1
|
Knudtzon S, Nordengen K, Pålhaugen L, Gísladóttir B, Jarholm J, Bråthen G, Skogseth RE, Waterloo K, Selnes P, Fladby T, Kirsebom BE. Sexual dimorphisms in innate immune activation markers in predementia Alzheimer's disease. Brain Commun 2025; 7:fcaf161. [PMID: 40322776 PMCID: PMC12046404 DOI: 10.1093/braincomms/fcaf161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/04/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Females have an increased risk of developing Alzheimer's disease (AD). The innate immune system plays a key role in AD pathology, and sex differences in innate immune responses may contribute to differences in disease risk and progression. This study investigated sex differences in innate immune responses among participants without cerebrospinal fluid (CSF) determined amyloid pathology [A-; cognitively normal (CN), n = 83] and those with amyloid pathology (A+, n = 202), further stratified into preclinical (CN with A+, n = 72) and mild cognitive impairment (MCI with A+, n = 130). Participants were drawn from the Norwegian Dementia Disease Initiation cohort (n = 285). We measured plasma glial fibrillary acidic protein (GFAP) and CSF concentrations of nine innate immune markers: soluble triggering receptor expressed on myeloid cells 2 (sTREM2), monocyte chemoattractant protein 1 (MCP-1), fractalkine, chitinase 3-like 1 (YKL-40), clusterin, interferon gamma (IFN-γ), interleukin-6 (IL-6), IL-10, and IL-18. Linear regression was used, adjusted for multiple comparisons using the false discovery rate. In A+ cases (n = 202, females = 105), females had lower MCP-1 (P < 0.01), IL-6 and IL-18 (both P < 0.05) than males, while no sex differences were observed in A- cases (n = 83, females = 39). Among A+ participants, no sex differences were observed in CN cases (n = 72, females = 37), but females (n = 68) with MCI had lower MCP-1 and IL-6 (both P < 0.05) than males (n = 62) with MCI. Moreover, A+ females exhibited stronger positive associations between sTREM2 and clusterin with CSF total tau (P < 0.001; P < 0.05) and Neurofilament light chain (P < 0.01; P < 0.01) than males. These findings suggest sex-specific differences in innate immune responses, which may contribute to disease progression in amyloid-positive individuals.
Collapse
Affiliation(s)
- Stephanie Knudtzon
- Department of Neurology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, 1478 Lørenskog, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Ragnhild Eide Skogseth
- Department of Geriatric Medicine and the Neuro-SysMed Centre, Haraldsplass Deaconess Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
2
|
Alboni S, Tascedda F, Uezato A, Sugama S, Chen Z, Marcondes MCG, Conti B. Interleukin 18 and the brain: neuronal functions, neuronal survival and psycho-neuro-immunology during stress. Mol Psychiatry 2025:10.1038/s41380-025-02951-z. [PMID: 40121365 DOI: 10.1038/s41380-025-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Interleukin 18 (IL-18) is a pleiotropic cytokine that regulates peripheral innate and adaptive immune response and is also expressed in the brain. Here, we summarize the current knowledge on the biology of IL-18 in the brain and the efforts to determine its significance concerning neurological and psychiatric conditions. The picture that emerges is that of a heavily regulated molecule that can contribute to neuroinflammatory-mediated neuronal survival but can also serve as a neuromodulator that affects behaviour. We also summarize evidence showing how the brain can control the synthesis of peripheral IL-18 during stress by hormonal and neuronal signalling, regulating tissue-specific promoter usage. We discuss how this may represent one of the mechanisms by which the brain affects immune functions and what its implications are when considering IL-18 as a biomarker of psychiatric conditions.
Collapse
Affiliation(s)
- Silvia Alboni
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Fabio Tascedda
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Akihito Uezato
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Shuei Sugama
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Zuxin Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P. R. China
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
Zhou F, Lian W, Yuan X, Wang Z, Xia C, Yan Y, Wang W, Tong Z, Cheng Y, Xu J, He J, Zhang W. Cornuside alleviates cognitive impairments induced by Aβ 1-42 through attenuating NLRP3-mediated neurotoxicity by promoting mitophagy. Alzheimers Res Ther 2025; 17:47. [PMID: 39972387 PMCID: PMC11837312 DOI: 10.1186/s13195-025-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder in which mitochondrial dysfunction and neuroinflammation play crucial roles in its progression. Our previous studies found that cornuside from Cornus officinalis Sieb.Et Zucc is an anti-AD candidate, however, its underlying mechanism remains unknown. In the present study, AD mice were established by intracerebroventricular injection of Aβ1-42 and treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated behavioral deficits, protected synaptic plasticity and relieved neuronal damage in Aβ1-42 induced mice. Importantly, cornuside decreased NLRP3 inflammasome activation, characterized by decreased levels of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β. Furthermore, cornuside promoted mitophagy accompanied by decreasing SQSTM1/p62 and promoting LC3B-I transforming into LC3B-II, via Pink1/Parkin signaling instead of FUNDC1 or BNIP3 pathways. In order to investigate the relationship between NLRP3 inflammasome and mitophagy in the neuroprotective mechanism of cornuside, we established an in-vitro model in BV2 cells exposed to LPS and Aβ1-42. And cornuside inhibited NLRP3 inflammasome activation and subsequent cytokine release, also protected neurons from damaging factors in microenvironment of conditional culture. Cornuside improved mitochondrial function by promoting oxidative phosphorylation and glycolysis, decreasing the production of ROS and mitochondrial membrane potential depolarization. Besides, mitophagy was also facilitated with increased colocalization of MitoTracker with LC3B and Parkin, and Pink1/Parkin, FUNDC1 and BNIP3 pathways were all involved in the mechanism of cornuside. By blocking the formation of autophagosomes by 3-MA, the protective effects on mitochondria, the inhibition on NLRP3 inflammasome as well as neuronal protection in conditional culture were eliminated. There is reason to believe that the promotion of mitophagy plays a key role in the NLRP3 inhibition of cornuside. In conclusion, cornuside re-establishes the mitophagy flux which eliminates damaged mitochondria and recovers mitochondrial function, both of them are in favor of inhibiting NLRP3 inflammasome activation, then alleviating neuronal and synaptic damage, and finally improving cognitive function.
Collapse
Affiliation(s)
- Fulin Zhou
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenwen Lian
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xiaotang Yuan
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zexing Wang
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenping Wang
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhuohang Tong
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yungchi Cheng
- Department of Pharmacology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Jiekun Xu
- School of Life Science, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Jun He
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences, Department of Pharmacy, China-Japan, Friendship Hospital 2nd, Yinghua Dongjie, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Cheon J, Kwon S, Kim M. Exerkines mitigating Alzheimer's disease progression by regulating inflammation: Focusing on macrophage/microglial NLRP3 inflammasome pathway. Alzheimers Dement 2025; 21:e14432. [PMID: 39641407 PMCID: PMC11848186 DOI: 10.1002/alz.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Recent research highlights the critical role of inflammation in accelerating amyloid beta and phosphorylated tubulin-associated protein tau cascade and Alzheimer's disease (AD) progression. Emerging evidence suggests that exercise influences AD by modulating inflammatory responses. We conducted a comprehensive search across multiple online databases. Our approach focused on previous and recent studies exploring the links among inflammation, AD, and the effects of exercise, specifically targeting research articles and books published in English. We pointed out that inflammation extends from the periphery to the central nervous system, facilitated by macrophage/microglial NLRP3 (nucleotide-binding domain, leucine rich-containing family, pyrin domain-containing protein 3) inflammasome signaling, which exacerbates classical AD mechanisms. Moreover, we provided further insights into the modulation of inflammasome signaling through exercise and exerkines, which may contribute to mitigating AD development. These insights deepen our understanding of AD mechanisms and offer the potential for identifying key therapeutic targets and biomarkers crucial for effective disease management and treatment. HIGHLIGHTS: Inflammation is potentially linked to the acceleration of classical Alzheimer's disease (AD) pathogenesis, including the pathways involving amyloid beta and phosphorylated tau, mediated by pro-inflammatory cytokines. Inflammation, initiated by the nucleotide-binding domain, leucine rich-containing family, pyrin domain-containing protein 3 (NLRP3) inflammasome signaling pathway within M1-type macrophages/microglia, may contribute to neuroinflammation and AD progression. Exercise has the potential to reduce inflammation and the development of AD by influencing NLRP3 inflammasome signaling via exerkines.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Biomedical ScienceKorea University College of MedicineSeongbuk‐guSeoulRepublic of Korea
- Uimyung Research Institute for NeuroscienceDepartment of PharmacySahmyook UniversityNowon‐guSeoulRepublic of Korea
| | - Soonyong Kwon
- Uimyung Research Institute for NeuroscienceDepartment of PharmacySahmyook UniversityNowon‐guSeoulRepublic of Korea
- Department of Chemistry & Life ScienceSahmyook UniversityNowon‐guSeoulRepublic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for NeuroscienceDepartment of PharmacySahmyook UniversityNowon‐guSeoulRepublic of Korea
- Department of Chemistry & Life ScienceSahmyook UniversityNowon‐guSeoulRepublic of Korea
| |
Collapse
|
5
|
Abdelhamed HG, Hassan AA, Sakraan AA, Al-Deeb RT, Mousa DM, Aboul Ezz HS, Noor NA, Khadrawy YA, Radwan NM. Brain interleukins and Alzheimer's disease. Metab Brain Dis 2025; 40:116. [PMID: 39891777 PMCID: PMC11787210 DOI: 10.1007/s11011-025-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
