1
|
Sivamaruthi BS, Sisubalan N, Wang S, Kesika P, Chaiyasut C. Exploring the Therapeutic Potential of Green Tea ( Camellia sinensis L.) in Anti-Aging: A Comprehensive Review of Mechanisms and Findings. Mini Rev Med Chem 2025; 25:403-424. [PMID: 39377377 DOI: 10.2174/0113895575331878240924035332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024]
Abstract
Green tea (GT) is rich in phyto-active compounds such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), catechin, and tannic acid, which exhibit synergistic effects when combined. Preclinical studies demonstrate that GT and its compounds can reduce reactive oxygen species (ROS), enhance antioxidant capacity, and alleviate aging-related issues such as memory impairments, cognitive decline, and shortened lifespan. Clinical trials corroborate the efficacy of topical GT formulations in improving skin tone, texture, and elasticity and reducing wrinkles. The present manuscript summarizes the recent update on the anti-aging potential of GT and its possible mechanisms. The literature survey suggests that GT consumption is linked to improved cognition, reduced depression levels, and activation of pathways in model organisms like C. elegans. Additionally, tea polyphenols enhance fibroblast mitophagy, boost hippocampal synaptic plasticity in rodents, and mitigate age-related cognitive decline. Moreover, EGCG exhibits anti-aging properties by reducing TNF-induced MMP-1 expression, suppressing ERK signaling, and inhibiting MEK and Src phosphorylation in human dermal fibroblasts. In the context of skin permeation and deposition, optimized transfersomal formulation (TF) incorporating EGCG and hyaluronic acid (HA) demonstrates significantly increased skin permeation and deposition of EGCG compared to plain EGCG. Furthermore, EGCG protects cardiomyocytes via the PPARγ pathway and combats age-related muscle loss through miRNA-486-5p regulation, AKT activation, and FoxO1a-mediated expression of MuRF1 and Atrogin-1. In conclusion, the regular consumption of GT holds promise for promoting physical and mental health, delaying brain and skin aging, and improving overall health by enhancing total antioxidant capacity.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natarajan Sisubalan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276005, China
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Amidfar M, Garcez ML, Askari G, Bagherniya M, Khorvash F, Golpour-Hamedani S, de Oliveira J. Role of BDNF Signaling in the Neuroprotective and Memory-enhancing Effects of Flavonoids in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:984-995. [PMID: 37702162 DOI: 10.2174/1871527323666230912090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Foods rich in flavonoids are associated with a reduced risk of various chronic diseases, including Alzheimer's disease (AD). In fact, growing evidence suggests that consuming flavonoid- rich foods can beneficially affect normal cognitive function. Animal models have shown that many flavonoids prevent the development of AD-like pathology and improve cognitive deficits. OBJECTIVE Identifying the molecular causes underlying the memory-enhancing effect of flavonoid-rich foods makes it possible to provide the best diet to prevent cognitive decline associated with aging and Alzheimer's disease. Based on the most recent scientific literature, this review article critically examines the therapeutic role of dietary flavonoids in ameliorating and preventing the progression of AD and enhancement of memory with a focus on the role of the BDNF signaling pathway. METHODS The databases of PubMed, Web of Science, Google Scholar, and Scopus were searched up to March 2023 and limited to English language. Search strategies were using the following keywords in titles and abstracts: (Flavonoid-rich foods OR Flavonoids OR Polyphenols); AND (Brain-Derived Neurotrophic Factor OR BDNF OR CREB OR) AND (Alzheimer's disease OR memory OR cognition OR). RESULTS Flavonoid-rich foods including green tea, berries, curcumin and pomegranate exert their beneficial effects on memory decline associated with aging and Alzheimer's disease mostly through the direct interaction with BDNF signaling pathway. CONCLUSION The neuroprotective effects of flavonoid-rich foods through the CREB-BDNF mechanism have the potential to prevent or limit memory decline due to aging and Alzheimer's disease, so their consumption throughout life may prevent age-related cognitive impairment.
