1
|
Bridgeman L, Cimbalo A, López-Rodríguez D, Pamies D, Frangiamone M. Exploring toxicological pathways of microplastics and nanoplastics: Insights from animal and cellular models. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137795. [PMID: 40043388 DOI: 10.1016/j.jhazmat.2025.137795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) represent an emerging issue for human and animal health. This review critically examines in vitro and in vivo studies to elucidate their mechanisms of action and toxicological effects. Key objectives included: providing a comprehensive overview of MP-NPs studies in literature, assessing experimental conditions relative to real environmental scenarios, and identifying toxicological pathways at the molecular level. The findings revealed significant progress in understanding MP-NPs impacts. In particular, it has been observed the promotion of inflammation, oxidative stress, apoptosis, autophagy, and endoplasmic reticulum (ER) stress via specific signaling axes. Reproductive toxicity emerged as the primary research focus, particularly in male models, whereas effects on gastrointestinal, neurological, and cardiovascular systems were insufficiently studied, especially for the molecular pathways affected. Most studies disproportionately focused on polystyrene particles, neglecting other prevalent polymers such as polyethylene and polypropylene. Furthermore, reliance on synthetic microspheres and non-realistic experimental concentrations limits relevance to real-world conditions. Limited long-term exposure studies further constrain the understanding of MP-NPs persistence and risks. In view of this, future research should integrate environmentally relevant conditions for particles doses, size and composition, long-term exposure assessments, and advanced methodologies such as omics and computational modeling. In addition, therapeutic interventions targeting oxidative and ER stress, inflammation and apoptosis may be an excellent solution to mitigate MP-NPs toxicity. At the same time, a standardized global approach is needed to fully understand the risks posed by MP-NPs, attempting to safeguard public and environmental health.
Collapse
Affiliation(s)
- Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - David López-Rodríguez
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Switzerland
| | - David Pamies
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Stem Cell & Organoid Facility. University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
2
|
Shukla S, Khanna S, Khanna K. Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicol Rep 2025; 14:101844. [PMID: 39811819 PMCID: PMC11730953 DOI: 10.1016/j.toxrep.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.3 MTs, recycling efforts remain limited, with only 18.5 MTs being recycled. Currently, out of the total plastic waste, 49.6 % is converted into energy, 27 % is recycled, and 23.5 % is recovered as material, indicating a need for better waste management practices to combat the escalating pollution levels. Research studies on micro-nanoplastics have primarily concentrated on their environmental presence and laboratory-based toxicity studies. This review critically examines the sources and detection methods for micro-nanoplastics, emphasising their toxicological effects and ecological impacts. Organisms like zebrafish and rats serve as key models for studying these particle's bioaccumulative potential, showcasing adverse effects that extend to DNA damage, oxidative stress, and cellular apoptosis. Studies reveal that micro-nanoplastics can permeate biological barriers, including the blood-brain barrier, neurological imbalance, cardiac, respiratory, and dermatological disorders. These health risks, particularly relevant for humans, underscore the urgency for broader, real-world studies beyond controlled laboratory conditions. Additionally, the review discusses innovative energy-harvesting technologies as sustainable alternatives for plastic waste utilisation, particularly valuable for energy-deficient regions. These strategies aim to simultaneously address energy demands and mitigate plastic waste. This approach aligns with global sustainability goals, providing a promising avenue for both pollution reduction and energy generation. The review calls for further research to enhance detection techniques, assess long-term environmental impacts, and explore sustainable solutions that integrate energy recovery with pollution mitigation, especially in regions most affected by both energy shortages and increased plastic waste.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar Campus, Bhubaneswar, Odisha 752050, India
| | - Sakshum Khanna
- School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
- Relx Pvt Ltd, Gurugram, Haryana 122002, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Lu X, Luo Q, Zhao J, Li M, Liu D. Revealing the underlying mechanisms of nanoplastics induces neuroinflammation: From transcriptomic analysis to in vivo and in vitro validation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118311. [PMID: 40367607 DOI: 10.1016/j.ecoenv.2025.118311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/24/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
With the widespread use of plastic products globally, the harmful impacts of nanoplastics (NPs) on human health are not to be underestimated. Although the NPs-induced neurotoxicity has already been affirmed, the related mechanisms are still not fully understood. Therefore, this study aims to reveal the underlying mechanisms of NPs-induced neurotoxicity. After mice were randomly divided into the control, low-dose polystyrene nanoplastics (PS-NPs-L, 10 mg/kg), middle-dose PS-NPs (PS-NPs-M, 20 mg/kg), and high-dose PS-NPs (PS-NPs-H, 50 mg/kg) groups, we discovered PS-NPs with a mean diameter of approximately 100 nm were accumulated in the brain of mice, induced anxiety-like behaviors and cognitive dysfunction, caused pathological injuries to the mice's prefrontal cortex tissue, and elevated the Iba1 and GFAP expression in the mice's prefrontal cortex tissue. After BV-2 cells were randomly divided into the control, PS-NPs-L (25 μg/mL), PS-NPs-M (50 μg/mL), and PS-NPs-H (75 μg/mL) groups, we discovered PS-NPs inhibited cell viability, arrested the cell cycle in the G2 phase, and enhanced apoptosis and the ROS level of BV-2 cells. The transcriptomic analysis based on mice's prefrontal cortex tissues screened four shared DEGs, namely Pbx3, Ecell, Crb1, and Ngb. The differentially expressed genes were enriched in multiple pathways, especially the positive regulation of NIK/NF-kappaB signaling. In vitro, PS-NPs also increased the mean fluorescence intensity of p65, TNF-α, and IL-1β of BV-2 cells. In vivo and in vitro, PS-NPs up-regulated the mRNA and protein expression levels of NF-κB, TNF-α, and IL-1β. Our studies affirmed that PS-NPs induced neuroinflammation by activating the NF-κB signaling to promote the release of TNF-α and IL-1β based on transcriptomic analysis as well as in vivo and in vitro validation.
Collapse
Affiliation(s)
- Xiaomei Lu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qinghua Luo
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jiahao Zhao
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ming Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Dandan Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Gan HJ, Chen S, Yao K, Lin XY, Juhasz AL, Zhou D, Li HB. Simulated Microplastic Release from Cutting Boards and Evaluation of Intestinal Inflammation and Gut Microbiota in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47004. [PMID: 40042913 PMCID: PMC11980920 DOI: 10.1289/ehp15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Plastic cutting boards are commonly used in food preparation, increasing human exposure to microplastics (MPs). However, the health implications are still not well understood. OBJECTIVES The objective of this study was to assess the impacts of long-term exposure to MPs released from cutting boards on intestinal inflammation and gut microbiota. METHODS MPs were incorporated into mouse diets by cutting the food on polypropylene (PP), polyethylene (PE), and willow wooden (WB) cutting boards, and the diets were fed to mice over periods of 4 and 12 wk. Serum levels of C-reactive protein (CRP), tumor necrosis factor-α (TNF-α ), interleukin-10 (IL-10), lipopolysaccharide (LPS, an endotoxin), and carcinoembryonic antigen (CEA), along with ileum and colon levels of interleukin-1β (IL-1 β ), TNF-α , malondialdehyde (MDA), superoxide dismutase (SOD), secretory immunoglobulin A (sIgA), and myosin light chain kinase (MLCK), were measured using mouse enzyme-linked immunosorbent assay (ELISA) kits. The mRNA expression of mucin 2 and intestinal tight junction proteins in mouse ileum and colon tissues was quantified using real-time quantitative reverse transcription polymerase chain reaction. Fecal microbiota, fecal metabolomics, and liver metabolomics were characterized. RESULTS PP and PE cutting boards released MPs, with concentrations reaching 1,088 ± 95.0 and 1,211 ± 322 μ g / g in diets, respectively, and displaying mean particle sizes of 10.4 ± 0.96 vs. 27.4 ± 1.45 μ m . Mice fed diets prepared on PP cutting boards for 12 wk exhibited significantly higher serum levels of LPS, CRP, TNF-α , IL-10, and CEA, as well as higher levels of IL-1β , TNF-α , MDA, SOD, and MLCK in the ileum and colon compared with mice fed diets prepared on WB cutting boards. These mice also showed lower relative expression of Occludin and Zonula occludens-1 in the ileum and colon. In contrast, mice exposed to diets prepared on PE cutting boards for 12 wk did not show evident inflammation; however, there was a significant decrease in the relative abundance of Firmicutes and an increase in Desulfobacterota compared with those fed diets prepared on WB cutting boards, and exposure to diets prepared on PE cutting boards over 12 wk also altered mouse fecal and liver metabolites compared with those fed diets prepared on WB cutting boards. DISCUSSION The findings suggest that MPs from PP cutting boards impair intestinal barrier function and induce inflammation, whereas those from PE cutting boards affect the gut microbiota, gut metabolism, and liver metabolism in the mouse model. These findings offer crucial insights into the safe use of plastic cutting boards. https://doi.org/10.1289/EHP15472.