The central nervous system (CNS) is immune-privileged by several immuno-modulators as interleukins (ILs). ILs are cytokines secreted by immune cells for cell-cell signaling communications and affect the functions of the CNS. ILs were reported to orchestrate different molecular and cellular mechanisms of both physiological and pathological events, through overproduction or over-expression of their receptors. They interact with numerous receptors mediating pro-inflammatory and/or anti-inflammatory actions. Interleukins have been implicated to participate in neurodegenerative diseases. They play a critical role in Alzheimer's disease (AD) pathology which is characterized by the over-production of pro-inflammatory ILs. These may aggravate neurodegeneration, in addition to their contribution to detrimental mechanisms as oxidative stress, and excitotoxicity. However, recent research on the relation between ILs and AD revealed major discrepancies. Most of the major ILs were shown to play both pro- and anti-inflammatory roles in different experimental settings and models. The interactions between different ILs through shared pathways also add to the difficulty of drawing solid conclusions. In addition, targeting the different ILs has not yielded consistent results. The repeated failures of therapeutic drugs in treating AD necessitate the search for novel agents targeting multiple mechanisms of the disease pathology. In this context, the understanding of interleukins and their roles throughout the disease progression and interaction with other systems in the brain may provide promising therapeutic targets for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Heba G Abdelhamed
- Department of Zoology and Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Arwa A Hassan
- Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, Sinai, Egypt
| | - Alaa A Sakraan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Dalia M Mousa
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Neveen A Noor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Nasr M Radwan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2025; 36:91-117. [PMID: 39240134 PMCID: PMC11717358 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B. Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C. Y. Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J. Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L. Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
7
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
8
|
Ou CM, Xue WW, Liu D, Ma L, Xie HT, Ning K. Stem cell therapy in Alzheimer's disease: current status and perspectives. Front Neurosci 2024; 18:1440334. [PMID: 39640295 PMCID: PMC11618239 DOI: 10.3389/fnins.2024.1440334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
An incurable neurogenerative illness, Alzheimer's disease, is the cause of most global health, medical, and social disasters. The two main symptoms are cognitive impairment and neuronal loss. Current medications that target tau protein tangles and Aβ plaques are not very effective because they only slow the symptoms of AD and do not repair damaged cells. Stem cell-based treatments, however, present an alternative strategy in the treatment of AD. They have the capacity to divide into specialized adult cells, have self-renewal abilities, and multiplication. Stem cells can now be employed as a donor source for cell therapy due to developments in stem cell technology. This review covers preclinical and clinical updates on studies based on targeting the tau protein tangles and Aβ plaque, as well as four types of stem cells employed in AD treatment. The review also outlines the two basic pathologic aspects, tau protein tangles and Aβ plaques, of AD.
Collapse
Affiliation(s)
- Chu-Min Ou
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Wei-Wei Xue
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dong Liu
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Liya Ma
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Hai-Tao Xie
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
| | - Ke Ning
- Guangdong Celconta Biotechnology Co., Ltd., Dongguan, Guangdong, China
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Madhu LN, Kodali M, Upadhya R, Rao S, Somayaji Y, Attaluri S, Shuai B, Kirmani M, Gupta S, Maness N, Rao X, Cai JJ, Shetty AK. Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease. J Extracell Vesicles 2024; 13:e12519. [PMID: 39499013 PMCID: PMC11536387 DOI: 10.1002/jev2.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 11/07/2024] Open
Abstract
As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.
Collapse
Affiliation(s)
- Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maha Kirmani
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shreyan Gupta
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Nathaniel Maness
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - James J. Cai
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| |
Collapse
|
10
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
12
|
Jha D, Bakker ENTP, Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer's disease. J Neurochem 2024; 168:3574-3598. [PMID: 36802053 DOI: 10.1111/jnc.15788] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1β and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Dhanshree Jha
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Gallo LH, Akanda N, Autar K, Patel A, Cox I, Powell HA, Grillo M, Barakat N, Morgan D, Guo X, Hickman JJ. A functional aged human iPSC-cortical neuron model recapitulates Alzheimer's disease, senescence, and the response to therapeutics. Alzheimers Dement 2024; 20:5940-5960. [PMID: 39077965 PMCID: PMC11633364 DOI: 10.1002/alz.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The degeneration of cortical layers is associated with cognitive decline in Alzheimer's disease (AD). Current therapies for AD are not disease-modifying, and, despite substantial efforts, research and development for AD has faced formidable challenges. In addition, cellular senescence has emerged as a significant contributor to therapy resistance. METHODS Human iPSC-derived cortical neurons were cultured on microelectrode arrays to measure long-term potentiation (LTP) noninvasively. Neurons were treated with pathogenic amyloid-β (Aβ) to analyze senescence and response to therapeutic molecules. RESULTS Microphysiological recordings revealed Aβ dampened cortical LTP activity and accelerated neuronal senescence. Aging neurons secreted inflammatory factors previously detected in brain, plasma, and cerebral spinal fluid of AD patients, in which drugs modulated senescence-related factors. DISCUSSION This platform measures and records neuronal LTP activity in response to Aβ and therapeutic molecules in real-time. Efficacy data from similar platforms have been accepted by the FDA for neurodegenerative diseases, expediting regulatory submissions. HIGHLIGHTS This work developed a progerontic model of amyloid-β (Aβ)-driven cortical degeneration. This work measured neuronal LTP and correlated function with aging biomarkers. Aβ is a driver of neuronal senescence and cortical degeneration. Molecules rescued neuronal function but did not halt Aβ-driven senescence. Therapeutic molecules modulated secretion of inflammatory factors by aging neurons.
Collapse
Affiliation(s)
- Leandro H. Gallo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Nesar Akanda
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Kaveena Autar
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Aakash Patel
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Ian Cox
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Haley A. Powell
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Marcella Grillo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| | - Natali Barakat
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Dave Morgan
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand Rapids Research CenterGrand RapidsMichiganUSA
| | - Xiufang Guo
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - James J. Hickman
- Nanoscience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
- Hesperos Inc.OrlandoFloridaUSA
| |
Collapse
|
14
|
Li C, Zhang X, Wang Y, Cheng L, Li C, Xiang Y. The role of IL-1 family of cytokines in the pathogenesis and therapy of Alzheimer's disease. Inflammopharmacology 2024:10.1007/s10787-024-01534-8. [PMID: 39126573 DOI: 10.1007/s10787-024-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurological condition that occurs with age and poses a significant global public health concern, is distinguished by the degeneration of neurons and synapses in various regions of the brain. While the exact processes behind the neurodegeneration in AD are not completely known, it is now acknowledged that inflammation may have a significant impact on the beginning and advancement of AD neurodegeneration. The severity of many neurological illnesses can be influenced by the equilibrium between pro-inflammatory and anti-inflammatory mediators. The IL-1 family of cytokines is linked to innate immune responses, which are present in both acute inflammation and chronic inflammatory diseases. Research on the role of the IL-1 family in chronic neurological disease has been concentrated on AD. In this context, there is indirect evidence suggesting its involvement in the development of the disease. This review aims to provide a summary of the contribution of every IL-1 family member in AD pathogenesis, current immunotherapies in AD disease, and present treatment possibilities for either targeting or boosting these cytokines.
Collapse
Affiliation(s)
- ChangQing Li
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Xun Zhang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Yunqian Wang
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - Le Cheng
- Department of Laboratory Medicine, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, 610000, Sichuan, China
| | - ChangBao Li
- Urology Department, Huili People's Hospital, Huili615100, Guangyuan, Sichuan, China
| | - Yu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Bertolini M, Clark D. Periodontal disease as a model to study chronic inflammation in aging. GeroScience 2024; 46:3695-3709. [PMID: 37285008 PMCID: PMC11226587 DOI: 10.1007/s11357-023-00835-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Periodontal disease is a chronic inflammatory condition that results in the destruction of the teeth supporting tissues, eventually leading to the loss of teeth and reduced quality of life. In severe cases, periodontal disease can limit proper nutritional intake, cause acute pain and infection, and cause a withdrawal from social situations due to esthetic and phonetic concerns. Similar to other chronic inflammatory conditions, periodontal disease increases in prevalence with age. Research into what drives periodontal disease pathogenesis in older adults is contributing to our general understanding of age-related chronic inflammation. This review will present periodontal disease as an age-related chronic inflammatory disease and as an effective geroscience model to study mechanisms of age-related inflammatory dysregulation. The current understanding of the cellular and molecular mechanisms that drive inflammatory dysregulation as a function of age will be discussed with a focus on the major pathogenic immune cells in periodontal disease, which include neutrophils, macrophages, and T cells. Research in the aging biology field has shown that the age-related changes in these immune cells result in the cells becoming less effective in the clearance of microbial pathogens, expansion of pathogenic subpopulations, or an increase in pro-inflammatory cytokine secretions. Such changes can be pathogenic and contribute to inflammatory dysregulation that is associated with a myriad of age-related disease including periodontal disease. An improved understanding is needed to develop better interventions that target the molecules or pathways that are perturbed with age in order to improve treatment of chronic inflammatory conditions, including periodontal disease, in older adult populations.
