time closed-loop experimental control based on events detected from 3D poses.
Collapse
Affiliation(s)
- Chaoqun Cheng
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China; School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zijian Huang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China; School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Ruiming Zhang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Guozheng Huang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China; School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Han Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Likai Tang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China; School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Xiaoqin Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China; School of Biomedical Engineering, Tsinghua University, Beijing, China; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Pattadkal JJ, Priebe NJ. Neural Recording Chambers for Long-Term Access to Brain Tissue. J Neurosci 2025; 45:e1106242024. [PMID: 39725520 PMCID: PMC11823352 DOI: 10.1523/jneurosci.1106-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024] Open
Abstract
We describe a chamber system to perform imaging, electrophysiology, and optogenetic stimulation in awake and anesthetized marmosets. We developed this low-profile chamber design to be able to access the underlying tissue when needed or to leave it sealed for long periods. Such accessibility is useful to maintain chamber clarity as well as perform viral or drug injections at different time points. The chamber is flexible as either optical or electrophysiological recording can be performed in the same chamber by exchanging chamber inserts. The design provides an easy approach to day-to-day stable neural recordings that was developed for marmosets and can be extended to other species.
Collapse
Affiliation(s)
- Jagruti J Pattadkal
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| | - Nicholas J Priebe
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
9
|
Charvet CJ, de Sousa AA, Vassilopoulos T. Translating time: Challenges, progress, and future directions. Brain Res Bull 2025; 221:111212. [PMID: 39824228 PMCID: PMC11904871 DOI: 10.1016/j.brainresbull.2025.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Mice are the dominant model system to study human health and disease. Yet, there is a pressing need to use diverse model systems to address long-standing issues in biomedical sciences. Mice do not spontaneously recapitulate many of the diseases we seek to study. Accordingly, the relevance of studying mice to understand human disease is limited. We discuss examples associated with limitations of the mouse model, and how the inclusion of a richer array of model systems can help address long standing issues in biomedical sciences. We also discuss a tool called Translating Time, an online resource (www.translatingtime.org) that equates corresponding ages across model systems and humans. The translating time resource can be used to bridge the gap across species and make predictions when data are sparse or unavailable as is the case for human fetal development. Moreover, the Translating Time tool can map findings across species, make inferences about the evolution of shared neuropathologies, and inform the optimal model system for studying human biology in health and in disease. Resources such as these can be utilized to integrate information across diverse model systems to improve the study of human biology in health and disease.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Alexandra A de Sousa
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
10
|
Karamanlis D, Khani MH, Schreyer HM, Zapp SJ, Mietsch M, Gollisch T. Nonlinear receptive fields evoke redundant retinal coding of natural scenes. Nature 2025; 637:394-401. [PMID: 39567692 PMCID: PMC11711096 DOI: 10.1038/s41586-024-08212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
The role of the vertebrate retina in early vision is generally described by the efficient coding hypothesis1,2, which predicts that the retina reduces the redundancy inherent in natural scenes3 by discarding spatiotemporal correlations while preserving stimulus information4. It is unclear, however, whether the predicted decorrelation and redundancy reduction in the activity of ganglion cells, the retina's output neurons, hold under gaze shifts, which dominate the dynamics of the natural visual input5. We show here that species-specific gaze patterns in natural stimuli can drive correlated spiking responses both in and across distinct types of ganglion cells in marmoset as well as mouse retina. These concerted responses disrupt redundancy reduction to signal fixation periods with locally high spatial contrast. Model-based analyses of ganglion cell responses to natural stimuli show that the observed response correlations follow from nonlinear pooling of ganglion cell inputs. Our results indicate cell-type-specific deviations from efficient coding in retinal processing of natural gaze shifts.
Collapse
Affiliation(s)
- Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland.
| | - Mohammad H Khani
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Helene M Schreyer
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Sören J Zapp
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Matthias Mietsch
- German Primate Center, Laboratory Animal Science Unit, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Else Kröner Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Matsui T, Hashimoto T, Murakami T, Uemura M, Kikuta K, Kato T, Ohki K. Orthogonalization of spontaneous and stimulus-driven activity by hierarchical neocortical areal network in primates. Nat Commun 2024; 15:10055. [PMID: 39632809 PMCID: PMC11618767 DOI: 10.1038/s41467-024-54322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
How biological neural networks reliably process information in the presence of spontaneous activity remains controversial. In mouse primary visual cortex (V1), stimulus-evoked and spontaneous activity show orthogonal (dissimilar) patterns, which is advantageous for separating sensory signals from internal noise. However, studies in carnivore and primate V1, which have functional columns, have reported high similarity between stimulus-evoked and spontaneous activity. Thus, the mechanism of signal-noise separation in the columnar visual cortex may be different from that in rodents. To address this issue, we compared spontaneous and stimulus-evoked activity in marmoset V1 and higher visual areas. In marmoset V1, spontaneous and stimulus-evoked activity showed similar patterns as expected. However, in marmoset higher visual areas, spontaneous and stimulus-evoked activity were progressively orthogonalized along the cortical hierarchy, eventually reaching levels comparable to those in mouse V1. These results suggest that orthogonalization of spontaneous and stimulus-evoked activity is a general principle of cortical computation.
Collapse
Affiliation(s)
- Teppei Matsui
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Graduate School of Brain, Doshisha University, Kyoto, Japan.
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- JST-PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| | - Takayuki Hashimoto
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| | - Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Masato Uemura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
- Department of Biology, Kansai Medical University, Osaka, Japan
| | - Kohei Kikuta
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Toshiki Kato
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Rollin IZ, Papoti D, Bishop M, Szczupak D, Corigliano MR, Hitchens TK, Zhang B, Pell SKA, Guretse SS, Dureux A, Murai T, Sukoff Rizzo SJ, Klassen LM, Zeman P, Gilbert KM, Menon RS, Lin MK, Everling S, Silva AC, Schaeffer DJ. An Open Access Resource for Marmoset Neuroscientific Apparatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623252. [PMID: 39605348 PMCID: PMC11601486 DOI: 10.1101/2024.11.12.623252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The use of the common marmoset (Callithrix jacchus) for neuroscientific inquiry has grown precipitously over the past two decades. Despite windfalls of grant support from funding initiatives in North America, Europe, and Asia to model human brain diseases in the marmoset, marmoset-specific apparatus are of sparse availability from commercial vendors and thus are often developed and reside within individual laboratories. Through our collective research efforts, we have designed and vetted myriad designs for awake or anesthetized magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), as well as focused ultrasound (FUS), electrophysiology, optical imaging, surgery, and behavior in marmosets across the age-span. This resource makes these designs openly available, reducing the burden of de novo development across the marmoset field. The computer-aided-design (CAD) files are publicly available through the Marmoset Brain Connectome (MBC) resource (https://www.marmosetbrainconnectome.org/apparatus/) and include dozens of downloadable CAD assemblies, software and online calculators for marmoset neuroscience. In addition, we make available a variety of vetted touchscreen and task-based fMRI code and stimuli. Here, we highlight the online interface and the development and validation of a few yet unpublished resources: Software to automatically extract the head morphology of a marmoset from a CT and produce a 3D printable helmet for awake neuroimaging, and the design and validation of 8-channel and 14-channel receive arrays for imaging deep structures during anatomical and functional MRI.