Collapse
Affiliation(s)
- Hai-Jun Gan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Ke Yao
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Adamiak K, Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Primary astrocytes as a cellular depot of polystyrene nanoparticles. Sci Rep 2025; 15:6502. [PMID: 39987253 PMCID: PMC11846901 DOI: 10.1038/s41598-025-91248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
The continuous increase in plastic production has resulted in increased generation of microplastic particles (MPs), and nanoplastic particles (NPs). Recent evidence suggests that nanoplastics may be a potent neurotoxin because they are able to freely cross the blood-brain barrier and enter the brain. Therefore, the cytotoxic effects of polystyrene nanoparticles (PS-NPs) on cellular systems of cerebral origin should be thoroughly investigated. The aim of the current study is to evaluate the cytotoxic potential of 25 nm PS-NPs on in vitro cultured cells such as primary astrocytes, neurons and their co-cultures established from the cerebral cortex of Wistar pups. The results show that PS-NPs are internalized in both neurons and astrocytes, inducing time- and concentration-dependent cytotoxic effects. However, quantification of fluorescence intensity indicates cell type-dependent differences in the efficiency of PS-NPs uptake. Astrocytes are several times more efficient at accumulating PS-NPs than neurons, and this is a phagocytosis-dependent process. Moreover, the high rate of PS-NPs internalization during prolonged exposure (72 h) promotes astroglial activation, as assessed by analysis of GFAP expression and immunocytochemical imaging. The results show that astroglia act as a cellular depot of PS-NPs to protect neurons. However, once the critical threshold is exceeded, astroglia become overactivated and can lose their protective functions. These results highlight the importance of further research on the mechanisms underlying nanoplastic-induced cellular toxicity, which may have implications for understanding the broader impact of plastic pollution on neurological functions.
Collapse
Affiliation(s)
- Kamil Adamiak
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106, Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, 99/103 Marymoncka Str., 01-813, Warsaw, Poland
| | - Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106, Warsaw, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Tian L, Chen J, Liu X, Wei Y, Zhao Y, Shi Y, Li K, Liu H, Lai W, Lin B. Prenatal exposure on nanoplastics: A study of spatial transcriptomics in hippocampal offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125480. [PMID: 39644950 DOI: 10.1016/j.envpol.2024.125480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Nanoplastics, as environmental contaminants, are thought to have irreversible impacts on the developing brains of infants and early children; however, the degree of the effects and the mechanisms of damage are unknown. In this study, spatial transcriptomics was used to investigate changes in the hippocampal region of rats descended from maternal exposure to polystyrene nanoplastics (PS-NPs), and the transcriptomes of each spot were sequenced, allowing us to visualize the hippocampus's transcriptional landscape as well as clarify the gene expression profiles of each cell type. Spatial transcriptomics was used to explore changes in the hippocampus region of rats exposed to PS-NPs during brain formation and maturation.The study's findings showed that the offspring hippocampal region had fewer neurons, more astrocytes, and more excitatory neurons 1(ExN1). The pseudo-time study of astrocytes revealed a decrease in C3-type astrocytes and an increase in C2-type astrocytes. This finding raises the possibility that memory impairment in the offspring may result from the developmental obstruction of astrocytes following the intervention of PS-NPs. Moreover, the annotations of four hippocampus regions, CA1, CA2-3, DG, and HILUS, as well as the GO and GSVA of several cell types, revealed deficiencies that can contribute to learning memory impairment. The analysis suggested that decreased neuroglutamate (Glutamate) and γ-aminobutyric acid (GABA) secretion in offspring after PS-NPs intervention was associated with depression. Lastly, intercellular communication revealed alterations in several ligand receptor pathways associated with an increase in astrocytes. In conclusion, spatial transcriptomics reveals that maternal exposure to nanoplastics influences the development of the offspring's hippocampal brain and causes neurotoxicity, which accounts for the offspring's reduction in learning memory function.
Collapse
Affiliation(s)
- Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Jiang Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China; School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Yizhe Wei
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Yiming Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China; School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
8
|
Sun J, Peng S, Yang Q, Yang J, Dai Y, Xing L. Microplastics/nanoplastics and neurological health: An overview of neurological defects and mechanisms. Toxicology 2025; 511:154030. [PMID: 39653181 DOI: 10.1016/j.tox.2024.154030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The widespread use of plastic products worldwide has brought about serious environmental issues. In natural environments, it's difficult for plastic products to degrade completely, and so they exist in the form of micro/nanoplastics (M/NPs), which have become a new type of pollutant. Prolonged exposure to M/NPs can lead to a series of health problems in humans, particularly toxicity to the nervous system, with consequences including neurodevelopmental abnormalities, neuronal death, neurological inflammation, and neurodegenerative diseases. Although direct evidence from humans is still limited, model organisms and organoids serve as powerful tools to provide important insights. This article summarizes the effects of M/NPs on the nervous system, focusing on cognitive function, neural development, and neuronal death. Mechanisms such as neurotransmitter synthesis and release, inflammatory responses, oxidative stress, the gut-brain axis, and the liver-brain axis are covered. The neurotoxicity induced by M/NPs may exacerbate or directly trigger neurodegenerative diseases and neurodevelopmental disorders. We particularly emphasize potential therapeutic agents that may counteract the neurotoxic effects induced by M/NPs, highlighting a novel future research direction. In summary, this paper cites evidence and provides mechanistic perspectives on the effects of M/NPs on neurological health, providing clues for eliminating M/NP hazards to human health in the future.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Qiongxia Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Jiawei Yang
- Department of Neurology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226000, China
| | - Yanfei Dai
- Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
9
|
Wu C, Zhang HJ, Ma H, Ji R, Pan K, Yue T, Miao AJ. Mechanisms Underlying the Size-Dependent Neurotoxicity of Polystyrene Nanoplastics in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1577-1586. [PMID: 39817745 DOI: 10.1021/acs.est.4c12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish. Utilizing molecular dynamics simulations and complementary methods, we discovered that PS-NPs initiated neurotoxicity by promoting dimerization of the toll-like receptor 4/myeloid differentiation-2 (TLR4/MD-2) complex. This process involves the binding of PS-NPs to the hydrophobic pocket of MD-2, which induced the flipping of Phe-126 toward the dimer interface and the bending of the C-terminal domain of TLR-4, bringing the two domains into close proximity. Thereafter, the astrocytes and microglia were activated, initiating a cascade of events that include neuroinflammation, central nervous system cell apoptosis, inhibition of motor neuron development, and ultimately alteration of the swimming behavior of zebrafish. Further, 20 nm PS-NPs elicited more severe neurotoxicity than 100 nm PS-NPs, attributed to their higher accumulation in the brain as determined through 14C-labeled PS-NPs and more effective interaction with the TLR4/MD-2 complex. Overall, our study uncovers the mechanisms underlying the size-dependent neurotoxicity of NPs, which merit attention during their risk assessment and regulation.
Collapse
Affiliation(s)
- Chao Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Hong-Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Hongxia Ma
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
10
|
Kim NH, Lee YA. The Effects of Nanoplastics on the Dopamine System of Cerebrocortical Neurons. Int J Toxicol 2025; 44:29-38. [PMID: 39486087 DOI: 10.1177/10915818241293993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Nanoplastics (NPx) can enter living organisms, including humans, through ecosystems, inhalation, and dermal contact and can be found from the intestine to the brain. However, it is unclear whether NPx accumulates and affects the dopamine system. In this study, we investigated the effects of NPx on the dopamine system in cultured murine cerebral cortex neurons. Cultured cerebrocortical neurons were treated with 100 nm NPx at the following concentrations for 24 h: 1.896 × 105, 3.791 × 106, 7.583 × 107, 1.571 × 109, 3.033 × 1010, and 3.033 × 1011 particles/mL. Dopamine-associated proteins were analyzed using immunofluorescence staining. NPx treatment induced its accumulation in neurons in a dose-dependent manner and increased the levels of dopamine receptors D1 and D2 and their co-expression. However, NPx treatment did not affect the levels of other dopamine receptors, dopamine transporters, tyrosine hydroxylase, and microtubule-associated protein 2, or synaptophysin in neuronal structures. This study demonstrated that NPx is a potential modulator of the dopamine system via its receptors rather than its synthesis and reuptake in neurons and may be associated with dopamine-based psychiatric disorders.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea
| |
Collapse
|
11
|
Chen J, Lu C, Xie W, Cao X, Zhang J, Luo J, Li J. Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish (Danio rerio). Int J Nanomedicine 2024; 19:13789-13803. [PMID: 39723177 PMCID: PMC11669342 DOI: 10.2147/ijn.s485091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood. Methods This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos. Subsequent RNA sequencing (RNA-seq) identified genes related to CVP deformities and hematopoietic stem/progenitor cells (HSPCs) in zebrafish embryos exposed to NPs. Additionally, single cell RNA sequencing (scRNA-seq) analysis identified genes associated with the development of CVP and HSPCs. RT-qPCR assessed changes in expression of these genes in zebrafish embryos exposed to different NP concentrations. Results The impact of NPs on zebrafish embryos was investigated, revealing significant reductions in survival and hatching rates and decreases in body length alongside increased heart rates. Exposure to NPs at 8 mg/L severely impaired zebrafish CVP development. RNA-seq revealed that NPs exposure altered the activity of oxidative enzymes, hydrolases, and the extracellular matrix in zebrafish embryos. Treatment with 10 µM NAC effectively rescued the CVP defects induced by NPs. Additionally, scRNA-seq identified genes associated with EC and HSPC development, and subsequent RT-qPCR validation confirmed significant expression changes in these genes. Conclusion The results of this study suggest that NPs induce oxidative stress in vascular ECs and HSPCs, which mediates CVP damage and impairs hematopoiesis in zebrafish embryos.
