1
|
Wu J, Wang C, Sun S, Ren T, Pan L, Liu H, Hou S, Wu S, Yan X, Zhang J, Zhao X, Liu W, Zhu S, Wei S, Zhang C, Jia X, Zhang Q, Yu Z, Zhuo Y, Zhao Q, Yang C, Wang N. Single-cell transcriptomic Atlas of aging macaque ocular outflow tissues. Protein Cell 2024; 15:594-611. [PMID: 38366188 PMCID: PMC11259549 DOI: 10.1093/procel/pwad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/24/2023] [Indexed: 02/18/2024] Open
Abstract
The progressive degradation in the trabecular meshwork (TM) is related to age-related ocular diseases like primary open-angle glaucoma. However, the molecular basis and biological significance of the aging process in TM have not been fully elucidated. Here, we established a dynamic single-cell transcriptomic landscape of aged macaque TM, wherein we classified the outflow tissue into 12 cell subtypes and identified mitochondrial dysfunction as a prominent feature of TM aging. Furthermore, we divided TM cells into 13 clusters and performed an in-depth analysis on cluster 0, which had the highest aging score and the most significant changes in cell proportions between the two groups. Ultimately, we found that the APOE gene was an important differentially expressed gene in cluster 0 during the aging process, highlighting the close relationship between cell migration and extracellular matrix regulation, and TM function. Our work further demonstrated that silencing the APOE gene could increase migration and reduce apoptosis by releasing the inhibition on the PI3K-AKT pathway and downregulating the expression of extracellular matrix components, thereby increasing the aqueous outflow rate and maintaining intraocular pressure within the normal range. Our work provides valuable insights for future clinical diagnosis and treatment of glaucoma.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chaoye Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianmin Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Hongyi Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Simeng Hou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing 100191, China
| | - Sirui Zhu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Shuwen Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Chi Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Xu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ziyu Yu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chenlong Yang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing 100191, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| |
Collapse
|
2
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin SS, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Early Injury Landscape in Vein Harvest by Single-Cell and Spatial Transcriptomics. Circ Res 2024; 135:110-134. [PMID: 38808504 PMCID: PMC11189745 DOI: 10.1161/circresaha.123.323939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Center for Vascular Biology Research and the Division of Nephrology (C.F.), Harvard Medical School, Boston, MA
| | - Swati S. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| |
Collapse
|
3
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin S, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Integrated single-nuclei and spatial transcriptomic analysis reveals propagation of early acute vein harvest and distension injury signaling pathways following arterial implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564995. [PMID: 37961724 PMCID: PMC10635041 DOI: 10.1101/2023.10.31.564995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Methods Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Results Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P < 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P < 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN (versican), FBN1 (fibrillin-1), and VEGFC (vascular endothelial growth factor C), in addition to novel genes of interest such as GLIS3 (GLIS family zinc finger 3) and EPHA3 (ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. Conclusions Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Vascular Biology Research and the Division of Nephrology Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Salarian M, Ghim M, Toczek J, Han J, Weiss D, Spronck B, Ramachandra AB, Jung JJ, Kukreja G, Zhang J, Lakheram D, Kim SK, Humphrey JD, Sadeghi MM. Homeostatic, Non-Canonical Role of Macrophage Elastase in Vascular Integrity. Circ Res 2023; 132:432-448. [PMID: 36691905 PMCID: PMC9930896 DOI: 10.1161/circresaha.122.322096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Matrix metalloproteinase (MMP)-12 is highly expressed in abdominal aortic aneurysms and its elastolytic function has been implicated in the pathogenesis. This concept is challenged, however, by conflicting data. Here, we sought to revisit the role of MMP-12 in abdominal aortic aneurysm. METHODS Apoe-/- and Mmp12-/-/Apoe-/- mice were infused with Ang II (angiotensin). Expression of neutrophil extracellular traps (NETs) markers and complement component 3 (C3) levels were evaluated by immunostaining in aortas of surviving animals. Plasma complement components were analyzed by immunoassay. The effects of a complement inhibitor, IgG-FH1-5 (factor H-immunoglobulin G), and macrophage-specific MMP-12 deficiency on adverse aortic remodeling and death from rupture in Ang II-infused mice were determined. RESULTS Unexpectedly, death from aortic rupture was significantly higher in Mmp12-/-/Apoe-/- mice. This associated with more neutrophils, citrullinated histone H3 and neutrophil elastase, markers of NETs, and C3 levels in Mmp12-/- aortas. These findings were recapitulated in additional models of abdominal aortic aneurysm. MMP-12 deficiency also led to more pronounced elastic laminae degradation and reduced collagen integrity. Higher plasma C5a in Mmp12-/- mice pointed to complement overactivation. Treatment with IgG-FH1-5 decreased aortic wall NETosis and reduced adverse aortic remodeling and death from rupture in Ang II-infused Mmp12-/- mice. Finally, macrophage-specific MMP-12 deficiency recapitulated the effects of global MMP-12 deficiency on complement deposition and NETosis, as well as adverse aortic remodeling and death from rupture in Ang II-infused mice. CONCLUSIONS An MMP-12 deficiency/complement activation/NETosis pathway compromises aortic integrity, which predisposes to adverse vascular remodeling and abdominal aortic aneurysm rupture. Considering these new findings, the role of macrophage MMP-12 in vascular homeostasis demands re-evaluation of MMP-12 function in diverse settings.
Collapse
Affiliation(s)
- Mani Salarian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Mean Ghim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Jinah Han
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
| | - Abhay B. Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
| | - Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Gunjan Kukreja
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| | | | - Sung-Kwon Kim
- Alexion Pharmaceuticals, New Haven, CT (D.L., S.-K.K.)
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.S., A.B.R., J.D.H.)