Collapse
Affiliation(s)
- Isabela Zimmermann Rollin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Daniel Papoti
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Mitchell Bishop
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael R. Corigliano
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bei Zhang
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Sarah K. A. Pell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simeon S. Guretse
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Takeshi Murai
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stacey J. Sukoff Rizzo
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - L. Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Meng-Kuan Lin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Afonso C. Silva
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David J. Schaeffer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Zlatkina V, Frey S, Petrides M. Monitoring of nonspatial information within working memory in the common marmoset (Callithrix jacchus). Cereb Cortex 2024; 34:bhae444. [PMID: 39564971 DOI: 10.1093/cercor/bhae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
The mid-dorsolateral prefrontal cortical region (areas 46 and 9/46) is critical for the monitoring of information in working memory both in the macaque monkey brain and the human brain. The presence of this cytoarchitectonic region in the New World marmoset brain was in debate, but recent anatomical evidence demonstrated a limited area 46. This finding raised the question of the extent to which the marmoset brain can support the cognitive control process of monitoring information within working memory. This cognitive control process was assessed in adult marmosets and was shown to be limited to the monitoring of only two items in contrast to macaque monkeys, who can monitor as many as five items in working memory. The results are consistent with the limited development of the relevant prefrontal region in the marmoset and contribute to understanding the evolution of higher cognitive control processes in the primate brain.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- Rogue Research Inc, Montreal, Quebec H2S 3H1, Canada
| | - Stephen Frey
- Rogue Research Inc, Montreal, Quebec H2S 3H1, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- Department of Psychology, McGill University, 2001 McGill College Ave, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
14
|
Meisner OC, Shi W, Fagan NA, Greenwood J, Jadi MP, Nandy AS, Chang SWC. Development of a Marmoset Apparatus for Automated Pulling to study cooperative behaviors. eLife 2024; 13:RP97088. [PMID: 39466838 PMCID: PMC11517257 DOI: 10.7554/elife.97088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
In recent years, the field of neuroscience has increasingly recognized the importance of studying animal behaviors in naturalistic environments to gain deeper insights into ethologically relevant behavioral processes and neural mechanisms. The common marmoset (Callithrix jacchus), due to its small size, prosocial nature, and genetic proximity to humans, has emerged as a pivotal model toward this effort. However, traditional research methodologies often fail to fully capture the nuances of marmoset social interactions and cooperative behaviors. To address this critical gap, we developed the Marmoset Apparatus for Automated Pulling (MarmoAAP), a novel behavioral apparatus designed for studying cooperative behaviors in common marmosets. MarmoAAP addresses the limitations of traditional behavioral research methods by enabling high-throughput, detailed behavior outputs that can be integrated with video and audio recordings, allowing for more nuanced and comprehensive analyses even in a naturalistic setting. We also highlight the flexibility of MarmoAAP in task parameter manipulation which accommodates a wide range of behaviors and individual animal capabilities. Furthermore, MarmoAAP provides a platform to perform investigations of neural activity underlying naturalistic social behaviors. MarmoAAP is a versatile and robust tool for advancing our understanding of primate behavior and related cognitive processes. This new apparatus bridges the gap between ethologically relevant animal behavior studies and neural investigations, paving the way for future research in cognitive and social neuroscience using marmosets as a model organism.
Collapse
Affiliation(s)
- Olivia C Meisner
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Psychology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Weikang Shi
- Department of Psychology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Wu Tsai Institute, Yale UniversityNew HavenUnited States
| | | | - Joel Greenwood
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Kavli Institute for Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Monika P Jadi
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Wu Tsai Institute, Yale UniversityNew HavenUnited States
- Department of Psychiatry, Yale UniversityNew HavenUnited States
| | - Anirvan S Nandy
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Psychology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Wu Tsai Institute, Yale UniversityNew HavenUnited States
- Kavli Institute for Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Steve WC Chang
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Psychology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
- Wu Tsai Institute, Yale UniversityNew HavenUnited States
- Kavli Institute for Neuroscience, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
15
|
Yoshimaru D, Tsurugizawa T, Hata J, Muta K, Marusaki T, Hayashi N, Shibukawa S, Hagiya K, Okano H, Okano HJ. Similarity and characterization of structural and functional neural connections within species under isoflurane anesthesia in the common marmoset. Neuroimage 2024; 300:120854. [PMID: 39278381 DOI: 10.1016/j.neuroimage.2024.120854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024] Open
Abstract
The common marmoset is an essential model for understanding social cognition and neurodegenerative diseases. This study explored the structural and functional brain connectivity in a marmoset under isoflurane anesthesia, aiming to statistically overcome the effects of high inter-individual variability and noise-related confounds such as physiological noise, ensuring robust and reliable data. Similarities and differences in individual subject data, including assessments of functional and structural brain connectivities derived from resting-state functional MRI and diffusion tensor imaging were meticulously captured. The findings highlighted the high consistency of structural neural connections within the species, indicating a stable neural architecture, while functional connectivity under anesthesia displayed considerable variability. Through independent component and dual regression analyses, several distinct brain connectivities were identified, elucidating their characteristics under anesthesia. Insights into the structural and functional features of the marmoset brain from this study affirm its value as a neuroscience research model, promising advancements in the field through fundamental and translational studies.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Radiology, Tokyo Medical University, Tokyo, Japan; Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan; Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kanako Muta
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takuto Marusaki
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Naoya Hayashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan; Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Shuhei Shibukawa
- Department of Radiology, Tokyo Medical University, Tokyo, Japan; Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
16
|
Wong RK, Selvanayagam J, Johnston K, Everling S. Functional specialization and distributed processing across marmoset lateral prefrontal subregions. Cereb Cortex 2024; 34:bhae407. [PMID: 39390711 PMCID: PMC11466848 DOI: 10.1093/cercor/bhae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
A prominent aspect of primate lateral prefrontal cortex organization is its division into several cytoarchitecturally distinct subregions. Neurophysiological investigations in macaques have provided evidence for the functional specialization of these subregions, but an understanding of the relative representational topography of sensory, social, and cognitive processes within them remains elusive. One explanatory factor is that evidence for functional specialization has been compiled largely from a patchwork of findings across studies, in many animals, and with considerable variation in stimulus sets and tasks. Here, we addressed this by leveraging the common marmoset (Callithrix jacchus) to carry out large-scale neurophysiological mapping of the lateral prefrontal cortex using high-density microelectrode arrays, and a diverse suite of test stimuli including faces, marmoset calls, and spatial working memory task. Task-modulated units and units responsive to visual and auditory stimuli were distributed throughout the lateral prefrontal cortex, while those with saccade-related activity or face-selective responses were restricted to 8aV, 8aD, 10, 46 V, and 47. Neurons with contralateral visual receptive fields were limited to areas 8aV and 8aD. These data reveal a mixed pattern of functional specialization in the lateral prefrontal cortex, in which responses to some stimuli and tasks are distributed broadly across lateral prefrontal cortex subregions, while others are more limited in their representation.
Collapse
Affiliation(s)
- Raymond Ka Wong
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Kevin Johnston
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| |
Collapse
|
17
|
Meisner OC, Shi W, Fagan NA, Greenwood J, Shi W, Jadi MP, Nandy AS, Chang SWC. Development of a Marmoset Apparatus for Automated Pulling (MarmoAAP) to Study Cooperative Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.579531. [PMID: 38405744 PMCID: PMC10889019 DOI: 10.1101/2024.02.16.579531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In recent years, the field of neuroscience has increasingly recognized the importance of studying animal behaviors in naturalistic environments to gain deeper insights into ethologically relevant behavioral processes and neural mechanisms. The common marmoset (Callithrix jacchus), due to its small size, prosocial nature, and genetic proximity to humans, has emerged as a pivotal model toward this effort. However, traditional research methodologies often fail to fully capture the nuances of marmoset social interactions and cooperative behaviors. To address this critical gap, we developed the Marmoset Apparatus for Automated Pulling (MarmoAAP), a novel behavioral apparatus designed for studying cooperative behaviors in common marmosets. MarmoAAP addresses the limitations of traditional behavioral research methods by enabling high-throughput, detailed behavior outputs that can be integrated with video and audio recordings, allowing for more nuanced and comprehensive analyses even in a naturalistic setting. We also highlight the flexibility of MarmoAAP in task parameter manipulation which accommodates a wide range of behaviors and individual animal capabilities. Furthermore, MarmoAAP provides a platform to perform investigations of neural activity underlying naturalistic social behaviors. MarmoAAP is a versatile and robust tool for advancing our understanding of primate behavior and related cognitive processes. This new apparatus bridges the gap between ethologically relevant animal behavior studies and neural investigations, paving the way for future research in cognitive and social neuroscience using marmosets as a model organism.