Collapse
Affiliation(s)
- Juntao Chen
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Wenjie Xie
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoqian Cao
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Jiannan Zhang
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Juan Li
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Casella C, Ballaz SJ. Genotoxic and neurotoxic potential of intracellular nanoplastics: A review. J Appl Toxicol 2024; 44:1657-1678. [PMID: 38494651 DOI: 10.1002/jat.4598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Plastic waste comprises polymers of different chemicals that disintegrate into nanoplastic particles (NPLs) of 1-100-nm size, thereby littering the environment and posing a threat to wildlife and human health. Research on NPL contamination has up to now focused on the ecotoxicology effects of the pollution rather than the health risks. This review aimed to speculate about the possible properties of carcinogenic and neurotoxic NPL as pollutants. Given their low-dimensional size and high surface size ratio, NPLs can easily penetrate biological membranes to cause functional and structural damage in cells. Once inside the cell, NPLs can interrupt the autophagy flux of cellular debris, alter proteostasis, provoke mitochondrial dysfunctions, and induce endoplasmic reticulum stress. Harmful metabolic and biological processes induced by NPLs include oxidative stress (OS), ROS generation, and pro-inflammatory reactions. Depending on the cell cycle status, NPLs may direct DNA damage, tumorigenesis, and lately carcinogenesis in tissues with high self-renewal capabilities like epithelia. In cells able to live the longest like neurons, NPLs could trigger neurodegeneration by promoting toxic proteinaceous aggregates, OS, and chronic inflammation. NPL genotoxicity and neurotoxicity are discussed based on the gathered evidence, when available, within the context of the intracellular uptake of these newcomer nanoparticles. In summary, this review explains how the risk evaluation of NPL pollution for human health may benefit from accurately monitoring NPL toxicokinetics and toxicodynamics at the intracellular resolution level.
Collapse
Affiliation(s)
- Claudio Casella
- Department Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
13
|
Adamiak K, Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Plastic nanoparticles interfere with extracellular vesicle pathway in primary astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117180. [PMID: 39437516 DOI: 10.1016/j.ecoenv.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The extensive production and use of plastics in recent decades has led to environmental pollution. It has been discovered that plastic microparticles (MPs) and nanoparticles (NPs), formed under the influence of physical forces, can pose a significant health risk. Increasing evidence indicates that NPs can have various toxic effects, including oxidative stress and cell death. However, the mechanisms underlying their toxicity are still under investigation. In this study, we examined whether polystyrene nanoparticles (PS-NPs) are internalized in primary astrocytes. We tracked their intracellular fate and search for potential interference with the intercellular communication pathway mediated by extracellular vesicles (EVs). Primary astrocyte cultures were exposed to fluorescent PS-NPs at concentrations of 0.5, 1, 25 and 50 µg/mL for 24, 48 and 72 hours. Based on electron microscopic analysis and confocal imaging, we determined that PS-NPs are internalized in astrocytes and accumulate in the cytoplasm in a concentration-dependent manner, localizing to endosomal-lysosomal system. Astrocytes exposed to PS-NPs form EVs containing encapsulated PS-NPs, which are released into the culture medium after 72 h of exposure and can be transferred via this route to other cells. As shown by proteomic analysis, PS-NPs affects the composition of the protein cargo of released EVs by decreasing the representation of proteins such as CD47, CSTB and CNDP2. Intercellular transport of PS-NPs in primary astrocytes is mediated by EVs system. EV-mediated release of PS-NPs may alleviate their toxicity in a single astrocyte but may also contribute to the spread of their toxic effect to neighbouring astrocytes. Exposure to PS-NPs interferes with the mechanism of protein sorting, thereby potentially influencing the EV-mediated cell-cell communication pathway.
Collapse
Affiliation(s)
- Kamil Adamiak
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland.
| |
Collapse
|
14
|
Bruno A, Dovizio M, Milillo C, Aruffo E, Pesce M, Gatta M, Chiacchiaretta P, Di Carlo P, Ballerini P. Orally Ingested Micro- and Nano-Plastics: A Hidden Driver of Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:3079. [PMID: 39272937 PMCID: PMC11393928 DOI: 10.3390/cancers16173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Micro- and nano-plastics (MNPLs) can move along the food chain to higher-level organisms including humans. Three significant routes for MNPLs have been reported: ingestion, inhalation, and dermal contact. Accumulating evidence supports the intestinal toxicity of ingested MNPLs and their role as drivers for increased incidence of colorectal cancer (CRC) in high-risk populations such as inflammatory bowel disease (IBD) patients. However, the mechanisms are largely unknown. In this review, by using the leading scientific publication databases (Web of Science, Google Scholar, Scopus, PubMed, and ScienceDirect), we explored the possible effects and related mechanisms of MNPL exposure on the gut epithelium in healthy conditions and IBD patients. The summarized evidence supports the idea that oral MNPL exposure may contribute to intestinal epithelial damage, thus promoting and sustaining the chronic development of intestinal inflammation, mainly in high-risk populations such as IBD patients. Colonic mucus layer disruption may further facilitate MNPL passage into the bloodstream, thus contributing to the toxic effects of MNPLs on different organ systems and platelet activation, which may, in turn, contribute to the chronic development of inflammation and CRC development. Further exploration of this threat to human health is warranted to reduce potential adverse effects and CRC risk.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66110 Chieti, Italy
| | - Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
15
|
Savuca A, Curpan AS, Hritcu LD, Buzenchi Proca TM, Balmus IM, Lungu PF, Jijie R, Nicoara MN, Ciobica AS, Solcan G, Solcan C. Do Microplastics Have Neurological Implications in Relation to Schizophrenia Zebrafish Models? A Brain Immunohistochemistry, Neurotoxicity Assessment, and Oxidative Stress Analysis. Int J Mol Sci 2024; 25:8331. [PMID: 39125900 PMCID: PMC11312823 DOI: 10.3390/ijms25158331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of exposure to environmental pollutants on neurological processes are of increasing concern due to their potential to induce oxidative stress and neurotoxicity. Considering that many industries are currently using different types of plastics as raw materials, packaging, or distribution pipes, microplastics (MPs) have become one of the biggest threats to the environment and human health. These consequences have led to the need to raise the awareness regarding MPs negative neurological effects and implication in neuropsychiatric pathologies, such as schizophrenia. The study aims to use three zebrafish models of schizophrenia obtained by exposure to ketamine (Ket), methionine (Met), and their combination to investigate the effects of MP exposure on various nervous system structures and the possible interactions with oxidative stress. The results showed that MPs can interact with ketamine and methionine, increasing the severity and frequency of optic tectum lesions, while co-exposure (MP+Met+Ket) resulted in attenuated effects. Regarding oxidative status, we found that all exposure formulations led to oxidative stress, changes in antioxidant defense mechanisms, or compensatory responses to oxidative damage. Met exposure induced structural changes such as necrosis and edema, while paradoxically activating periventricular cell proliferation. Taken together, these findings highlight the complex interplay between environmental pollutants and neurotoxicants in modulating neurotoxicity.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania;
| | - Teodora Maria Buzenchi Proca
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Petru Fabian Lungu
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Preclinical Department, Apollonia University, 700511 Iasi, Romania
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Carmen Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| |
Collapse
|
16
|
Du B, Li T, He H, Xu X, Zhang C, Lu X, Wang Y, Cao J, Lu Y, Liu Y, Hu S, Li J, Li L, Shi M. Analysis of Biodistribution and in vivo Toxicity of Varying Sized Polystyrene Micro and Nanoplastics in Mice. Int J Nanomedicine 2024; 19:7617-7630. [PMID: 39081896 PMCID: PMC11288365 DOI: 10.2147/ijn.s466258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Studies have shown that microplastics (MPs) and nanoplastics (NPs) could accumulate in the human body and pose a potential threat to human health. The purpose of this study is to evaluate the biodistribution and toxicity of MPs/NPs with different particle sizes comprehensively and thoroughly. Methods The purpose of this study was to investigate the biodistribution and in vivo toxicity of polystyrene (PS) MPs/NPs with different sizes (50 nm, 100 nm, and 500 nm). The BALB/c mice were given 100 μL of PS50, PS100 and PS500 at the dosage of 1 mg/kg BW or 10 mg/kg BW, respectively, by gavage once a day. After 28 consecutive days of treatment, the biodistribution of differently sized PS MPs/NPs was determined through cryosection fluorescence microscopy and fluorescent microplate reader analysis, and the subsequent effects of differently sized PS MPs/NPs on histopathology, hematology and blood biochemistry were also evaluated. Results The results showed that the three different sizes of PS MPs/NPs were distributed in the organs of mice, mainly in the liver, spleen, and intestine. At the same time, the smaller the particle size, the more they accumulate in the body and more easily penetrate the tissue. During the whole observation period, no abnormal behavior and weight change were observed. The results of H&E staining showed that no severe histopathological abnormalities were observed in the main organs in the low-dose exposure group, while. Exposure of three sizes of PS MPs/NPs could cause some changes in hematological parameters or biochemical parameters related to heart, liver, and kidney function; meanwhile, there were size- and dose-dependencies. Conclusion The biological distribution and toxicity of plastic particles in mice were more obvious with the decrease of particle size and the increase of concentration of plastic particles. Compared with MPs, NPs were easier to enter the tissues and produce changes in liver, kidney, and heart functions. Therefore, more attention should be paid to the toxicity of NPs.
