1
|
Yu H, Wang D, Yan Y, Jiao L, Zhang J, Gu Y, Zhang S, Zhang Q, Liu L, Meng G, Wu H, Wu X, Zhu D, Fu L, Chen Y, Wang D, Wang Y, Geng H, Sun S, Wang X, Jia Q, Song K, Zheng Y, Yu M, Chen YM, Niu K. Dietary manganese intake is positively associated with metabolic dysfunction-associated steatotic liver disease: a multicohort study. Eur J Nutr 2025; 64:188. [PMID: 40419737 DOI: 10.1007/s00394-025-03708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/30/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND AND AIMS Manganese (Mn) is an essential nutrient that plays a crucial role in maintaining normal physiological functions of the human body. However, overexposure to Mn often leads to adverse health outcomes and contributes to the development of a variety of diseases. Several studies have explored the relationship between dietary Mn and metabolic dysfunction-associated steatotic liver disease (MASLD) risk. Two UK Biobank (UKB)-based studies suggested that Mn, as a key nutrient, may be associated with a reduced risk of MASLD. Another study found an association between the dietary antioxidant index and the onset of non-alcoholic fatty liver disease (NAFLD), highlighting the importance of nutritional factors (including Mn) in liver health. However, the relationship between dietary Mn intake and MASLD in the Chinese population remains unexplored, and further research is needed to elucidate its underlying mechanisms. METHODS This prospective multi-cohort study had 1,137 adults from the Guangzhou Nutrition and Health Study (GNHS) cohort and 17,649 people from the Tianjin Chronic Low-grade Systemic Inflammation and Health (TCLSIH) cohort. We measured dietary intake using a validated and standardized food frequency questionnaire. Annual abdominal ultrasound was used to diagnose new-onset MASLD. We used multivariable Cox regression models to assess the relationship between dietary Mn intake and the risk of MASLD. RESULTS In the TCLSIH cohort, 3640 MASLD cases were observed with a follow-up time of 60,190 person-years. After taking into account possible confounding factors, the multivariable HRs (95% CIs) for MASLD across the quartiles of dietary Mn intake in males were 1.00 (reference), 1.08 (0.96-1.21), 1.12 (0.99-1.26), and 1.16 (1.02-1.31), with a P for trend = 0.02; for females, the HRs (95% CIs) for MASLD across the quartiles of dietary Mn intake were 1.00, 1.11 (0.95-1.31), 1.08 (0.91-1.28), and 0.97 (0.81-1.16), with a P for trend = 0.58. After adjustment for proteins, lipids, and carbohydrates, the HRs (95% CIs) for MASLD across the quartiles of dietary Mn intake in males were 1.00 (reference), 1.11 (0.97-1.26), 1.14 (1.00-1.31), and 1.16 (1.00-1.34), with a P for trend = 0.045. For females, the HRs (95% CIs) for MASLD across the quartiles of dietary Mn intake were 1.00 (reference), 1.08 (0.91-1.30), 1.06 (0.88-1.27), and 0.93 (0.76-1.13), with a P for trend = 0.39. In the GNHS cohort, 624 MASLD cases were observed with a follow-up time of 6454 person-years. After adjusting for relevant confounders, the HRs (95% CIs) for males comparing T3 versus T1 of dietary Mn intake were 1.04 (0.65-1.60); the HRs (95% CIs) for females comparing T3 versus T1 of dietary Mn intake were 1.00 (0.78-1.29). CONCLUSION In males, higher dietary Mn intake is associated with a higher incidence of MASLD.
Collapse
Affiliation(s)
- Hao Yu
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Di Wang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lirui Jiao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Jinjin Zhang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Tianjin, 300192, China.
| | - Shunming Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Meng
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Hongmei Wu
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xuehui Wu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Dandan Zhu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Liyuan Fu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yinxiao Chen
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Dongli Wang
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Yaxiao Wang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Hao Geng
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Health Management and Promotion Institute, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunliang Zheng
- Tianjin Institute of Modern Health Technology, Tianjin, China
| | - Ming Yu
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Kaijun Niu
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Tianjin Health Management and Promotion Institute, Tianjin, China.
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Martins AC, Oliveira-Paula GH, Tinkov AA, Skalny AV, Tizabi Y, Bowman AB, Aschner M. Role of manganese in brain health and disease: Focus on oxidative stress. Free Radic Biol Med 2025; 232:306-318. [PMID: 40086492 PMCID: PMC11985276 DOI: 10.1016/j.freeradbiomed.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Manganese (Mn) is an essential trace element crucial for various physiological processes, but excessive exposure can lead to significant health concerns, particularly neurotoxicity. This review synthesizes current knowledge on Mn-induced oxidative stress and its role in cellular dysfunction and disease. We discuss how Mn promotes toxicity through multiple mechanisms, primarily through reactive oxygen species (ROS) generation, which leads to oxidative stress and disruption of cellular processes. The review examines key pathways affected by Mn toxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome activation, and epigenetic modifications. Recent studies have identified promising therapeutic compounds, including both synthetic and natural substances such as probucol, metformin, curcumin, resveratrol, and daidzein, which demonstrate protective effects through various mechanisms, including antioxidant enhancement, mitochondrial function preservation, and epigenetic pathway modulation. Understanding these mechanisms provides new insights into potential therapeutic strategies for Mn-induced disorders. This review also highlights future research directions, emphasizing the need for developing targeted therapies and investigating combination approaches to address multiple aspects of Mn toxicity simultaneously.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gustavo H Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, 20059, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
3
|
Jamal J, Hashmat M, Al Alwan H, Harvey E, Zafar M, Stamoulos P, Chakrabarty G. Chronic Manganese Neuro-Toxicity in a Patient With Cirrhosis and the Role of Iron-Deficiency Anaemia. Cureus 2024; 16:e75198. [PMID: 39649231 PMCID: PMC11624899 DOI: 10.7759/cureus.75198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 12/10/2024] Open
Abstract
Patients with chronic liver disease (CLD) are prone to complications associated with impaired liver functioning. This coupled with iron-deficiency anaemia (IDA) can predispose them to multiple comorbidities. We present an interesting case of a 69-year-old woman with a background history of liver cirrhosis due to metabolic dysfunction-associated steatotic liver disease (MASLD) with frequent travels to Bangladesh, a southeast Asian country known for having high levels of manganese (Mn) in water for domestic use. She presented with progressively worsening cognition and extrapyramidal symptoms. She underwent routine blood tests including for liver functions followed by a non-contrast computed tomogram (CT) of the head that did not suggest a possible cause. However, magnetic resonance imaging (MRI) of the brain showed hyperintensities bilaterally in the globus pallidus, subthalamic nucleus, red nucleus, and substantia nigra and raised the possibility of Mn toxicity. This was confirmed with repeated raised blood levels of Mn. The query was raised for acute toxicity to Mn, followed by consideration of CLD history associated with reduced elimination of Mn. This was complicated further by her history of IDA. Her case was discussed in a multi-disciplinary setting with specialities including radiology, gastroenterology, neurology, psychiatry, hepatology, and elderly medicine. Following this, a decision was made for the best supportive management of the patient. This case highlights the importance of MRI in the detection of a rare case of Mn toxicity, in a predisposed individual contributing to cognitive decline with extrapyramidal symptoms.
Collapse
Affiliation(s)
- Jamal Jamal
- Gastroenterology, East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, GBR
| | - Muhammad Hashmat
- Internal Medicine, East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, GBR
| | - Hasan Al Alwan
- Internal Medicine, East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, GBR
| | - Eleanor Harvey
- Radiology, East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, GBR
| | - Mansoor Zafar
- Gastroenterology, East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, GBR
| | | | - Gayatri Chakrabarty
- Gastroenterology and Hepatology, Surrey and Sussex Healthcare NHS Trust, Redhill, GBR
| |
Collapse
|
4
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
5
|
Zhang G, Lin W, Gao N, Lan C, Ren M, Yan L, Pan B, Xu J, Han B, Hu L, Chen Y, Wu T, Zhuang L, Lu Q, Wang B, Fang M. Using Machine Learning to Construct the Blood-Follicle Distribution Models of Various Trace Elements and Explore the Transport-Related Pathways with Multiomics Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7743-7757. [PMID: 38652822 DOI: 10.1021/acs.est.3c10904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Permeabilities of various trace elements (TEs) through the blood-follicle barrier (BFB) play an important role in oocyte development. However, it has not been comprehensively described as well as its involved biological pathways. Our study aimed to construct a blood-follicle distribution model of the concerned TEs and explore their related biological pathways. We finally included a total of 168 women from a cohort of in vitro fertilization-embryo transfer conducted in two reproductive centers in Beijing City and Shandong Province, China. The concentrations of 35 TEs in both serum and follicular fluid (FF) samples from the 168 women were measured, as well as the multiomics features of the metabolome, lipidome, and proteome in both plasma and FF samples. Multiomics features associated with the transfer efficiencies of TEs through the BFB were selected by using an elastic net model and further utilized for pathway analysis. Various machine learning (ML) models were built to predict the concentrations of TEs in FF. Overall, there are 21 TEs that exhibited three types of consistent BFB distribution characteristics between Beijing and Shandong centers. Among them, the concentrations of arsenic, manganese, nickel, tin, and bismuth in FF were higher than those in the serum with transfer efficiencies of 1.19-4.38, while a reverse trend was observed for the 15 TEs with transfer efficiencies of 0.076-0.905, e.g., mercury, germanium, selenium, antimony, and titanium. Lastly, cadmium was evenly distributed in the two compartments with transfer efficiencies of 0.998-1.056. Multiomics analysis showed that the enrichment of TEs was associated with the synthesis and action of steroid hormones and the glucose metabolism. Random forest model can provide the most accurate predictions of the concentrations of TEs in FF among the concerned ML models. In conclusion, the selective permeability through the BFB for various TEs may be significantly regulated by the steroid hormones and the glucose metabolism. Also, the concentrations of some TEs in FF can be well predicted by their serum levels with a random forest model.