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.)
| | - Mehran M. Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
- VA Connecticut Healthcare System, West Haven, CT (M.S., M.G., J.T., J.H., J.-J.J., G.K., J.Z., M.M.S.)
| |
Collapse
|
5
|
Wu Y, Zhao F, Sure VN, Ibrahim A, Yu C, Carr SM, Song P. Human ApoE2 Endows Stronger Contractility in Rat Cardiomyocytes Enhancing Heart Function. Cells 2023; 12:cells12030347. [PMID: 36766690 PMCID: PMC9913850 DOI: 10.3390/cells12030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
(1) Background: Apolipoprotein E (ApoE) is a critical plasma apolipoprotein for lipid transport and nonlipid-related functions. Humans possess three isoforms of ApoE (2, 3, and 4). ApoE2, which exhibits beneficial effects on cardiac health, has not been adequately studied. (2) Methods: We investigated the cardiac phenotypes of the humanized ApoE knock-in (hApoE KI) rats and compared to wild-type (WT) and ApoE knock-out (ApoE KO) rats using echocardiography, ultrasound, blood pressure measurements, histology strategies, cell culture, Seahorse XF, cardiomyocyte contractility and intracellular Ca2+ tests, and Western blotting; (3) Results: hApoE2 rats exhibited enhanced heart contractile function without signs of detrimental remodeling. Isolated adult hApoE2 cardiomyocytes had faster and stronger sarcomere contractility because of more mitochondrial energy generation and stimulation-induced fast and elevated intracellular Ca2+ transient. The abundant energy is a result of elevated mitochondrial function via fatty acid β-oxidation. The fast and elevated Ca2+ transient is associated with decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2) and increased expression of cardiac ryanodine receptor 2 (RyR2) conducting a potent Ca2+ release from SR.; (4) Conclusions: Our studies validated the association of polymorphic ApoEs with cardiac health in the rat model, and revealed the possible mechanisms of the protective effect of ApoE2 against heart diseases.
Collapse
Affiliation(s)
- Yang Wu
- Correspondence: (Y.W.); (P.S.); Tel.: +1-404-413-6636 (P.S.)
| | | | | | | | | | | | - Ping Song
- Correspondence: (Y.W.); (P.S.); Tel.: +1-404-413-6636 (P.S.)
| |
Collapse
|
6
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|
7
|
Cysteine-Rich LIM-Only Protein 4 (CRP4) Promotes Atherogenesis in the ApoE -/- Mouse Model. Cells 2022; 11:cells11081364. [PMID: 35456043 PMCID: PMC9032522 DOI: 10.3390/cells11081364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) can switch from their contractile state to a synthetic phenotype resulting in high migratory and proliferative capacity and driving atherosclerotic lesion formation. The cysteine-rich LIM-only protein 4 (CRP4) reportedly modulates VSM-like transcriptional signatures, which are perturbed in VSMCs undergoing phenotypic switching. Thus, we hypothesized that CRP4 contributes to adverse VSMC behaviours and thereby to atherogenesis in vivo. The atherogenic properties of CRP4 were investigated in plaque-prone apolipoprotein E (ApoE) and CRP4 double-knockout (dKO) as well as ApoE-deficient CRP4 wildtype mice. dKO mice exhibited lower plaque numbers and lesion areas as well as a reduced content of α-smooth muscle actin positive cells in the lesion area, while lesion-associated cell proliferation was elevated in vessels lacking CRP4. Reduced plaque volumes in dKO correlated with significantly less intra-plaque oxidized low-density lipoprotein (oxLDL), presumably due to upregulation of the antioxidant factor peroxiredoxin-4 (PRDX4). This study identifies CRP4 as a novel pro-atherogenic factor that facilitates plaque oxLDL deposition and identifies the invasion of atherosclerotic lesions by VSMCs as important determinants of plaque vulnerability. Thus, targeting of VSMC CRP4 should be considered in plaque-stabilizing pharmacological strategies.
Collapse
|
8
|
Gaul S, Shahzad K, Medert R, Gadi I, Mäder C, Schumacher D, Wirth A, Ambreen S, Fatima S, Boeckel JN, Khawaja H, Haas J, Brune M, Nawroth PP, Isermann B, Laufs U, Freichel M. Novel Nongenetic Murine Model of Hyperglycemia and Hyperlipidemia-Associated Aggravated Atherosclerosis. Front Cardiovasc Med 2022; 9:813215. [PMID: 35350534 PMCID: PMC8957812 DOI: 10.3389/fcvm.2022.813215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/24/2023] Open
Abstract
Objective Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1β level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.
Collapse
Affiliation(s)
- Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Khurrum Shahzad
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Ihsan Gadi
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Christina Mäder
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Saira Ambreen
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Sameen Fatima
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hamzah Khawaja
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
- Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
| | - Maik Brune
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Peter P. Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Berend Isermann
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| |
Collapse
|
9
|
Nagarajan UM, Sikes JD, Burris RL, Jha R, Popovic B, Fraungruber P, Hennings L, Haggerty CL, Nagarajan S. Genital Chlamydia infection in hyperlipidemic mouse models exacerbates atherosclerosis. Atherosclerosis 2019; 290:103-110. [PMID: 31604170 DOI: 10.1016/j.atherosclerosis.2019.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic inflammatory disease, and recent studies have shown that infection at remote sites can contribute to the progression of atherosclerosis in hyperlipidemic mouse models. In this report, we tested the hypothesis that genital Chlamydia infection could accelerate the onset and progression of atherosclerosis. METHODS Apolipoprotein E (Apoe-/-) and LDL receptor knockout (Ldlr-/-) mice on a high-fat diet were infected intra-vaginally with Chlamydia muridarum. Atherosclerotic lesions on the aortic sinuses and in the descending aorta were assessed at 8-weeks post-infection. Systemic, macrophage, and vascular site inflammatory responses were assessed and quantified. RESULTS Compared to the uninfected groups, infected Apoe-/- and Ldlr-/- mice developed significantly more atherosclerotic lesions in the aortic sinus and in the descending aorta. Increased lesions were associated with higher circulating levels of serum amyloid A-1, IL-1β, TNF-α, and increased VCAM-1 expression in the aortic sinus, suggesting an association with inflammatory responses observed during C. muridarum infection. Genital infection courses were similar in Apoe-/-, Ldlr-/-, and wild type mice. Further, Apoe-/- mice developed severe uterine pathology with increased dilatations. Apoe-deficiency also augmented cytokine/chemokine response in C. muridarum infected macrophages, suggesting that the difference in macrophage response could have contributed to the genital pathology in Apoe-/- mice. CONCLUSIONS Overall, these studies demonstrate that genital Chlamydia infection exacerbates atherosclerotic lesions in hyperlipidemic mouse and suggest a novel role for Apoe in full recovery of uterine anatomy after chlamydial infection.