Collapse
Affiliation(s)
- Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xun Xu
- Experimental Animal Center, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Shanshan Hu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| |
Collapse
|
17
|
Qin X, Cao M, Peng T, Shan H, Lian W, Yu Y, Shui G, Li R. Features, Potential Invasion Pathways, and Reproductive Health Risks of Microplastics Detected in Human Uterus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10482-10493. [PMID: 38829656 DOI: 10.1021/acs.est.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Microplastics (MPs) are ubiquitous in global ecosystems and may pose a potential risk to human health. However, critical information on MP exposure and risk to female reproductive health is still lacking. In this study, we characterized MPs in human endometrium and investigated their size-dependent entry mode as well as potential reproductive toxicity. Endometrial tissues of 22 female patients were examined, revealing that human endometrium was contaminated with MPs, mainly polyamide (PA), polyurethane (PU), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyethylene (PE), ranging from 2-200 μm in size. Experiments conducted in mice demonstrated that the invasion of the uterus by MPs was modulated either through diet-blood circulation (micrometer-sized particles) or via the vagina-uterine lacuna mode (larger particles reaching a size of 100 μm. Intravenous exposure to MPs resulted in reduced fertility and abnormal sex ratio in mouse offspring (P < 0.05). After 3.5 months of intragastric exposure, there was a significant inflammatory response in the endometrium (P < 0.05), confirmed by embryo transfer as a uterine factor leading to decreased fertility. Furthermore, human endometrial organoids cultured with MPs in vitro exhibited significantly apoptotic responses and disrupted growth patterns (P < 0.01). These findings raise significant concerns regarding MP contamination in the human uterus and its potential effects on reproductive health.
Collapse
Affiliation(s)
- Xunsi Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Mingjun Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianliu Peng
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Hongying Shan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Weisi Lian
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| |
Collapse
|
18
|
Kaur M, Sharma A, Bhatnagar P. Vertebrate response to microplastics, nanoplastics and co-exposed contaminants: Assessing accumulation, toxicity, behaviour, physiology, and molecular changes. Toxicol Lett 2024; 396:48-69. [PMID: 38677566 DOI: 10.1016/j.toxlet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pollution from microplastics (MPs) and nanoplastics (NPs) has gained significant public attention and has become a serious environmental problem worldwide. This review critically investigates MPs/NPs' ability to pass through biological barriers in vertebrate models and accumulate in various organs, including the brain. After accumulation, these particles can alter individuals' behaviour and exhibit toxic effects by inducing oxidative stress or eliciting an inflammatory response. One major concern is the possibility of transgenerational harm, in which toxic consequences are displayed in offspring who are not directly exposed to MPs/NPs. Due to their large and marked surface hydrophobicity, these particles can easily absorb and concentrate various environmental pollutants, which may increase their toxicity to individuals and subsequent generations. This review systematically provides an analysis of recent studies related to the toxic effects of MPs/NPs, highlighting the intricate interplay between co-contaminants in vitro and in vivo. We further delve into mechanisms of MPs/NPs-induced toxicity and provide an overview of potential therapeutic approaches to lessen the negative effects of these MPs/NPs. The review also emphasizes the urgency of future studies to examine the long-term effects of chronic exposure to MPs/NPs and their size- and type-specific hazardous dynamics, and devising approaches to safeguard the affected organisms.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
19
|
Milillo C, Aruffo E, Di Carlo P, Patruno A, Gatta M, Bruno A, Dovizio M, Marinelli L, Dimmito MP, Di Giacomo V, Paolini C, Pesce M, Ballerini P. Polystyrene nanoplastics mediate oxidative stress, senescence, and apoptosis in a human alveolar epithelial cell line. Front Public Health 2024; 12:1385387. [PMID: 38799687 PMCID: PMC11116779 DOI: 10.3389/fpubh.2024.1385387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background Nanoplastics, an emerging form of pollution, are easily consumed by organisms and pose a significant threat to biological functions due to their size, expansive surface area, and potent ability to penetrate biological systems. Recent findings indicate an increasing presence of airborne nanoplastics in atmospheric samples, such as polystyrene (PS), raising concerns about potential risks to the human respiratory system. Methods This study investigates the impact of 800 nm diameter-PS nanoparticles (PS-NPs) on A549, a human lung adenocarcinoma cell line, examining cell viability, redox balance, senescence, apoptosis, and internalization. We also analyzed the expression of hallmark genes of these processes. Results We demonstrated that PS-NPs of 800 nm in diameter significantly affected cell viability, inducing oxidative stress, cellular senescence, and apoptosis. PS-NPs also penetrated the cytoplasm of A549 cells. These nanoparticles triggered the transcription of genes comprised in the antioxidant network [SOD1 (protein name: superoxide dismutase 1, soluble), SOD2 (protein name: superoxide dismutase 2, mitochondrial), CAT (protein name: catalase), Gpx1 (protein name: glutathione peroxidase 1), and HMOX1 (protein name: heme oxygenase 1)], senescence-associated secretory phenotype [Cdkn1a (protein name: cyclin-dependent kinase inhibitor 1A), IL1A (protein name: interleukin 1 alpha), IL1B (protein name: interleukin 1 beta), IL6 (protein name: interleukin 6), and CXCL8 (protein name: C-X-C motif chemokine ligand 8)], and others involved in the apoptosis modulation [BAX (protein name: Bcl2 associated X, apoptosis regulator), CASP3 (protein name: caspase 3), and BCL2 (protein name: Bcl2, apoptosis regulator)]. Conclusion Collectively, this investigation underscores the importance of concentration (dose-dependent effect) and exposure duration as pivotal factors in assessing the toxic effects of PS-NPs on alveolar epithelial cells. Greater attention needs to be directed toward comprehending the risks of cancer development associated with air pollution and the ensuing environmental toxicological impacts on humans and other terrestrial mammals.
Collapse
Affiliation(s)
- Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Aruffo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Piero Di Carlo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Antonia Patruno
- UdA-TechLab, Research Center, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Lisa Marinelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marilisa Pia Dimmito
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Viviana Di Giacomo
- UdA-TechLab, Research Center, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Mirko Pesce
- UdA-TechLab, Research Center, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
20
|
Vojnits K, de León A, Rathore H, Liao S, Zhao M, Gibon J, Pakpour S. ROS-dependent degeneration of human neurons induced by environmentally relevant levels of micro- and nanoplastics of diverse shapes and forms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134017. [PMID: 38518696 DOI: 10.1016/j.jhazmat.2024.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Andrés de León
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Harneet Rathore
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Sophia Liao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Michael Zhao
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia, Kelowna, BC, Canada; Office of Vice-Principal, Research and Innovation, McGill University, Montreal, Quebec, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
21
|
Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. Neurotoxicities induced by micro/nanoplastics: A review focusing on the risks of neurological diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134054. [PMID: 38503214 DOI: 10.1016/j.jhazmat.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Pollution of micro/nano-plastics (MPs/NPs) is ubiquitously prevalent in the environment, leading to an unavoidable exposure of the human body. Despite the protection of the blood-brain barrier, MPs/NPs can be transferred and accumulated in the brain, which subsequently exert negative effects on the brain. Nevertheless, the potential neurodevelopmental and/or neurodegenerative risks of MPs/NPs remain largely unexplored. In this review, we provide a systematic overview of recent studies related to the neurotoxicity of MPs/NPs. It covers the environmental hazards and human exposure pathways, translocation and distribution into the brain, the neurotoxic effects, and the possible mechanisms of environmental MPs/NPs. MPs/NPs are widely found in different environment matrices, including air, water, soil, and human food. Ambient MPs/NPs can enter the human body by ingestion, inhalation and dermal contact, then be transferred into the brain via the blood circulation and nerve pathways. When MPs/NPs are present in the brain, they can initiate a series of molecular or cellular reactions that may harm the blood-brain barrier, cause oxidative stress, trigger inflammatory responses, affect acetylcholinesterase activity, lead to mitochondrial dysfunction, and impair autophagy. This can result in abnormal protein folding, loss of neurons, disruptions in neurotransmitters, and unusual behaviours, ultimately contributing to the initiation and progression of neurodegenerative changes and neurodevelopmental abnormalities. Key challenges and further research directions are also proposed in this review as more studies are needed to focus on the potential neurotoxicity of MPs/NPs under realistic conditions.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology 2024; 504:153799. [PMID: 38608860 DOI: 10.1016/j.tox.2024.153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Given the widespread production and use of plastics, poor biodegradability, and inadequate recycling, micro/nanoplastics (MNPs) have caused widespread environmental pollution. As a result, humans inevitably ingest MNPs through various pathways. However, there is still no consensus on whether exposure to MNPs has adverse effects on humans. This article aims to provide a comprehensive overview of the knowledge of MNPs and the potential mechanisms of their impact on the central nervous system. Numerous in vivo and in vitro studies have shown that exposure to MNPs may pass through the blood-brain barrier (BBB) and lead to neurotoxicity through impairments in oxidative and inflammatory balance, neurotransmitter alternation, nerve conduction-related key enzymes, and impact through the gut-brain axis. It is worth noting that MNPs may act as carriers and have more severe effects on the body when co-exposed with other substances. MNPs of smaller sizes cause more severe harm. Despite the scarcity of reports directly relevant to humans, this review brings together a growing body of evidence showing that exposure to MNPs disturbs neurons and has even been found to alter the memory and behavior of organisms. This effect may lead to further potential negative influence on the central nervous system and contribute to the development of other diseases such as central nervous system inflammation and Parkinson 's-like neurodegenerative disorders. There is a need further to investigate the threat of MNPs to human health.