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daniel Clark
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
17
|
McManus RM, Latz E. NLRP3 inflammasome signalling in Alzheimer's disease. Neuropharmacology 2024; 252:109941. [PMID: 38565393 DOI: 10.1016/j.neuropharm.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127, Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
18
|
Yan H, Wang W, Cui T, Shao Y, Li M, Fang L, Feng L. Advances in the Understanding of the Correlation Between Neuroinflammation and Microglia in Alzheimer's Disease. Immunotargets Ther 2024; 13:287-304. [PMID: 38881647 PMCID: PMC11180466 DOI: 10.2147/itt.s455881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease with a subtle and progressive onset and is the most common type of dementia. However, its etiology and pathogenesis have not yet been fully elucidated. The common pathological manifestations of AD include extraneuronal β-amyloid deposition (Aβ), intraneuronal tau protein phosphorylation leading to the formation of 'neurofibrillary tangles' (NFTs), neuroinflammation, progressive loss of brain neurons/synapses, and glucose metabolism disorders. Current treatment approaches for AD primarily focus on the 'Aβ cascade hypothesis and abnormal aggregation of hyperphosphorylation of tau proteins', but have shown limited efficacy. Therefore, there is an ongoing need to identify more effective treatment targets for AD. The central nervous system (CNS) inflammatory response plays a key role in the occurrence and development of AD. Neuroinflammation is an immune response activated by glial cells in the CNS that usually occurs in response to stimuli such as nerve injury, infection and toxins or in response to autoimmunity. Neuroinflammation ranks as the third most prominent pathological feature in AD, following Aβ and NFTs. In recent years, the focus on the role of neuroinflammation and microglia in AD has increased due to the advancements in genome-wide association studies (GWAS) and sequencing technology. Furthermore, research has validated the pivotal role of microglia-mediated neuroinflammation in the progression of AD. Therefore, this article reviews the latest research progress on the role of neuroinflammation triggered by microglia in AD in recent years, aiming to provide a new theoretical basis for further exploring the role of neuroinflammation in the process of AD occurrence and development.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Wei Wang
- Department of Intensive Care Unit, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Tingting Cui
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Yanxin Shao
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, People's Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Limei Fang
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| |
Collapse
|
19
|
Sun X, Lu Y, Pang Q, Luo B, Jiang Q. Tooth loss impairs cognitive function in SAMP8 mice via the NLRP3/Caspase-1 pathway. Oral Dis 2024; 30:2746-2755. [PMID: 37357357 DOI: 10.1111/odi.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Loss of occlusal support due to tooth loss has been indicated as one of the risk factors for Alzheimer's disease. This study aimed to investigate the relationship between tooth loss and cognitive dysfunction and illustrate the role of neuroinflammation in advancing Alzheimer's disease. MATERIALS AND METHODS Male 5-month-old senescence-accelerated mouse strain P8 (SAMP8) mice were divided into three groups (n = 7): the C (control), S (sham-operated), and TL (tooth loss) groups. The Morris water maze (MWM) test was performed to assess spatial memory. Additionally, histopathological and molecular assessments of hippocampal tissues were performed. RESULTS The TL groups exhibited impaired spatial memory in the water maze. Tooth loss induced higher protein expression levels of the neuroinflammation cytokine interleukin-1β (IL-1β) in the hippocampus than in the S and C groups. Tooth loss activated the NLRP3 inflammasome and increased the expression of Caspase-1 in the hippocampus. CONCLUSIONS The findings indicated that tooth loss impairs cognitive function in SAMP8 mice and is closely related to the activation of NLRP3/Caspase-1 in the hippocampus.
Collapse
Affiliation(s)
- Xu Sun
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yunping Lu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qian Pang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Luo
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Heinrich M, Spies C, Borchers F, Feinkohl I, Pischon T, Slooter AJC, von Haefen C, Zacharias N, Winterer G, Lammers-Lietz F. Perioperative Levels of IL8 and IL18, but not IL6, are Associated with Nucleus Basalis Magnocellularis Atrophy Three Months after Surgery. J Neuroimmune Pharmacol 2024; 19:10. [PMID: 38483732 PMCID: PMC10940494 DOI: 10.1007/s11481-024-10110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
Past studies have observed that brain atrophy may accelerate after surgical procedures. Furthermore, an association of systemic inflammation with neurodegeneration has been described. We hypothesize that postoperative interleukin (IL) levels in circulation as well as the perioperative change in interleukin levels are associated with increased postoperative atrophy in the Nucleus basalis magnocellularis (of Meynert, NBM) which is the major source of cortical acetylcholine. We analyzed data from the BioCog cohort which included patients ≥ 65 years presenting for elective major surgery (≥ 60min). Blood samples were taken before surgery and on the first postoperative day. Magnetic resonance imaging of the brain and neuropsychological assessments were conducted before surgery and after three months follow-up. We used linear regression analysis to determine the association of three interleukins (IL6, IL8 and IL18) with NBM atrophy (in % volume change from baseline before surgery to follow-up), as well as to examine the associations of NBM atrophy and volume with postoperative cognitive ability and perioperative cognitive change. Receiver-operating curves were used to determine the prognostic value of preoperative interleukin levels. For IL8 (N = 97) and IL18 (N = 217), but not IL6 (N = 240), we observed significant associations of higher postoperative IL levels at the first postoperative day with higher NBM atrophy at three months after surgery. Subsequent analyses suggested that in both IL8 and IL18, this association was driven by a more general association of chronically elevated IL levels and NBM atrophy, reflected by preoperative IL concentrations, rather than IL response to surgery, measured as the difference between pre- and postoperative IL concentrations. At follow-up, NBM volume was positively associated with the level of cognitive performance, but NBM atrophy was not significantly related to perioperative cognitive change. Prognostic value of preoperative IL concentrations for NBM atrophy was low. Our results suggest that an association of postoperative interleukin levels with NBM atrophy is driven by preoperatively elevated interleukins due to pre-existing inflammation, rather than perioperative change in interleukin levels in response to surgery and anesthesia. The BioCog study has been registered at clinicaltrials.gov on Oct 15, 2014 (NCT02265263).
Collapse
Affiliation(s)
- Maria Heinrich
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Spies
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Friedrich Borchers
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Insa Feinkohl
- Faculty of Health/Department of Medicine at Witten/Herdecke University, Witten/Herdecke, Germany
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arjen J C Slooter
- Department of Intensive Care Medicine and Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
- Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Clarissa von Haefen
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norman Zacharias
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Georg Winterer
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Florian Lammers-Lietz
- Charité-Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Pharmaimage Biomarker Solutions GmbH, Berlin, Germany.
| |
Collapse
|
21
|
Alizadehmoghaddam S, Pourabdolhossein F, Najafzadehvarzi H, Sarbishegi M, Saleki K, Nouri HR. Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson's disease. Heliyon 2024; 10:e25523. [PMID: 38356604 PMCID: PMC10864986 DOI: 10.1016/j.heliyon.2024.e25523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The underlying mechanisms of inflammasome activation and the following dopaminergic neuron loss caused by chronic neuroinflammation remain entirely unclear. Therefore, this study aimed to investigate the impact of crocin on the inflammasome complex within an experimental model of Parkinson's disease (PD) using male Wistar rats. PD was induced by the stereotaxic injection of lipopolysaccharide (LPS), and crocin was intraperitoneally administrated one week before the lesion, and then treatment continued for 21 days. Open field (OF) and elevated plus maze tests were applied for behavioral assays. Furthermore, hematoxylin and eosin (H&E) and immunostaining were performed on whole brain tissue, while dissected substantia nigra (SN) was used for immunoblotting and real-time PCR to evaluate compartments involved in PD. The time spent in the center of test was diminished in the LPS group, while treatment with 30 mg/kg of crocin significantly increased it. H&E staining showed a significant increase in cell infiltration at the site of LPS injection, which was ameliorated upon crocin treatment. Notably, crocin-treated animals showed a reduced number of caspase-1 and IL-1β positive cells, whereas the number of positive cells was increased in the LPS group (P < 0.05). A significant decrease in tyrosine hydroxylase (TH) expression was also found in the LPS group, while crocin treatment significantly elevated its expression. IL-1β, IL-18, NLRP1, and AIM2 genes expression significantly increased in the LPS group. On the other hand, treatment with 30 mg/kg of crocin significantly downregulated the expression levels of these genes along with NLRP1 (P < 0.05). In summary, our findings suggest that crocin reduces neuroinflammation in PD by diminishing IL-1β and caspase-1 levels, potentially by inhibiting the expression of AIM2 and NLRP1 genes.