Collapse
Affiliation(s)
- Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Weinan Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Ning Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Changxin Lan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Tianxiang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Qun Lu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R China
- Center of Reproductive Medicine, Peking University People's Hospital, Beijing 100044, P. R. China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
6
|
Nishito Y, Kamimura Y, Nagamatsu S, Yamamoto N, Yasui H, Kambe T. Zinc and manganese homeostasis closely interact in mammalian cells. FASEB J 2024; 38:e23605. [PMID: 38597508 DOI: 10.1096/fj.202400181r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.
Collapse
Affiliation(s)
- Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Kamimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shino Nagamatsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nao Yamamoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
A GATA-type transcription factor SreA affects manganese susceptibility by regulating the expression of iron uptake-related genes. Fungal Genet Biol 2022; 163:103731. [PMID: 36087858 DOI: 10.1016/j.fgb.2022.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/06/2023]
Abstract
SreA has been identified as a GATA-type transcription factor that represses iron uptake to avoid iron excess during iron sufficiency. However, knowledge about whether SreA also affects the homeostasis of other divalent metal ions is limited. In this study, by screening Aspergillus fumigatus transcription factor deletion mutant libraries, we demonstrate that the sreA deletion mutant shows the greatest tolerance to MnCl2 among the tested divalent metal ions. Fe and Mn stimuli are able to enhance the expression of SreA with the different time-dependent manner, while the expression of SreA contributes to Mn2+ tolerance. Lack of SreA results in abnormally increased expression of a series of siderophore biosynthesis genes and iron transport-related genes, especially under MnCl2 treatment. Further mechanistic exploration indicated that lack of SreA exacerbates abnormal iron uptake, and iron excess inhibits cellular Mn content; thus, deletion of sreA results in Mn tolerance. Thus, findings in this study have demonstrated a new unexplored function for the transcription factor SreA in regulation of the Mn2+ tolerance.
Collapse
|
8
|
Wang Y, Wang M, Liu Y, Tao H, Banerjee S, Srinivasan S, Nemeth E, Czaja MJ, He P. Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores. Redox Biol 2022; 55:102407. [PMID: 35853304 PMCID: PMC9294649 DOI: 10.1016/j.redox.2022.102407] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a mineral essential for blood production and a variety of critical cellular functions. Altered iron metabolism has been increasingly observed in many diseases and disorders, but a comprehensive and mechanistic understanding of the cellular impact of impaired iron metabolism is still lacking. We examined the effects of iron overload or iron deficiency on cellular stress responses and autophagy which collectively regulate cell homeostasis and survival. Acute iron loading led to increased mitochondrial ROS (mtROS) production and damage, lipid peroxidation, impaired autophagic flux, and ferroptosis. Iron-induced mtROS overproduction is the mechanism of increased lipid peroxidation, impaired autophagy, and the induction of ferroptosis. Iron excess-induced ferroptosis was cell-type dependent and regulated by activating transcription factor 4 (ATF4). Upregulation of ATF4 mitigated iron-induced autophagic dysfunction and ferroptosis, whereas silencing of ATF4 expression impaired autophagy and resulted in increased mtROS production and ferroptosis. Employing autophagy-deficient hepatocytes and different autophagy inhibitors, we further showed that autophagic impairment sensitized cells to iron-induced ferroptosis. In contrast, iron deficiency activated the endoplasmic reticulum (ER) stress response, decreased autophagy, and induced apoptosis. Decreased autophagy associated with iron deficiency was due to ER stress, as reduction of ER stress by 4-phenylbutyric acid (4-PBA) improved autophagic flux. The mechanism of decreased autophagy in iron deficiency is a disruption in lysosomal biogenesis due to impaired posttranslational maturation of lysosomal membrane proteins. In conclusion, iron excess and iron deficiency cause different forms of cell stress and death in part through the common mechanism of impaired autophagic function.
Collapse
Affiliation(s)
- Yunyang Wang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Mo Wang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Tao
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Somesh Banerjee
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Gastroenterology Research, Atlanta VA Health Care System, Decatur, GA, USA
| | - Elizabeta Nemeth
- Department of Medicine, Center for Iron Disorders, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Mark J Czaja
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Abu-Elfotuh K, Hamdan AME, Abbas AN, Alahmre ATS, Elewa MAF, Masoud RAE, Ali AA, Othman M, Kamal MM, Hassan FAM, Khalil MG, El-Sisi AM, Abdel Hady MMM, Abd-Elhaleim El Azazy MK, Awny MM, Wahid A. Evaluating the neuroprotective activities of vinpocetine, punicalagin, niacin and vitamin E against behavioural and motor disabilities of manganese-induced Parkinson's disease in Sprague Dawley rats. Biomed Pharmacother 2022; 153:113330. [PMID: 35780621 DOI: 10.1016/j.biopha.2022.113330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/22/2023] Open
Abstract
The current study investigated the neuroprotective activity of some drugs and nutriceuticals with antioxidant and anti-inflammatory potential on the pathogenesis of Parkinson's disease (PD). Rats were categorized into seven groups: Rats received tween80 daily for 5 weeks as a control group, MnCl2 (10 mg/kg, i.p) either alone (group II) or in combination with vinpocetine (VIN) (20 mg/kg) (group III), punicalagin (PUN) (30 mg/kg) (group IV), niacin (85 mg/kg) (group V), vitamin E (Vit E) (100 mg/kg) (group VI) or their combination (group VII). Motor activities was examined using open-field and catalepsy. Striatal monamines, acetylcholinesterase, excitatory/inhibitory neurotransmitters, redox status, pro-oxidant content, brain inflammatory, apoptotic and antioxidant biomarkers levels were assessed. Besides, histopathological investigations of different brain regions were determined. Groups (IV -GVII) showed improved motor functions of PD rats. Applied drugs significantly increased the brain levels of monoamines with the strongest effect to PUN. Meanwhile, they significantly decreased levels of acetylcholinesterase with a strongest effect to PUN. Moreover, they exhibited significant neuronal protection and anti-inflammatory abilities through significant reduction of the brain levels of COX2, TNF-α and Il-1β with a strongest effect to the PUN. Interestingly; groups (IV - GVII) showed restored glutamate/GABA balance and exhibited a pronounced decrease in caspase-3 content and GSK-3β protein expression levels. In addition, they significantly increased Bcl2 mRNA expression levels with a strongest effect for PUN. All these findings were further confirmed by the histopathological examinations. As a conclusion, we propose VIN and PUN to mitigate the progression of PD via their antioxidant, anti-inflammatory, anti-apoptotic, neurotrophic and neurogenic activities.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Pharmacology and Toxicology Department (Girls), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Mohammed A F Elewa
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Rehab Ali Elsayed Masoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of medicine for girls, Al-Azhar University, Cairo, Egypt
| | - Azza A Ali
- Pharmacology and Toxicology Department (Girls), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Othman
- Lecturer, Department of anatomy, Faculty of Medicine, King Salman International University, El-Tur Campus, Saini, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department (Girls), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fatma Alzahraa M Hassan
- Biochemistry and molecular biology Department, Faculty of Pharmacy, Al-Azhar, University, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Modern University for Technology and Information, Cairo, Egypt
| | - Ahmed M El-Sisi
- Biochemistry and Molecular Biology Department (boys), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Manal M M Abdel Hady
- Department of Pharmacology, Faculty of Pharmacy, Qantra University, Sinai, Egypt
| | | | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Luo T, Zhou Z, Deng Y, Fan Y, Qiu L, Chen R, Yan H, Zhou H, Lakshmanan P, Wu J, Chen Q. Transcriptome and metabolome analyses reveal new insights into chlorophyll, photosynthesis, metal ion and phenylpropanoids related pathways during sugarcane ratoon chlorosis. BMC PLANT BIOLOGY 2022; 22:222. [PMID: 35484490 PMCID: PMC9052583 DOI: 10.1186/s12870-022-03588-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ratoon sugarcane is susceptible to chlorosis, characterized by chlorophyll loss, poor growth, and a multitude of nutritional deficiency mainly occurring at young stage. Chlorosis would significantly reduce the cane production. The molecular mechanism underlying this phenomenon remains unknown. We analyzed the transcriptome and metabolome of chlorotic and non-chlorotic sugarcane leaves of the same age from the same field to gain molecular insights into this phenomenon. RESULTS The agronomic traits, such as plant height and the number of leaf, stalk node, and tillers declined in chlorotic sugarcane. Chlorotic leaves had substantially lower chlorophyll content than green leaves. A total of 11,776 differentially expressed genes (DEGs) were discovered in transcriptome analysis. In the KEGG enriched chlorophyll metabolism pathway, sixteen DEGs were found, eleven of which were down-regulated. Two photosynthesis pathways were also enriched with 32 genes downregulated and four genes up-regulated. Among the 81 enriched GO biological processes, there were four categories related to metal ion homeostasis and three related to metal ion transport. Approximately 400 metabolites were identified in metabolome analysis. The thirteen differentially expressed metabolites (DEMs) were all found down-regulated. The phenylpropanoid biosynthesis pathway was enriched in DEGs and DEMs, indicating a potentially vital role for phenylpropanoids in chlorosis. CONCLUSIONS Chlorophyll production, metal ion metabolism, photosynthesis, and some metabolites in the phenylpropanoid biosynthesis pathway were considerably altered in chlorotic ratoon sugarcane leaves. Our finding revealed the relation between chlorosis and these pathways, which will help expand our mechanistic understanding of ratoon sugarcane chlorosis.