Collapse
Affiliation(s)
- Olivia C. Meisner
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Weikang Shi
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | | | - Joel Greenwood
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Weikang Shi
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| | - Monika P. Jadi
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| | - Anirvan S. Nandy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steve W. C. Chang
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Takemura H, Kaneko T, Sherwood CC, Johnson GA, Axer M, Hecht EE, Ye FQ, Leopold DA. A prominent vertical occipital white matter fasciculus unique to primate brains. Curr Biol 2024; 34:3632-3643.e4. [PMID: 38991613 PMCID: PMC11338705 DOI: 10.1016/j.cub.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Vision in humans and other primates enlists parallel processing streams in the dorsal and ventral visual cortex, known to support spatial and object processing, respectively. These streams are bridged, however, by a prominent white matter tract, the vertical occipital fasciculus (VOF), identified in both classical neuroanatomy and recent diffusion-weighted magnetic resonance imaging (dMRI) studies. Understanding the evolution of the VOF may shed light on its origin, function, and role in visually guided behaviors. To this end, we acquired high-resolution dMRI data from the brains of select mammalian species, including anthropoid and strepsirrhine primates, a tree shrew, rodents, and carnivores. In each species, we attempted to delineate the VOF after first locating the optic radiations in the occipital white matter. In all primate species examined, the optic radiation was flanked laterally by a prominent and coherent white matter fasciculus recognizable as the VOF. By contrast, the equivalent analysis applied to four non-primate species from the same superorder as primates (tree shrew, ground squirrel, paca, and rat) failed to reveal white matter tracts in the equivalent location. Clear evidence for a VOF was also absent in two larger carnivore species (ferret and fox). Although we cannot rule out the existence of minor or differently organized homologous fiber pathways in the non-primate species, the results suggest that the VOF has greatly expanded, or possibly emerged, in the primate lineage. This adaptation likely facilitated the evolution of unique visually guided behaviors in primates, with direct impacts on manual object manipulation, social interactions, and arboreal locomotion.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki-shi, Aichi 444-8585, Japan; The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama-cho, Kanagawa 240-0193, Japan; Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Takaaki Kaneko
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama-shi, Aichi 484-8506, Japan; Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki-shi, Aichi, Japan
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, 800 22nd St. NW, Washington, DC 20052, USA
| | - G Allan Johnson
- Department of Radiology, Duke Center for In Vivo Microscopy, Duke Medical Center, 311 Research Drive, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, 101 Science Dive., Durham, NC 27705, USA
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany; Department of Physics, School of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20 42119, Wuppertal, Germany
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA; Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
19
|
Mitchell JF, Wang KH, Batista AP, Miller CT. An ethologically motivated neurobiology of primate visually-guided reach-to-grasp behavior. Curr Opin Neurobiol 2024; 86:102872. [PMID: 38564829 DOI: 10.1016/j.conb.2024.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The precision of primate visually guided reaching likely evolved to meet the many challenges faced by living in arboreal environments, yet much of what we know about the underlying primate brain organization derives from a set of highly constrained experimental paradigms. Here we review the role of vision to guide natural reach-to-grasp movements in marmoset monkey prey capture to illustrate the breadth and diversity of these behaviors in ethological contexts, the fast predictive nature of these movements [1,2], and the advantages of this particular primate model to investigate the underlying neural mechanisms in more naturalistic contexts [3]. In addition to their amenability to freely-moving neural recording methods for investigating the neural basis of dynamic ethological behaviors [4,5], marmosets have a smooth neocortical surface that facilitates imaging and array recordings [6,7] in all areas in the primate fronto-parietal network [8,9]. Together, this model organism offers novel opportunities to study the real-world interplay between primate vision and reach-to-grasp dynamics using ethologically motivated neuroscientific experimental designs.
Collapse
Affiliation(s)
- Jude F Mitchell
- Brain and Cognitive Sciences Department, University of Rochester, USA; Department of Neuroscience, University of Rochester Medical Center, USA.
| | - Kuan Hong Wang
- Department of Neuroscience, University of Rochester Medical Center, USA
| | - Aaron P Batista
- Department of Biomedical Engineering, University of Pittsburgh, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, Neurosciences Graduate Program, University of California at San Diego, USA.
| |
Collapse
|
20
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
21
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and developmental specialization of foveal cell types in the marmoset. Proc Natl Acad Sci U S A 2024; 121:e2313820121. [PMID: 38598343 PMCID: PMC11032471 DOI: 10.1073/pnas.2313820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Ruiqi Xin
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
22
|
Drzewiecki CM, Fox AS. Understanding the heterogeneity of anxiety using a translational neuroscience approach. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:228-245. [PMID: 38356013 PMCID: PMC11039504 DOI: 10.3758/s13415-024-01162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neurobiology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phenotypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA.
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Zhang Y, Shen SX, Bibic A, Wang X. Evolutionary continuity and divergence of auditory dorsal and ventral pathways in primates revealed by ultra-high field diffusion MRI. Proc Natl Acad Sci U S A 2024; 121:e2313831121. [PMID: 38377216 PMCID: PMC10907247 DOI: 10.1073/pnas.2313831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Auditory dorsal and ventral pathways in the human brain play important roles in supporting speech and language processing. However, the evolutionary root of the dual auditory pathways in the primate brain is unclear. By parcellating the auditory cortex of marmosets (a New World monkey species), macaques (an Old World monkey species), and humans using the same individual-based analysis method and tracking the pathways from the auditory cortex based on multi-shell diffusion-weighted MRI (dMRI), homologous auditory dorsal and ventral fiber tracks were identified in these primate species. The ventral pathway was found to be well conserved in all three primate species analyzed but extend to more anterior temporal regions in humans. In contrast, the dorsal pathway showed a divergence between monkey and human brains. First, frontal regions in the human brain have stronger connections to the higher-level auditory regions than to the lower-level auditory regions along the dorsal pathway, while frontal regions in the monkey brain show opposite connection patterns along the dorsal pathway. Second, the left lateralization of the dorsal pathway is only found in humans. Moreover, the connectivity strength of the dorsal pathway in marmosets is more similar to that of humans than macaques. These results demonstrate the continuity and divergence of the dual auditory pathways in the primate brains along the evolutionary path, suggesting that the putative neural networks supporting human speech and language processing might have emerged early in primate evolution.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sherry Xinyi Shen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, F. M. Kirby Center, Baltimore, MD21205
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
24
|
Parks TV, Szczupak D, Choi SH, Schaeffer DJ. Noninvasive focal transgene delivery with viral neuronal tracers in the marmoset monkey. CELL REPORTS METHODS 2024; 4:100709. [PMID: 38359822 PMCID: PMC10921014 DOI: 10.1016/j.crmeth.2024.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
We establish a reliable method for selectively delivering adeno-associated viral vectors (AAVs) across the blood-brain barrier (BBB) in the marmoset without the need for neurosurgical injection. We focally perturbed the BBB (∼1 × 2 mm) in area 8aD of the frontal cortex in four adult marmoset monkeys using low-intensity transcranial focused ultrasound aided by microbubbles. Within an hour of opening the BBB, either AAV2 or AAV9 was delivered systemically via tail-vein injection. In all four marmosets, fluorescence-encoded neurons were observed at the site of BBB perturbation, with AAV2 showing a sparse distribution of transduced neurons when compared to AAV9. The results are compared to direct intracortical injections of anterograde tracers into area 8aD and similar (albeit sparser) long-range connectivity was observed. With evidence of transduced neurons specific to the region of BBB opening as well as long-distance tracing, we establish a framework for focal noninvasive transgene delivery to the marmoset brain.