Collapse
Affiliation(s)
- Meysam Amidfar
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
4
|
Zhang Z, Zhang Y, Li J, Fu C, Zhang X. The Neuroprotective Effect of Tea Polyphenols on the Regulation of Intestinal Flora. Molecules 2021; 26:molecules26123692. [PMID: 34204244 PMCID: PMC8233780 DOI: 10.3390/molecules26123692] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tea polyphenols (TPs) are the general compounds of natural polyhydroxyphenols extracted in tea. Although a large number of studies have shown that TPs have obvious neuroprotective and neuro repair effects, they are limited due to the low bioavailability in vivo. However, TPs can act indirectly on the central nervous system by affecting the “microflora–gut–brain axis”, in which the microbiota and its composition represent a factor that determines brain health. Bidirectional communication between the intestinal microflora and the brain (microbe–gut–brain axis) occurs through a variety of pathways, including the vagus nerve, immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and behavior, which is usually associated with neuropsychiatric disorders. In this review, we discuss that TPs and their metabolites may provide benefits by restoring the imbalance of intestinal microbiota and that TPs are metabolized by intestinal flora, to provide a new idea for TPs to play a neuroprotective role by regulating intestinal flora.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Taizhou Biomedical Industry Research Institute Co., Ltd., Taizhou 317000, China
- College of Life Sciences, Taizhou University, Taizhou 317000, China
| | - Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Junmin Li
- Taizhou Biomedical Industry Research Institute Co., Ltd., Taizhou 317000, China
- College of Life Sciences, Taizhou University, Taizhou 317000, China
- Correspondence: (J.L.); (C.F.); (X.Z.)
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (J.L.); (C.F.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
- Correspondence: (J.L.); (C.F.); (X.Z.)
| |
Collapse
|
5
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
6
|
Strength training or green tea prevent memory deficits in a β-amyloid peptide-mediated Alzheimer's disease model. Exp Gerontol 2020; 143:111186. [PMID: 33279659 DOI: 10.1016/j.exger.2020.111186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
Antioxidant supplementation and physical exercise have been discussed as strategies to minimize neurodegeneration in Alzheimer's disease (AD). We investigated the neuroprotective effects of strength exercise (StrEx) and green tea (GT) supplementation, combined or not, on memory impairments induced by β-amyloid characterizing an AD-like condition in rats. Wistar rats were submitted to 8 weeks of StrEx, GT supplementation, or StrEx and GT combined. AD-like condition was induced by injection of Aβ (25-35) in the hippocampus. We evaluate object recognition (OR) and social recognition (SR) memory, and removed the rats' hippocampus for biochemical analysis. StrEx improved OR and SR. StrEx combined with GT improved OR and did not improve SR. GT reduced antioxidant capacity and improved acetylcholinesterase activity. Both strength exercise and green tea are neuroprotective against impairments resultant of β-amyloid, but benefits do not add up when the two interventions are associated.
Collapse
|
7
|
Zhang Y, Cheng L, Zhang X. Interactions of tea polyphenols with intestinal microbiota and their effects on cerebral nerves. J Food Biochem 2020; 45:e13575. [PMID: 33222220 DOI: 10.1111/jfbc.13575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
Tea polyphenols (TP) are important functional components in tea. TP can regulate the composition of human intestinal flora, meanwhile, TP can be bio-transformed by the intestinal microbiota, resulting in relative metabolites, which prevent nerve damage, promote neurocognition, and increase resistance to oxidative stress. In recent years, cerebral nerves have become a hot topic of research, and studies have marked the importance of microbial flora and TP in protecting cerebral nerves. This paper reviews the effects of TP on intestinal microflora and the microbial degradation of TP. Furthermore, the potential effects of TP on cerebral nerves have been highlighted. PRACTICAL APPLICATIONS: Neuroscience studies are primarily focused on discerning the functional mechanism of the nervous system. The functional role of intestinal microbiota in host physiology regulation, especially neurological functions, has become a hotspot for neurological research. TP play a vital role in maintaining the steady status of intestinal flora and protecting cerebral nerve damage. An in-depth understanding of the TP and intestinal microbiota interaction, its implication on cerebral nerve protection, and the associated underlying mechanism will allow us to expand the therapeutic applications of TP.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