Collapse
Affiliation(s)
- Ting Luo
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Yuchi Deng
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Haifeng Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, QLD, St Lucia, 4067, Australia
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China.
- Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, Guangxi, China.
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.
| | - Qi Chen
- Nanning New Technology Entrepreneur Center, Nanning, Guangxi, China
| |
Collapse
|
11
|
Multi-Elemental Analysis of Human Optic Chiasm-A New Perspective to Reveal the Pathomechanism of Nerve Fibers' Degeneration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074420. [PMID: 35410100 PMCID: PMC8998695 DOI: 10.3390/ijerph19074420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
The effect of metals on the functioning of the human eye is multifactorial and includes enzyme activity modulation, trace metal metabolic pathways changes, and cytotoxic activity. Functional dysfunctions appear mostly as a result of the accumulation of toxic xenobiotic metals or disturbances of micronutrients’ homeostasis. So far, the affinity of selected metals to eye tissues, i.e., the cornea, choroid, lens, and anterior chamber fluid, has been most studied. However, it is known that many eye symptoms are related to damage to the optic nerve. In order to fill this gap, the aim of the study is to perform a multi-element analysis of tissue collected postmortem from optic chiasm and optic nerves. A total of 178 samples from 107 subjects were tested. The concentrations of 51 elements were quantified by inductively coupled plasma mass spectrometry (ICP-MS) after the wet-mineralization step. In terms of elemental composition, the optic chiasm is dominated by two trace elements, i.e., iron (Fe) and zinc (Zn), besides macro-elements Ca, K, Na, P, and Mg. The subjects formed a homogeneous cluster (over 70% subjects) with the highest accumulation of aluminum (Al). The remaining two departing clusters were characterized by an increased content of most of the elements, including toxic elements such as bismuth (Bi), uranium (U), lead (Pb), chromium (Cr), and cadmium (Cd). Changes in elemental composition with age were analyzed statistically for the selected groups, i.e., females, males, and subjects with alcohol use disorder (AUD) and without AUD. A tendency of women to lose Se, Cu, Zn, Fe with age was observed, and a disturbed Ca/Mg, Na/K ratio in subjects with AUD. Although the observed trends were not statistically significant, they shed new light on the risks and possible pathologies associated with metal neurotoxicity in the visual tract.
Collapse
|
12
|
Hernández RB, de Souza-Pinto NC, Kleinjans J, van Herwijnen M, Piepers J, Moteshareie H, Burnside D, Golshani A. Manganese-Induced Neurotoxicity through Impairment of Cross-Talk Pathways in Human Neuroblastoma Cell Line SH-SY5Y Differentiated with Retinoic Acid. TOXICS 2021; 9:toxics9120348. [PMID: 34941782 PMCID: PMC8704659 DOI: 10.3390/toxics9120348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023]
Abstract
Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson’s disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0–2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases–target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology—LABITA, Department of Chemistry, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, Diadema 09972-270, SP, Brazil
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
- Correspondence: ; Tel.: +55-11-3385-4137 (ext. 3522)
| | - Nadja C. de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-900, SP, Brazil;
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Jolanda Piepers
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Houman Moteshareie
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Daniel Burnside
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Ashkan Golshani
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| |
Collapse
|
13
|
PdpaMn inhibits fatty acid synthase-mediated glycolysis by down-regulating PI3K/Akt signaling pathway in breast cancer. Anticancer Drugs 2021; 31:1046-1056. [PMID: 32649369 DOI: 10.1097/cad.0000000000000968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Novel manganese complex, PdpaMn ([(Pdpa)MnCl2]), was developed to induce apoptosis in breast cancer cells. The impact of phosphoinositide-(3)-kinase pathway onto fatty acid synthase (FASN) has an effect on cellular metabolism in breast cancer. However, reverse actions from FASN towards PI3K/Akt are still indefinable. Perhaps, loss of FASN could regulate glycolysis. Previously we established that PdpaMn inhibits FASN and involve in mitochondrial function. This study investigated the activity of PdpaMn on glycolysis and its mechanism. PdpaMn was used to suppress FASN expression in tumor. Expression of ATP and lactic acid level was measured to investigate the glycolysis variance in cells and animals. MCF-7 and 4T1 cells were treated with G28UCM, an inhibitor of FASN and PdpaMn, western blotting to detect PI3K/Akt signaling pathway. The capacity of proliferation was investigated by western blotting and immunohistochemistry. PdpaMn selectively inhibits cancer cells and tumor growth but also block FASN expression and suppresses the content of free fatty acid. Lactate dehydrogenase (LDHA) protein level was down-regulated as G28UCM and PdpaMn inhibited FASN, glucose transporter (Glut1), and pyruvate kinase (PKM2) proteins level were not affected. PI3K, p-Akt in the experimental group evidently declined compared to the control group. Proliferation was suppressed in FASN-arbitrated glycolysis. Our study supports the hypothesis that loss of FASN by PdpaMn suppressed glycolysis via down-regulating PI3K/Akt signaling pathway revealing the direct link between FASN and glycolysis. The results have paved the way to unravel the mechanisms of FASN and mitochondrial will be useful for designing novel co-targeting strategies for breast cancer.
Collapse
|
14
|
Wandt VK, Winkelbeiner N, Lossow K, Kopp JF, Schwarz M, Alker W, Nicolai MM, Simon L, Dietzel C, Hertel B, Pohl G, Ebert F, Schomburg L, Bornhorst J, Haase H, Kipp AP, Schwerdtle T. Ageing-associated effects of a long-term dietary modulation of four trace elements in mice. Redox Biol 2021; 46:102083. [PMID: 34371368 PMCID: PMC8358688 DOI: 10.1016/j.redox.2021.102083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Trace elements (TEs) are essential for diverse processes maintaining body function and health status. The complex regulation of the TE homeostasis depends among others on age, sex, and nutritional status. If the TE homeostasis is disturbed, negative health consequences can result, e.g., caused by impaired redox homeostasis and genome stability maintenance. Based on age-related shifts in TEs which have been described in mice well-supplied with TEs, we aimed to understand effects of a long-term feeding with adequate or suboptimal amounts of four TEs in parallel. As an additional intervention, we studied mice which received an age-adapted diet with higher concentrations of selenium and zinc to counteract the age-related decline of both TEs. We conducted comprehensive analysis of diverse endpoints indicative for the TE and redox status, complemented by analysis of DNA (hydroxy)methylation and markers denoting genomic stability maintenance. TE concentrations showed age-specific alterations which were relatively stable and independent of their nutritional supply. In addition, hepatic DNA hydroxymethylation was significantly increased in the elderly mice and markers indicative for the redox status were modulated. The reduced nutritional supply with TEs inconsistently affected their status, with most severe effects regarding Fe deficiency. This may have contributed to the sex-specific differences observed in the alterations related to the redox status and DNA repair activity. Overall, our results highlight the complexity of factors impacting on the TE status and its physiological consequences. Alterations in TE supply, age, and sex proved to be important determinants that need to be taken into account when considering TE interventions for improving general health and supporting convalescence in the clinics. Trace element profiles differ by age and sex under moderately modulated TE supply. Maintenance of age-related trace element shifts through all feeding groups. Cu/Zn ratio and DNA hydroxymethylation emerge as appropriate murine ageing markers.
Collapse
Affiliation(s)
- Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Kristina Lossow
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany; German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Maria Schwarz
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Wiebke Alker
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Chair of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Luise Simon
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Caroline Dietzel
- Chair of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Barbara Hertel
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Lutz Schomburg
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Julia Bornhorst
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Hajo Haase
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Chair of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Anna P Kipp
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
15
|
Ajsuvakova OP, Skalnaya MG, Michalke B, Tinkov AA, Serebryansky EP, Karganov MY, Medvedeva YS, Skalny AV. Alteration of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) tissue levels and speciation in rats with desferioxamine-induced iron deficiency. Biometals 2021; 34:923-936. [PMID: 34003408 DOI: 10.1007/s10534-021-00318-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate the impact of iron deficiency and iron replenishment on serum iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) speciation and tissue accumulation in a deferrioxamine-induced model of iron deficiency. A total of 26 male Wistar rats were divided into three groups: control; Fe-deficient; Fe-replenished (with iron (II) gluconate). Serum ferritin and transferrin levels were assessed using immunoturbudimetric method. Liver, spleen, and serum metal levels were assessed using ICP-MS. Speciation analysis was performed using a hyphenated HPLC-ICP-MS technique. Desferrioxamine injections resulted in a significant decrease in tissue iron content that was reversed by Fe supplementation. Iron speciation revealed a significant increase in serum transferrin-bound iron and reduced ferritin-bound Fe levels. Serum but not tissue Cu levels were characterized by a significant decrease in hypoferremic rats, whereas ceruloplasmin-bound fraction tended to increase. At the same time, Zn levels were found to be higher in liver, spleen, and serum of Fe-deficient rats with a predominant increase in low molecular weight fraction.Both iron-deficient and iron-replenished rats were characteirzed by increased transferrin-bound Mn levels and reduced low-molecular weight fraction. Hypothetically, these differences may be associated with impaired Fe metabolism under Fe-deficient conditions predisposing to impairment of essential metal handling. However, further studies aimed at assessment of the impact on Fe deficiency on metal metabolism are highly required.