Collapse
Affiliation(s)
- Solmaz Alizadehmoghaddam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Sarbishegi
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
22
|
Srinivasan S, Kancheva D, De Ren S, Saito T, Jans M, Boone F, Vandendriessche C, Paesmans I, Maurin H, Vandenbroucke RE, Hoste E, Voet S, Scheyltjens I, Pavie B, Lippens S, Schwabenland M, Prinz M, Saido T, Bottelbergs A, Movahedi K, Lamkanfi M, van Loo G. Inflammasome signaling is dispensable for ß-amyloid-induced neuropathology in preclinical models of Alzheimer's disease. Front Immunol 2024; 15:1323409. [PMID: 38352874 PMCID: PMC10863058 DOI: 10.3389/fimmu.2024.1323409] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting memory and cognition. The disease is accompanied by an abnormal deposition of ß-amyloid plaques in the brain that contributes to neurodegeneration and is known to induce glial inflammation. Studies in the APP/PS1 mouse model of ß-amyloid-induced neuropathology have suggested a role for inflammasome activation in ß-amyloid-induced neuroinflammation and neuropathology. Methods Here, we evaluated the in vivo role of microglia-selective and full body inflammasome signalling in several mouse models of ß-amyloid-induced AD neuropathology. Results Microglia-specific deletion of the inflammasome regulator A20 and inflammasome effector protease caspase-1 in the AppNL-G-F and APP/PS1 models failed to identify a prominent role for microglial inflammasome signalling in ß-amyloid-induced neuropathology. Moreover, global inflammasome inactivation through respectively full body deletion of caspases 1 and 11 in AppNL-G-F mice and Nlrp3 deletion in APP/PS1 mice also failed to modulate amyloid pathology and disease progression. In agreement, single-cell RNA sequencing did not reveal an important role for Nlrp3 signalling in driving microglial activation and the transition into disease-associated states, both during homeostasis and upon amyloid pathology. Conclusion Collectively, these results question a generalizable role for inflammasome activation in preclinical amyloid-only models of neuroinflammation.
Collapse
Affiliation(s)
- Sahana Srinivasan
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Daliya Kancheva
- Brain and Systems Immunology Lab, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie De Ren
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fleur Boone
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ine Paesmans
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Hervé Maurin
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Voet
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Isabelle Scheyltjens
- Brain and Systems Immunology Lab, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benjamin Pavie
- VIB Center for Inflammation Research, Ghent, Belgium
- VIB Bioimaging Core, Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Ghent, Belgium
- VIB Bioimaging Core, Ghent, Belgium
| | - Marius Schwabenland
- Institute of Neuropathology Medical Center, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Astrid Bottelbergs
- Neuroscience Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Kiavash Movahedi
- Brain and Systems Immunology Lab, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Madhu LN, Kodali M, Upadhya R, Rao S, Shuai B, Somayaji Y, Attaluri S, Kirmani M, Gupta S, Maness N, Rao X, Cai J, Shetty AK. Intranasally Administered EVs from hiPSC-derived NSCs Alter the Transcriptomic Profile of Activated Microglia and Conserve Brain Function in an Alzheimer's Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576313. [PMID: 38293018 PMCID: PMC10827207 DOI: 10.1101/2024.01.18.576313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antiinflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for Alzheimer's disease (AD). This study directly addressed this issue by examining the effects of intranasal administrations of hiPSC-NSC-EVs to 3-month-old 5xFAD mice. The EVs were internalized by all microglia, which led to reduced expression of multiple genes associated with disease-associated microglia, inflammasome, and interferon-1 signaling. Furthermore, the effects of hiPSC-NSC-EVs persisted for two months post-treatment in the hippocampus, evident from reduced microglial clusters, inflammasome complexes, and expression of proteins and/or genes linked to the activation of inflammasomes, p38/mitogen-activated protein kinase, and interferon-1 signaling. The amyloid-beta (Aβ) plaques, Aβ-42, and phosphorylated-tau concentrations were also diminished, leading to better cognitive and mood function in 5xFAD mice. Thus, early intervention with hiPSC-NSC-EVs in AD may help maintain better brain function by restraining the progression of adverse neuroinflammatory signaling cascades.
Collapse
|
24
|
Li R, Zheng F, Xu P, Lv L, Mu Y, Zhuang X, Chen S. Correlation of mild cognitive impairment with the thickness of retinal nerve fiber layer and serum indicators in type 2 diabetic patients. Front Endocrinol (Lausanne) 2024; 14:1299206. [PMID: 38260156 PMCID: PMC10801021 DOI: 10.3389/fendo.2023.1299206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Background Cognitive Impairment arising from type 2 diabetes mellitus (T2DM) has garnered significant attention in recent times. However, there are few studies on the identification and diagnosis of markers of cognitive impairment. Notably, alterations in the Retinal Nerve Fiber Layer's (RNFL) thickness can potentially serve as an indicative measure of central nervous system changes. Further investigations have indicated that the decline in cognitive function within T2DM patients is intricately linked to persistent systemic inflammation and the accumulation of advanced glycosylation end products. Comprehensive studies are warranted to unveil these complex associations. Objective This study aims to explore the potential of utilizing the RNFL thickness and serological concentrations of IL-18, irisin, CML, and RAGE as diagnostic indicators for Mild Cognitive Impairment (MCI) among individuals with T2DM. Methods The thickness of RNFL were determined in all patients and controls using optical coherence tomography (OCT). The serum levels of IL-18, irisin, CML and RAGE were detected by ELISA kit. In addition, Cognitive assessment was performed by the Mini-Mental State Examination (MMSE) and the Montreal Cognitive assessment (MoCA). Results The average RNFL thickness in the right eye were decreased in T2DM and T2DM combined with MCI (T2DM-MCI) patients and were positively correlated with MoCA and MMSE scores. The serum levels of IL-18, CML and RAGE in T2DM and T2DM-MCI increased significantly (p<0.05) and were negative correlated with MoCA and MMSE scores. The level of irisin in T2DM and T2DM-MCI decreased significantly (p<0.05) and were positively correlated with MoCA and MMSE scores. The area under the ROC curve of T2DM-MCI predicted by the average RNFL thickness in the right eye, CML and RAGE were 0.853, 0.874 and 0.815. The diagnostic efficacy of the combination of average RNFL thickness in the right eye, CML, and RAGE for the diagnosis of T2DM-MCI was 0.969. Conclusion The average RNFL thickness in the right eye, CML and RAGE have possible diagnostic value in T2DM-MCI patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, The Second Hospital of Shandong University, Ji’nan, Shandong, China
| | - Shihong Chen
- Department of Endocrinology and Metabolism, Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University, The Second Hospital of Shandong University, Ji’nan, Shandong, China
| |
Collapse
|
25
|
Sullivan MA, Lane SD, McKenzie ADJ, Ball SR, Sunde M, Neely GG, Moreno CL, Maximova A, Werry EL, Kassiou M. iPSC-derived PSEN2 (N141I) astrocytes and microglia exhibit a primed inflammatory phenotype. J Neuroinflammation 2024; 21:7. [PMID: 38178159 PMCID: PMC10765839 DOI: 10.1186/s12974-023-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Widescale evidence points to the involvement of glia and immune pathways in the progression of Alzheimer's disease (AD). AD-associated iPSC-derived glial cells show a diverse range of AD-related phenotypic states encompassing cytokine/chemokine release, phagocytosis and morphological profiles, but to date studies are limited to cells derived from PSEN1, APOE and APP mutations or sporadic patients. The aim of the current study was to successfully differentiate iPSC-derived microglia and astrocytes from patients harbouring an AD-causative PSEN2 (N141I) mutation and characterise the inflammatory and morphological profile of these cells. METHODS iPSCs from three healthy control individuals and three familial AD patients harbouring a heterozygous PSEN2 (N141I) mutation were used to derive astrocytes and microglia-like cells and cell identity and morphology were characterised through immunofluorescent microscopy. Cellular characterisation involved the stimulation of these cells by LPS and Aβ42 and analysis of cytokine/chemokine release was conducted through ELISAs and multi-cytokine arrays. The phagocytic capacity of these cells was then indexed by the uptake of fluorescently-labelled fibrillar Aβ42. RESULTS AD-derived astrocytes and microglia-like cells exhibited an atrophied and less complex morphological appearance than healthy controls. AD-derived astrocytes showed increased basal expression of GFAP, S100β and increased secretion and phagocytosis of Aβ42 while AD-derived microglia-like cells showed decreased IL-8 secretion compared to healthy controls. Upon immunological challenge AD-derived astrocytes and microglia-like cells showed exaggerated secretion of the pro-inflammatory IL-6, CXCL1, ICAM-1 and IL-8 from astrocytes and IL-18 and MIF from microglia. CONCLUSION Our study showed, for the first time, the differentiation and characterisation of iPSC-derived astrocytes and microglia-like cells harbouring a PSEN2 (N141I) mutation. PSEN2 (N141I)-mutant astrocytes and microglia-like cells presented with a 'primed' phenotype characterised by reduced morphological complexity, exaggerated pro-inflammatory cytokine secretion and altered Aβ42 production and phagocytosis.