Collapse
Affiliation(s)
- Uma M Nagarajan
- Department of Pediatrics and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - James D Sikes
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - Ramona L Burris
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - Rajneesh Jha
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA
| | - Branimir Popovic
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamelia Fraungruber
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine L Haggerty
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Shanmugam Nagarajan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Kuot A, Ronci M, Mills R, Klebe S, Snibson G, Wiffen S, Loh R, Corbett M, Zhou T, Chataway T, Burdon KP, Craig JE, Urbani A, Sharma S. Reduced expression of apolipoprotein E and immunoglobulin heavy constant gamma 1 proteins in Fuchs endothelial corneal dystrophy. Clin Exp Ophthalmol 2019; 47:1028-1042. [PMID: 31206232 DOI: 10.1111/ceo.13569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fuchs endothelial corneal dystrophy (FECD) is a progressive and potentially a sight threatening disease, and a common indication for corneal grafting in the elderly. Aberrant thickening of Descemet's membrane, formation of microscopic excrescences (guttae) and gradual loss of corneal endothelial cells are the hallmarks of the disease. The aim of this study was to identify differentially abundant proteins between FECD-affected and unaffected Descemet's membrane. METHODS Label-free quantitative proteomics using nanoscale ultra-performance liquid chromatography-mass spectrometry (nUPLC-MSE ) was employed on affected and unaffected Descemet's membrane extracts, and interesting findings were further investigated using quantitative reverse transcription-polymerase chain reaction and immunohistochemical techniques. RESULTS Quantitative proteomics revealed significantly lower abundance of apolipoprotein E (APOE) and immunoglobulin heavy constant gamma 1 protein (IGHG1) in affected Descemet's membrane. The difference in the distribution of APOE between affected and unaffected Descemet's membrane and of IGHG1 detected by immunohistochemistry support their down-regulation in the disease. Comparative gene expression analysis showed significantly lower APOE mRNA levels in FECD-affected than unaffected corneal endothelium. IGHG1 gene is expressed at extremely low levels in the corneal endothelium, precluding relative expression analysis. CONCLUSIONS This is the first study to report comparative proteomics of Descemet's membrane tissue, and implicates dysregulation of APOE and IGHG1 proteins in the pathogenesis of Fuchs endothelial corneal dystrophy.
Collapse
Affiliation(s)
- Abraham Kuot
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University of G. d'Annunzio Chieti Pescara, Pescara, Italy
| | - Richard Mills
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Adelaide, South Australia, Australia
| | - Grant Snibson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Steven Wiffen
- The Lions Eye Bank of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia
| | - Raymond Loh
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Mark Corbett
- Discipline of Paediatrics, School of Medicine and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Tim Chataway
- Department of Human Physiology, Proteomics Laboratory, Flinders University, Adelaide, South Australia, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Rome, Italy
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
van der Sluis RJ, Depuydt MAC, Verwilligen RAF, Hoekstra M, Van Eck M. Elimination of adrenocortical apolipoprotein E production does not impact glucocorticoid output in wild-type mice. Mol Cell Endocrinol 2019; 490:21-27. [PMID: 30953750 DOI: 10.1016/j.mce.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022]
Abstract
Apolipoprotein E (APOE) deficient mice exhibit unexplained hypercorticosteronemia. Given that APOE is also produced locally within the adrenals, we evaluated the effect of adrenal-specific APOE deficiency on the glucocorticoid function. Hereto, one adrenal containing or lacking APOE was transplanted into adrenalectomized wild-type mice. Adrenal APOE deficiency did not impact adrenal total cholesterol levels. Importantly, the ability of the two adrenal types to produce glucocorticoids was also not different as judged from the similar plasma corticosterone levels. Adrenal mRNA expression levels of HMG-CoA reductase and the LDL receptor were decreased by respectively 72% (p < 0.01) and 65% (p = 0.07), suggesting that cholesterol acquisition pathways were inhibited to possibly compensate the lack of APOE. In support, a parallel increase in the expression level of the cholesterol accumulation-associated ER stress marker CHOP was detected (+117%; p < 0.05). In conclusion, our studies show that elimination of adrenocortical APOE production does not impact glucocorticoid output in wild-type mice.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands.