Collapse
Affiliation(s)
- Olga P Ajsuvakova
- Micronutrients Ltd, Moscow, Russia. .,Odintsovo Distr., All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow reg, Russia. .,Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | | | - Bernhard Michalke
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Alexey A Tinkov
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.,IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Orenburg State University, Moscow, Russia.,K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | | | | | - Yulia S Medvedeva
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Anatoly V Skalny
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.,IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Orenburg State University, Moscow, Russia.,K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| |
Collapse
|
16
|
Modification of the effects of prenatal manganese exposure on child neurodevelopment by maternal anemia and iron deficiency. Pediatr Res 2020; 88:325-333. [PMID: 31926485 PMCID: PMC7351595 DOI: 10.1038/s41390-020-0754-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/22/2019] [Accepted: 12/29/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND We evaluated: (1) associations of prenatal manganese (Mn) levels with child neurodevelopment at 4-6 years; (2) effect modification by maternal anemia and iron deficiency; and (3) sex-specific effects. METHODS We measured blood Mn, hemoglobin, and serum ferritin in mothers at the second trimester, third trimester, and at birth, and in cord blood from a prospective birth cohort in Mexico City (n = 571). McCarthy Scales of Children's Abilities were measured at 4-6 years. Using linear regression, we estimated associations between prenatal Mn and neurodevelopment, examined anemia and iron deficiency as effect modifiers, and analyzed associations by child sex. RESULTS No direct associations were observed between Mn, anemia, or iron deficiency and McCarthy Scales. Second trimester iron deficiency and third trimester anemia modified the effect of Mn on child neurodevelopment. For instance, second trimester Mn was positively associated child memory scores in mother's with normal ferritin (1.85 (0.02, 3.45)), but negatively associated in mother's with low ferritin (-2.41 (-5.28, 0.47), interaction P value = 0.01), a pattern observed across scales. No effect modification at birth or in cord blood was observed. CONCLUSIONS Anemia/iron deficiency during pregnancy may modify Mn impacts on child neurodevelopment, particularly in boys.
Collapse
|
17
|
Wang W, Lu Y, Wang Y, Zhang Y, Xia B, Cao J. Siderophores induce mitophagy-dependent apoptosis in platelets. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:879. [PMID: 32793723 DOI: 10.21037/atm-20-4861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Siderophores are major virulent factors of K. pneumoniae, and their roles are iron chelators in the host. Several studies have shown that iron chelation could result in mitochondrial dysfunction and increase the production of reactive oxygen species (ROS), which further induces cell mitophagy and apoptosis. However, the impacts of siderophores on platelets are still unknown. Methods We obtained platelets of healthy volunteers to perform in vitro experiments in our study and treated platelets with different siderophores. Mitophagy related proteins (TOMM20, TIMM23, LC3, and p62), signal proteins (PINK1/Parkin and BNIP3), and apoptosis protein (caspase3) in platelets were analyzed by western blot. The co-localization of mitotracker with LC3-II was analyzed by immunofluorescence assays. The flow cytometer was used to evaluate ROS levels. Results All four kinds of siderophores (10 μM) secreted by K. pneumoniae increased the expression of LC3 II and reduced the expression of mitochondrial membrane protein, TOMM20, and TIMM23. Immunofluorescence assays revealed that the treatment of enterobactin significantly increased the co-localization of mitotracker with LC3-II. All four kinds of siderophores increased the ROS level in platelets. Mitophagy of platelets was activated through several pathways, including PINK1/Parkin- and BNIP3-dependent pathways. We also proved that siderophores increased the expression of caspase3 in platelets, and the expression of caspase3 significantly decreased after the pathways of mitophagy were blocked. Conclusions K. pneumoniae siderophores lead to mitophagy in platelets, and mitophagy further induces apoptosis, which may be a potential treatment of thrombocytopenia in infections.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yufeng Lu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yulin Wang
- Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yan Zhang
- Department of Hematology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Beilei Xia
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Juan Cao
- Department of Infectious Diseases, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
18
|
Lawes M, Pinkas A, Frohlich BA, Iroegbu JD, Ijomone OM, Aschner M. Metal-induced neurotoxicity in a RAGE-expressing C. elegans model. Neurotoxicology 2020; 80:71-75. [PMID: 32621835 DOI: 10.1016/j.neuro.2020.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Environmental and occupational metal exposure poses serious global concerns. Metal exposure have severally been associated with neurotoxicity and brain damage. Furthermore, receptor for advanced glycation end products (RAGE) is also implicated in neurological disorders, particularly those with altered glucose metabolism. Here, we examine potential compounding effect of metal exposure and RAGE expression on dopamine (DA) and serotonin (SER) neurons in C. elegans. In addition, we evaluate the effect of RAGE expression on DA and SER neurons in hyperglycemic conditions. Newly generated RAGE-expressing C. elegans tagged with green fluorescent proteins (GFP) in DAergic and SERergic neurons were treated with cadmium (Cd) or manganese (Mn). Additionally, the RAGE-expressing worms were also exposed to high glucose conditions. Results showed metals induced neurodegeneration both in the presence and absence of RAGE expression, but the manner of degeneration differed between Cd and Mn treated nematodes. Furthermore, RAGE-expressing worms showed significant neurodegeneration in both DAergic and SERergic neurons. Our results indicate co-occurrence of metal exposure and RAGE expression can induce neurodegeneration. Additionally, we show that RAGE expression can exacerbate hyperglycemic induced neurodegeneration.
Collapse
Affiliation(s)
- Michael Lawes
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| | - Adi Pinkas
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| | - Bailey A Frohlich
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| | - Joy D Iroegbu
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
19
|
Jiang C, Zhang S, Li D, Chen L, Zhao Y, Mei G, Liu J, Tang Y, Gao C, Yao P. Impaired ferritinophagy flux induced by high fat diet mediates hepatic insulin resistance via endoplasmic reticulum stress. Food Chem Toxicol 2020; 140:111329. [DOI: 10.1016/j.fct.2020.111329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/03/2023]
|
20
|
Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, KyunPark S. Heavy Metals Exposure and Alzheimer's Disease and Related Dementias. J Alzheimers Dis 2020; 76:1215-1242. [PMID: 32651318 PMCID: PMC7454042 DOI: 10.3233/jad-200282] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease and related dementias lack effective treatment or cures and are major public health challenges. Risk for Alzheimer's disease and related dementias is partially attributable to environmental factors. The heavy metals lead, cadmium, and manganese are widespread and persistent in our environments. Once persons are exposed to these metals, they are adept at entering cells and reaching the brain. Lead and cadmium are associated with numerous health outcomes even at low levels of exposure. Although manganese is an essential metal, deficiency or environmental exposure or high levels of the metal can be toxic. In cell and animal model systems, lead, cadmium, and manganese are well documented neurotoxicants that contribute to canonical Alzheimer's disease pathologies. Adult human epidemiologic studies have consistently shown lead, cadmium, and manganese are associated with impaired cognitive function and cognitive decline. No longitudinal human epidemiology study has assessed lead or manganese exposure on Alzheimer's disease specifically though two studies have reported a link between cadmium and Alzheimer's disease mortality. More longitudinal epidemiologic studies with high-quality time course exposure data and incident cases of Alzheimer's disease and related dementias are warranted to confirm and estimate the proportion of risk attributable to these exposures. Given the widespread and global exposure to lead, cadmium, and manganese, even small increases in the risks of Alzheimer's disease and related dementias would have a major population impact on the burden on disease. This article reviews the experimental and epidemiologic literature of the associations between lead, cadmium, and manganese on Alzheimer's disease and related dementias and makes recommendations of critical areas of future investment.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ruby C. Hickman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Brandt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Harita S. Vadari
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Howard Hu
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Sung KyunPark
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
El Fari R, Abbaoui A, Bourziq A, Zroudi M, Draoui A, El Khiat A, Belkouch M, Elgot A, Gamrani H. Neuroprotective effects of docosahexaenoic acid against sub-acute manganese intoxication induced dopaminergic and motor disorders in mice. J Chem Neuroanat 2019; 102:101686. [DOI: 10.1016/j.jchemneu.2019.101686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023]
|
22
|
Wang J, Wang S, Sun P, Cao F, Li H, Sun J, Peng M, Liu W, Shi P. Iron depletion participates in the suppression of cell proliferation induced by lipin1 overexpression. Metallomics 2019; 10:1307-1314. [PMID: 30141807 DOI: 10.1039/c8mt00077h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipin1 participates in numerous cellular processes, including in the dephosphorylation of phosphatidic acid to diacylglycerol and as a co-transcriptional regulator. Iron is also essential in various critical biological processes. Previous studies have shown that compared to normal tissue cells, lipin1 expression and iron metabolism are abnormal in cancer cells. However, the involvement of lipin1 in the regulation of iron metabolism is unknown. In this study, we compared the contents of eight metal ions (potassium, calcium, sodium, magnesium, manganese, zinc, iron and copper) in human hepatoma carcinoma BEL7402 control cells as well as stable cells overexpressing lipin1 by using ICP-AES. Our results showed that only intracellular iron content was significantly decreased by lipin1 overexpression. Meanwhile, we observed that lipin1 overexpression could inhibit cell proliferation, similar to iron chelator deferoxamine. Western blotting showed that the up-regulation of p53-p21-p27 elicited cell cycle G0/G1 arrest in the stable cells overexpressing lipin1. Conversely, after lipin1 was down regulated with siRNA, we found that cell proliferation was promoted, accompanied by an increase in iron content, and the downregulation of p53 and p21. Our data indicate that lipin1 overexpression may cause reduction of intracellular iron content, which could activate the p53-p21-p27 signaling pathways, leading to cell cycle arrest at the G0/G1 phase in the hepatic carcinoma cells. Subsequently, we identified the putative cause for the decrease of the intracellular iron content induced by lipin1 overexpression. Our results suggested that the intracellular iron reduction was due to the increase in the expression of ferroportin, an iron export protein in the stable cells overexpressing lipin1. In contrast, after transfection with lipin1 siRNA, the decreased expression of ferroportin contributed to an increase in the iron content in BEL7402 cells. It was further confirmed that the intracellular iron content was increased after ferroportin was knocked down by siRNA in BEL7402 cells. Taken together, our findings demonstrate for the first time that lipin1 participates in the regulation of iron metabolism in human hepatic carcinoma cells. This suggests that lipin1 may play an important protective role in inhibiting the development of cancer through the reduction of iron content in tumors, which further demonstrates that iron reduction could be a potential strategy of cancer prevention and treatment.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu C, Yuan G, Mo R, Huang Y, Luo T, Wang J. Effect of endoplasmic reticulum stress involved in manganese‑induced neurotoxicity in rats. Mol Med Rep 2019; 19:5169-5176. [PMID: 31059107 DOI: 10.3892/mmr.2019.10175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/31/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to probe the mechanism of apoptosis induced by endoplasmic reticulum stress (ERS) in manganese‑induced rats. A total of 60 Sprague‑Dawley rats were randomly divided into a Vehicle group, LoMag group, HiMag group, and HiMag + 4‑phenylbutyrate (PBA) group. Manganese content was measured by Inductively Coupled Plasma‑Atomic Emission Spectrometry. Pathogenic morphology, the cellular structure of the striatum and ER were observed by hematoxylin and eosin staining and electron microscopy. The TUNEL method was used to examine neuronal apoptosis in the rat striatum. The expression levels of glucose‑regulated protein 78KD (GRP78), C/EBP homologous protein (CHOP), c‑Jun N‑terminal kinase (JNK) and caspase‑12 were analyzed by western blot analysis. The results revealed that striatal manganese concentrations in the LoMag and HiMag groups were higher than that in the Vehicle group (P<0.01). Rat striatal neuronal structure and apoptotic rates in the LoMag and HiMag groups were higher than those in the Vehicle group (P<0.05). 4‑PBA treatment effectively reduced the apoptotic cell number (P<0.05). In addition, ER swelling and vacuolization in the HiMag + PBA group was reduced compared with that in the HiMag group. In addition, the protein expression levels of GRP78, CHOP, JNK and caspase‑12 in the LoMag and HiMag groups were higher than those in the Vehicle group (P<0.05). However, the expression of these four proteins was reduced by 4‑PBA treatment (P<0.05). In conclusion, 4‑PBA significantly reduced the damage and apoptosis induced by manganese exposure in rats.