Collapse
Affiliation(s)
- Yanxu Zheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jingyu Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, 87th Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410013, PR China.
| |
Collapse
|
23
|
Fu X, Han H, Yang H, Xu B, Dai W, Liu L, He T, DU X, Pei X. Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice. J Zhejiang Univ Sci B 2024; 25:307-323. [PMID: 38584093 PMCID: PMC11009441 DOI: 10.1631/jzus.b2300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/29/2023] [Indexed: 04/09/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China. ,
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China. ,
| |
Collapse
|
24
|
Wang H, Qiao C, Gao Y, Geng Y, Niu F, Yang R, Wang Z, Jiang W, Sun H. The adverse effects of developmental exposure to polystyrene nanoparticles on cognitive function in weaning rats and the protective role of trihydroxy phenolacetone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123632. [PMID: 38460594 DOI: 10.1016/j.envpol.2024.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Polystyrene nanoplastic(PS-NP) can originate from sources such as plastic waste and industrial wastewater and have been shown to have deleterious effects on abnormal neurobehaviors. However, evidence regarding the health impacts, biological mechanisms, and treatment strategies underlying developmental exposure to low dose PS-NP is still lacking. This study aimed to fill this knowledge gap by administering low doses of PS-NP(50 and 100 μg/L) to weaning rats for 4 consecutive weeks. Behavioral and morphological experiments were performed to evaluate hippocampal damage, and transcriptomics and Assay for Transposase Accessible Chromatin with hight-throughput sequencing(ATAC) analyses were conducted to identify potential key targets. Additionally, Connectivity Map(CMap) database, Limited proteolysis-mass spectrometry(LiP-SMap), and molecular-protein docking were used to examine potential phytochemicals with therapeutic effects on key targets. The results indicated that developmental exposure to PS-NP can induce hippocampal impairment and aberrant neurobehaviors in adulthood. Multi-omics analyses consistently showed that apoptosis-related signaling pathways were sensitive to PS-NP exposure, and mitogen-activated protein kinase 3(Mapk3) was identified as the core gene by the gene network, which was further validated in vitro experiments. The CMap database provided a series of phytochemicals that might regulate Mapk3 expression, and trihydroxy-phenolacetone(THP) was found to have directly binding sites with Mapk3 through LiP-SMap and molecular docking analysis. Furthermore, THP administration could significantly alleviate apoptosis induced by PS-NP exposure in primary hippocampal cells through down-regulation of Mapk3. These findings suggested that developmental exposure to PS-NP has adverse effects on cognitive function and that THP can alleviate these effects by directly binding to Mapk3.
Collapse
Affiliation(s)
- Hang Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China; National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Conghui Qiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Yang Gao
- Cosmetics Technology Center, Chinese Academy of Inspection and Quarantine, No.11 Rong Hua South Road, Economic-Technological Development Area, Beijing, 100176, China
| | - Yiding Geng
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Fengru Niu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Ruiming Yang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Zheng Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongru Sun
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
25
|
Li Y, Ye Y, Yuan H, Rihan N, Han M, Liu X, Zhu T, Zhao Y, Che X. Exposure to polystyrene nanoplastics induces apoptosis, autophagy, histopathological damage, and intestinal microbiota dysbiosis of the Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170924. [PMID: 38360329 DOI: 10.1016/j.scitotenv.2024.170924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Haojuan Yuan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Tian Zhu
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
26
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Jeong J, Im J, Choi J. Integrating aggregate exposure pathway and adverse outcome pathway for micro/nanoplastics: A review on exposure, toxicokinetics, and toxicity studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116022. [PMID: 38309230 DOI: 10.1016/j.ecoenv.2024.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro/nanoplastics (MNPs) have emerged as a significant environmental concern due to their widespread distribution and potential adverse effects on human health and the environment. In this study, to integrate exposure and toxicity pathways of MNPs, a comprehensive review of the occurrence, toxicokinetics (absorption, distribution, and excretion [ADE]), and toxicity of MNPs were investigated using the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks. Eighty-five papers were selected: 34 papers were on detecting MNPs in environmental samples, 38 papers were on the ADE of MNPs in humans and fish, and 36 papers were related to MNPs toxicity using experimental models. This review not only summarizes individual studies but also presents a preliminary AEP-AOP framework. This framework offers a comprehensive overview of pathways, enabling a clearer visualization of intricate processes spanning from environmental media, absorption, distribution, and molecular effects to adverse outcomes. Overall, this review emphasizes the importance of integrating exposure and toxicity pathways of MNPs by utilizing AEP-AOP to comprehensively understand their impacts on human and ecological organisms. The findings contribute to highlighting the need for further research to fill the existing knowledge gaps in this field and the development of more effective strategies for the safe management of MNPs.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
28
|
Marcellus KA, Bugiel S, Nunnikhoven A, Curran I, Gill SS. Polystyrene Nano- and Microplastic Particles Induce an Inflammatory Gene Expression Profile in Rat Neural Stem Cell-Derived Astrocytes In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:429. [PMID: 38470760 DOI: 10.3390/nano14050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Microplastics are considered an emerging environmental pollutant due to their ubiquitous presence in the environment. However, the potential impact of microplastics on human health warrants further research. Recent studies have reported neurobehavioral and neurotoxic effects in marine and rodent models; however, their impact on the underlying cellular physiology in mammals remains unclear. Herein, we exposed neural stem cells and neural stem cell-derived astrocytes, oligodendrocytes, and neurons to various sizes and concentrations of polystyrene nano- and microplastics. We investigated their cellular uptake, impact on cytotoxicity, and alteration of gene expression through transcriptome profiling. The cell type most affected by decreased viability were astrocytes after 7 days of repeated exposure. Transcriptional analysis showed that 1274 genes were differentially expressed in astrocytes exposed to 500 nm microplastics, but only 531 genes were altered in astrocytes exposed to 50 nm nanoplastics. Both canonical pathway and Kyoto Encyclopedia of Genes and Genomes analysis showed that upregulated pathways were involved in neuroinflammation, innate and adaptive immunity, cell migration, proliferation, extracellular matrix remodeling, and cytoskeleton structures. The downregulated pathways were involved in lipid metabolism, specifically fatty acid oxidation and cholesterol metabolism. Our results show that neural stem cell-derived astrocytes repeatedly exposed to nano- and microplastics for 7 days undergo changes that are hallmarks of astrogliosis.
Collapse
Affiliation(s)
- Kristen A Marcellus
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Steven Bugiel
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Andrée Nunnikhoven
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Ivan Curran
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Santokh S Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
29
|
Shi W, Wu N, Zhang Z, Liu Y, Chen J, Li J. A global review on the abundance and threats of microplastics in soils to terrestrial ecosystem and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169469. [PMID: 38154650 DOI: 10.1016/j.scitotenv.2023.169469] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Soil is the source and sink of microplastics (MPs), which is more polluted than water and air. In this paper, the pollution levels of MPs in the agriculture, roadside, urban and landfill soils were reviewed, and the influence of MPs on soil ecosystem, including soil properties, microorganisms, animals and plants, was discussed. According to the results of in vivo and in vitro experiments, the possible risks of MPs to soil ecosystem and human health were predicted. Finally, in light of the current status of MPs research, several prospects are provided for future research directions to better evaluate the ecological risk and human health risk of MPs. MPs concentrations in global agricultural soils, roadside soils, urban soils and landfill soils had a great variance in different studies and locations. The participation of MPs has an impact on all aspects of terrestrial ecosystems. For soil properties, pH value, bulk density, pore space and evapotranspiration can be changed by MPs. For microorganisms, MPs can alter the diversity and abundance of microbiome, and different MPs have different effects on bacteria and fungi differently. For plants, MPs may interfere with their biochemical and physiological conditions and produce a wide range of toxic effects, such as inhibiting plant growth, delaying or reducing seed germination, reducing biological and fruit yield, and interfering with photosynthesis. For soil animals, MPs can affect their mobility, growth rate and reproductive capacity. At present epidemiological evidences regarding MPs exposure and negative human health effects are unavailable, but in vitro and in vivo data suggest that they pose various threats to human health, including respiratory system, digestive system, urinary system, endocrine system, nervous system, and circulation system. In conclusion, the existence and danger of MPs cannot be ignored and requires a global effort.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Nan Wu
- School of Geography, Queen Mary University of London, London E1 4NS, UK
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| | - Yuting Liu
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China.
| |
Collapse
|
30
|
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168946. [PMID: 38043812 DOI: 10.1016/j.scitotenv.2023.168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.