8
|
Chronic Polyphenon-60 or Catechin Treatments Increase Brain Monoamines Syntheses and Hippocampal SIRT1 Levels Improving Cognition in Aged Rats. Nutrients 2020; 12:nu12020326. [PMID: 31991916 PMCID: PMC7071257 DOI: 10.3390/nu12020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds from green tea have great interest due to its large CONSUMPTION and therapeutic potential on the age-associated brain decline. The current work compares a similar dose regimen of a whole-green-tea extract and catechin in old rats over the course of 36 days. Results showed a significant improvement in visuo-spatial working memory and episodic memory of old rats after polyphenolic compounds administration assessed by behavioral tests. No effects were observed on the age-associated motor coordination decline. Statistically, results were correlated with significant improvements, mainly in hippocampal and striatal noradrenergic and serotonergic systems, but also with the striatal dopaminergic system. Both polyphenolic treatments also reverted the age-associated reduction of the neuroinflammation by modulating protein sirtuin 1 (SIRT1) expression in hippocampus, but no effects were observed in the usual reduction of the histone-binding protein RBAP46/48 protein linked to aging. These results are in line with previous ones obtained with other polyphenolic compounds, suggesting a general protective effect of all these compounds on the age-associated brain decline, pointing to a reduction of the oxidative stress and neuroinflammatory status reduction as the leading mechanisms. Results also reinforce the relevance of SIRT1-mediated mechanism on the neuroprotective effect and rule out the participation of RBAP46/48 protein.
Collapse
|
9
|
Rothenberg DO, Zhang L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019; 11:E1361. [PMID: 31212946 PMCID: PMC6627400 DOI: 10.3390/nu11061361] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This article is a comprehensive review of the literature pertaining to the antidepressant effects and mechanisms of regular tea consumption. Meta-data supplemented with recent observational studies were first analyzed to assess the association between tea consumption and depression risk. The literature reported risk ratios (RR) were 0.69 with 95% confidence intervals of 0.62-0.77. Next, we thoroughly reviewed human trials, mouse models, and in vitro experiments to determine the predominant mechanisms underlying the observed linear relationship between tea consumption and reduced risk of depression. Current theories on the neurobiology of depression were utilized to map tea-mediated mechanisms of antidepressant activity onto an integrated framework of depression pathology. The major nodes within the network framework of depression included hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, inflammation, weakened monoaminergic systems, reduced neurogenesis/neuroplasticity, and poor microbiome diversity affecting the gut-brain axis. We detailed how each node has subsystems within them, including signaling pathways, specific target proteins, or transporters that interface with compounds in tea, mediating their antidepressant effects. A major pathway was found to be the ERK/CREB/BDNF signaling pathway, up-regulated by a number of compounds in tea including teasaponin, L-theanine, EGCG and combinations of tea catechins and their metabolites. Black tea theaflavins and EGCG are potent anti-inflammatory agents via down-regulation of NF-κB signaling. Multiple compounds in tea are effective modulators of dopaminergic activity and the gut-brain axis. Taken together, our findings show that constituents found in all major tea types, predominantly L-theanine, polyphenols and polyphenol metabolites, are capable of functioning through multiple pathways simultaneously to collectively reduce the risk of depression.