Collapse
Affiliation(s)
- T Vincenza Parks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sang-Ho Choi
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Zeng G, Simpson EA, Paukner A. Maximizing valid eye-tracking data in human and macaque infants by optimizing calibration and adjusting areas of interest. Behav Res Methods 2024; 56:881-907. [PMID: 36890330 DOI: 10.3758/s13428-022-02056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2022] [Indexed: 03/10/2023]
Abstract
Remote eye tracking with automated corneal reflection provides insights into the emergence and development of cognitive, social, and emotional functions in human infants and non-human primates. However, because most eye-tracking systems were designed for use in human adults, the accuracy of eye-tracking data collected in other populations is unclear, as are potential approaches to minimize measurement error. For instance, data quality may differ across species or ages, which are necessary considerations for comparative and developmental studies. Here we examined how the calibration method and adjustments to areas of interest (AOIs) of the Tobii TX300 changed the mapping of fixations to AOIs in a cross-species longitudinal study. We tested humans (N = 119) at 2, 4, 6, 8, and 14 months of age and macaques (Macaca mulatta; N = 21) at 2 weeks, 3 weeks, and 6 months of age. In all groups, we found improvement in the proportion of AOI hits detected as the number of successful calibration points increased, suggesting calibration approaches with more points may be advantageous. Spatially enlarging and temporally prolonging AOIs increased the number of fixation-AOI mappings, suggesting improvements in capturing infants' gaze behaviors; however, these benefits varied across age groups and species, suggesting different parameters may be ideal, depending on the population studied. In sum, to maximize usable sessions and minimize measurement error, eye-tracking data collection and extraction approaches may need adjustments for the age groups and species studied. Doing so may make it easier to standardize and replicate eye-tracking research findings.
Collapse
Affiliation(s)
- Guangyu Zeng
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | | | - Annika Paukner
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
26
|
Coop SH, Yates JL, Mitchell JF. Pre-saccadic Neural Enhancements in Marmoset Area MT. J Neurosci 2024; 44:e2034222023. [PMID: 38050176 PMCID: PMC10860570 DOI: 10.1523/jneurosci.2034-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.
Collapse
Affiliation(s)
- Shanna H Coop
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| | - Jacob L Yates
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
- Department of Biology, University of Maryland College Park, College Park, Maryland, 20742-5025
| | - Jude F Mitchell
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| |
Collapse
|
27
|
Chang YT, Lee YJ, Haque M, Chang HC, Javed S, Lin YC, Cho Y, Abramovitz J, Chin G, Khamis A, Raja R, Murai KK, Huang WH. Comparative analyses of the Smith-Magenis syndrome protein RAI1 in mice and common marmoset monkeys. J Comp Neurol 2024; 532:e25589. [PMID: 38289192 DOI: 10.1002/cne.25589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/11/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Retinoic acid-induced 1 (RAI1) encodes a transcriptional regulator critical for brain development and function. RAI1 haploinsufficiency in humans causes a syndromic autism spectrum disorder known as Smith-Magenis syndrome (SMS). The neuroanatomical distribution of RAI1 has not been quantitatively analyzed during the development of the prefrontal cortex, a brain region critical for cognitive function and social behaviors and commonly implicated in autism spectrum disorders, including SMS. Here, we performed comparative analyses to uncover the evolutionarily convergent and divergent expression profiles of RAI1 in major cell types during prefrontal cortex maturation in common marmoset monkeys (Callithrix jacchus) and mice (Mus musculus). We found that while RAI1 in both species is enriched in neurons, the percentage of excitatory neurons that express RAI1 is higher in newborn mice than in newborn marmosets. By contrast, RAI1 shows similar neural distribution in adult marmosets and adult mice. In marmosets, RAI1 is expressed in several primate-specific cell types, including intralaminar astrocytes and MEIS2-expressing prefrontal GABAergic neurons. At the molecular level, we discovered that RAI1 forms a protein complex with transcription factor 20 (TCF20), PHD finger protein 14 (PHF14), and high mobility group 20A (HMG20A) in the marmoset brain. In vitro assays in human cells revealed that TCF20 regulates RAI1 protein abundance. This work demonstrates that RAI1 expression and protein interactions are largely conserved but with some unique expression in primate-specific cells. The results also suggest that altered RAI1 abundance could contribute to disease features in disorders caused by TCF20 dosage imbalance.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yoobin Cho
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Joseph Abramovitz
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Gabriella Chin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Asma Khamis
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Reesha Raja
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Keith K Murai
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
28
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and Developmental Specialization of Foveal Cell Types in the Marmoset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570996. [PMID: 38106142 PMCID: PMC10723441 DOI: 10.1101/2023.12.10.570996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high throughput single cell RNA sequencing to profile retinal cells of the common marmoset ( Callithrix jacchus ), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all its foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia, among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for Müller glia in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution. Significance statement The sharpness of our eyesight hinges on a tiny retinal region known as the fovea. The fovea is pivotal for primate vision and is susceptible to diseases like age-related macular degeneration. We studied the fovea in the marmoset-a primate with ancient evolutionary ties. Our data illustrated the cellular and molecular composition of its fovea across different developmental ages. Our findings highlighted a profound cellular consistency among marmosets, humans, and macaques, emphasizing the value of marmosets in visual research and the study of visual diseases.
Collapse
|
29
|
Rowe EG, Zhang Y, Garrido MI. Evidence for adaptive myelination of subcortical shortcuts for visual motion perception in healthy adults. Hum Brain Mapp 2023; 44:5641-5654. [PMID: 37608684 PMCID: PMC10619379 DOI: 10.1002/hbm.26467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/27/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Conscious visual motion information follows a cortical pathway from the retina to the lateral geniculate nucleus (LGN) and on to the primary visual cortex (V1) before arriving at the middle temporal visual area (MT/V5). Alternative subcortical pathways that bypass V1 are thought to convey unconscious visual information. One flows from the retina to the pulvinar (PUL) and on to medial temporal visual area (MT); while the other directly connects the LGN to MT. Evidence for these pathways comes from non-human primates and modest-sized studies in humans with brain lesions. Thus, the aim of the current study was to reconstruct these pathways in a large sample of neurotypical individuals and to determine the degree to which these pathways are myelinated, suggesting information flow is rapid. We used the publicly available 7T (N = 98; 'discovery') and 3T (N = 381; 'validation') diffusion magnetic resonance imaging datasets from the Human Connectome Project to reconstruct the PUL-MT (including all subcompartments of the PUL) and LGN-MT pathways. We found more fibre tracts with greater density in the left hemisphere. Although the left PUL-MT path was denser, the bilateral LGN-MT tracts were more heavily myelinated, suggesting faster signal transduction. We suggest that this apparent discrepancy may be due to 'adaptive myelination' caused by more frequent use of the LGN-MT pathway that leads to greater myelination and faster overall signal transmission.
Collapse
Affiliation(s)
- Elise G. Rowe
- Melbourne School of Psychological SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Yubing Zhang
- Melbourne School of Psychological SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Marta I. Garrido
- Melbourne School of Psychological SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Graeme Clark Institute for Biomedical EngineeringThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
30
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
31
|
Jang HY, Kwak J, Lee SJ, Wu J, Jiang H, Choi ES, Park CW, Kang BC, Kim JH. Ultrasonographic monitoring of fetal eye growth parameters throughout gestation in the common marmoset (Callithrix jacchus). Am J Primatol 2023; 85:e23532. [PMID: 37357545 DOI: 10.1002/ajp.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
The common marmoset (Callithrix jacchus) is considered an ideal species for developing genetically modified nonhuman primates (NHP) models of human disease, particularly eye disease. They have been proposed as a suitable bridge between rodents and other NHP models due to their similar ophthalmological features to humans. Prenatal ultrasonography is an accurate and reliable diagnostic tool for monitoring fetal development and congenital malformation. We monitored fetal eye growth and development using noninvasive ultrasonography in 40 heads of clinically normal fetuses during pregnancy to establish the criteria for studying congenital eye anomalies in marmosets. The coronal, sagittal, and transverse planes were useful to identify the facial structures for any associated abnormalities. For orbital measurements, biorbital distance (BOD), ocular diameter (OD), interorbital distance (IOD), and total axial length (TAL) were measured in the transverse plane and carefully identified for intraorbital structures. As a result, high correlations were observed between delivery-based gestational age (GA) and biparietal diameter (BPD), BOD, OD, and TAL. The correlation assessments based on BOD provide more reliable results for monitoring eye growth and development in normal marmosets than any other parameters since BOD has the highest correlation coefficient according to both delivery-based GA and BPD among ocular measurements. In conclusion, orbital measurements by prenatal ultrasonography provide reliable indicators of marmoset eye growth, and it could offer early diagnostic criteria to facilitate the development of eye disease models and novel therapies such as genome editing technologies in marmosets.