Collapse
Affiliation(s)
- Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Palizhati Rehati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
31
|
Han SW, Choi J, Ryu KY. Recent progress and future directions of the research on nanoplastic-induced neurotoxicity. Neural Regen Res 2024; 19:331-335. [PMID: 37488886 PMCID: PMC10503636 DOI: 10.4103/1673-5374.379016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 07/26/2023] Open
Abstract
Many types of plastic products, including polystyrene, have long been used in commercial and industrial applications. Microplastics and nanoplastics, plastic particles derived from these plastic products, are emerging as environmental pollutants that can pose health risks to a wide variety of living organisms, including humans. However, it is not well understood how microplastics and nanoplastics affect cellular functions and induce stress responses. Humans can be exposed to polystyrene-microplastics and polystyrene-nanoplastics through ingestion, inhalation, or skin contact. Most ingested plastics are excreted from the body, but inhaled plastics may accumulate in the lungs and can even reach the brain via the nose-to-brain route. Small-sized polystyrene-nanoplastics can enter cells by endocytosis, accumulate in the cytoplasm, and cause various cellular stresses, such as inflammation with increased pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. They induce autophagy activation and autophagosome formation, but autophagic flux may be impaired due to lysosomal dysfunction. Unless permanently exposed to polystyrene-nanoplastics, they can be removed from cells by exocytosis and subsequently restore cellular function. However, neurons are very susceptible to this type of stress, thus even acute exposure can lead to neurodegeneration without recovery. This review focuses specifically on recent advances in research on polystyrene-nanoplastic-induced cytotoxicity and neurotoxicity. Furthermore, in this review, based on mechanistic studies of polystyrene-nanoplastics at the cellular level other than neurons, future directions for overcoming the negative effects of polystyrene-nanoplastics on neurons were suggested.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, South Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
32
|
Zhang Y, Jia Z, Gao X, Zhao J, Zhang H. Polystyrene nanoparticles induced mammalian intestine damage caused by blockage of BNIP3/NIX-mediated mitophagy and gut microbiota alteration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168064. [PMID: 37884137 DOI: 10.1016/j.scitotenv.2023.168064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Nanoplastics possess the capacity for cellular internalization, and consequentially disrupt mitochondrial functionality, precipitating aberrations in energy metabolism. Given this, the potential accumulation of nanoplastics in alimentary sources presents a considerable hazard to the mammalian gastrointestinal system. While mitophagy serves as a cytoprotective mechanism that sustains redox homeostasis through the targeted removal of compromised mitochondria, the regulatory implications of mitophagy in nanoplastic-induced toxicity remain an underexplored domain. In the present investigation, polystyrene (PS) nanoparticles, with a diameter of 80 nm employed as a representative model to assess their toxicological impact and propensity to instigate mitophagy in intestinal cells both in vitro and in vivo. Data indicated that PS nanoparticles elicited BNIP3/NIX-mediated mitophagy within the intestinal milieu. Strikingly, the impediment of this degradation process at elevated concentrations was correlated with exacerbated pathological ramifications. In vitro assays corroborated that high-dosage cellular uptake of PS nanoparticles obstructed the mitophagy pathway. Furthermore, treatment with PS nanoparticles engendered alterations in gut microbiota composition and manifested a proclivity to modulate nutritional metabolism. Collectively, these findings elucidate that oral exposure to PS nanoparticles culminates in the inhibition of mitophagy and induces perturbations in the intestinal microbiota. This contributes valuable insights into the toxicological repercussions of nanoplastics on mammalian gastrointestinal health.
Collapse
Affiliation(s)
- Yilun Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xianlei Gao
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Juan Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
33
|
Li Y, Ye Y, Rihan N, Zhu B, Jiang Q, Liu X, Zhao Y, Che X. Polystyrene nanoplastics induce lipid metabolism disorder and alter fatty acid composition in the hepatopancreas of Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167616. [PMID: 37832676 DOI: 10.1016/j.scitotenv.2023.167616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The impact of nanoplastics (NPs) on environmental pollution and aquatic organisms has gradually attracted attention, but there are relatively few reports of the effects of NPs on the lipid metabolism of crustaceans. In this study, we exposed Pacific whiteleg shrimp (Litopenaeus vannamei) to different concentrations of polystyrene NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. We then evaluated the effects of NP exposure on metabolite content, histology, lipid metabolism-related enzyme activity, and gene expression. Our results showed that with increasing NPs concentrations and exposure time, (1) the crude protein and crude fat content decreased and fatty acid composition changed; (2) the tissue structure was destroyed and the number of lipid droplets increased in the hepatopancreas; (3) the activities of acetyl-CoA carboxylase, fatty acid synthase, carnitine palmitoyl transferase-1, pyruvate kinase and low-density lipoprotein content tended to decrease and that of lipase and high-density lipoprotein content first increased and then decreased; the content of triglycerides and total carbohydrate first decreased and then increased; (4) the expression of fatty acid synthesis-related genes (Fas, SREBP, and FAD), fatty acid transport-related genes (FATP, FABP, and ACBP), and fatty acid decomposition-related genes (Ampk and lip1) first increased and then decreased. These results indicate that exposure to NPs can cause physiological disorders of fat metabolism in L.vannamei and that high concentrations of NPs have a negative impact on lipid metabolism. These results of this study provide valuable ecotoxicological data for better interpretation of the mechanism of action of NPs in crustaceans.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
34
|
Yang S, Zhang T, Ge Y, Cheng Y, Yin L, Pu Y, Chen Z, Liang G. Ferritinophagy Mediated by Oxidative Stress-Driven Mitochondrial Damage Is Involved in the Polystyrene Nanoparticles-Induced Ferroptosis of Lung Injury. ACS NANO 2023; 17:24988-25004. [PMID: 38086097 DOI: 10.1021/acsnano.3c07255] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nanoplastics are a common type of contaminant in the air. However, no investigations have focused on the toxic mechanism of lung injury induced by nanoplastic exposure. In the present study, polystyrene nanoplastics (PS-NPs) caused ferroptosis in lung epithelial cells, which could be alleviated by ferrostatin-1, deferoxamine, and N-acetylcysteine. Further investigation found that PS-NPs disturbed mitochondrial structure and function and triggered autophagy. Mechanistically, oxidative stress-derived mitochondrial damage contributed to ferroptosis, and autophagy-dependent ferritinophagy was a pivotal intermediate link, resulting in ferritin degradation and iron ion release. Furthermore, inhibition of ferroptosis using ferrostatin-1 alleviated pulmonary and systemic toxicity to reverse the mouse lung injury induced by PS-NPs inhalation. Most importantly, the lung-on-a-chip was further used to clarify the role of ferroptosis in the PS-NPs-induced lung injury by visualizing the ferroptosis, oxidative stress, and alveolar-capillary barrier dysfunction at the organ level. In summary, our study indicated that ferroptosis was an important mechanism for nanoplastics-induced lung injury through different lung cells, mouse inhalation models, and three-dimensional-based lung-on-a-chip, providing an insightful reference for pulmonary toxicity assessment of nanoplastics.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
35
|
Méndez Rodríguez KB, Jiménez Avalos JA, Fernández Macias JC, González Palomo AK. Microplastics: challenges of assessment in biological samples and their implication for in vitro and in vivo effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119733-119749. [PMID: 37971585 DOI: 10.1007/s11356-023-30853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Microplastics (MPs) have attracted global interest because they have been recognized as emerging pollutants that require urgent attention. MPs are plastic particles with a size between 1 micron and 5 mm (1 µm-5mm); those measuring less than 1 µm are known as nanoplastics (NPs). MP is distributed in the environment in various physical forms that depend on the degradation process, the erosion factors to which it was subjected, or the original form in which it was intentionally manufactured. Humans may be exposed to these pollutants mainly by ingestion or inhalation, which could adversely affect human health with effects that are still unknown due to limitations that are often dependent on their analytical determination and lack of studies over time, as it is a relatively new topic. Therefore, this review focuses on the challenges currently faced by laboratories for determining MPs in different matrices. We highlight the application of methods and techniques to assess the precise levels of exposure to MPs in biological samples. In addition, exposure pathways, sources, and evidence of adverse effects reported in vitro and in vivo studies are described to generate knowledge about their potential threat to human health.
Collapse
Affiliation(s)
- Karen Beatriz Méndez Rodríguez
- Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí, San Luis Potosí, México
| | | | - Juan Carlos Fernández Macias
- Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí, San Luis Potosí, México
| | - Ana Karen González Palomo
- Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
36
|
Sharma A, Kaur M, Sharma K, Bunkar SK, John P, Bhatnagar P. Nano polystyrene induced changes in anxiety and learning behaviour are mediated through oxidative stress and gene disturbance in mouse brain regions. Neurotoxicology 2023; 99:139-151. [PMID: 37865141 DOI: 10.1016/j.neuro.2023.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
It is widely reported now that nanoplastic particles have potential neurotoxic effects and may disturb central nervous system (CNS) function. However, the mechanism behind these toxic effects still needs to be elucidated. In the current study, we investigated the effects of polystyrene nanoplastics (PS-NPs) on changes in learning, memory, and anxiety-related behavior in mice based on some selected biochemical, molecular, and histopathological changes in three important brain regions (Cortex, Hypothalamus, and Hippocampus). Male mice were orally administered daily with two doses of 50 nm PS-NPs (0.2 mg/ml and 1 mg/ml) for 8 weeks. We observed decreased expression of neurotransmitter-related genes (VAChT, GAD, and SYP) in the cortex, hypothalamus, and hippocampus areas of the mouse brain. Other biochemical variables including, antioxidant enzymes, biomarkers for oxidative stress, and acetylcholinesterase activity showed significant alterations in all three brain regions. Molecular and neurochemical data thus suggest significant neurobehavioral changes following sub-chronic exposure to PS-NPs which may lead to enhanced anxiety-related and spatial learning and memory-related impairments by affecting limbic areas of the brain.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Kirti Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | | | - Placheril John
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
37
|
Antunes J, Sobral P, Martins M, Branco V. Nanoplastics activate a TLR4/p38-mediated pro-inflammatory response in human intestinal and mouse microglia cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104298. [PMID: 37865352 DOI: 10.1016/j.etap.2023.104298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
The crescent presence of nanoplastics in the environment raises concerns regarding their potential impact on health. This study exposed human colon adenocarcinoma cells (HT29) and microglia cells (N9) to nanoplastics (25 nm, 50 nm, and 100 nm Polystyrene) to investigate their inflammatory responses, which are vital for body's defence. Although cytotoxicity remained generally low, HT29 cells exhibited a notable upregulation of p50 and p38 expression, concomitant with elevated TLR4 expression, in contrast with N9 cells that showed a less pronounced upregulation of these proteins. Additionally, nanoplastic exposure increased IL-1ß levels, partially attenuated by pre-exposure to TLR4 or p38 inhibitors. Intriguingly, N9 cells exposed to nanoplastics exhibited substantial increases in iNOS mRNA. This effect was entirely prevented by pre-exposure to TLR4 or p38 inhibitors, while TNF-α mRNA levels remained relatively stable. These findings underscore the potential of nanoplastics to activate inflammatory pathways, with response kinetics varying depending on the cell type.