| | - Marie A C Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| |
Collapse
|
12
|
Oppi S, Lüscher TF, Stein S. Mouse Models for Atherosclerosis Research-Which Is My Line? Front Cardiovasc Med 2019; 6:46. [PMID: 31032262 PMCID: PMC6473202 DOI: 10.3389/fcvm.2019.00046] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is one of the primary causes of cardiovascular disease and mortality. This chronic immunometabolic disease evolves during decades in humans and encompasses different organs and immune cell types, as well as local and systemic processes that promote the progression of the disease. The most frequently used animal model to study these atherogenic processes and inter-organ crosstalk in a short time frame are genetically modified mouse models. Some models have been used throughout the last decades, and some others been developed recently. These models have important differences in cholesterol and lipoprotein metabolism, reverse cholesterol transport pathway, obesity and diabetes as well as inflammatory processes. Therefore, the disease develops and progresses differently in the various mouse models. Since atherosclerosis is a multifaceted disease and many processes contribute to its progression, the choice of the right mouse model is important to study specific aspects of the disease. We will describe the different mouse models and provide a roadmap to facilitate current and future atherosclerosis researchers to choose the right model depending on their scientific question.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Heart Division, Royal Brompton & Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Hossain A, Tauhid L, Davenport I, Huckaba T, Graves R, Mandal T, Muniruzzaman S, Ahmed SA, Bhattacharjee PS. LRP-1 Pathway Targeted Inhibition of Vascular Abnormalities in the Retina of Diabetic Mice. Curr Eye Res 2016; 42:640-647. [PMID: 27442082 DOI: 10.1080/02713683.2016.1203441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE The cell surface LDL (low-density lipoprotein) receptor-related protein-1 (LRP-1) is important for lipid transport and several cell signaling processes. Human apolipoprotein E (apoE) is a ligand of LRP-1. We previously reported that a short peptide (apoEdp) mimicking the LRP-1 binding region of apoE prevents hyperglycemia-induced retinal endothelial cell dysfunction in vitro. The in-vivo outcome of apoE-based peptidomimetic inhibition of LRP-1 in the treatment of diabetic retinopathy is unknown. METHODS Six months after streptozotocin induction of diabetes, male C57Bl/6 mice were intravitreally inoculated with apoEdp in a controlled release formulation. On the 15th day post-apoEdp treatment, mouse retinas were harvested to examine (1) blood-retinal-barrier (BRB) permeability by Evans blue dye, inflammatory leukostasis by concanavalin staining of leukocytes and LRP-1 pathway-related protein expression by Western blot analysis and gelatin zymography. RESULTS Intravitreal apoEdp treatment of diabetic mice significantly reduced Evans blue extravasation and the number of adherent leukocytes in the diabetic mouse retinas. ApoEdp treatment inhibited the expression of extracellular matrix (ECM) degrading proteases heparanase and MMP-2, and restores the BRB tight junction proteins occludin and ZO-1. ApoEdp treatment also inhibited Wnt/β-catenin-related expression of pro-inflammatory molecules ICAM-1, HIF-1α, and VEGF through negative regulation by LRP-1. CONCLUSION Intravitreal apoEdp treatment of diabetic mice resulted a significant decrease in retinal vascular abnormalities through downregulation of LRP-1-related ECM protein degradation and Wnt/β-catenin-related pro-angiogenic molecules.
Collapse
Affiliation(s)
- Ahamed Hossain
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Lamiya Tauhid
- b School of Science and Engineering , Tulane University , New Orleans , LA , USA
| | - Ian Davenport
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Thomas Huckaba
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Richard Graves
- c Division of Basic Pharmaceutical Sciences, College of Pharmacy , Xavier University of Louisiana , New Orleans , LA , USA
| | - Tarun Mandal
- c Division of Basic Pharmaceutical Sciences, College of Pharmacy , Xavier University of Louisiana , New Orleans , LA , USA
| | - Syed Muniruzzaman
- a Department of Biology , Xavier University of Louisiana , New Orleans , LA , USA
| | - Syed A Ahmed
- d Division of Business , Xavier University of Louisiana , New Orleans , LA , USA
| | | |
Collapse
|
14
|
Fotakis P, Vezeridis A, Dafnis I, Chroni A, Kardassis D, Zannis VI. apoE3[K146N/R147W] acts as a dominant negative apoE form that prevents remnant clearance and inhibits the biogenesis of HDL. J Lipid Res 2014; 55:1310-23. [PMID: 24776540 DOI: 10.1194/jlr.m048348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 12/11/2022] Open
Abstract
The K146N/R147W substitutions in apoE3 were described in patients with a dominant form of type III hyperlipoproteinemia. The effects of these mutations on the in vivo functions of apoE were studied by adenovirus-mediated gene transfer in different mouse models. Expression of the apoE3[K146N/R147W] mutant in apoE-deficient (apoE(-/-)) or apoA-I-deficient (apoA-I(-/-))×apoE(-/-) mice exacerbated the hypercholesterolemia and increased plasma apoE and triglyceride levels. In apoE(-/-) mice, the apoE3[K146N/R147W] mutant displaced apoA-I from the VLDL/LDL/HDL region and caused the accumulation of discoidal apoE-containing HDL. The WT apoE3 cleared the cholesterol of apoE(-/-) mice without induction of hypertriglyceridemia and promoted formation of spherical HDL. A unique property of the truncated apoE3[K146N/R147W]202 mutant, compared with similarly truncated apoE forms, is that it did not correct the hypercholesterolemia. The contribution of LPL and LCAT in the induction of the dyslipidemia was studied. Treatment of apoE(-/-) mice with apoE3[K146N/R147W] and LPL corrected the hypertriglyceridemia, but did not prevent the formation of discoidal HDL. Treatment with LCAT corrected hypertriglyceridemia and generated spherical HDL. The combined data indicate that the K146N/R147W substitutions convert the full-length and the truncated apoE3[K146N/R147W] mutant into a dominant negative ligand that prevents receptor-mediated remnant clearance, exacerbates the dyslipidemia, and inhibits the biogenesis of HDL.