Collapse
Affiliation(s)
- Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
10
|
Zhang Y, He F, Hua T, Sun Q. Green tea polyphenols ameliorate ethanol-induced spatial learning and memory impairments by enhancing hippocampus NMDAR1 expression and CREB activity in rats. Neuroreport 2018; 29:1564-1570. [PMID: 30371539 DOI: 10.1097/wnr.0000000000001152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current research probed into the effects of green tea polyphenols (GTPs) on ethanol-induced spatial learning and memory impairments and inquired the potential molecular mechanism in rats. Thirty 8-week-old male Sprague-Dawley rats were randomly divided into three groups. The control group (control, n=10), ethanol group (ethanol, n=10), and GTPs intervention group (GTP, n=10) received gavage administration of saline, ethanol, and ethanol-GTP solution, respectively, for 8 weeks. Morris water maze was applied to assess the spatial learning and memory function of rats in each group at the last week of treatment. There was no dramatic change in body weight of rats in the different groups. Compared with rats in the control group, 8-week ethanol gavaged rats showed increased escape latency period and decreased time in the target quadrant. Moreover, 8-week ethanol gavage decreased the density of pyramidal layer neurons, expression of NMDAR1, and CREB phosphorylation in the hippocampus region. In contrast, GTP intervention decreased escape latency period and increased the time in the target quadrant, the density of pyramidal layer neurons, expression of NMDAR1, and CREB phosphorylation in the hippocampus region. The current findings indicated that GTP intervention can improve ethanol-induced spatial learning and memory impairments in rats after ethanol withdrawal, which is related to the upregulated density of pyramidal layer neurons, expression of NMDAR1, and CREB phosphorylation in the hippocampus region.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology Laboratory of College of Life Sciences
| | - Fenfen He
- Physiology Laboratory of College of Life Sciences
| | - Tianmiao Hua
- Neurobiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, People's Republic of China
| | - Qingyan Sun
- Physiology Laboratory of College of Life Sciences
| |
Collapse
|
11
|
Smith C, Frolinger T, Brathwaite J, Sims S, Pasinetti GM. Dietary polyphenols enhance optogenetic recall of fear memory in hippocampal dentate gyrus granule neuron subpopulations. Commun Biol 2018; 1:42. [PMID: 30271926 PMCID: PMC6123622 DOI: 10.1038/s42003-018-0043-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/30/2018] [Indexed: 12/23/2022] Open
Abstract
Grape-derived polyphenols have been investigated for their role in promoting memory in model systems of stress, but little is known about select subpopulations of neurons that are influenced by polyphenols to improve memory performance. Granule neurons in the hippocampal dentate gyrus are vulnerable to stressors that impair contextual memory function and can be influenced by dietary polyphenols. We utilized a c-fos-tTA/TRE-ChR2 optogenetics model in which neurons activated during fear learning are labeled with ChR2-mCherry and can be optically reactivated in a different context to recapitulate the behavioral output of a related memory. Treatment with dietary polyphenols increased fear memory recall and ChR2-mCherry expression in dentate gyrus neurons, suggesting that dietary polyphenols promote recruitment of neurons to a fear memory engram. We show that dietary polyphenols promote memory function and offer a general method to map cellular subpopulations influenced by dietary polyphenols, in part through the mechanism of c-Fos expression enhancement. Chad Smith et al. show that dietary polyphenols, compounds found in grapes, enable mice to remember fearful events more effectively and map this function to the hippocampal dentate gyrus neurons. This study offers a way to identify the cellular subpopulations regulated by dietary polyphenols.
Collapse
Affiliation(s)
- Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Justin Brathwaite
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Steven Sims
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.,JJ Peters VA Medical Center, Bronx, 10468, VA, USA
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA. .,JJ Peters VA Medical Center, Bronx, 10468, VA, USA.
| |
Collapse
|
12
|
Singh Kushwaha S, Patro N, Kumar Patro I. A Sequential Study of Age-Related Lipofuscin Accumulation in Hippocampus and Striate Cortex of Rats. Ann Neurosci 2018; 25:223-233. [PMID: 31000961 DOI: 10.1159/000490908] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background The age-pigment, lipofuscin that accumulates in cells intrinsically and progressively with age is considered as the hallmark of aging. This accumulation is more prominent in post-mitotic cells like neurons and also appears in glia. Purpose The aim of the present study was to assess the age-associated occurrence and distribution pattern of lipofuscin both in neurons and microglia in various regions of hippocampus and striate cortex. Methods The accumulation pattern of lipofuscin in hippocampus and striate cortex was observed in the female Wistar rats of 6 age groups, that is, 3, 6, 12, 18, 24, and 30 months using the autofluorescent property of lipofuscin and its specific localization in neurons and microglia by dual immunolabeling with NeuN and Iba-1 antibodies respectively. Cytoarchitectural and the morphological age-related changes were observed with cresyl violet staining. Results Lipofuscin pigments accumulate progressively through the normal aging process in hippocampus and striate cortex. However, in hippocampus, lipofuscin accumulates in a region-specific manner with the highest accumulation observed in cornu ammonis (CA) 1 and 3 subregions. Furthermore, the lipofuscin accumulation was also observed in microglia in the senile brains both in the hippocampus and striate cortex. Conclusion The progressive deposition of lipofuscin could result in cellular dysfunction. This encouraged us to forward the idea that microglia not only participate in the removal of the pigment from the neurons but also accumulate these waste products in itself. Such senescent microglia may contribute to age- related neurodegeneration as they lose the neuroprotective potential due to oxidative stress and thus may be unable to effectively phagocytose the age pigment.