Collapse
Affiliation(s)
- Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jina Kwak
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Wu
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hui Jiang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Saem Choi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Ophthalmology, Seoul National University, Seoul, Korea
- Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| |
Collapse
|
32
|
Watakabe A, Skibbe H, Nakae K, Abe H, Ichinohe N, Rachmadi MF, Wang J, Takaji M, Mizukami H, Woodward A, Gong R, Hata J, Van Essen DC, Okano H, Ishii S, Yamamori T. Local and long-distance organization of prefrontal cortex circuits in the marmoset brain. Neuron 2023; 111:2258-2273.e10. [PMID: 37196659 PMCID: PMC10789578 DOI: 10.1016/j.neuron.2023.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
The prefrontal cortex (PFC) has dramatically expanded in primates, but its organization and interactions with other brain regions are only partially understood. We performed high-resolution connectomic mapping of the marmoset PFC and found two contrasting corticocortical and corticostriatal projection patterns: "patchy" projections that formed many columns of submillimeter scale in nearby and distant regions and "diffuse" projections that spread widely across the cortex and striatum. Parcellation-free analyses revealed representations of PFC gradients in these projections' local and global distribution patterns. We also demonstrated column-scale precision of reciprocal corticocortical connectivity, suggesting that PFC contains a mosaic of discrete columns. Diffuse projections showed considerable diversity in the laminar patterns of axonal spread. Altogether, these fine-grained analyses reveal important principles of local and long-distance PFC circuits in marmosets and provide insights into the functional organization of the primate brain.
Collapse
Affiliation(s)
- Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Ken Nakae
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Kyoto 606-8501, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Noritaka Ichinohe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Muhammad Febrian Rachmadi
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Faculty of Computer Science, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Jian Wang
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Masafumi Takaji
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Alexander Woodward
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Rui Gong
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Junichi Hata
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 108-8345, Japan
| | - Shin Ishii
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
33
|
Sukoff Rizzo SJ, Homanics G, Schaeffer DJ, Schaeffer L, Park JE, Oluoch J, Zhang T, Haber A, Seyfried NT, Paten B, Greenwood A, Murai T, Choi SH, Huhe H, Kofler J, Strick PL, Carter GW, Silva AC. Bridging the rodent to human translational gap: Marmosets as model systems for the study of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12417. [PMID: 37614242 PMCID: PMC10442521 DOI: 10.1002/trc2.12417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Introduction Our limited understanding of the mechanisms that trigger the emergence of Alzheimer's disease (AD) has contributed to the lack of interventions that stop, prevent, or fully treat this disease. We believe that the development of a non-human primate model of AD will be an essential step toward overcoming limitations of other model systems and is crucial for investigating primate-specific mechanisms underlying the cellular and molecular root causes of the pathogenesis and progression of AD. Methods A new consortium has been established with funding support from the National Institute on Aging aimed at the generation, characterization, and validation of Marmosets As Research Models of AD (MARMO-AD). This consortium will study gene-edited marmoset models carrying genetic risk for AD and wild-type genetically diverse aging marmosets from birth throughout their lifespan, using non-invasive longitudinal assessments. These include characterizing the genetic, molecular, functional, behavioral, cognitive, and pathological features of aging and AD. Results The consortium successfully generated viable founders carrying PSEN1 mutations in C410Y and A426P using CRISPR/Cas9 approaches, with germline transmission demonstrated in the C410Y line. Longitudinal characterization of these models, their germline offspring, and normal aging outbred marmosets is ongoing. All data and resources from this consortium will be shared with the greater AD research community. Discussion By establishing marmoset models of AD, we will be able to investigate primate-specific cellular and molecular root causes that underlie the pathogenesis and progression of AD, overcome limitations of other model organisms, and support future translational studies to accelerate the pace of bringing therapies to patients.
Collapse
Affiliation(s)
| | - Gregg Homanics
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Lauren Schaeffer
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jung Eun Park
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Oluoch
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingting Zhang
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | | | - Benedict Paten
- University of California Santa Cruz Genomics InstituteUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | | | - Takeshi Murai
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sang Ho Choi
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hasi Huhe
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Julia Kofler
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter L. Strick
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Afonso C. Silva
- University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
34
|
Jang HY, Cho CS, Shin YM, Kwak J, Sung YH, Kang BC, Kim JH. Isolation and Characterization of the Primary Marmoset ( Callithrix jacchus) Retinal Pigment Epithelial Cells. Cells 2023; 12:1644. [PMID: 37371114 DOI: 10.3390/cells12121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Marmosets have emerged as a valuable primate model in ophthalmic research due to their similarity to the human visual system and their potential for generating transgenic models to advance the development of therapies. In this study, we isolated and cultured primary retinal pigment epithelium (RPE) cells from marmosets to investigate the mechanisms underlying RPE dysfunction in aging and age-related macular degeneration (AMD). We confirmed that our culture conditions and materials supported the formation of RPE monolayers with functional tight junctions that closely resembled the in vivo RPE. Since serum has been shown to induce epithelial-mesenchymal transition (EMT) in RPE cells, we compared the effects of fetal bovine serum (FBS) with serum-free supplements B27 on transepithelial electrical resistance (TER), cell proliferation, and morphological characteristics. Additionally, we assessed the age-related morphological changes of in vivo and primary RPE cells. Our results indicate that primary marmoset RPE cells exhibit in vivo-like characteristics, while cells obtained from an older donor show evidence of aging, including a failure to form a polarized monolayer, low TER, and delayed cell cycle. In conclusion, our primary marmoset RPE cells provide a reliable in vitro model for developing novel therapeutics for visual-threatening disorders such as AMD, which can be used before animal experiments using marmosets.
Collapse
Affiliation(s)
- Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Young Mi Shin
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Jina Kwak
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
35
|
Shay TF, Sullivan EE, Ding X, Chen X, Ravindra Kumar S, Goertsen D, Brown D, Crosby A, Vielmetter J, Borsos M, Wolfe DA, Lam AW, Gradinaru V. Primate-conserved carbonic anhydrase IV and murine-restricted LY6C1 enable blood-brain barrier crossing by engineered viral vectors. SCIENCE ADVANCES 2023; 9:eadg6618. [PMID: 37075114 PMCID: PMC10115422 DOI: 10.1126/sciadv.adg6618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in Ly6a-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.
Collapse
Affiliation(s)
- Timothy F. Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (T.F.S.); (V.G.)
| | - Erin E. Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xiaozhe Ding
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Goertsen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anaya Crosby
- California State Polytechnic University, Pomona, Pomona, CA, USA
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Máté Borsos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Damien A. Wolfe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie W. Lam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Corresponding author. (T.F.S.); (V.G.)
| |
Collapse
|
36
|
Hardiansyah I, Nyström P, Taylor MJ, Bölte S, Ronald A, Falck-Ytter T. Global motion processing in infants' visual cortex and the emergence of autism. Commun Biol 2023; 6:339. [PMID: 36977757 PMCID: PMC10050234 DOI: 10.1038/s42003-023-04707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Autism is a heritable and common neurodevelopmental condition, with behavioural symptoms typically emerging around age 2 to 3 years. Differences in basic perceptual processes have been documented in autistic children and adults. Specifically, data from many experiments suggest links between autism and alterations in global visual motion processing (i.e., when individual motion information is integrated to perceive an overall coherent pattern). Yet, no study has investigated whether a distinctive organization of global motion processing precede the emergence of autistic symptoms in early childhood. Here, using a validated infant electroencephalography (EEG) experimental paradigm, we first establish the normative activation profiles for global form, global motion, local form, and local motion in the visual cortex based on data from two samples of 5-month-old infants (total n = 473). Further, in a sample of 5-month-olds at elevated likelihood of autism (n = 52), we show that a different topographical organization of global motion processing is associated with autistic symptoms in toddlerhood. These findings advance the understanding of neural organization of infants' basic visual processing, and its role in the development of autism.