Collapse
Affiliation(s)
- Panagiotis Fotakis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118 Department of BiochemistryUniversity of Crete Medical School, Heraklion, Crete, Greece 71110 Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete, Greece 71003
| | - Alexander Vezeridis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118
| | - Ioannis Dafnis
- National Center for Scientific Research "Demokritos" Athens, Greece 15310
| | - Angeliki Chroni
- National Center for Scientific Research "Demokritos" Athens, Greece 15310
| | - Dimitris Kardassis
- Department of BiochemistryUniversity of Crete Medical School, Heraklion, Crete, Greece 71110 Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete, Greece 71003
| | - Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
15
|
Ansari D, Aronsson L, Sasor A, Welinder C, Rezeli M, Marko-Varga G, Andersson R. The role of quantitative mass spectrometry in the discovery of pancreatic cancer biomarkers for translational science. J Transl Med 2014; 12:87. [PMID: 24708694 PMCID: PMC3998064 DOI: 10.1186/1479-5876-12-87] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
In the post-genomic era, it has become evident that genetic changes alone are not sufficient to understand most disease processes including pancreatic cancer. Genome sequencing has revealed a complex set of genetic alterations in pancreatic cancer such as point mutations, chromosomal losses, gene amplifications and telomere shortening that drive cancerous growth through specific signaling pathways. Proteome-based approaches are important complements to genomic data and provide crucial information of the target driver molecules and their post-translational modifications. By applying quantitative mass spectrometry, this is an alternative way to identify biomarkers for early diagnosis and personalized medicine. We review the current quantitative mass spectrometric technologies and analyses that have been developed and applied in the last decade in the context of pancreatic cancer. Examples of candidate biomarkers that have been identified from these pancreas studies include among others, asporin, CD9, CXC chemokine ligand 7, fibronectin 1, galectin-1, gelsolin, intercellular adhesion molecule 1, insulin-like growth factor binding protein 2, metalloproteinase inhibitor 1, stromal cell derived factor 4, and transforming growth factor beta-induced protein. Many of these proteins are involved in various steps in pancreatic tumor progression including cell proliferation, adhesion, migration, invasion, metastasis, immune response and angiogenesis. These new protein candidates may provide essential information for the development of protein diagnostics and targeted therapies. We further argue that new strategies must be advanced and established for the integration of proteomic, transcriptomic and genomic data, in order to enhance biomarker translation. Large scale studies with meta data processing will pave the way for novel and unexpected correlations within pancreatic cancer, that will benefit the patient, with targeted treatment.
Collapse
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Linus Aronsson
- Department of Surgery, Clinical Sciences Lund, Lund University, and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Clinical Sciences Lund, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Department of Oncology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Center, Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Center, Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, and Skåne University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
16
|
Su J, Klemm MA, Josephson AM, Fox MA. Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections. Neural Dev 2013; 8:11. [PMID: 23758727 PMCID: PMC3685595 DOI: 10.1186/1749-8104-8-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs), the output neurons of the retina, project to over 20 distinct brain nuclei, including the lateral geniculate nucleus (LGN), a thalamic region comprised of three functionally distinct subnuclei: the ventral LGN (vLGN), the dorsal LGN (dLGN) and the intergeniculate leaflet (IGL). We previously identified reelin, an extracellular glycoprotein, as a critical factor that directs class-specific targeting of these subnuclei. Reelin is known to bind to two receptors: very-low-density lipoprotein receptor (VLDLR) and low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2). Here we examined the roles of these canonical reelin receptors in retinogeniculate targeting. RESULTS To assess the roles of VLDLR and LRP8 in retinogeniculate targeting, we used intraocular injections of fluorescently conjugated cholera toxin B subunit (CTB) to label all RGC axons in vivo. Retinogeniculate projections in mutant mice lacking either VLDLR or LRP8 appeared similar to controls; however, deletion of both receptors resulted in dramatic defects in the pattern of retinal innervation in LGN. Surprisingly, defects in vldlr(-/-);lrp8(-/-) double mutant mice were remarkably different than those observed in mice lacking reelin. First, we failed to observe retinal axons exiting the medial border of the vLGN and IGL to invade distant regions of non-retino-recipient thalamus. Second, an ectopic region of binocular innervation emerged in the dorsomedial pole of vldlr(-/-);lrp8(-/-) mutant dLGN. Analysis of retinal projection development, retinal terminal sizes and LGN cytoarchitecture in vldlr(-/-);lrp8(-/-) mutants, all suggest that a subset of retinal axons destined for the IGL are misrouted to the dorsomedial pole of dLGN in the absence of VLDLR and LRP8. Such mistargeting is likely the result of abnormal migration of IGL neurons into the dorsomedial pole of dLGN in vldlr(-/-);lrp8(-/-) mutants. CONCLUSIONS In contrast to our expectations, the development of both the LGN and retinogeniculate projections appeared dramatically different in mutants lacking either reelin or both canonical reelin receptors. These results suggest that there are reelin-independent functions of VLDLR and LRP8 in LGN development, and VLDLR- and LRP8-independent functions of reelin in class-specific axonal targeting.
Collapse
Affiliation(s)
- Jianmin Su
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - Michael A Klemm
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne M Josephson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Michael A Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
17
|
Chen J, Chen LJ, Yang RB, Xia YL, Zhou HC, Wu W, Lu Y, Hu LW, Zhao Y. Expression and clinical significance of apolipoprotein E in pancreatic ductal adenocarcinoma. Med Oncol 2013; 30:583. [PMID: 23609192 DOI: 10.1007/s12032-013-0583-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/11/2013] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a poor prognosis. Our previous proteomic analysis found apolipoprotein E (ApoE) protein to be up-regulated in the sera of patients with PDAC. In this study, we sought to confirm this finding and investigate the relationship between ApoE and PDAC. We measured ApoE expression in tissues from PDAC patients and normal controls (NC) by real-time PCR, western blot, and immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was applied to measure the levels of ApoE and carbohydrate antigen 19-9 (CA19-9) in the sera from patients with PDAC and NC. Real-time PCR and western blots showed that the ApoE mRNA and protein levels were up-regulated in PDAC tissues. The immunohistochemical results revealed that overexpression of ApoE was detected in 43 of 55 (78.2 %) PDAC cases and 3 of 20 (15 %) NC. High levels of ApoE were more likely in PDAC patients with advanced T status and TNM stages (p = 0.023 and p = 0.018, respectively). The ELISA results also confirmed that ApoE levels were elevated in the sera of PDAC patients. The sensitivity and specificity for distinguishing PDAC from NC were 76.2 and 71.4 %, respectively, for ApoE, 66.7 and 85.7 %, respectively, for CA19-9, and 81.0 and 85.7 %, respectively, for their combination. These results suggest that ApoE may be a potential PDAC-related biomarker and alone or in combination with other markers may provide additional information for the diagnosis and clinical management of PDAC.