Collapse
Affiliation(s)
- Michael A Sullivan
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Samuel D Lane
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - André D J McKenzie
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Sarah R Ball
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Margaret Sunde
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - G Gregory Neely
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Cesar L Moreno
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Alexandra Maximova
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Eryn L Werry
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Michael Kassiou
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
26
|
Yamanishi K, Hata M, Gamachi N, Watanabe Y, Yamanishi C, Okamura H, Matsunaga H. Molecular Mechanisms of IL18 in Disease. Int J Mol Sci 2023; 24:17170. [PMID: 38139000 PMCID: PMC10743479 DOI: 10.3390/ijms242417170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin 18 (IL18) was originally identified as an inflammation-induced cytokine that is secreted by immune cells. An increasing number of studies have focused on its non-immunological functions, with demonstrated functions for IL18 in energy homeostasis and neural stability. IL18 is reportedly required for lipid metabolism in the liver and brown adipose tissue. Furthermore, IL18 (Il18) deficiency in mice leads to mitochondrial dysfunction in hippocampal cells, resulting in depressive-like symptoms and cognitive impairment. Microarray analyses of Il18-/- mice have revealed a set of genes with differential expression in liver, brown adipose tissue, and brain; however, the impact of IL18 deficiency in these tissues remains uncertain. In this review article, we discuss these genes, with a focus on their relationships with the phenotypic disease traits of Il18-/- mice.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Masaki Hata
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Naomi Gamachi
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Chiaki Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Haruki Okamura
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| |
Collapse
|
27
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
28
|
Hong W, Hu C, Wang C, Zhu B, Tian M, Qin H. Effects of amyloid β (Aβ)42 and Gasdermin D on the progression of Alzheimer's disease in vitro and in vivo through the regulation of astrocyte pyroptosis. Aging (Albany NY) 2023; 15:12209-12224. [PMID: 37921870 PMCID: PMC10683627 DOI: 10.18632/aging.205174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/26/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE The study aimed to investigate whether astrocyte pyroptosis, and the subsequent neuroinflammatory response that exerts amyloid β (Aβ) neurotoxic effects, has an effect on endothelial cells, along with the underlying mechanisms. METHODS In vivo, 5 μL of disease venom was injected into the lateral ventricle of APP/PS1 mice for treatment. Pyroptosis was induced by treating astrocytes with Aβ42 in vitro. Small interfering RNA (siRNA) was used to silence caspase-1 and Gasdermin D (GSDMD) mRNA expression. Cell viability was determined using a CCK-8 detection kit. Scanning electron microscopy (SEM), Annexin V/propidium iodide (PI) double staining, RT-qPCR, immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to detect cell pyroptosis. The degree of pathological damage to the brain and aortic tissue was assessed by hematoxylin-eosin staining and immunohistochemistry. RESULTS Aβ42 induced astrocyte pyroptosis dependent on the GSDMD/Gasdermin E (GSDME)/Caspase 11/NLRP3 pathway, releasing large amounts of inflammatory factors, such as TNF-α, IL-1α, IL-1β, and IL-18. Astrocyte pyroptosis caused endothelial cell dysfunction and release of large amounts of vasoconstrictors (ET and vWF). Knockdown of GSDMD reduced astrocyte pyroptosis in the cerebral cortex and hippocampal tissue, decreased the release of inflammatory factors IL-1 β and IL-18, reduced Aβ deposition and tau protein, increased the release of peripheral vasodilator substances (eNOS), and decreased the release of vasoconstrictor substances (ET, vWF), thereby reducing brain tissue damage and vascular injury in APP/PS1 mice. CONCLUSION Aβ42 induced astrocyte pyroptosis, while GSDMD knockout inhibited astrocyte pyroptosis, reduced the release of inflammatory factors, and alleviated brain tissue damage and vascular damage in APP/PS1 mice. Therefore, GSDMD is a novel therapeutic target for Alzheimer's disease. PURPOSE The study aimed to investigate whether astrocyte pyroptosis, and the subsequent neuroinflammatory response that exerts amyloid β (Aβ) neurotoxic effects, has an effect on endothelial cells, along with the underlying mechanisms. METHODS In vivo, 5 μL of disease venom was injected into the lateral ventricle of APP/PS1 mice for treatment. Pyroptosis was induced by treating astrocytes with Aβ42 in vitro. Small interfering RNA (siRNA) was used to silence caspase-1 and Gasdermin D (GSDMD) mRNA expression. Cell viability was determined using a CCK-8 detection kit. Scanning electron microscopy (SEM), Annexin V/propidium iodide (PI) double staining, RT-qPCR, immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to detect cell pyroptosis. The degree of pathological damage to the brain and aortic tissue was assessed by hematoxylin-eosin staining and immunohistochemistry. RESULTS Aβ42 induced astrocyte pyroptosis dependent on the GSDMD/Gasdermin E (GSDME)/Caspase 11/NLRP3 pathway, releasing large amounts of inflammatory factors, such as TNF-α, IL-1α, IL-1β, and IL-18. Astrocyte pyroptosis caused endothelial cell dysfunction and release of large amounts of vasoconstrictors (ET and vWF). Knockdown of GSDMD reduced astrocyte pyroptosis in the cerebral cortex and hippocampal tissue, decreased the release of inflammatory factors IL-1 β and IL-18, reduced Aβ deposition and tau protein, increased the release of peripheral vasodilator substances (eNOS), and decreased the release of vasoconstrictor substances (ET, vWF), thereby reducing brain tissue damage and vascular injury in APP/PS1 mice. CONCLUSION Aβ42 induced astrocyte pyroptosis, while GSDMD knockout inhibited astrocyte pyroptosis, reduced the release of inflammatory factors, and alleviated brain tissue damage and vascular damage in APP/PS1 mice. Therefore, GSDMD is a novel therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Wenjuan Hong
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| | - Chengping Hu
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| | - Can Wang
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| | - Binggen Zhu
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| | - Ming Tian
- Department of Burn, Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hongyun Qin
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200124, China
| |
Collapse
|
29
|
Beltran-Lobo P, Hughes MM, Troakes C, Croft CL, Rupawala H, Jutzi D, Ruepp MD, Jimenez-Sanchez M, Perkinton MS, Kassiou M, Golde TE, Hanger DP, Verkhratsky A, Perez-Nievas BG, Noble W. P2X 7R influences tau aggregate burden in human tauopathies and shows distinct signalling in microglia and astrocytes. Brain Behav Immun 2023; 114:414-429. [PMID: 37716378 PMCID: PMC10896738 DOI: 10.1016/j.bbi.2023.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
The purinoceptor P2X7R is a promising therapeutic target for tauopathies, including Alzheimer's disease (AD). Pharmacological inhibition or genetic knockdown of P2X7R ameliorates cognitive deficits and reduces pathological tau burden in mice that model aspects of tauopathy, including mice expressing mutant human frontotemporal dementia (FTD)-causing forms of tau. However, disagreements remain over which glial cell types express P2X7R and therefore the mechanism of action is unresolved. Here, we show that P2X7R protein levels increase in human AD post-mortem brain, in agreement with an upregulation of P2RX7 mRNA observed in transcriptome profiles from the AMP-AD consortium. P2X7R protein increases mirror advancing Braak stage and coincide with synapse loss. Using RNAScope we detect P2RX7 mRNA in microglia and astrocytes in human AD brain, including in the vicinity of senile plaques. In cultured microglia, P2X7R activation modulates the NLRP3 inflammasome pathway by promoting the formation of active complexes and release of IL-1β. In astrocytes, P2X7R activates NFκB signalling and increases production of the cytokines CCL2, CXCL1 and IL-6 together with the acute phase protein Lcn2. To further explore the role of P2X7R in a disease-relevant context, we expressed wild-type or FTD-causing mutant forms of tau in mouse organotypic brain slice cultures. Inhibition of P2X7R reduces insoluble tau levels without altering soluble tau phosphorylation or synaptic localisation, suggesting a non-cell autonomous role of glial P2X7R on pathological tau aggregation. These findings support further investigations into the cell-type specific effects of P2X7R-targeting therapies in tauopathies.