Collapse
Affiliation(s)
- Cailian Wu
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Guandou Yuan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ruikang Mo
- Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi 530022, P.R. China
| | - Yanning Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tiantian Luo
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
24
|
Nkpaa KW, Onyeso GI, Kponee KZ. Rutin abrogates manganese-Induced striatal and hippocampal toxicity via inhibition of iron depletion, oxidative stress, inflammation and suppressing the NF-κB signaling pathway. J Trace Elem Med Biol 2019; 53:8-15. [PMID: 30910212 DOI: 10.1016/j.jtemb.2019.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/22/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Excess exposure to Manganese (Mn) promotes oxidative stress and neuro-inflammation. Rutin (RUT) has been found to exhibit both anti-oxidative stress and anti-inflammatory properties. This study aimed to investigate the effects of RUT on Mn accumulation, endogenous iron (Fe) depletion, oxidative stress, inflammation and nuclear factor kappa B (NF-κB) signaling pathways in the hippocampus and striatum of Mn - induced rats. Rats were treated with 30 mg/kg Mn body weight alone or orally co-treated by gavage with RUT at 50 and at 100 mg/kg body weight for 35 consecutive days. Thereafter, we investigated Mn and endogenous Fe levels, acetylcholinesterase activity, oxidative stress markers, pro-inflammatory cytokines and nuclear factor kappa B (NF-κB) in the hippocampus and striatum of rats. The results indicate that Mn induced Mn - accumulation, Fe depletion, oxidative stress, inflammation and the activation of acetylcholinesterase activity and NF-κB signaling pathways in the hippocampus and striatum of the rats. However, RUT attenuated Fe depletion, oxidative stress and inflammation and suppressed acetylcholinesterase activity and NF-κB pathway via downstream regulations of tumor necrosis factor alpha, interleukin I beta and interleukin 6. Taken together, our present study demonstrates that RUT abrogates Mn - induced striatal and hippocampal toxicity via inhibition of Fe depletion, oxidative stress, inflammation and suppressing the NF-κB signaling pathways. Our results indicate that RUT may be of use as a neuroprotective agent against Mn - induced neuronal toxicity.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B. 5323, Choba, Rivers State, Nigeria.
| | - Godspower I Onyeso
- Department of Physiology, College of Medicine, Rivers State University, Port Harcourt, P.M.B. 5080, Rivers State, Nigeria
| | - Kale Z Kponee
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
25
|
Kupsco A, Sanchez-Guerra M, Amarasiriwardena C, Brennan KJM, Estrada-Gutierrez G, Svensson K, Schnaas L, Pantic I, Téllez-Rojo MM, Baccarelli AA, Wright RO. Prenatal manganese and cord blood mitochondrial DNA copy number: Effect modification by maternal anemic status. ENVIRONMENT INTERNATIONAL 2019; 126:484-493. [PMID: 30849576 PMCID: PMC6471611 DOI: 10.1016/j.envint.2019.02.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Manganese (Mn) is an essential nutrient but also a toxicant at high exposures, when it can induce oxidative stress (OS). Mn uptake is inversely correlated with iron status, therefore anemic individuals may be more susceptible to Mn overload induced-OS, which can manifest as changes in mitochondrial DNA copy number (mtDNA CN). Our objectives were to: 1) determine stage-specific associations of prenatal Mn exposure with cord blood MtDNA CN; and 2) investigate effect modification by maternal anemia, ferritin, and mean corpuscular volume (MCV). MATERIALS AND METHODS We measured whole blood Mn, hemoglobin, serum ferritin, and MCV in the 2nd and 3rd trimester, in maternal blood at birth, and in cord blood from a prospective birth cohort in Mexico City, Mexico (n = 485). We then extracted DNA from cord blood leukocytes to determine mtDNA CN. We used robust regression to measure associations between Mn and mtDNA CN at each trimester and at birth. Anemia (hemoglobin ≤11 g/dL), iron deficiency (ferritin ≤15 ng/mL) and MCV (stratified at median), were examined as effect modifiers. RESULTS Mn levels increased throughout pregnancy, and Mn was inversely correlated with ferritin. We observed a positive association between Mn in the 3rd trimester and Mn in cord blood and mtDNA CN (β = 0.04-0.05; 95% CI = 0.01, 0.08). Anemia significantly modified the association between mtDNA CN and Mn in the 2nd trimester. We found a positive association between 2nd trimester Mn and mtDNA CN in mothers with normal hemoglobin, and a negative association in those with low hemoglobin. (βhigh = 0.06; 95% CI = 0.01, 0.11; p = 0.01 and βlow = -0.06; 95% CI = 0.03, -0.13; p = 0.06). No associations were detected between anemia, iron deficiency and MCV and mtDNA CN. CONCLUSIONS Maternal blood Mn in the 3rd trimester and in cord blood was positively associated with mtDNA CN, suggesting that higher late pregnancy prenatal Mn exposures can impact newborn mitochondria by promoting OS. Furthermore, 2nd trimester Mn was positively associated with mtDNA in non-anemic mother-child pairs but inversely associated in anemic individuals, indicating potential interactions between Mn and chronic anemia.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA.
| | | | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey J M Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | | | - Katherine Svensson
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ivan Pantic
- National Institute of Perinatology, Mexico City, Mexico
| | - Martha María Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Manganese-induced cellular disturbance in the baker's yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction. Sci Rep 2019; 9:6563. [PMID: 31024033 PMCID: PMC6484083 DOI: 10.1038/s41598-019-42907-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s diseases.
Collapse
|
27
|
Switch of Mitochondrial Superoxide Dismutase into a Prooxidant Peroxidase in Manganese-Deficient Cells and Mice. Cell Chem Biol 2019; 25:413-425.e6. [PMID: 29398562 DOI: 10.1016/j.chembiol.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
Abstract
Superoxide radical anion (O2⋅‒) and other reactive oxygen species are constantly produced during respiration. In mitochondria, the dismutation of O2⋅‒ is accelerated by the mitochondrial superoxide dismutase 2 (SOD2), an enzyme that has been traditionally associated with antioxidant protection. However, increases in SOD2 expression promote oxidative stress, indicating that there may be a prooxidant role for SOD2. Here we show that SOD2, which normally binds manganese, can incorporate iron and generate an alternative isoform with peroxidase activity. The switch from manganese to iron allows FeSOD2 to utilize H2O2 to promote oxidative stress. We found that FeSOD2 is formed in cultured cells and in vivo. FeSOD2 causes mitochondrial dysfunction and higher levels of oxidative stress in cultured cells and in vivo. We show that formation of FeSOD2 converts an antioxidant defense into a prooxidant peroxidase that leads to cellular changes seen in multiple human diseases.