Collapse
Affiliation(s)
- Jiong Chen
- Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, 17 Lujiang Road, Hefei 230001, Anhui Province, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lopes J, Adiguzel E, Gu S, Liu SL, Hou G, Heximer S, Assoian RK, Bendeck MP. Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2241-53. [PMID: 23567639 DOI: 10.1016/j.ajpath.2013.02.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/25/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
Collagens in the atherosclerotic plaque signal regulation of cell behavior and provide tensile strength to the fibrous cap. Type VIII collagen, a short-chain collagen, is up-regulated in atherosclerosis; however, little is known about its functions in vivo. We studied the response to arterial injury and the development of atherosclerosis in type VIII collagen knockout mice (Col8(-/-) mice). After wire injury of the femoral artery, Col8(-/-) mice had decreased vessel wall thickening and outward remodeling when compared with Col8(+/+) mice. We discovered that apolipoprotein E (ApoE) is an endogenous repressor of the Col8a1 chain, and, therefore, in ApoE knockout mice, type VIII collagen was up-regulated. Deficiency of type VIII collagen in ApoE(-/-) mice (Col8(-/-);ApoE(-/-)) resulted in development of plaques with thin fibrous caps because of decreased smooth muscle cell migration and proliferation and reduced accumulation of fibrillar type I collagen. In contrast, macrophage accumulation was not affected, and the plaques had large lipid-rich necrotic cores. We conclude that in atherosclerosis, type VIII collagen is up-regulated in the absence of ApoE and functions to increase smooth muscle cell proliferation and migration. This is an important mechanism for formation of a thick fibrous cap to protect the atherosclerotic plaque from rupture.
Collapse
Affiliation(s)
- Joshua Lopes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kothapalli D, Liu SL, Bae YH, Monslow J, Xu T, Hawthorne EA, Byfield FJ, Castagnino P, Rao S, Rader DJ, Puré E, Phillips MC, Lund-Katz S, Janmey PA, Assoian RK. Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. Cell Rep 2012; 2:1259-71. [PMID: 23103162 PMCID: PMC3535179 DOI: 10.1016/j.celrep.2012.09.018] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/23/2012] [Accepted: 09/12/2012] [Indexed: 12/20/2022] Open
Abstract
Arterial stiffening is a risk factor for cardiovascular disease, but how arteries stay supple is unknown. Here, we show that apolipoprotein E (apoE) and apoE-containing high-density lipoprotein (apoE-HDL) maintain arterial elasticity by suppressing the expression of extracellular matrix genes. ApoE interrupts a mechanically driven feed-forward loop that increases the expression of collagen-I, fibronectin, and lysyl oxidase in response to substratum stiffening. These effects are independent of the apoE lipid-binding domain and transduced by Cox2 and miR-145. Arterial stiffness is increased in apoE null mice. This stiffening can be reduced by administration of the lysyl oxidase inhibitor BAPN, and BAPN treatment attenuates atherosclerosis despite highly elevated cholesterol. Macrophage abundance in lesions is reduced by BAPN in vivo, and monocyte/macrophage adhesion is reduced by substratum softening in vitro. We conclude that apoE and apoE-containing HDL promote healthy arterial biomechanics and that this confers protection from cardiovascular disease independent of the established apoE-HDL effect on cholesterol.
Collapse
Affiliation(s)
- Devashish Kothapalli
- Institute for Translational Medicine and Therapeutics, Departments of Pharmacology, Medicine, and Physiology, and the Molecular Profiling Facility, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gordts PL, Bartelt A, Nilsson SK, Annaert W, Christoffersen C, Nielsen LB, Heeren J, Roebroek AJ. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice. PLoS One 2012; 7:e38330. [PMID: 22701627 PMCID: PMC3368875 DOI: 10.1371/journal.pone.0038330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/03/2012] [Indexed: 01/20/2023] Open
Abstract
Objective Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1) dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. Methods and Results LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. Conclusion These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.
Collapse
Affiliation(s)
- Philip L.S.M. Gordts
- Laboratory for Experimental Mouse Genetics, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Alexander Bartelt
- Department of Biochemistry and Molecular Cell Biology
- Department of Orthopedics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan K. Nilsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Wim Annaert
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory of Membrane Trafficking, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Lars Bo Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology
- * E-mail: (AJMR); (JH)
| | - Anton J.M. Roebroek
- Laboratory for Experimental Mouse Genetics, Center for Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail: (AJMR); (JH)
| |
Collapse
|
21
|
Targeted In Situ Gene Correction of Dysfunctional APOE Alleles to Produce Atheroprotective Plasma ApoE3 Protein. Cardiol Res Pract 2012; 2012:148796. [PMID: 22645694 PMCID: PMC3356902 DOI: 10.1155/2012/148796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/30/2012] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading worldwide cause of death. Apolipoprotein E (ApoE) is a 34-kDa circulating glycoprotein, secreted by the liver and macrophages with pleiotropic antiatherogenic functions and hence a candidate to treat hypercholesterolaemia and atherosclerosis. Here, we describe atheroprotective properties of ApoE, though also potential proatherogenic actions, and the prevalence of dysfunctional isoforms, outline conventional gene transfer strategies, and then focus on gene correction therapeutics that can repair defective APOE alleles. In particular, we discuss the possibility and potential benefit of applying in combination two technical advances to repair aberrant APOE genes: (i) an engineered endonuclease to introduce a double-strand break (DSB) in exon 4, which contains the common, but dysfunctional, ε2 and ε4 alleles; (ii) an efficient and selectable template for homologous recombination (HR) repair, namely, an adeno-associated viral (AAV) vector, which harbours wild-type APOE sequence. This technology is applicable ex vivo, for example to target haematopoietic or induced pluripotent stem cells, and also for in vivo hepatic gene targeting. It is to be hoped that such emerging technology will eventually translate to patient therapy to reduce CVD risk.