Collapse
Affiliation(s)
- Paula Beltran-Lobo
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Martina M Hughes
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Claire Troakes
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Cara L Croft
- UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK; The Francis Crick Institute, London, UK
| | - Huzefa Rupawala
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Daniel Jutzi
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marc-David Ruepp
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Maria Jimenez-Sanchez
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | | | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Diane P Hanger
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Beatriz G Perez-Nievas
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK.
| | - Wendy Noble
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK; University of Exeter, Department of Clinical and Biomedical Science, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK.
| |
Collapse
|
30
|
Wang Q, Sun J, Chen T, Song S, Hou Y, Feng L, Fan C, Li M. Ferroptosis, Pyroptosis, and Cuproptosis in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3564-3587. [PMID: 37703318 DOI: 10.1021/acschemneuro.3c00343] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a neurodegenerative disorder characterized by progressive cognitive dysfunction. Epidemiological investigation has demonstrated that, after cardiovascular and cerebrovascular diseases, tumors, and other causes, AD has become a major health issue affecting elderly individuals, with its mortality rate acutely increasing each year. Regulatory cell death is the active and orderly death of genetically determined cells, which is ubiquitous in the development of living organisms and is crucial to the regulation of life homeostasis. With extensive research on regulatory cell death in AD, increasing evidence has revealed that ferroptosis, pyroptosis, and cuproptosis are closely related to the occurrence, development, and prognosis of AD. This paper will review the molecular mechanisms of ferroptosis, pyroptosis, and cuproptosis and their regulatory roles in AD to explore potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Qi Wang
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Jingyi Sun
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Tian Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Yajun Hou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Lina Feng
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Cundong Fan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Mingquan Li
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| |
Collapse
|
31
|
Yang H, Qin Q, Wang M, Yin Y, Li R, Tang Y. Crosstalk between peripheral immunity and central nervous system in Alzheimer's disease. Cell Immunol 2023; 391-392:104743. [PMID: 37451918 DOI: 10.1016/j.cellimm.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The significance of peripheral immunity in the pathogenesis and progression of Alzheimer's diseases (AD) has been recognized. Brain-infiltrated peripheral immune components transporting across the blood-brain barrier (BBB) may reshape the central immune environment. However, mechanisms of how these components open the BBB for AD occurrence and development and correlations between peripheral and central immunity have not been fully explored. Herein, we formulate a hypothesis whereby peripheral immunity as a critical factor allows AD to progress. Peripheral central immune cell crosstalk is associated with early AD pathology and related risk factors. The damaged BBB permits peripheral immune cells to enter the central immune system to deprive its immune privilege promoting the progression toward developing AD. This review summarizes the influences of risk factors on peripheral immunity, alongside their functions, highlighting the concept of peripheral and central immunity as an integrated system in AD pathogenesis, which has received scant attention before.
Collapse
Affiliation(s)
- Hanchen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruiyang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
| |
Collapse
|
32
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Ennerfelt H, Holliday C, Shapiro D, Zengeler K, Bolte A, Ulland T, Lukens J. CARD9 attenuates Aβ pathology and modifies microglial responses in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2023; 120:e2303760120. [PMID: 37276426 PMCID: PMC10268238 DOI: 10.1073/pnas.2303760120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023] Open
Abstract
Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aβ) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aβ deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aβ-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aβ clearance in AD.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Coco Holliday
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Daniel A. Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Kristine E. Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Ashley C. Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| | - Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI53705
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| |
Collapse
|
34
|
Lantz MJ, Roberts AM, Delgado DD, Nichols RA. The neuroprotective N-terminal amyloid-β core hexapeptide reverses reactive gliosis and gliotoxicity in Alzheimer's disease pathology models. J Neuroinflammation 2023; 20:129. [PMID: 37245024 DOI: 10.1186/s12974-023-02807-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by accumulation of extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles, leading to chronic activation of astrocytes and microglia and persistent neuroinflammation. Aβ-linked activation of microglia and astrocytes leads to increased intracellular calcium and production of proinflammatory cytokines, impacting the progression of neurodegeneration. An N-terminal Aβ fragment (Aβ1-15) and a shorter hexapeptide core sequence within the N-Aβ fragment (N-Aβcore: Aβ10-15) have previously been shown to protect against Aβ-induced mitochondrial dysfunction, oxidative stress and apoptosis in neurons and rescue synaptic and spatial memory deficits in an APP/PSEN1 mouse model. Here, we hypothesized that the N-Aβ fragment and N-Aβcore are protective against Aβ-induced gliotoxicity, promoting a neuroprotective environment and potentially alleviating the characteristically persistent neuroinflammation present in AD. METHODS We treated ex vivo organotypic brain slice cultures from an aged familial AD mouse model, 5xFAD, with the N-Aβcore and used immunocytochemistry to assess the impact on astrogliosis and microgliosis and alterations in synaptophysin-positive puncta engulfed by microglia. Isolated neuron/glia cultures, mixed glial cultures or a microglial cell line were treated with oligomeric human Aβ at concentrations mimicking the pathogenic concentrations (μM) observed in AD in the absence or presence of the non-toxic N-terminal Aβ fragments. Resultant changes in synaptic density, gliosis, oxidative stress, mitochondrial dysfunction, apoptosis, and the expression and release of proinflammatory markers were then determined. RESULTS We demonstrate that the N-terminal Aβ fragments mitigated the phenotypic switch leading to astrogliosis and microgliosis induced by pathological concentrations of Aβ in mixed glial cultures and organotypic brain slice cultures from the transgenic 5xFAD mouse model, while protecting against Aβ-induced oxidative stress, mitochondrial dysfunction and apoptosis in isolated astrocytes and microglia. Moreover, the addition of the N-Aβcore attenuated the expression and release of proinflammatory mediators in microglial cells activated by Aβ and rescued microglia-mediated loss of synaptic elements induced by pathological levels of Aβ. CONCLUSIONS Together, these findings indicate the protective functions of the N-terminal Aβ fragments extend to reactive gliosis and gliotoxicity induced by Aβ, by preventing or reversing glial reactive states indicative of neuroinflammation and synaptic loss central to AD pathogenesis.
Collapse
Affiliation(s)
- Megan J Lantz
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Alyssa M Roberts
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Donovan D Delgado
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
35
|
Boraschi D, Italiani P, Migliorini P, Bossù P. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases. Front Immunol 2023; 14:1128190. [PMID: 37223102 PMCID: PMC10200871 DOI: 10.3389/fimmu.2023.1128190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cytokines and receptors of the IL-1 family are key mediators in innate immune and inflammatory reactions in physiological defensive conditions, but are also significantly involved in immune-mediated inflammatory diseases. Here, we will address the role of cytokines of the IL-1 superfamily and their receptors in neuroinflammatory and neurodegenerative diseases, in particular Multiple Sclerosis and Alzheimer's disease. Notably, several members of the IL-1 family are present in the brain as tissue-specific splice variants. Attention will be devoted to understanding whether these molecules are involved in the disease onset or are effectors of the downstream degenerative events. We will focus on the balance between the inflammatory cytokines IL-1β and IL-18 and inhibitory cytokines and receptors, in view of future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuro-psychobiology, Department of Clinical and Behavioral Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
36
|
Kong D, Park KH, Kim DH, Kim NG, Lee SE, Shin N, Kook MG, Kim YB, Kang KS. Cortical-blood vessel assembloids exhibit Alzheimer's disease phenotypes by activating glia after SARS-CoV-2 infection. Cell Death Dis 2023; 9:32. [PMID: 36697403 PMCID: PMC9876421 DOI: 10.1038/s41420-022-01288-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023]
Abstract
A correlation between COVID-19 and Alzheimer's disease (AD) has been proposed recently. Although the number of case reports on neuroinflammation in COVID-19 patients has increased, studies of SARS-CoV-2 neurotrophic pathology using brain organoids have restricted recapitulation of those phenotypes due to insufficiency of immune cells and absence of vasculature. Cerebral pericytes and endothelial cells, the major components of blood-brain barrier, express viral entry receptors for SARS-CoV-2 and response to systemic inflammation including direct cell death. To overcome the limitations, we developed cortical-blood vessel assembloids by fusing cortical organoid with blood vessel organoid to provide vasculature to brain organoids a nd obtained the characteristics of increased expression of microglia and astrocytes in brain organoids. Furthermore, we observed AD pathologies, including β-amyloid plaques, which were affected by the inflammatory response from SARS-CoV-2 infection. These findings provide an advanced platform to investigate human neurotrophic diseases, including COVID-19, and suggest that neuroinflammation caused by viral infection facilitates AD pathology.