Collapse
|
28
|
Choi EK, Nguyen TT, Iwase S, Seo YA. Ferroportin disease mutations influence manganese accumulation and cytotoxicity. FASEB J 2019; 33:2228-2240. [PMID: 30247984 PMCID: PMC6338638 DOI: 10.1096/fj.201800831r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
Hemochromatosis is a frequent genetic disorder, characterized by the accumulation of excess iron across tissues. Mutations in the FPN1 gene, encoding a cell surface iron exporter [ferroportin (Fpn)], are responsible for hemochromatosis type 4, also known as ferroportin disease. Recently, Fpn has been implicated in the regulation of manganese (Mn), another essential nutrient required for numerous cellular enzymes. However, the roles of Fpn in Mn regulation remain ill-defined, and the impact of disease mutations on cellular Mn levels is unknown. Here, we provide evidence that Fpn can export Mn from cells into extracellular space. Fpn seems to play protective roles in Mn-induced cellular toxicity and oxidative stress. Finally, disease mutations interfere with the role of Fpn in controlling Mn levels as well as the stability of Fpn. These results define the function of Fpn as an exporter of both iron and Mn and highlight the potential involvement of Mn dysregulation in ferroportin disease.-Choi, E.-K., Nguyen, T.-T., Iwase, S., Seo, Y. A. Ferroportin disease mutations influence manganese accumulation and cytotoxicity.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| | - Trang-Tiffany Nguyen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA; and
| |
Collapse
|
29
|
Amos-Kroohs RM, Usach V, Piñero G, Vorhees CV, Vivot RM, Soto PA, Williams MT, Setton-Avruj P. Metal bashing: iron deficiency and manganese overexposure impact on peripheral nerves. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:99-112. [PMID: 30652531 PMCID: PMC6397089 DOI: 10.1080/15287394.2019.1566105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iron (Fe) deficiency (FeD) and manganese (Mn) overexposure (MnOE) may result in several neurological alterations in the nervous system. Iron deficiency produces unique neurological deficits due to its elemental role in central nervous system (CNS) development and myelination, which might persist after normalization of Fe in the diet. Conversely, MnOE is associated with diverse neurocognitive deficits. Despite these well-known neurotoxic effects on the CNS, the influence of FeD and MnOE on the peripheral nervous system (PNS) remains poorly understood. The aim of the present investigation was to examine the effects of developmental FeD and MnOE or their combination on the sciatic nerve of young and adult rats. The parameters measured included divalent metal transporter 1 (DMT1), transferrin receptor (TfR), myelin basic protein (MBP) and peripheral myelin protein 22 (PMP22) expression, as well as Fe levels in the nerve. Our results showed that FeD produced a significant reduction in MBP and PMP22 content at P29, which persisted at P60 after Fe-sufficient diet replenishment regardless of Mn exposure levels. At P60 MnOE significantly increased sciatic nerve Fe content and DMT1 expression. However, the combination of FeD and MnOE produced no marked motor skill impairment. Evidence indicates that FeD appears to hinder developmental peripheral myelination, while MnOE may directly alter Fe homeostasis. Further studies are required to elucidate the interplay between these pathological conditions.
Collapse
Affiliation(s)
- Robyn M. Amos-Kroohs
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC 28081
| | - Vanina Usach
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Gonzalo Piñero
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Rocío Martinez Vivot
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Patricia Setton-Avruj
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| |
Collapse
|
30
|
Hamed SA. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: presentations, causes, and treatment strategies. Expert Rev Clin Pharmacol 2019; 12:61-90. [PMID: 30501441 DOI: 10.1080/17512433.2019.1555468] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 02/01/2023]
Abstract
Introduction: Uremic syndrome of chronic kidney disease (CKD) is a term used to describe clinical, metabolic, and hormonal abnormalities associated with progressive kidney failure. It is a rapidly growing public health problem worldwide. Nervous system complications occur in every patient with uremic syndrome of CKD. Areas covered: This review summarized central and peripheral nervous system complications of uremic syndrome of CKD and their pathogenic mechanisms. They include cognitive deterioration, encephalopathy, seizures, asterixis, myoclonus, restless leg syndrome, central pontine myelinolysis, stroke, extrapyramidal movement disorders, neuropathies, and myopathy. Their pathogenic mechanisms are complex and multiple. They include (1) accumulation of uremic toxins resulting in neurotoxicity, blood-brain barrier injury, neuroinflammation, oxidative stress, apoptosis, brain neurotransmitters imbalance, ischemic/microvascular changes, and brain metabolism dysfunction (e.g. dopamine deficiency), (2) metabolic derangement (as acidosis, hypocalcemia, hyperphosphatemia, hypomagnesemia, and hyperkalemia); (3) secondary hyperparathyroidism, (4) erythropoietin and iron deficiency anemia, (5) thiamin, vitamin D, and other nutritional deficiencies, (6) hyperhomocysteinemia, and (7) coagulation problems. Expert commentary: Nervous system complications of uremia contribute to the patients' morbidity and mortality. Optimizing renal replacement therapy, correction of associated metabolic and medical conditions, and improved understanding of possible pathogenic mechanisms of these complications is a major target for their prevention and treatment.
Collapse
Affiliation(s)
- Sherifa A Hamed
- a Department of Neurology and Psychiatry , Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
31
|
Porte Alcon S, Gorojod RM, Kotler ML. Regulated Necrosis Orchestrates Microglial Cell Death in Manganese-Induced Toxicity. Neuroscience 2018; 393:206-225. [PMID: 30316909 DOI: 10.1016/j.neuroscience.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overexposure, it has been proposed that microglial activation contributes to enhance the neurotoxicity. However, the occurrence of a direct cytotoxic effect of Mn on microglial cells remains controversial. In the present work, we investigated the potential vulnerability of immortalized mouse microglial cells (BV-2) toward Mn2+, focusing on the signaling pathways involved in cell death. Evidence obtained showed that Mn2+ induces a decrease in cell viability which is associated with reactive oxygen species (ROS) generation. In this report we demonstrated, for the first time, that Mn2+ triggers regulated necrosis (RN) in BV-2 cells involving two central mechanisms: parthanatos and lysosomal disruption. The occurrence of parthanatos is supported by several cellular and molecular events: (i) DNA damage; (ii) AIF translocation from mitochondria to the nucleus; (iii) mitochondrial membrane permeabilization; and (iv) PARP1-dependent cell death. On the other hand, Mn2+ induces lysosomal membrane permeabilization (LMP) and cathepsin D (CatD) release into the cytosol supporting the lysosomal disruption. Pre-incubation with CatB and D inhibitors partially prevented the Mn2+-induced cell viability decrease. Altogether these events point to lysosomes as players in the execution of RN. In summary, our results suggest that microglial cells could be direct targets of Mn2+ damage. In this scenario, Mn2+ triggers cell death involving RN pathways.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Thompson KJ, Hein J, Baez A, Sosa JC, Wessling-Resnick M. Manganese transport and toxicity in polarized WIF-B hepatocytes. Am J Physiol Gastrointest Liver Physiol 2018; 315:G351-G363. [PMID: 29792530 PMCID: PMC6335010 DOI: 10.1152/ajpgi.00103.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Manganese (Mn) toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains whereas ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to >250 μM MnCl2. However, the hepatocytes were resistant to 4-h exposures of up to 500 μM MnCl2 despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor, brefeldin A, did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile. NEW & NOTEWORTHY Polarized WIF-B hepatocytes express manganese (Mn) transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14. Fpn and ZIP14 localize to basolateral domains. ZnT10-positive vesicles were adjacent to apical bile compartments, and ZIP8-positive vesicles were distributed uniformly throughout the cytoplasm. WIF-B hepatocyte Mn export was resistant to hepcidin but inhibited by brefeldin A, pointing to an efflux mechanism involving ZnT10-mediated uptake of Mn into vesicles that subsequently fuse with and empty their contents across the apical bile canalicular membrane.
Collapse
Affiliation(s)
- Khristy J. Thompson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jennifer Hein
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Andrew Baez
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jose Carlo Sosa
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
33
|
Wang X, Flores SRL, Ha JH, Doguer C, Woloshun RR, Xiang P, Grosche A, Vidyasagar S, Collins JF. Intestinal DMT1 Is Essential for Optimal Assimilation of Dietary Copper in Male and Female Mice with Iron-Deficiency Anemia. J Nutr 2018; 148:1244-1252. [PMID: 30137476 PMCID: PMC6074787 DOI: 10.1093/jn/nxy111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background Divalent metal-ion transporter 1 (DMT1) may transport copper, but studies to date on this topic have been equivocal. Previously, an ex vivo experiment showed that intestinal copper transport was impaired in Dmt1-mutant Belgrade rats. Objective In this study, we tested the hypothesis that intestinal DMT1 transports copper in vivo. Methods Intestine-specific Dmt1 knockout (Dmt1int/int) mice and normal (control) littermates (Dmt1fl/fl) were used. In study 1, intestinal copper absorption was assessed in 7-wk-old mice of both sexes and genotypes by oral-intragastric gavage of 64Cu under normal and iron-deficiency anemia (IDA) conditions. In study 2, both sexes and genotypes of 8-wk-old mice were fed diets with adequate iron concentrations [72 parts per million (ppm)] plus adequate (9 ppm) or excessive (183 ppm) copper concentrations for 4 wk. Iron- and copper-related physiologic variables were subsequently assessed. Results Study 1 showed that intestinal copper transport was enhanced in normal (∼11% increase in males, 35% in females) and anemic (∼42% increase in males, 35% in females) Dmt1int/int mice. Study 2 showed that, with adequate copper intakes, serum ceruloplasmin (Cp) activity was decreased (by ∼29% in males and 20% in females) and spleens were enlarged (by 3-fold in both sexes) in Dmt1int/int mice. Higher dietary copper increased hepatic copper concentrations (by ∼3.3-fold in males and 1.5-fold in females), restored serum Cp activity, and mitigated the noted splenomegaly in Dmt1int/int mice. Conclusions Copper homeostasis was disrupted in Dmt1int/int mice, particularly during IDA, despite the noted increases in intestinal copper transport. This was exemplified by the fact that extra dietary copper was required to restore serum Cp activity (a biomarker of copper status) and reduce the severity of the noted splenomegaly (which could reflect changes in erythropoietic demand) in Dmt1int/int mice. Collectively, these observations show that intestinal DMT1 is essential for the assimilation of sufficient quantities of dietary copper to maintain systemic copper homeostasis during IDA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Departments of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Shireen RL Flores
- Departments of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Jung-Heun Ha
- Departments of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Caglar Doguer
- Departments of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Regina R Woloshun
- Departments of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Ping Xiang
- Departments of Food Science and Human Nutrition, University of Florida, Gainesville, FL,State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Astrid Grosche
- Departments of Radiation Oncology, University of Florida, Gainesville, FL
| | | | - James F Collins
- Departments of Food Science and Human Nutrition, University of Florida, Gainesville, FL,Address correspondence to JFC (e-mail: )
| |
Collapse
|
34
|
Affiliation(s)
- Jiao Li
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, P.R. China
- The second people’s Hospital of Qixingguan District, Bijie, Guizhou, P.R. China
| | - Yuyan Cen
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, P.R. China
| | - Yan Li
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, P.R. China
| |
Collapse
|
35
|
Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:729-742. [PMID: 29671021 DOI: 10.1007/s00210-018-1498-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain. Extensive accumulation of Mn in the brain may cause central nervous system dysfunction known as manganism, a motor disorder associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by vinpocetine in the Mn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other three groups were given MnCl2; two of them were treated with either L-dopa, the gold standard antiparkinsonian drug, or vinpocetine. Rats receiving MnCl2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress and inflammation were detected in the striata. L-dopa or vinpocetine exerted protective effects against MnCl2-induced neurotoxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant, antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine in the Mn-induced neurotoxicity model in rats.