Collapse
|
22
|
Bañares VG, Bardach A, Peterson G, Tavella MJ, Schreier LE. APOE −491 T allele may reduce the risk of atherosclerotic lesions among middle-aged women. Mol Cell Biochem 2011; 362:123-31. [DOI: 10.1007/s11010-011-1134-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/22/2011] [Indexed: 01/10/2023]
|
23
|
Gaudreault N, Kumar N, Posada JM, Stephens KB, Reyes de Mochel NS, Eberlé D, Olivas VR, Kim RY, Harms MJ, Johnson S, Messina LM, Rapp JH, Raffai RL. ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium. Arterioscler Thromb Vasc Biol 2011; 32:264-72. [PMID: 22053073 DOI: 10.1161/atvbaha.111.238964] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE We investigated atheroprotective properties of apolipoprotein (apo) E beyond its ability to lower plasma cholesterol. We hypothesized that apoE reduces atherosclerosis by decreasing lipid accumulation in circulating monocytes and the inflammatory state of monocytes and the vascular endothelium. METHODS AND RESULTS We developed mice with spontaneous hyperlipidemia with and without plasma apoE. Hypomorphic apoE mice deficient in low-density lipoprotein receptor (Apoe(h/h)Ldlr(-/-)) were compared to Apoe(-/-)Ldlr(-/-) mice. Despite 4-fold more plasma apoE than WT mice, Apoe(h/h)Ldlr(-/-) mice displayed similar plasma cholesterol as Apoe(-/-) Ldlr(-/-) mice but developed 4-fold less atherosclerotic lesions by 5 months of age. The aortic arch of Apoe(h/h)Ldlr(-/-) mice showed decreased endothelial expression of ICAM-1, PECAM-1, and JAM-A. In addition, Apoe(h/h)Ldlr(-/-) mice had less circulating leukocytes and proinflammatory Ly6C(high) monocytes. These monocytes had decreased neutral lipid content and reduced surface expression of ICAM-1, VLA-4, and L-Selectin. Apoe(h/h)Ldlr(-/-) mice displayed increased levels of apoA1-rich HDL that were potent in promoting cellular cholesterol efflux. CONCLUSIONS Our findings suggest that apoE reduces atherosclerosis in the setting of hyperlipidemia by increasing plasma apoA1-HDL that likely contribute to reduce intracellular lipid accumulation and thereby the activation of circulating leukocytes and the vascular endothelium.
Collapse
Affiliation(s)
- Nathalie Gaudreault
- Department of Surgery, University of California San Francisco and VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ronci M, Sharma S, Chataway T, Burdon KP, Martin S, Craig JE, Voelcker NH. MALDI-MS-imaging of whole human lens capsule. J Proteome Res 2011; 10:3522-9. [PMID: 21663315 DOI: 10.1021/pr200148k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ocular lens capsule is a smooth, transparent basement membrane that encapsulates the lens and is composed of a rigid network of interacting structural proteins and glycosaminoglycans. During cataract surgery, the anterior lens capsule is routinely removed in the form of a circular disk. We considered that the excised capsule could be easily prepared for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) analysis. MALDI-MSI is a powerful tool to elucidate the spatial distribution of small molecules, peptides, and proteins within tissues. Here, we apply this molecular imaging technique to analyze the freshly excised human lens capsule en face. We demonstrate that novel information about the distribution of proteins by MALDI-MSI can be obtained from this highly compact connective tissue, having no evident histo-morphological characteristics. Trypsin digestion carried out on-tissue is shown to improve MALDI-MSI analysis of human lens capsules and affords high repeatability. Most importantly, MALDI-MSI analysis reveals a concentric distribution pattern of proteins such as apolipoprotein E (ApoE) and collagen IV alpha-1 on the anterior surface of surgically removed lens capsule, which may indicate direct or indirect effects of environmental and mechanical stresses on the human ocular lens.
Collapse
Affiliation(s)
- Maurizio Ronci
- School of Chemical and Physical Sciences, Flinders University, Bedford Park SA 5042, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Su WP, Chen YT, Lai WW, Lin CC, Yan JJ, Su WC. Apolipoprotein E expression promotes lung adenocarcinoma proliferation and migration and as a potential survival marker in lung cancer. Lung Cancer 2011; 71:28-33. [PMID: 20430468 DOI: 10.1016/j.lungcan.2010.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/20/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Many human lung cancer cell lines express apolipoprotein E (ApoE), especially cells derived from malignant pleural effusions (MPE) in patients with lung adenocarcinoma. This study aimed to investigate the influence of ApoE expression on lung cancer. In lung cancer tissues, ApoE expression was more frequently found in malignant pleural effusions (MPE)-associated lung adenocarcinoma than in lung adenocarcinoma or squamous cell carcinoma without MPE (P<0.05), indicating that ApoE is associated with the pathogenesis of MPE in patients with lung adenocarcinoma. Next, we examined the roles of ApoE in an MPE-derived lung adenocarcinoma cell line that endogenously over-expresses ApoE, PC14PE6/AS2 (AS2). In that experiment we inhibited ApoE expression by transfection of a plasmid carrying ApoE siRNAs into AS2 cells to generate AS-S2 and AS-S3 cells. Compared to vector-control cells and parental AS2 cells, AS2-S2 and AS2-S3 cells grew slower (P<0.05), were more sensitive to cisplatin, and had significantly impaired cellular migration (P<0.05). Furthermore, over-expression of ApoE was independently associated with poor survival in lung adenocarcinoma patients who had MPE at the time of diagnosis (P<0.001). Conclusively, ApoE over-expression promotes cancer proliferation and migration and contributes to an aggressive clinical course in patients with lung adenocarcinoma and MPE.