Collapse
Affiliation(s)
- Irzam Hardiansyah
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.
| | - Pär Nyström
- Uppsala Child and Baby Lab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Mark J Taylor
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Australia
| | - Angelica Ronald
- Department of Psychological Sciences, Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Terje Falck-Ytter
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden.
- Swedish Collegium for Advanced Study, Uppsala, Sweden.
| |
Collapse
|
37
|
Wong RK, Selvanayagam J, Johnston KD, Everling S. Delay-related activity in marmoset prefrontal cortex. Cereb Cortex 2023; 33:3523-3537. [PMID: 35945687 PMCID: PMC10068290 DOI: 10.1093/cercor/bhac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent delay-period activity in prefrontal cortex (PFC) has long been regarded as a neural signature of working memory (WM). Electrophysiological investigations in macaque PFC have provided much insight into WM mechanisms; however, a barrier to understanding is the fact that a portion of PFC lies buried within the principal sulcus in this species and is inaccessible for laminar electrophysiology or optical imaging. The relatively lissencephalic cortex of the New World common marmoset (Callithrix jacchus) circumvents such limitations. It remains unknown, however, whether marmoset PFC neurons exhibit persistent activity. Here, we addressed this gap by conducting wireless electrophysiological recordings in PFC of marmosets performing a delayed-match-to-location task on a home cage-based touchscreen system. As in macaques, marmoset PFC neurons exhibited sample-, delay-, and response-related activity that was directionally tuned and linked to correct task performance. Models constructed from population activity consistently and accurately predicted stimulus location throughout the delay period, supporting a framework of delay activity in which mnemonic representations are relatively stable in time. Taken together, our findings support the existence of common neural mechanisms underlying WM performance in PFC of macaques and marmosets and thus validate the marmoset as a suitable model animal for investigating the microcircuitry underlying WM.
Collapse
Affiliation(s)
- Raymond K Wong
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Kevin D Johnston
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, Western University, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
38
|
Russ BE, Koyano KW, Day-Cooney J, Perwez N, Leopold DA. Temporal continuity shapes visual responses of macaque face patch neurons. Neuron 2023; 111:903-914.e3. [PMID: 36630962 PMCID: PMC10023462 DOI: 10.1016/j.neuron.2022.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Macaque inferior temporal cortex neurons respond selectively to complex visual images, with recent work showing that they are also entrained reliably by the evolving content of natural movies. To what extent does temporal continuity itself shape the responses of high-level visual neurons? We addressed this question by measuring how cells in face-selective regions of the macaque visual cortex were affected by the manipulation of a movie's temporal structure. Sampling a 5-min movie at 1 s intervals, we measured neural responses to randomized, brief stimuli of different lengths, ranging from 800 ms dynamic movie snippets to 100 ms static frames. We found that the disruption of temporal continuity strongly altered neural response profiles, particularly in the early response period after stimulus onset. The results suggest that models of visual system function based on discrete and randomized visual presentations may not translate well to the brain's natural modes of operation.
Collapse
Affiliation(s)
- Brian E Russ
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, New York University at Langone, New York City, NY 10016, USA.
| | - Kenji W Koyano
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Julian Day-Cooney
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Neda Perwez
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD 20814, USA
| |
Collapse
|
39
|
Chen C, Remington ED, Wang X. Sound localization acuity of the common marmoset (Callithrix jacchus). Hear Res 2023; 430:108722. [PMID: 36863289 DOI: 10.1016/j.heares.2023.108722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The common marmoset (Callithrix jacchus) is a small arboreal New World primate which has emerged as a promising model in auditory neuroscience. One potentially useful application of this model system is in the study of the neural mechanism underlying spatial hearing in primate species, as the marmosets need to localize sounds to orient their head to events of interest and identify their vocalizing conspecifics that are not visible. However, interpretation of neurophysiological data on sound localization requires an understanding of perceptual abilities, and the sound localization behavior of marmosets has not been well studied. The present experiment measured sound localization acuity using an operant conditioning procedure in which marmosets were trained to discriminate changes in sound location in the horizontal (azimuth) or vertical (elevation) dimension. Our results showed that the minimum audible angle (MAA) for horizontal and vertical discrimination was 13.17° and 12.53°, respectively, for 2 to 32 kHz Gaussian noise. Removing the monaural spectral cues tended to increase the horizontal localization acuity (11.31°). Marmosets have larger horizontal MAA (15.54°) in the rear than the front. Removing the high-frequency (> 26 kHz) region of the head-related transfer function (HRTF) affected vertical acuity mildly (15.76°), but removing the first notch (12-26 kHz) region of HRTF substantially reduced the vertical acuity (89.01°). In summary, our findings indicate that marmosets' spatial acuity is on par with other species of similar head size and field of best vision, and they do not appear to use monaural spectral cues for horizontal discrimination but rely heavily on first notch region of HRTF for vertical discrimination.
Collapse
Affiliation(s)
- Chenggang Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States
| | - Evan D Remington
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States
| | - Xiaoqin Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States.
| |
Collapse
|
40
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
41
|
Jendritza P, Klein FJ, Fries P. Multi-area recordings and optogenetics in the awake, behaving marmoset. Nat Commun 2023; 14:577. [PMID: 36732525 PMCID: PMC9895452 DOI: 10.1038/s41467-023-36217-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The common marmoset has emerged as a key model in neuroscience. Marmosets are small in size, show great potential for genetic modification and exhibit complex behaviors. Thus, it is necessary to develop technology that enables monitoring and manipulation of the underlying neural circuits. Here, we describe a novel approach to record and optogenetically manipulate neural activity in awake, behaving marmosets. Our design utilizes a light-weight, 3D printed titanium chamber that can house several high-density silicon probes for semi-chronic recordings, while enabling simultaneous optogenetic stimulation. We demonstrate the application of our method in male marmosets by recording multi- and single-unit data from areas V1 and V6 with 192 channels simultaneously, and show that optogenetic activation of excitatory neurons in area V6 can influence behavior in a detection task. This method may enable future studies to investigate the neural basis of perception and behavior in the marmoset.
Collapse
Affiliation(s)
- Patrick Jendritza
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany.
| | - Frederike J Klein
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Saghravanian SJ, Asadollahi A. Acclimatizing and training freely viewing marmosets for behavioral and electrophysiological experiments in oculomotor tasks. Physiol Rep 2023; 11:e15594. [PMID: 36754454 PMCID: PMC9908434 DOI: 10.14814/phy2.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023] Open
Abstract
The marmoset is a small-bodied primate with behavioral capacities and brain structures comparable to macaque monkeys and humans. Its amenability to modern biotechnological techniques like optogenetics, chemogenetics, and generation of transgenic primates have attracted neuroscientists' attention to use it as a model in neuroscience. In the past decade, several laboratories have been developing and refining tools and techniques for performing behavioral and electrophysiological experiments in this new model. In this regard, we developed a protocol to acclimate the marmoset to sit calmly in a primate chair; a method to calibrate the eye-tracking system while marmosets were freely viewing the screen; and a procedure to map motor field of neurons in the SC in freely viewing marmosets. Using a squeeze-walled transfer box, the animals were acclimatized, and chair trained in less than 4 weeks, much shorter than what other studies reported. Using salient stimuli allowed quick and accurate calibration of the eye-tracking system in untrained freely viewing marmosets. Applying reverse correlation to spiking activity and saccadic eye movements, we were able to map motor field of SC neurons in freely viewing marmosets. These refinements shortened the acclimation period, most likely reduced stress to the subjects, and allowed more efficient eye calibration and motor field mapping in freely viewing marmosets. With a penetration angle of 38 degrees, all 16 channels of the electrode array, that is, all recorded neurons across SC layers, had overlapping visual receptive and motor fields, indicating perpendicular penetration to the SC.