Collapse
Affiliation(s)
- Joana Antunes
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal.
| | - Paula Sobral
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal
| | - Marta Martins
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Network Associated Laboratory, Department of Science and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), University NOVA of Lisbon, Caparica 2829-516, Portugal.
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| |
Collapse
|
38
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
39
|
Shahzadi C, Di Serafino A, Aruffo E, Mascitelli A, Di Carlo P. A549 as an In Vitro Model to Evaluate the Impact of Microplastics in the Air. BIOLOGY 2023; 12:1243. [PMID: 37759642 PMCID: PMC10525880 DOI: 10.3390/biology12091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Airborne microplastics raise significant concerns due to their potential health impacts. Having a small size, larger surface area, and penetrative ability into the biological system, makes them hazardous to health. This review article compiles various studies investigating the mechanism of action of polystyrene micro- and nanoplastics affecting lung epithelial cells A549. These inhalable microplastics damage the respiratory system, by triggering a proinflammatory environment, genotoxicity, oxidative stress, morphological changes, and cytotoxic accumulation in A549 cells. PS-NP lung toxicity depends on various factors such as size, surface modifications, concentration, charge, and zeta potential. However, cellular uptake and cytotoxicity mechanisms depend on the cell type. For A549 cells, PS-NPs are responsible for energy imbalance by mitochondrial dysfunction, oxidative stress-mediated cytotoxicity, immunomodulation, and apoptosis. Additionally, PS-NPs have the ability to traverse the placental barrier, posing a risk to offspring. Despite the advancements, the precise mechanisms underlying how prolonged exposure to PS-NPs leads to the development and progression of lung diseases have unclear points, necessitating further investigations to unravel the root cause. This review also sheds light on data gaps, inconsistencies in PS-Nos research, and provides recommendations for further research in this field.
Collapse
Affiliation(s)
- Chman Shahzadi
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Alessandra Di Serafino
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
| | - Eleonora Aruffo
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- Department of Advanced Technologies in Medicine and Dentistry, University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy
| | - Alessandra Mascitelli
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- Department of Advanced Technologies in Medicine and Dentistry, University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Center of Advanced Studies and Technology (CAST), University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy; (C.S.); (A.D.S.); (E.A.); (P.D.C.)
- Department of Advanced Technologies in Medicine and Dentistry, University of “G. d’ Annunzio” Chieti Pescara, 66100 Chieti, Italy
| |
Collapse
|
40
|
Kim HY, Ashim J, Park S, Kim W, Ji S, Lee SW, Jung YR, Jeong SW, Lee SG, Kim HC, Lee YJ, Kwon MK, Hwang JS, Shin JM, Lee SJ, Yu W, Park JK, Choi SK. A preliminary study about the potential risks of the UV-weathered microplastic: The proteome-level changes in the brain in response to polystyrene derived weathered microplastics. ENVIRONMENTAL RESEARCH 2023; 233:116411. [PMID: 37354929 DOI: 10.1016/j.envres.2023.116411] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
The growing use of plastic materials has resulted in a constant increase in the risk associated with microplastics (MPs). Ultra-violet (UV) light and wind break down modify MPs in the environment into smaller particles known as weathered MPs (WMPs) and these processes increase the risk of MP toxicity. The neurotoxicity of weathered polystyrene-MPs remains unclear. Therefore, it is important to understand the risks posed by WMPs. We evaluated the chemical changes of WMPs generated under laboratory-synchronized environmentally mimetic conditions and compared them with virgin MPs (VMPs). We found that WMP had a rough surface, slight yellow color, reduced molecular weight, and structural alteration compared with those of VMP. Next, 2 μg of ∼100 μm in size of WMP and VMP were orally administered once a day for one week to C57BL/6 male mice. Proteomic analysis revealed that the WMP group had significantly increased activation of immune and neurodegeneration-related pathways compared with that of the VMP group. Consistently, in in vitro experiments, the human brain-derived microglial cell line (HMC-3) also exhibited a more severe inflammatory response to WMP than to VMP. These results show that WMP is a more profound inflammatory factor than VMP. In summary, our findings demonstrate the toxicity of WMPs and provide theoretical insights into their potential risks to biological systems and even humans in the ecosystem.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Janbolat Ashim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Wansoo Kim
- School of Life Science, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea; Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Sangho Ji
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Seoung-Woo Lee
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Yi-Rang Jung
- Department of Companion Animal Health Management, Daegu Health College, Daegu, Republic of Korea
| | - Sang Won Jeong
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Se-Guen Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Hyun-Chul Kim
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Young-Jae Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Mi Kyung Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | | | - Jung Min Shin
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Sung-Jun Lee
- Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| | - Wookyung Yu
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Department of Brain Sciences, DGIST, Daegu, Republic of Korea.
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
41
|
Han SW, Kim TY, Bae JS, Choi J, Ryu KY. Alleviation of neurotoxicity induced by polystyrene nanoplastics by increased exocytosis from neurons. Biochem Biophys Res Commun 2023; 668:19-26. [PMID: 37235915 DOI: 10.1016/j.bbrc.2023.05.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Nanoplastics (NPs) are potentially toxic and pose a health risk as they can induce an inflammatory response and oxidative stress at cellular and organismal levels. Humans can be exposed to NPs through various routes, including ingestion, inhalation, and skin contact. Notably, uptake into the body via inhalation could result in brain accumulation, which may occur directly across the blood-brain barrier or via other routes. NPs that accumulate in the brain may be endocytosed into neurons, inducing neurotoxicity. Recently, we demonstrated that exposure to polystyrene (PS)-NPs reduces the viability of neurons. We have also reported that inhibiting the retrograde transport of PS-NPs by histone deacetylase 6 (HDAC6) prevents their intracellular accumulation and promotes their export in mouse embryonic fibroblasts. However, whether HDAC6 inhibition can improve neuronal viability by increasing exocytosis of PS-NPs from neurons remains unknown. In this study, mice were intranasally administered fluorescent PS-NPs (PS-YG), which accumulated in the brain and showed potential neurotoxic effects. In cultured neurons, the HDAC6 inhibitor ACY-1215 reduced the fluorescence signal detected from PS-YG, suggesting that the removal of PS-YG from neurons was promoted. Therefore, these results suggest that blocking the retrograde transport of PS-NPs using an HDAC6 inhibitor can alleviate the neurotoxic effects of PS-NPs that enter the brain.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea
| | - Taek-Yeong Kim
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea
| | - Jin-Sil Bae
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea.
| |
Collapse
|
42
|
Liu Q, Hu W, Zhang Y, Ning J, Pang Y, Hu H, Chen M, Wu M, Wang M, Yang P, Bao L, Niu Y, Zhang R. Comprehensive Analysis of lncRNA-mRNA Expression Profiles in Depression-like Responses of Mice Related to Polystyrene Nanoparticle Exposure. TOXICS 2023; 11:600. [PMID: 37505566 PMCID: PMC10386552 DOI: 10.3390/toxics11070600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Plastics in the environment can break down into nanoplastics (NPs), which pose a potential threat to public health. Studies have shown that the nervous system constitutes a significant target for nanoplastics. However, the potential mechanism behind nanoplastics' neurotoxicity remains unknown. This study aimed to investigate the role of lncRNA in the depressive-like responses induced by exposure to 25 nm polystyrene nanoplastics (PS NPs). Forty mice were divided into four groups administered doses of 0, 10, 25, and 50 mg/kg via gavage for 6 months. After conducting behavioral tests, RNA sequencing was used to detect changes in mRNAs, miRNAs, and lncRNAs in the prefrontal cortex of the mice in the 0 and 50 mg/kg PS NPs groups. The results revealed that mice exposed to chronic PS NPs developed depressive-like responses in a dose-dependent manner. It was demonstrated that 987 mRNAs, 29 miRNAs, and 116 lncRNAs were significantly different between the two groups. Then, a competing endogenous RNA (ceRNA) network containing 6 lncRNAs, 18 miRNAs, and 750 mRNAs was constructed. Enrichment results suggested that PS NPs may contribute to the onset of depression-like responses through the activation of axon guidance, neurotrophin-signaling pathways, and dopaminergic synapses. This study provided evidence of the molecular relationship between PS NPs and depression-like responses.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Meiyu Chen
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
43
|
Shin HS, Lee SH, Moon HJ, So YH, Lee HR, Lee EH, Jung EM. Exposure to polystyrene particles causes anxiety-, depression-like behavior and abnormal social behavior in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131465. [PMID: 37130475 DOI: 10.1016/j.jhazmat.2023.131465] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
In the era of plastic use, organisms are constantly exposed to polystyrene particles (PS-Ps). PS-Ps accumulated in living organisms exert negative effects on the body, although studies evaluating their effects on brain development are scarce. In this study, the effects of PS-Ps on nervous system development were investigated using cultured primary cortical neurons and mice exposed to PS-Ps at different stages of brain development. The gene expression associated with brain development was downregulated in embryonic brains following PS-Ps exposure, and Gabra2 expression decreased in the embryonic and adult mice exposed to PS-Ps. Additionally, offspring of PS-Ps-treated dams exhibited signs of anxiety- and depression-like behavior, and abnormal social behavior. We propose that PS-Ps accumulation in the brain disrupts brain development and behavior in mice. This study provides novel information regarding PS-Ps toxicity and its harmful effects on neural development and behavior in mammals.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Ram Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
44
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
45
|
Mandemaker LDB, Meirer F. Spectro-Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms. Angew Chem Int Ed Engl 2023; 62:e202210494. [PMID: 36278811 PMCID: PMC10100025 DOI: 10.1002/anie.202210494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/06/2022]
Abstract
Nanoplastics (NPs), small (<1 μm) polymer particles formed from bulk plastics, are a potential threat to human health and the environment. Orders of magnitude smaller than microplastics (MPs), they might behave differently due to their larger surface area and small size, which allows them to diffuse through organic barriers. However, detecting NPs in the environment and organic matrices has proven to be difficult, as their chemical nature is similar to these matrices. Furthermore, as their size is smaller than the (spatial) detection limit of common analytical tools, they are hard to find and quantify. We highlight different micro-spectroscopic techniques utilized for NP detection and argue that an analysis procedure should involve both particle imaging and correlative or direct chemical characterization of the same particles or samples. Finally, we highlight methods that can do both simultaneously, but with the downside that large particle numbers and statistics cannot be obtained.