Collapse
Affiliation(s)
- Dasom Kong
- grid.31501.360000 0004 0470 5905Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ki Hoon Park
- Department of Research and Development, KR BIOTECH CO., Ltd., Seoul, 05029 Republic of Korea
| | - Da-Hyun Kim
- grid.31501.360000 0004 0470 5905Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nam Gyo Kim
- grid.31501.360000 0004 0470 5905Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Seung-Eun Lee
- grid.31501.360000 0004 0470 5905Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nari Shin
- grid.31501.360000 0004 0470 5905Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Myung Geun Kook
- grid.31501.360000 0004 0470 5905Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Young Bong Kim
- grid.258676.80000 0004 0532 8339Department of Biomedical Science and Engineering, Konkuk Institute of Science and Technology, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kyung-Sun Kang
- grid.31501.360000 0004 0470 5905Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
37
|
Melatonin Ameliorates the Progression of Alzheimer’s Disease by Inducing TFEB Nuclear Translocation, Promoting Mitophagy, and Regulating NLRP3 Inflammasome Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8099459. [PMID: 35983247 PMCID: PMC9381268 DOI: 10.1155/2022/8099459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Background. The NLRP3 inflammasome is overactivated in the brains of APP/PS1 transgenic mice and AD patients, and mitophagy has an obvious negative regulatory role on NLRP3 inflammasome activation. The protective effect of melatonin in AD may be related to the regulation of mitophagy and NLRP3 inflammasome activity. TFEB plays a critical role in maintaining autophagy/mitophagy. Studies have found that TFEB plays a protective role in AD. Methods. APP/PS1 transgenic mice were given melatonin in their drinking water for 3 months. Compared with mice without melatonin treatment, the mice given melatonin showed changes in the following features: (1) cognitive function, (2) mitophagy-related proteins in the brain, (3) ROS, (4) NLRP3 inflammasome and related proteins and the concentrations of inflammatory cytokines, and (5) Aβ deposition. In in vitro experiments, effects of melatonin on mitophagy, NLRP3 inflammasome activity, and TFEB in SH-SY5Y cells with Aβ25-35 were observed. TFEB knockdown was implemented in combination with Aβ25-35 and melatonin treatment, and the expressions of TFEB, Parkin, p62, IL-1β, caspase-1, ROS, and IL-18 were explored. Results. Melatonin improved cognitive function in APP/PS1 transgenic mice and decreased ROS and senile plaques. Melatonin promoted mitophagy in SH-SY5Y cells with Aβ25-35 and APP/PS1 transgenic mice. NLRP3 inflammasome activity was inhibited, and the concentrations of IL-18 and IL-1βwere clearly reduced. Compared with C57/BL6J mice, the amount of TFEB in the brain nucleus of APP/PS1 transgenic mice was decreased. Melatonin treatment increased the nuclear translocation of TFEB in SH-SY5Y cells. TFEB knockout was implemented in combination with Aβ25-35 and MT treatment; the expressions of Parkin, p62, caspase-1, IL-1β, IL-18, and ROS were accelerated. Conclusions. Melatonin promotes mitophagy by inducing TFEB nuclear translocation, downregulates NLRP3 inflammasome activation, and exerts protective effects in SH-SY5Y cells and APP/PS1 transgenic mice.
Collapse
|
38
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
39
|
Koca S, Kiris I, Sahin S, Cinar N, Karsidag S, Hanagasi HA, Yildiz GB, Tarik Baykal A. Decreased levels of cytokines implicate altered immune response in plasma of moderate-stage Alzheimer's disease patients. Neurosci Lett 2022; 786:136799. [PMID: 35842208 DOI: 10.1016/j.neulet.2022.136799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, increasing evidence suggests that the pathogenesis of the disease is associated with peripheral inflammation. Here, we aimed to determine plasma concentrations of multiple cytokines and chemokines from moderate-stage AD and age-matched controls. Changes in a total of 20 cytokines and chemokines in plasma of moderate-stage AD were evaluated by using quantitative microarray. Six of them, namely MCP-1, MIP-1a, MIP-1b, MMP-9, RANTES, and VEGF, were found to be significantly reduced in moderate-stage AD patients (n = 25) in comparison to age-matched and non-demented controls (n = 25). However, GM-CSF, GRO-α/β/γ, IFN- γ, IL-1α, IL-1β, IL-10, IL-12 p70, IL-13, IL-2, IL- 4, IL-5, IL-6, IL-8, and TNF-α showed no significant differences between the patient and control groups. On the contrary to previous early-stage AD studies that show increased plasma cytokine/chemokine levels, our results indicate that inflammatory plasma molecules are reduced in moderate-stage AD. This finding points out the reduced immune responsiveness, which is known to be directly correlated to the degree of AD.
Collapse
Affiliation(s)
- Sebile Koca
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sevki Sahin
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Nilgun Cinar
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Sibel Karsidag
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Hasmet A Hanagasi
- Department of Neurology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gulsen B Yildiz
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
40
|
Xue W, Cui D, Qiu Y. Research Progress of Pyroptosis in Alzheimer's Disease. Front Mol Neurosci 2022; 15:872471. [PMID: 35782390 PMCID: PMC9244792 DOI: 10.3389/fnmol.2022.872471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a disease characterized by insidious and progressive neurodegeneration, with clinical syndromes of memory and visuospatial skills damage. The pathogenic mechanism of AD is complex in which neural inflammation and neuron death play important roles. Pyroptosis, an inflammatory programmed cell death, has been reported to be involved in neuron death. Pyroptosis is executed by the protein family of gasdermins which punch pores on plasma membrane when activated by the upstream signals including the activation of NLRP3 and caspases, and subsequently triggers the inflammatory cascades featured by the release of interleukin (IL) -1β and IL-18. Herein, we summarized the current research on the roles of neuron pyroptosis in AD, aiming to provide a comprehensive view of the molecular mechanisms underlying AD pathogenesis and potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Weiyue Xue
- Department of Physical Education, Hunan University, Changsha, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha, China
| | - Ye Qiu
- Department of Biology, Hunan University, Changsha, China
| |
Collapse
|
41
|
Webberley TS, Masetti G, Bevan RJ, Kerry-Smith J, Jack AA, Michael DR, Thomas S, Glymenaki M, Li J, McDonald JAK, John D, Morgan JE, Marchesi JR, Good MA, Plummer SF, Hughes TR. The Impact of Probiotic Supplementation on Cognitive, Pathological and Metabolic Markers in a Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci 2022; 16:843105. [PMID: 35685773 PMCID: PMC9172594 DOI: 10.3389/fnins.2022.843105] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Brain degenerative disorders such as Alzheimer’s disease (AD) can be exacerbated by aberrant metabolism. Supplementation with probiotic bacteria is emerging as a promising preventative strategy for both neurodegeneration and metabolic syndrome. In this study, we assess the impact of the Lab4b probiotic consortium on (i) cognitive and pathological markers of AD progression and (ii) metabolic status in 3xTg-AD mice subjected to metabolic challenge with a high fat diet. The group receiving the probiotic performed better in the novel object recognition test and displayed higher hippocampal neuronal spine density than the control group at the end of the 12 weeks intervention period. These changes were accompanied by differences in localised (brain) and systemic anti-inflammatory responses that favoured the Probiotic group together with the prevention of diet induced weight gain and hypercholesterolaemia and the modulation of liver function. Compositional differences between the faecal microbiotas of the study groups included a lower Firmicutes:Bacteroidetes ratio and less numbers of viable yeast in the Probiotic group compared to the Control. The results illustrate the potential of the Lab4b probiotic as a neuroprotective agent and encourage further studies with human participants.
Collapse
Affiliation(s)
- Thomas S Webberley
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Cultech Ltd., Port Talbot, United Kingdom
| | | | - Ryan J Bevan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | - Maria Glymenaki
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jia Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Julie A K McDonald
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark A Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
42
|
Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells 2022; 11:1885. [PMID: 35741014 PMCID: PMC9221514 DOI: 10.3390/cells11121885] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder molecularly characterized by the formation of amyloid β (Aβ) plaques and type 2 microtubule-associated protein (Tau) abnormalities. Multiple studies have shown that many of the brain's immunological cells, specifically microglia and astrocytes, are involved in AD pathogenesis. Cells of the innate immune system play an essential role in eliminating pathogens but also regulate brain homeostasis and AD. When activated, innate immune cells can cause programmed cell death through multiple pathways, including pyroptosis, apoptosis, necroptosis, and PANoptosis. The cell death often results in the release of proinflammatory cytokines that propagate the innate immune response and can eliminate Aβ plaques and aggregated Tau proteins. However, chronic neuroinflammation, which can result from cell death, has been linked to neurodegenerative diseases and can worsen AD. Therefore, the innate immune response must be tightly balanced to appropriately clear these AD-related structural abnormalities without inducing chronic neuroinflammation. In this review, we discuss neuroinflammation, innate immune responses, inflammatory cell death pathways, and cytokine secretion as they relate to AD. Therapeutic strategies targeting these innate immune cell death mechanisms will be critical to consider for future preventive or palliative treatments for AD.