Collapse
Affiliation(s)
- Sarika Singh Kushwaha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| |
Collapse
|
13
|
Gonçalves LK, da Silva IRV, Cechinel LR, Frusciante MR, de Mello AS, Elsner VR, Funchal C, Dani C. Maternal consumption of high-fat diet and grape juice modulates global histone H4 acetylation levels in offspring hippocampus: A preliminary study. Neurosci Lett 2017; 661:29-32. [PMID: 28951285 DOI: 10.1016/j.neulet.2017.09.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/21/2017] [Accepted: 09/21/2017] [Indexed: 01/10/2023]
Abstract
This study aimed to investigate the impact of maternal consumption of a hyperlipid diet and grape juice on global histone H4 acetylation levels in the offsprinǵs hippocampus at different stages of development. During pregnancy and lactation of offspring, dams were divided into 4 groups: control diet (CD), high-fat diet (HFD), control diet and purple grape juice (PGJCD) and purple grape juice and high-fat diet (PGJHFD). Male Wistar rats were euthanized at 21days of age (PN21, adolescents) and at 50days of age (PN50, adults). The maternal consumption of grape juice increased global histone H4 acetylation levels in hippocampus of adolescents pups (PN21), an indicative of enhanced transcriptional activity and increased gene expression. On the other hand, the maternal high-fat diet diminished significantly this epigenetic marker in the adult phase (PN50), suggesting gene silencing. These preliminary findings demonstrated that the maternal choices are able to induce changes on histone H4 acetylation status in hippocampus of the offspring, which may modulate the expression of specific genes. Interestingly, this response occurs in an age and stimuli-dependent manner and strongly reinforce the importance of maternal choices during gestation.
Collapse
Affiliation(s)
- Luciana Kneib Gonçalves
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ivy Reichert Vital da Silva
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Laura Reck Cechinel
- Programa de Pós Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Marina Rocha Frusciante
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alexandre Silva de Mello
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Viviane Rostirola Elsner
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Claudia Funchal
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Caroline Dani
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
Oral administration of Grifola frondosa
polysaccharides improves memory impairment in aged rats via antioxidant action. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
|
15
|
Martins A, Schimidt HL, Garcia A, Colletta Altermann CD, Santos FW, Carpes FP, da Silva WC, Mello-Carpes PB. Supplementation with different teas from Camellia sinensis prevents memory deficits and hippocampus oxidative stress in ischemia-reperfusion. Neurochem Int 2017; 108:287-295. [PMID: 28465087 DOI: 10.1016/j.neuint.2017.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Memory and cognition impairments resultant of ischemic stroke could be minimized or avoided by antioxidant supplementation. In this regard, the neuroprotective potential of Green tea from Camellia sinensis has been investigated. However, there is a lack of information regarding the neuroprotective potential of others teas processed from the Camellia sinensis. Here we investigate the neuroprotective role of green, red, white and black tea on memory deficits and brain oxidative stress in a model of ischemic stroke in rats. Our findings show that green and red teas prevent deficits in object and social recognition memories, but only green tea protects against deficits in spatial memory and avoids hippocampal oxidative status and intense necrosis and others alterations in the brain tissue. In summary, green tea shows better neuroprotection in ischemic stroke than the others teas from Camellia sinensis.