Collapse
|
36
|
The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7580707. [PMID: 29849912 PMCID: PMC5907490 DOI: 10.1155/2018/7580707] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/10/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential element that is involved in the synthesis and activation of many enzymes and in the regulation of the metabolism of glucose and lipids in humans. In addition, Mn is one of the required components for Mn superoxide dismutase (MnSOD) that is mainly responsible for scavenging reactive oxygen species (ROS) in mitochondrial oxidative stress. Both Mn deficiency and intoxication are associated with adverse metabolic and neuropsychiatric effects. Over the past few decades, the prevalence of metabolic diseases, including type 2 diabetes mellitus (T2MD), obesity, insulin resistance, atherosclerosis, hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and hepatic steatosis, has increased dramatically. Previous studies have found that ROS generation, oxidative stress, and inflammation are critical for the pathogenesis of metabolic diseases. In addition, deficiency in dietary Mn as well as excessive Mn exposure could increase ROS generation and result in further oxidative stress. However, the relationship between Mn and metabolic diseases is not clear. In this review, we provide insights into the role Mn plays in the prevention and development of metabolic diseases.
Collapse
|
37
|
Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail 2018; 20:910-919. [PMID: 29484788 PMCID: PMC5993224 DOI: 10.1002/ejhf.1154] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/29/2017] [Accepted: 01/15/2017] [Indexed: 12/28/2022] Open
Abstract
AIMS Iron deficiency is common in patients with heart failure and associated with a poor cardiac function and higher mortality. How iron deficiency impairs cardiac function on a cellular level in the human setting is unknown. This study aims to determine the direct effects of iron deficiency and iron repletion on human cardiomyocytes. METHODS AND RESULTS Human embryonic stem cell-derived cardiomyocytes were depleted of iron by incubation with the iron chelator deferoxamine (DFO). Mitochondrial respiration was determined by Seahorse Mito Stress test, and contractility was directly quantified using video analyses according to the BASiC method. The activity of the mitochondrial respiratory chain complexes was examined using spectrophotometric enzyme assays. Four days of iron depletion resulted in an 84% decrease in ferritin (P < 0.0001) and significantly increased gene expression of transferrin receptor 1 and divalent metal transporter 1 (both P < 0.001). Mitochondrial function was reduced in iron-deficient cardiomyocytes, in particular ATP-linked respiration and respiratory reserve were impaired (both P < 0.0001). Iron depletion affected mitochondrial function through reduced activity of the iron-sulfur cluster containing complexes I, II and III, but not complexes IV and V. Iron deficiency reduced cellular ATP levels by 74% (P < 0.0001) and reduced contractile force by 43% (P < 0.05). The maximum velocities during both systole and diastole were reduced by 64% and 85%, respectively (both P < 0.001). Supplementation of transferrin-bound iron recovered functional and morphological abnormalities within 3 days. CONCLUSION Iron deficiency directly affects human cardiomyocyte function, impairing mitochondrial respiration, and reducing contractility and relaxation. Restoration of intracellular iron levels can reverse these effects.
Collapse
Affiliation(s)
- Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J David Kijlstra
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, 830 Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, 774 Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Choi EK, Nguyen TT, Gupta N, Iwase S, Seo YA. Functional analysis of SLC39A8 mutations and their implications for manganese deficiency and mitochondrial disorders. Sci Rep 2018; 8:3163. [PMID: 29453449 PMCID: PMC5816659 DOI: 10.1038/s41598-018-21464-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022] Open
Abstract
SLC39A8 encodes ZIP8, a divalent metal ion transporter. Mutations in the SLC39A8 gene are associated with congenital disorder of glycosylation type II and Leigh syndrome. Notably, affected patients with both disorders exhibited severe manganese (Mn) deficiency. The cellular function of human SLC39A8 (hSLC39A8) and the mechanisms by which mutations in this protein lead to human diseases are unclear. Herein, we show that hSLC39A8 mediates 54Mn uptake by the cells, and its expression is regulated by Mn. While expression of wild-type hSLC39A8 increased 54Mn uptake activity, disease-associated mutations abrogated the ability of the transporter to mediate Mn uptake into the cells, thereby providing a causal link to severe Mn deficiency. All mutants failed to localize on the cell surface and were retained within the endoplasmic reticulum. Interestingly, expression of hSLC39A8 mutants of both CDG type II and Leigh syndrome reduced mitochondrial 54Mn levels and activity of Mn-dependent mitochondrial superoxide dismutase MnSOD, and in turn increased oxidative stress. The expression of wild-type hSLC39A8, but not the disease-associated mutants, promoted mitochondrial functions. Moreover, loss of function analyses further corroborate hSLC39A8's critical role in mediating Mn uptake and mitochondrial function. Our results provide a potential pathogenic mechanism of diseases that are associated with hSLC39A8 mutations.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Trang-Tiffany Nguyen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Neil Gupta
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
39
|
Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics 2017; 9:1028-1046. [PMID: 28620665 DOI: 10.1039/c7mt00079k] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although manganese (Mn) is critical for the proper functioning of various metabolic enzymes and cofactors, excess Mn in the brain causes neurotoxicity. While the exact transport mechanism of Mn has not been fully understood, several importers and exporters for Mn have been identified over the past decade. In addition to Mn-specific transporters, it has been demonstrated that iron transporters can mediate Mn transport in the brain and peripheral tissues. However, while the expression of iron transporters is regulated by body iron stores, whether or not disorders of iron metabolism modify Mn homeostasis has not been systematically discussed. The present review will provide an update on the role of altered iron status in the transport and toxicity of Mn.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue 148TF, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress. Proc Natl Acad Sci U S A 2017; 114:E5805-E5814. [PMID: 28673968 DOI: 10.1073/pnas.1704012114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extensive endoplasmic reticulum (ER) stress damages the liver, causing apoptosis and steatosis despite the activation of the unfolded protein response (UPR). Restriction of zinc from cells can induce ER stress, indicating that zinc is essential to maintain normal ER function. However, a role for zinc during hepatic ER stress is largely unknown despite important roles in metabolic disorders, including obesity and nonalcoholic liver disease. We have explored a role for the metal transporter ZIP14 during pharmacologically and high-fat diet-induced ER stress using Zip14-/- (KO) mice, which exhibit impaired hepatic zinc uptake. Here, we report that ZIP14-mediated hepatic zinc uptake is critical for adaptation to ER stress, preventing sustained apoptosis and steatosis. Impaired hepatic zinc uptake in Zip14 KO mice during ER stress coincides with greater expression of proapoptotic proteins. ER stress-induced Zip14 KO mice show greater levels of hepatic steatosis due to higher expression of genes involved in de novo fatty acid synthesis, which are suppressed in ER stress-induced WT mice. During ER stress, the UPR-activated transcription factors ATF4 and ATF6α transcriptionally up-regulate Zip14 expression. We propose ZIP14 mediates zinc transport into hepatocytes to inhibit protein-tyrosine phosphatase 1B (PTP1B) activity, which acts to suppress apoptosis and steatosis associated with hepatic ER stress. Zip14 KO mice showed greater hepatic PTP1B activity during ER stress. These results show the importance of zinc trafficking and functional ZIP14 transporter activity for adaptation to ER stress associated with chronic metabolic disorders.