Collapse
Affiliation(s)
- Laurens D. B. Mandemaker
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterial ScienceUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Florian Meirer
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterial ScienceUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
46
|
Masud RI, Suman KH, Tasnim S, Begum MS, Sikder MH, Uddin MJ, Haque MN. A review on enhanced microplastics derived from biomedical waste during the COVID-19 pandemic with its toxicity, health risks, and biomarkers. ENVIRONMENTAL RESEARCH 2023; 216:114434. [PMID: 36209789 PMCID: PMC9536876 DOI: 10.1016/j.envres.2022.114434] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic led to the explosion of biomedical waste, a global challenge to public health and the environment. Biomedical waste comprising plastic can convert into microplastics (MPs, < 5 mm) by sunlight, wave, oxidative and thermal processes, and biodegradation. MPs with additives and contaminants such as metals are also hazardous to many aquatic and terrestrial organisms, including humans. Bioaccumulation of MPs in organisms often transfers across the trophic level in the global food web. Thus, this article aims to provide a literature review on the source, quantity, and fate of biomedical waste, along with the recent surge of MPs and their adverse impact on aquatic and terrestrial organisms. MPs intake (ingestion, inhalation, and dermal contact) in humans causing various chronic diseases involving multiple organs in digestive, respiratory, and reproductive systems are surveyed, which have been reviewed barely. There is an urgent need to control and manage biomedical waste to shrink MPs pollution for reducing environmental and human health risks.
Collapse
Affiliation(s)
- Rony Ibne Masud
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Kamrul Hassan Suman
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Fisheries, Ministry of Fisheries & Livestock, Dhaka, 1000, Bangladesh
| | - Shadia Tasnim
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Most Shirina Begum
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Md Niamul Haque
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh; Department of Marine Science, College of Natural Sciences & Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
47
|
Cho HJ, Lee WS, Jeong J, Lee JS. A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109428. [PMID: 35940544 DOI: 10.1016/j.cbpc.2022.109428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Nanomaterials have been widely employed from industrial to medical fields due to their small sizes and versatile characteristics. However, nanomaterials can also induce unexpected adverse effects on health. In particular, exposure of the nervous system to nanomaterials can cause serious neurological dysfunctions and neurodegenerative diseases. A number of studies have adopted various animal models to evaluate the neurotoxic effects of nanomaterials. Among them, zebrafish has become an attractive animal model for neurotoxicological studies due to several advantages, including the well-characterized nervous system, efficient genome editing, convenient generation of transgenic lines, high-resolution in vivo imaging, and an array of behavioral assays. In this review, we summarize recent studies on the neurotoxicological effects of nanomaterials, particularly engineered nanomaterials and nanoplastics, using zebrafish and discuss key findings with advantages and limitations of the zebrafish model in neurotoxicological studies.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
48
|
He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y, Li S. Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway. CHEMOSPHERE 2022; 307:135662. [PMID: 35830933 DOI: 10.1016/j.chemosphere.2022.135662] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The widespread occurrence of nanoplastics (NPs), has markedly affected the ecosystem and has become a global threat to animals and human health. There is growing evidence showing that polystyrene nanoparticles (PSNPs) exposure induced enteritis and the intestinal barrier disorder. Lipopolysaccharide (LPS) can trigger the inflammation burden of various tissues. Whether PSNPs deteriorate LPS-induced intestinal damage via ROS drived-NF-κB/NLRP3 pathway is remains unknown. In this study, PSNPs exposure/PSNPs and LPS co-exposure mice model were duplicated by intraperitoneal injection. The results showed that exposure to PSNPs/LPS caused duodenal inflammation and increased permeability. We evaluated the change of duodenum structure, oxidative stress parameters, inflammatory factors, and tight junction protein in the duodenum. We found that PSNPs/LPS could aggravate the production of ROS and oxidative stress in cells, activate NF-κB/NLRP3 pathway, decrease the expression tight junction proteins (ZO-1, Claudin 1, and Occludin) levels, promote inflammatory factors (TNF-α, IL-6, and IFN-γ) expressions. Duodenal oxidative stress and inflammation in PS + LPS group were more serious than those in single exposure group, which could be alleviated by NF-kB inhibitor QNZ. Collectively, the results verified that PSNPs deteriorated LPS-induced inflammation and increasing permeability in mice duodenum via ROS drived-NF-κB/NLRP3 pathway. The current study indicated the relationship and molecular mechanism between PSNPs and intestinal injury, providing novel insights into the adverse effects of PSNPs exposure on mammals and humans.
Collapse
Affiliation(s)
- Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
49
|
Hamed M, Martyniuk CJ, Naguib M, Lee JS, Sayed AEDH. Neurotoxic effects of different sizes of plastics (nano, micro, and macro) on juvenile common carp ( Cyprinus carpio). Front Mol Neurosci 2022; 15:1028364. [PMID: 36340695 PMCID: PMC9630652 DOI: 10.3389/fnmol.2022.1028364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Using common carp as a model, we assessed the effects of polyethylene (PE) plastics on the brain. We measured activity of acetylcholinesterase (AChE), monoamine oxidase (MAO), and the content of nitric oxide (NO) in carp brain following exposure to 100 mg/L of either macroplastics (MaP), microplastics (MPs), or nanoplastic (NPs) for 15 days compared to an unexposed group. Following exposure, each biochemical biomarker was reduced 30-40%, with a higher magnitude of change corresponding to the smaller size of the particles (NPs > MPs > MaPs). In the carp tectum, exposure for 15 days to plastic particles caused varying degrees of necrosis, fibrosis, changes in blood capillaries, tissue detachment, edema, degenerated connective tissues, and necrosis in large cerebellar neurons and ganglion cells. In the carp retina, there was evidence for necrosis, degeneration, vacuolation, and curvature in the inner layer. Here we provide evidence that exposure to plastic particles can be associated with neurotoxicity in common carp.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Asyut, Egypt
| | - Christopher J. Martyniuk
- Interdisciplinary Program in Biomedical Sciences Neuroscience, Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Mervat Naguib
- Department of Zoology, Faculty of Science, Assiut University, Asyut, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | | |
Collapse
|
50
|
Hu J, Zhu Y, Zhang J, Xu Y, Wu J, Zeng W, Lin Y, Liu X. The potential toxicity of polystyrene nanoplastics to human trophoblasts in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119924. [PMID: 35970350 DOI: 10.1016/j.envpol.2022.119924] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs), the emerging contaminants in recent years, widely distributed in the environment and are bioaccumulated and biomagnified in organisms through food chain. A growing number of studies have detected plastic particulates in human placenta and blood. However, few studies have focused on their effects during human pregnancy. Herein, human trophoblast HTR-8/Svneo cells were used to evaluate the effects and the possible mechanism of 100-nm polystyrene NPs on placental trophoblasts at the maternal-fetal interface. The results showed that NPs entered the trophoblastic cytoplasm, decreased cell viability, caused cell cycle arrest, reduced the cell migration and invasion abilities, increased level of intracellular reactive oxygen species and the production of proinflammatory cytokines (TNF-α and IFN-γ) in a dose-dependent manner. Furthermore, global transcriptome sequencing (RNA-Seq) was performed on HTR-8/Svneo cells with or without 100 μg/mL PS-NP exposure for 24 h. A total of 344 differentially expressed genes were detected. The gene functions for regulation of leukocyte differentiation, response to stimulus, cell cycle, apoptotic process, and cell adhesion were enriched. Thyroid hormone, Hippo, TGF-β and FoxO signaling pathways were activated. Collectively, our data provided evidences for the adverse consequences of NPs on the biological functions of trophoblasts, which provided new insights into the potential trophoblast toxicity of NPs in mammals.
Collapse
Affiliation(s)
- Jianing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yueyue Zhu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinwen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiayi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weihong Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yi Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|