Collapse
Affiliation(s)
- Wen-Pin Su
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Getz GS, Reardon CA. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 2008; 50 Suppl:S156-61. [PMID: 19018038 DOI: 10.1194/jlr.r800058-jlr200] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Apoprotein E (apoE) is synthesized by a number of tissues including the liver, brain, adipose tissue, and artery wall. The majority of apoE is found in the plasma associated with specific lipoprotein subclasses and is derived primarily from the liver. However the fact that apoE expression is sustained in nonhepatic tissues suggests that the local production must have some unique functional attribute. ApoE is involved in many steps in lipid and lipoprotein homeostasis, for the triglyceride-rich lipoproteins and for HDL. ApoE is also important for lipid homeostasis in the brain, artery wall, and adipose tissue through its synthesis by glial cells, adipocytes, and macrophages. In addition, nonlipid related functions have also been attributed to apoE, including effects on immune response and inflammation, oxidation, and smooth muscle proliferation and migration. Some of these effects have been shown to be dependent upon different domains of the protein, different concentrations, and lipidation state. Thus, this multifunctional protein impacts normal and pathophysiology at multiple levels.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
27
|
What initiates the formation of senile plaques? The origin of Alzheimer-like dementias in capillary haemorrhages. Med Hypotheses 2008; 71:347-59. [DOI: 10.1016/j.mehy.2008.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 03/24/2008] [Accepted: 04/03/2008] [Indexed: 01/18/2023]
|
28
|
Minihane AM, Jofre-Monseny L, Olano-Martin E, Rimbach G. ApoE genotype, cardiovascular risk and responsiveness to dietary fat manipulation. Proc Nutr Soc 2007; 66:183-97. [PMID: 17466101 DOI: 10.1017/s0029665107005435] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiovascular risk is determined by the complex interactions between genetic and environmental factors. The apoE genotype represents the most-widely-studied single nucleotide polymorphism in relation to CVD risk, with >3600 publications cited in PubMed. Although originally described as a mediator of lipoprotein metabolism, the lipoprotein-independent functions of apoE are being increasingly recognised, with limited data available on the potential impact of genotype on these metabolic processes. Furthermore, although meta-analyses suggest that apoE4 carriers may have a 40-50% increased CVD risk, the associations reported in individual studies are highly heterogeneous and it is recognised that environmental factors such as smoking status and dietary fat composition influence genotype-phenotype associations. However, information is often derived from observational studies or small intervention trials in which retrospective genotyping of the cohort results in small group sizes in the rarer E2 and E4 subgroups. Either larger well-standardised intervention trials or smaller trials with prospective recruitment according to apoE genotype are needed to fully establish the impact of diet on genotype-CVD associations and to establish the potential of dietary strategies such as reduced total fat, saturated fat, or increased antioxidant intakes to counteract the increased CVD burden in apoE4 carriers.
Collapse
Affiliation(s)
- A M Minihane
- Hugh Sinclair Unit of Human Nutrition, School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|
29
|
Mullick AE, Powers AF, Kota RS, Tetali SD, Eiserich JP, Rutledge JC. Apolipoprotein E3- and Nitric Oxide–Dependent Modulation of Endothelial Cell Inflammatory Responses. Arterioscler Thromb Vasc Biol 2007; 27:339-45. [PMID: 17138935 DOI: 10.1161/01.atv.0000253947.70438.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective—
Although apolipoprotein E3 (apoE3) is known to be atheroprotective, its mechanisms of protection in endothelial cells remain unclear.
Methods and Results—
Cultured human aortic endothelial cells were stimulated with tumor necrosis factor (TNF)-α in the presence of human recombinant apoE3 solubilized in dimyristoyl phosphatidylcholine liposomes. Using flow cytometry and real-time polymerase chain reaction, a significant increase of inflammatory cell adhesion proteins (vascular cell adhesion molecule-1 and E-Selectin), and MCP-1, interleukin-8, and intercellular adhesion molecule-1 gene expression was observed within 5 hours of TNF-α exposure, which was markedly attenuated in cells coincubated with apoE3. Treatment with apoE4 resulted in increased inflammatory gene expression relative to either TNF treatment alone or TNF + apoE3 treatment. NO synthase inhibition experiments demonstrated NO to be an active participant in the actions of both TNF and apoE. To clarify the role of NO, dose-response experiments were performed with 0.03 to 300 μmol/L DEA-NONOate. Using flow cytometry and real-time polymerase chain reaction, a modulatory role of NO in TNF-induced endothelial cell activation was observed.
Conclusions—
These data suggest a role of vascular wall apoE3 to balance the intracellular redox state in injured endothelial cells via NO-dependent pathways.
Collapse
Affiliation(s)
- Adam E Mullick
- Department of Internal Medicine, Division of Endocrinology, Clinical Nutrition, and Vascular Medicine, School of Medicine, University of California, Davis, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Li S, Shin Y, Cho KWY, Merzdorf CS. The Xfeb gene is directly upregulated by Zic1 during early neural development. Dev Dyn 2006; 235:2817-27. [PMID: 16871635 DOI: 10.1002/dvdy.20896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The transcription factor Zic1 plays important roles in patterning the neural plate in early vertebrate development. However, few genes that are regulated by Zic1 are known. We have identified a new direct downstream target gene of Zic1 that we have named Xfeb. Xfeb is a member of the pathogenesis-related (PR) protein superfamily and contains five tandem SCP domains. The sequence of Xfeb suggests that it may possess serine protease activity. Xfeb is expressed in the presumptive hindbrain region during neurula stages and in somite tissues later in development. Xfeb represses the hindbrain gene hoxB1 and the anterior neural gene otx2, suggesting that Xfeb is involved in regionalizing the neural plate, possibly by ensuring a posterior expression limit for otx2.
Collapse
Affiliation(s)
- Shuzhao Li
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, USA
| | | | | | | |
Collapse
|