Collapse
Affiliation(s)
| | - Ali Asadollahi
- Visuo‐Motor Systems Laboratory, Department of BiologyFerdowsi University of MashhadMashhadIran
- Present address:
Washington National Primate Research Center, and Department of Biological StructuresUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
43
|
Kell AJ, Bokor SL, Jeon YN, Toosi T, Issa EB. Marmoset core visual object recognition behavior is comparable to that of macaques and humans. iScience 2023; 26:105788. [PMID: 36594035 PMCID: PMC9804140 DOI: 10.1016/j.isci.2022.105788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Among the smallest simian primates, the common marmoset offers promise as an experimentally tractable primate model for neuroscience with translational potential to humans. However, given its exceedingly small brain and body, the gap in perceptual and cognitive abilities between marmosets and humans requires study. Here, we performed a comparison of marmoset behavior to that of three other species in the domain of high-level vision. We first found that marmosets outperformed rats - a marmoset-sized rodent - on a simple recognition task, with marmosets robustly recognizing objects across views. On a more challenging invariant object recognition task used previously in humans, marmosets also achieved high performance. Notably, across hundreds of images, marmosets' image-by-image behavior was highly similar to that of humans - nearly as human-like as macaque behavior. Thus, core aspects of visual perception are conserved across monkeys and humans, and marmosets present salient behavioral advantages over other small model organisms for visual neuroscience.
Collapse
Affiliation(s)
- Alexander J.E. Kell
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sophie L. Bokor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - You-Nah Jeon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tahereh Toosi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Elias B. Issa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
44
|
Ablordeppey RK, Lin C, Benavente-Perez A. The age-related pattern of inner retinal thickening is affected by myopia development and progression. Sci Rep 2022; 12:22190. [PMID: 36564498 PMCID: PMC9789149 DOI: 10.1038/s41598-022-26598-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The longitudinal effect of myopic eye growth on each individual retinal layer has not been described to date on an established non-human primate (NHP) model of myopia. We evaluated the changes experienced by the overall and individual central and mid-peripheral retinal thickness profiles in marmosets (Callithrix jacchus) induced with myopia continuously for 5.5 months compared to controls using spectral-domain optical coherence tomography. Cycloplegic refractive state (Rx), vitreous chamber depth (VCD) and retinal thickness were measured at baseline and after 3 and 5.5 months on thirteen marmosets: eight animals with lens-induced myopia and five untreated controls. The overall and individual retinal layer thickness in the central and mid-peripheral retina were obtained and compared between groups. Regression models were used to explore the extent to which VCD or Rx changes could predict the thickness changes observed. While the retinas of control marmosets thickened significantly over 5.5 months, marmosets with lens-induced myopia experienced less retinal thickening and thinning at times, mostly in the inner neuroretinal layers and the ganglion cell-inner plexiform layer. The regression models suggest that 90% of the growth and refractive changes observed could be predicted by the thickness changes in the near to mid peripheral retina. This study confirms the longitudinal effect that myopia has on the inner retina of a NHP model during the early stages of myopia development. The observed myopia-driven differences in inner retina thickness templates might represent early biomarkers of myopia progression and associated complications.
Collapse
Affiliation(s)
- Reynolds Kwame Ablordeppey
- grid.410412.20000 0004 0384 8998Department of Biological and Vision Sciences, College of Optometry, State University of New York, 33 West 42nd Street, New York, NY 10036 USA
| | - Carol Lin
- grid.410412.20000 0004 0384 8998Department of Biological and Vision Sciences, College of Optometry, State University of New York, 33 West 42nd Street, New York, NY 10036 USA
| | - Alexandra Benavente-Perez
- grid.410412.20000 0004 0384 8998Department of Biological and Vision Sciences, College of Optometry, State University of New York, 33 West 42nd Street, New York, NY 10036 USA
| |
Collapse
|
45
|
Chong MHY, Worthy KH, Rosa MGP, Atapour N. Neuronal density and expression of calcium-binding proteins across the layers of the superior colliculus in the common marmoset (Callithrix jacchus). J Comp Neurol 2022; 530:2966-2976. [PMID: 35833512 PMCID: PMC9796076 DOI: 10.1002/cne.25388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
Abstract
The superior colliculus (SC) is a layered midbrain structure with functions that include polysensory and sensorimotor integration. Here, we describe the distribution of different immunohistochemically identified classes of neurons in the SC of adult marmoset monkeys (Callithrix jacchus). Neuronal nuclei (NeuN) staining was used to determine the overall neuronal density in the different SC layers. In addition, we studied the distribution of neurons expressing different calcium-binding proteins (calbindin [CB], parvalbumin [PV] and calretinin [CR]). Our results indicate that neuronal density in the SC decreases from superficial to deep layers. Although the neuronal density within the same layer varies little across the mediolateral axis, it tends to be lower at rostral levels, compared to caudal levels. Cells expressing different calcium-binding proteins display differential gradients of density according to depth. Both CB- and CR-expressing neurons show markedly higher densities in the stratum griseum superficiale (SGS), compared to the stratum opticum and intermediate and deep layers. However, CR-expressing neurons are twice as common as CB-expressing neurons outside the SGS. The distribution of PV-expressing cells follows a shallow density gradient from superficial to deep layers. When normalized relative to total neuronal density, the proportion of CR-expressing neurons increases between the superficial and intermediate layers, whereas that of CB-expressing neurons declines toward the deep layers. The proportion of PV-expressing neurons remains constant across layers. Our data provide layer-specific and accurate estimates of neuronal density, which may be important for the generation of biophysical models of how the primate SC transforms sensory inputs into motor signals.
Collapse
Affiliation(s)
- Melissa H. Y. Chong
- Department of Physiology and Neuroscience ProgramBiomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Katrina H. Worthy
- Department of Physiology and Neuroscience ProgramBiomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Marcello G. P. Rosa
- Department of Physiology and Neuroscience ProgramBiomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Nafiseh Atapour
- Department of Physiology and Neuroscience ProgramBiomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| |
Collapse
|
46
|
Racicot I, Muslimov E, Chemla S, Blaize K, Ferrari M, Chavane F. High resolution, wide field optical imaging of macaque visual cortex with a curved detector. J Neural Eng 2022; 19. [PMID: 36347038 DOI: 10.1088/1741-2552/aca123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Objective. Cortical activity can be recorded using a variety of tools, ranging in scale from the single neuron (microscopic) to the whole brain (macroscopic). There is usually a trade-off between scale and resolution; optical imaging techniques, with their high spatio-temporal resolution and wide field of view, are best suited to study brain activity at the mesoscale. Optical imaging of cortical areas is however in practice limited by the curvature of the brain, which causes the image quality to deteriorate significantly away from the center of the image.Approach. To address this issue and harness the full potential of optical cortical imaging techniques, we developed a new wide-field optical imaging system adapted to the macaque brain. Our system is composed of a curved detector, an aspherical lens and a ring composed of light emitting diodes providing uniform illumination at wavelengths relevant for the different optical imaging methods, including intrinsic and fluorescence imaging.Main results. The system was characterized and compared with the standard macroscope used for cortical imaging, and a three-fold increase of the area in focus was measured as well as a four-fold increase in the evenness of the optical qualityin vivo.Significance. This new instrument, which is to the best of our knowledge the first use of a curved detector for cortical imaging, should facilitate the observation of wide mesoscale phenomena such as dynamic propagating waves within and between cortical maps, which are otherwise difficult to observe due to technical limitations of the currently available recording tools.