Collapse
|
41
|
Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 2017; 482:388-398. [PMID: 28212723 PMCID: PMC5382988 DOI: 10.1016/j.bbrc.2016.10.126] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause "manganism", a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
42
|
Komoike Y, Matsuoka M. Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure. Toxicol Appl Pharmacol 2016; 310:68-77. [PMID: 27634458 DOI: 10.1016/j.taap.2016.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/29/2016] [Accepted: 09/10/2016] [Indexed: 01/16/2023]
Abstract
Acrylamide (AA) is a well-known neurotoxic compound in humans and experimental animals. However, intracellular stress signaling pathways responsible for the neurotoxicity of AA are still not clear. In this study, we explored the involvement of the endoplasmic reticulum (ER) stress response in AA-induced neuronal damage in vitro and in vivo. Exposure of SH-SY5Y human neuroblastoma cells to AA increased the levels of phosphorylated form of eukaryotic translation initiation factor 2α (eIF2α) and its downstream effector, activating transcription factor 4 (ATF4), indicating the induction of the unfolded protein response (UPR) by AA exposure. Furthermore, AA exposure increased the mRNA level of c/EBP homologous protein (CHOP), the ER stress-dependent apoptotic factor, and caused the accumulation of reactive oxygen species (ROS) in SH-SY5Y cells. Treatments of SH-SY5Y cells with the chemical chaperone, 4-phenylbutyric acid and the ROS scavenger, N-acetyl-cysteine reduced the AA-induced expression of ATF4 protein and CHOP mRNA, and resulted in the suppression of apoptosis. In addition, AA-induced eIF2α phosphorylation was also suppressed by NAC treatment. In consistent with in vitro study, exposure of zebrafish larvae at 6-day post fertilization to AA induced the expression of chop mRNA and apoptotic cell death in the brain, and also caused the disruption of brain structure. These findings suggest that AA exposure induces apoptotic neuronal cell death through the ER stress and subsequent eIF2α-ATF4-CHOP signaling cascade. The accumulation of ROS by AA exposure appears to be responsible for this ER stress-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Yuta Komoike
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Masato Matsuoka
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
43
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
44
|
Michalke B. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. J Trace Elem Med Biol 2016; 37:50-61. [PMID: 27006066 DOI: 10.1016/j.jtemb.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and acetylcholineesterase were elevated and many metabolite concentrations were significantly changed.
Collapse
Affiliation(s)
- Bernhard Michalke
- Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
45
|
Rogers JT, Venkataramani V, Washburn C, Liu Y, Tummala V, Jiang H, Smith A, Cahill CM. A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. J Neurochem 2016; 138:479-94. [PMID: 27206843 DOI: 10.1111/jnc.13671] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/30/2022]
Abstract
Iron supplementation ameliorates the neurotoxicity of the environmental contaminant lead (Pb); however, the mechanism remains undefined. Iron is an essential nutrient but high levels are toxic due to the catalytic generation of destructive hydroxyl radicals. Using human neuroblastoma SH-SY5Y cells to model human neurons, we investigated the effect of Pb on proteins of iron homeostasis: the Alzheimer's amyloid precursor protein (APP), which stabilizes the iron exporter ferroportin 1; and, the heavy subunit of the iron-storage protein, ferritin (FTH). Lead (Pb(II) and Pb(IV) inhibited APP translation and raised cytosolic iron(II). Lead also increased iron regulatory protein-1 binding to the cognate 5'untranslated region-specific iron-responsive element (IRE) of APP and FTH mRNAs. Concurrent iron treatment rescued cells from Pb toxicity by specifically restoring APP synthesis, i.e. levels of the APP-related protein, APLP-2, were unchanged. Significantly, iron/IRE-independent over-expression of APP695 protected SH-SY5Y cells from Pb toxicity, demonstrating that APP plays a key role in maintaining safe levels of intracellular iron. Overall, our data support a model of neurotoxicity where Pb enhances iron regulatory protein/IRE-mediated repression of APP and FTH translation. We propose novel treatment options for Pb poisoning to include chelators and the use of small molecules to maintain APP and FTH translation. We propose the following cascade for Lead (Pb) toxicity to neurons; by targeting the interaction between Iron regulatory protein-1 and Iron-responsive elements, Pb caused translational repression of proteins that control intracellular iron homeostasis, including the Alzheimer's amyloid precursor protein (APP) that stabilizes the iron exporter ferroportin, and the ferroxidase heavy subunit of the iron-storage protein, ferritin. When unregulated, IRE-independent over-expression of APP695 protected SH-SY5Y neurons from Pb toxicity. There is a novel and key role for APP in maintaining safe levels of intracellular iron pertinent to lead toxicity.
Collapse
Affiliation(s)
- Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center, Goettingen, Germany
| | - Cecilia Washburn
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yanyan Liu
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vinusha Tummala
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hong Jiang
- State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Ann Smith
- School of Biological Sciences, University of Missouri-K.C., Kansas City, Missouri, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
46
|
Chen P, Culbreth M, Aschner M. Exposure, epidemiology, and mechanism of the environmental toxicant manganese. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13802-13810. [PMID: 27102617 DOI: 10.1007/s11356-016-6687-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
It has become increasingly apparent that global manganese (Mn) pollution to air and water is a significant threat to human health. Despite this recognition, research is only beginning to comprehend the detrimental effects of exposure. Mn, while essential, is particularly harmful to the central nervous system, and overexposure is symptomatic of several neurological disorders. At-risk populations have been identified, but it is still unclear whether typical exposure levels have any long-term consequences. Those at an elevated risk have diminished intellectual function, learning and memory, and mental development. While the overall mechanism of toxicity is undetermined, Mn has been found to induce oxidative stress, exacerbate mitochondrial dysfunction, dysregulate autophagy, and promote apoptosis, ultimately enhancing neurodegeneration. Extrapolation of this in vitro and in vivo data to humans is difficult. There is a definite need to correlate epidemiological studies with causative effects. It is imperative that research efforts endure, so threats are appropriately identified and exposure properly regulated.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
47
|
Abstract
Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | - Mahfuzur Rahman Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
48
|
Ganini D, Petrovich RM, Edwards LL, Mason RP. Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:1795-805. [PMID: 25964067 PMCID: PMC4516619 DOI: 10.1016/j.bbagen.2015.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mn/Fe-superoxide dismutase (SOD) is a family of enzymes essential for organisms to be able to cope with oxygen. These enzymes bound to their classical metals catalyze the dismutation of the free radical superoxide anion (O2(-)) to H2O2 and molecular oxygen. E. coli has the manganese-dependent SOD A and the iron-dependent SOD B. METHODS Strains of E. coli overexpressing SOD A or SOD B were grown in media with different metal compositions. SODs were purified and their metal content and SOD activity were determined. Those proteins were incubated with H2O2 and assayed for oxidation of Amplex red or o-phenylenediamine, consumption of H2O2, release of iron and protein radical formation. Cell survival was determined in bacteria with MnSOD A or FeSOD A after being challenged with H2O2. RESULTS We show for the first time that the bacterial manganese-dependent SOD A when bound to iron (FeSOD A) has peroxidase activity. The in vivo formation of the peroxidase FeSOD A was increased when media had higher levels of iron because of a decreased manganese metal incorporation. In comparison to bacteria with MnSOD A, cells with FeSOD A had a higher loss of viability when exposed to H2O2. GENERAL SIGNIFICANCE The biological occurrence of this fundamental antioxidant enzyme in an alternative iron-dependent state represents an important source of free radical formation.
Collapse
Affiliation(s)
- Douglas Ganini
- Free Radical Metabolites Group, Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Robert M Petrovich
- Protein Expression Core Facility, Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lori L Edwards
- Protein Expression Core Facility, Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ronald P Mason
- Free Radical Metabolites Group, Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
49
|
Abstract
The understanding of manganese (Mn) biology, in particular its cellular regulation and role in neurological disease, is an area of expanding interest. Mn is an essential micronutrient that is required for the activity of a diverse set of enzymatic proteins (e.g., arginase and glutamine synthase). Although necessary for life, Mn is toxic in excess. Thus, maintaining appropriate levels of intracellular Mn is critical. Unlike other essential metals, cell-level homeostatic mechanisms of Mn have not been identified. In this review, we discuss common forms of Mn exposure, absorption, and transport via regulated uptake/exchange at the gut and blood-brain barrier and via biliary excretion. We present the current understanding of cellular uptake and efflux as well as subcellular storage and transport of Mn. In addition, we highlight the Mn-dependent and Mn-responsive pathways implicated in the growing evidence of its role in Parkinson's disease and Huntington's disease. We conclude with suggestions for future focuses of Mn health-related research.
Collapse
Affiliation(s)
- Kyle J Horning
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232; , ,
| | | | | | | | | |
Collapse
|
50
|
Chen P, Bowman AB, Mukhopadhyay S, Aschner M. SLC30A10: A novel manganese transporter. WORM 2015; 4:e1042648. [PMID: 26430566 DOI: 10.1080/21624054.2015.1042648] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Homozygous mutations in SLC30A10 cause familial parkinsonism associated with manganese (Mn) retention. We recently identified SLC30A10 to be a cell surface-localized Mn efflux transporter and demonstrated that parkinsonism-causing mutations block its intracellular trafficking and efflux function. In C. elegans, SLC30A10 over-expression protected against Mn-induced lethality and dopaminergic neurotoxicity, consistent with results in mammalian systems. Here, we present new data about SLC30A10 function in C. elegans. SLC30A10 expression did not protect worms against ZnSO4toxicity, suggesting that SLC30A10 does not mediate Zn export in C. elegans. Furthermore, while a blast search identified 5 potential SLC30A10 homologs in worms (cdf-1, cdf-2, ttm-1 and toc-1; sequence identity <35%), knock-down of these genes showed a tendency of increased survival after Mn exposure (although only ttm-1 was statistically significant), suggesting that the worm homologs may function differently.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology; Albert Einstein College of Medicine ; Bronx, NY USA
| | - Aaron B Bowman
- Department of Neurology; Vanderbilt University Medical Center ; Nashville, TN USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology; Institute for Cellular and Molecular Biology and Institute for Neuroscience; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine ; Bronx, NY USA
| |
Collapse
|