Collapse
|
43
|
Uddin MS, Lim LW. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78:101622. [PMID: 35427810 DOI: 10.1016/j.arr.2022.101622] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that usually develops slowly and progressively worsens over time. Although there has been increasing research interest in AD, its pathogenesis is still not well understood. Although most studies primarily focus on neurons, recent research findings suggest that glial cells (especially microglia and astrocytes) are associated with AD pathogenesis and might provide various possible therapeutic targets. Growing evidence suggests that microglia can provide protection against AD pathogenesis, as microglia with weakened functions and impaired responses to Aβ proteins are linked with elevated AD risk. Interestingly, numerous findings also suggest that microglial activation can be detrimental to neurons. Indeed, microglia can induce synapse loss via the engulfment of synapses, possibly through a complement-dependent process. Furthermore, they can worsen tau pathology and release inflammatory factors that cause neuronal damage directly or through the activation of neurotoxic astrocytes. Astrocytes play a significant role in various cerebral activities. Their impairment can mediate neurodegeneration and ultimately the retraction of synapses, resulting in AD-related cognitive deficits. Deposition of Aβ can result in astrocyte reactivity, which can further lead to neurotoxic effects and elevated secretion of inflammatory mediators and cytokines. Moreover, glial-induced inflammation in AD can exert both beneficial and harmful effects. Understanding the activities of astrocytes and microglia in the regulation of AD pathogenesis would facilitate the development of novel therapies. In this article, we address the implications of microglia and astrocytes in AD pathogenesis. We also discuss the mechanisms of therapeutic agents that exhibit anti-inflammatory effects against AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
44
|
Fernandes A, Caldeira C, Cunha C, Ferreiro E, Vaz AR, Brites D. Differences in Immune-Related Genes Underlie Temporal and Regional Pathological Progression in 3xTg-AD Mice. Cells 2022; 11:cells11010137. [PMID: 35011699 PMCID: PMC8750089 DOI: 10.3390/cells11010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
The prevalence of Alzheimer’s disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-β (Aβ) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1β, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1β, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPβ at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aβ pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| | - Cláudia Caldeira
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Carolina Cunha
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Bruno Silva-Santos Lab, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Elisabete Ferreiro
- MitoXT-Mitochondrial Toxicologu and Experimental Therapeutics Laboratory, CNC-Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-516 Coimbra, Portugal;
- III-Institute for Interdisciplinary Research (IIIUC), Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - Ana Rita Vaz
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.C.); (C.C.)
- Correspondence: (A.F.); (D.B.); Tel.: +351-217946450 (D.B.)
| |
Collapse
|
45
|
Tang H, Harte M. Investigating Markers of the NLRP3 Inflammasome Pathway in Alzheimer's Disease: A Human Post-Mortem Study. Genes (Basel) 2021; 12:genes12111753. [PMID: 34828359 PMCID: PMC8622528 DOI: 10.3390/genes12111753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammatory mechanisms with glial cell activation have been implicated in the pathogenic process of Alzheimer’s disease (AD). Activation of the NLRP3 inflammasome is an essential component of the neuroinflammatory response. A role for NLRP3 activation in AD is supported by both in vitro and in vivo preclinical studies with little direct investigation of AD brain tissue. RNA expression of genes of three glial cell markers, HLA-DRA, AIF-1 and GFAP; the components of the NLRP3 inflammasome NLRP3, ASC, and caspase-1; and downstream pre-inflammatory cytokines IL-1 β and IL-18, were investigated in the temporal cortex of AD patients and age- and sex-matched controls. Protein expression of GFAP was also assessed. Increases in both mRNA and protein expression were observed for GFAP in AD. There were no significant changes in other NLRP3 activation markers between groups. Our results indicate the involvement of astrocyte activation in AD, particularly in more severe patients. We found no evidence for the specific involvement of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hao Tang
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Correspondence:
| |
Collapse
|
46
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
47
|
Abstract
The innate immune system plays key roles in controlling Alzheimer's disease (AD), while secreting cytokines to eliminate pathogens and regulating brain homeostasis. Recent research in the field of AD has shown that the innate immune-sensing ability of pattern recognition receptors on brain-resident macrophages, known as microglia, initiates neuroinflammation, Aβ accumulation, neuronal loss, and memory decline in patients with AD. Advancements in understanding the role of innate immunity in AD have laid a strong foundation to elucidate AD pathology and devise therapeutic strategies for AD in the future. In this review, we highlight the present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion in AD. We also discuss how the AD pathology influences these biological processes.
Collapse
Affiliation(s)
- SangJoon Lee
- Department of Infection Biology, Faculty of Medicine, 38515University of Tsukuba, Tsukuba, Japan
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, 34966Konyang University, Daejeon, South Korea
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon, Republic of Korea.,BIORCHESTRA Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Sarrouilhe D, Defamie N, Mesnil M. Is the Exposome Involved in Brain Disorders through the Serotoninergic System? Biomedicines 2021; 9:1351. [PMID: 34680468 PMCID: PMC8533279 DOI: 10.3390/biomedicines9101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmitter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood. It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric disorders. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving the serotoninergic system. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn is particularly susceptible to the deleterious effects of neurotoxic substances in our environment, and perinatal exposure could result in the later development of diseases, a hypothesis known as the developmental origin of health and disease. Some of these substances affect the serotoninergic system and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review presents the available data that are contributing to the appreciation of the effects of the exposome on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental, neurodegenerative, neurobehavioral disorders, and glioblastoma).
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 Rue de la Milétrie, Bât D1, TSA 51115, CEDEX 09, 86073 Poitiers, France
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| | - Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| |
Collapse
|
49
|
Pandey GN, Zhang H, Sharma A, Ren X. Innate immunity receptors in depression and suicide: upregulated NOD-like receptors containing pyrin (NLRPs) and hyperactive inflammasomes in the postmortem brains of people who were depressed and died by suicide. J Psychiatry Neurosci 2021; 46:E538-E547. [PMID: 34588173 PMCID: PMC8526128 DOI: 10.1503/jpn.210016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Abnormalities of inflammation have been implicated in the pathophysiology of depression and suicide, based on observations of increased levels of proinflammatory cytokines in the serum of people who were depressed and died by suicide. More recently, abnormalities in cytokines and innate immunity receptors such as toll-like receptors have also been observed in the postmortem brains of people who were depressed and died by suicide. In addition to toll-like receptors, another subfamily of innate immunity receptors known as NOD-like receptors containing pyrin (NLRPs) are the most widely present NOD-like receptors in the central nervous system. NLRPs also form inflammasomes that play an important role in brain function. We studied the role of NLRPs in depression and suicide. METHODS We determined the protein and mRNA expression of NLRP1, NLRP3 and NLRP6 and the components of their inflammasomes (i.e., adaptor molecule apoptosis-associated speck-like protein [ASC], caspase1, caspase3, interleukin [IL]-1β and IL-18) postmortem in the prefrontal cortex of people who were depressed and died by suicide, and in healthy controls. We determined mRNA levels using quantitative polymerase chain reaction, and we determined protein expression using Western blot immunolabelling. RESULTS We found that the protein and mRNA expression levels of NLRP1, NLRP3, NLRP6, caspase3 and ASC were significantly increased in people who were depressed and died by suicide compared to healthy controls. LIMITATIONS Some people who were depressed and died by suicide were taking antidepressant medication at the time of their death. CONCLUSION Similar to toll-like receptors, NLRP and its inflammasomes were upregulated in people who were depressed and died by suicide compared to healthy controls. Innate immunity receptors in general - and NLRPs and inflammasomes in particular - may play an important role in the pathophysiology of depression and suicide.
Collapse
Affiliation(s)
- Ghanshyam N Pandey
- From the Department of Psychiatry, University of Illinois at Chicago Ringgold Standard Institution, Chicago, Illinois
| | - Hui Zhang
- From the Department of Psychiatry, University of Illinois at Chicago Ringgold Standard Institution, Chicago, Illinois
| | - Anuradha Sharma
- From the Department of Psychiatry, University of Illinois at Chicago Ringgold Standard Institution, Chicago, Illinois
| | - Xinguo Ren
- From the Department of Psychiatry, University of Illinois at Chicago Ringgold Standard Institution, Chicago, Illinois
| |
Collapse
|
50
|
Golzari-Sorkheh M, Brown CE, Weaver DF, Reed MA. The NLRP3 Inflammasome in the Pathogenesis and Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 84:579-598. [PMID: 34569958 DOI: 10.3233/jad-210660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Although AD is one of the most socioeconomically devastating diseases confronting humanity, no "curative" disease modifying drug has been identified. Recent decades have witnessed repeated failures of drug trials and have called into question the utility of the amyloid hypothesis approach to AD therapeutics design. Accordingly, new neurochemical processes are being evaluated and explored as sources of alternative druggable targets. Among these newly identified targets, neuroinflammation is emerging as a front-runner, and within the realm of neuroinflammation, the inflammasome, particularly the NLRP3 complex, is garnering focussed attention. This review summarizes current data and approaches to understanding the role of the NLRP3 inflammasome in neuroinflammation and AD, and systematically identifies and evaluates multiple targets within the NLRP3 inflammasome cascade as putative drug targets.
Collapse
Affiliation(s)
| | | | - Donald F Weaver
- Krembil Research Institute, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|