Collapse
Affiliation(s)
- Isabelle Racicot
- Laboratoire d'Astrophysique de Marseille: Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France.,Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| | - Eduard Muslimov
- Laboratoire d'Astrophysique de Marseille: Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France.,Kazan National Research Technical University named after A.N. Tupolev KAI, 10 K. Marx, Kazan 420111, Russia.,NOVA Optical IR Instrumentation Group at ASTRON Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
| | - Sandrine Chemla
- Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| | - Kévin Blaize
- Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| | - Marc Ferrari
- Laboratoire d'Astrophysique de Marseille: Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone: Aix-Marseille Univ, CNRS, INT, Marseille, France
| |
Collapse
|
47
|
Polyakova Z, Iwase M, Hashimoto R, Yoshida M. The effect of ketamine on eye movement characteristics during free-viewing of natural images in common marmosets. Front Neurosci 2022; 16:1012300. [PMID: 36203813 PMCID: PMC9530575 DOI: 10.3389/fnins.2022.1012300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Various eye movement abnormalities and impairments in visual information processing have been reported in patients with schizophrenia. Therefore, dysfunction of saccadic eye movements is a potential biological marker for schizophrenia. In the present study, we used a pharmacological model of schizophrenia symptoms in marmosets and compared the eye movement characteristics of marmosets during free-viewing, using an image set identical to those used for human studies. It contains natural and complex images that were randomly presented for 8 s. As a pharmacological model of schizophrenia symptoms, a subanesthetic dose of ketamine was injected intramuscularly for transient and reversible manipulation. Eye movements were recorded and compared under a ketamine condition and a saline condition as a control. The results showed that ketamine affected eye movement characteristics during free-viewing. Saccades amplitude and scanpath length were significantly reduced in the ketamine condition. In addition, the duration of saccades was longer under the ketamine condition than under the saline condition. A similar tendency was observed for the duration of fixations. The number of saccades and fixations tended to decrease in the ketamine condition. The peak saccades velocity also decreased after ketamine injection whereas there was no difference in the main sequence relationship between saccades amplitude and peak velocity. These results suggest that ketamine affected visual exploration but did not affect the oculomotor aspect of saccades in marmosets, consistent with studies in patients with schizophrenia. Therefore, we conclude that the subanesthetic dose of ketamine is a promising pharmacological model of schizophrenia symptoms in common marmosets and can be used in combination with free-viewing paradigms to establish “translatable markers” for schizophrenia in primates.
Collapse
Affiliation(s)
- Zlata Polyakova
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
- *Correspondence: Masatoshi Yoshida,
| |
Collapse
|
48
|
Haverkamp S, Reinhard K, Peichl L, Mietsch M. No evidence for age-related alterations in the marmoset retina. Front Neuroanat 2022; 16:945295. [PMID: 36120100 PMCID: PMC9479465 DOI: 10.3389/fnana.2022.945295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/13/2022] [Indexed: 12/19/2022] Open
Abstract
The physiological aging process of the retina is accompanied by various and sometimes extensive changes: Macular degeneration, retinopathies and glaucoma are the most common findings in the elderly and can potentially lead to irreversible visual disablements up to blindness. To study the aging process and to identify possible therapeutic targets to counteract these diseases, the use of appropriate animal models is mandatory. Besides the most commonly used rodent species, a non-human primate, the common marmoset (Callithrix jacchus) emerged as a promising animal model of human aging over the last years. However, the visual aging process in this species is only partially characterized, especially with regard to retinal aberrations. Therefore, we assessed here for the first time potential changes in retinal morphology of the common marmoset of different age groups. By cell type specific immunolabeling, we analyzed different cell types and distributions, potential photoreceptor and ganglion cell loss, and structural reorganization. We detected no signs of age-related differences in staining patterns or densities of various cell populations. For example, there were no signs of photoreceptor degeneration, and there was only minimal sprouting of rod bipolar cells in aged retinas. Altogether, we describe here the maintenance of a stable neuronal architecture, distribution and number of different cell populations with only mild aberrations during the aging process in the common marmoset retina. These findings are in stark contrast to previously reported findings in rodent species and humans and deserve further investigations to identify the underlying mechanisms and possible therapeutic targets.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior—Caesar, Bonn, Germany
| | - Katja Reinhard
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Leo Peichl
- Institute of Clinical Neuroanatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
49
|
Wu J, Peng S, Zhang Y, Pan B, Chen H, Hu X, Gong NJ. Developmental trajectory of magnetic susceptibility in the healthy rhesus macaque brain. NMR IN BIOMEDICINE 2022; 35:e4750. [PMID: 35474524 DOI: 10.1002/nbm.4750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Quantitative susceptibility mapping (QSM) is used to quantify iron deposition in non-human primates in our study. Although QSM has many applications in detecting iron deposits in the human brain, including the distribution of iron deposits in specific brain regions, the change of iron deposition with aging, and the comparison of iron deposits between diseased groups and healthy controls, few studies have applied QSM to non-human primates, while most animal brain experiments focus on biochemical and anatomical results instead of non-invasive experiments. Additionally, brain imaging in children's research is difficult, but can be substituted using young rhesus monkeys, which are very similar to humans, as research animals. Therefore, understanding the relationship between iron deposition and age in rhesus macaques' brains can offer insights into both the developmental trajectory of magnetic susceptibility in the animal model and the correlated evidence in children's research. Twenty-three healthy rhesus macaque monkeys (23 ± 7.85 years, range 2-29 years) were included in this research. Seven regions of interest (ROIs-globus pallidus, substantia nigra, dentate nucleus, caudate nucleus, putamen, thalamus, red nucleus) have been analyzed in terms of QSM and R2 * (apparent relaxation rate). Susceptibility in most ROIs correlated significantly with the growth of age, similarly to the results for R2 *, but showed different trends in the thalamus and red nucleus, which may be caused by the different sensitivities of myelination and iron deposition in R2 * and QSM analysis. By assessing the correlation between iron content and age in healthy rhesus macaques' brains using QSM, we provide a piece of pilot information on normality for advanced animal disease models. Meanwhile, this study also could serve as the normative basis for further clinical studies using QSM for iron content quantification. Due to the comparison of the susceptibility on the same experimental objects, this research can also provide practical support for future research on characteristics for QSM and R2 *.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Siyue Peng
- RadioDynamic Healthcare, Shanghai, Shanghai, China
| | - Yuhua Zhang
- National Resource Center for Non-human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Boyang Pan
- RadioDynamic Healthcare, Shanghai, Shanghai, China
| | - Honghua Chen
- RadioDynamic Healthcare, Shanghai, Shanghai, China
| | - Xintian Hu
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nan-Jie Gong
- Vector Lab for Intelligent Medical Imaging and Neural Engineering, International Innovation Center of Tsinghua University, Shanghai, China
| |
Collapse
|
50
|
Ngo V, Gorman JC, De la Fuente MF, Souto A, Schiel N, Miller CT. Active vision during prey capture in wild marmoset monkeys. Curr Biol 2022; 32:3423-3428.e3. [PMID: 35750054 PMCID: PMC10203885 DOI: 10.1016/j.cub.2022.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
A foundational pressure in the evolution of all animals is the ability to travel through the world, inherently coupling the sensory and motor systems. While this relationship has been explored in several species,1-4 it has been largely overlooked in primates, which have typically relied on paradigms in which head-restrained subjects view stimuli on screens.5 Natural visual behaviors, by contrast, are typified by locomotion through the environment guided by active sensing as animals explore and interact with the world,4,6 a relationship well illustrated by prey capture.7-12 Here, we characterized prey capture in wild marmoset monkeys as they negotiated their dynamic, arboreal habitat to illustrate the inherent role of vision as an active process in natural nonhuman primate behavior. Not only do marmosets share the core properties of vision that typify the primate Order,13-18 but they are prolific hunters that prey on a diverse set of prey animals.19-22 Marmosets pursued prey using vision in several different contexts, but executed precise visually guided motor control that predominantly involved grasping with hands for successful capture of prey. Applying markerless tracking for the first time in wild primates yielded novel findings that precisely quantified how marmosets track insects prior to initiating an attack and the rapid visually guided corrections of the hands during capture. These findings offer the first detailed insight into the active nature of vision to guide multiple facets of a natural goal-directed behavior in wild primates and can inform future laboratory studies of natural primate visual behaviors and the supporting neural processes.
Collapse
Affiliation(s)
- Victoria Ngo
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92039, USA
| | - María Fernanda De la Fuente
- Programa de Pós-graduação em Etnobiologia e Conservação da Natureza, Universidade Estadual da Paraíba, Campina Grande, Paraíba 58429-500, Brazil; Laboratório de Etologia Teórica e Aplicada, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900, Brazil
| | - Antonio Souto
- Laboratório de Etologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Nicola Schiel
- Laboratório de Etologia Teórica e Aplicada, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900, Brazil
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92039, USA.
| |
Collapse
|