Collapse
Affiliation(s)
- Alexandre Martins
- Physiology Research Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Helen L Schimidt
- Applied Neuromechanics Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Alexandre Garcia
- Physiology Research Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Francielli W Santos
- Biotechnology of Reproduction Laboratory, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Felipe P Carpes
- Applied Neuromechanics Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Weber Cláudio da Silva
- Neuropsychopharmacology Laboratory, University of the Centro-Oeste of Paraná, PR, Brazil
| | | |
Collapse
|
16
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. The protective role of plant biophenols in mechanisms of Alzheimer's disease. J Nutr Biochem 2017; 47:1-20. [PMID: 28301805 DOI: 10.1016/j.jnutbio.2017.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
Self-assembly of amyloid beta peptide (Aβ) into the neurotoxic oligomers followed by fibrillar aggregates is a defining characteristic of Alzheimer's disease (AD). Several lines of proposed hypotheses have suggested the mechanism of AD pathology, though the exact pathophysiological mechanism is not yet elucidated. The poor understanding of AD and multitude of adverse responses reported from the current synthetic drugs are the leading cause of failure in the drug development to treat or halt the progression of AD and mandate the search for safer and more efficient alternatives. A number of natural compounds have shown the ability to prevent the formation of the toxic oligomers and disrupt the aggregates, thus attracted much attention. Referable to the abundancy and multitude of pharmacological activities of the plant active constituents, biophenols that distinguish them from the other phytochemicals as a natural weapon against the neurodegenerative disorders. This review provides a critical assessment of the current literature on in vitro and in vivo mechanistic activities of biophenols associated with the prevention and treatment of AD. We have contended the need for more comprehensive approaches to evaluate the anti-AD activity of biophenols at various pathologic levels and to assess the current evidences. Consequently, we highlighted the various problems and challenges confronting the AD research, and offer recommendations for future research.
Collapse
Affiliation(s)
- Syed H Omar
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
17
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
18
|
Baroncelli L, Molinaro A, Cacciante F, Alessandrì MG, Napoli D, Putignano E, Tola J, Leuzzi V, Cioni G, Pizzorusso T. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging. Hum Mol Genet 2016; 25:4186-4200. [DOI: 10.1093/hmg/ddw252] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/11/2023] Open
|
19
|
Zhu Y, Fenik P, Zhan G, Xin R, Veasey SC. Degeneration in Arousal Neurons in Chronic Sleep Disruption Modeling Sleep Apnea. Front Neurol 2015. [PMID: 26074865 DOI: 10.3389/fneur.2015.00109.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic sleep disruption (CSD) is a cardinal feature of sleep apnea that predicts impaired wakefulness. Despite effective treatment of apneas and sleep disruption, patients with sleep apnea may have persistent somnolence. Lasting wake disturbances in treated sleep apnea raise the possibility that CSD may induce sufficient degeneration in wake-activated neurons (WAN) to cause irreversible wake impairments. Implementing a stereological approach in a murine model of CSD, we found reduced neuronal counts in representative WAN groups, locus coeruleus (LC) and orexinergic neurons, reduced by 50 and 25%, respectively. Mice exposed to CSD showed shortened sleep latencies lasting at least 4 weeks into recovery from CSD. As CSD results in frequent activation of WAN, we hypothesized that CSD promotes mitochondrial metabolic stress in WAN. In support, CSD increased lipofuscin within select WAN. Further, examining the LC as a representative WAN nucleus, we observed increased mitochondrial protein acetylation and down-regulation of anti-oxidant enzyme and brain-derived neurotrophic factor mRNA. Remarkably, CSD markedly increased tumor necrosis factor-alpha within WAN, and not in adjacent neurons or glia. Thus, CSD, as observed in sleep apnea, results in a composite of lasting wake impairments, loss of select neurons, a pro-inflammatory, pro-oxidative mitochondrial stress response in WAN, consistent with a degenerative process with behavioral consequences.
Collapse
Affiliation(s)
- Yan Zhu
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Guanxia Zhan
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Ryan Xin
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
20
|
Zhu Y, Fenik P, Zhan G, Xin R, Veasey SC. Degeneration in Arousal Neurons in Chronic Sleep Disruption Modeling Sleep Apnea. Front Neurol 2015; 6:109. [PMID: 26074865 PMCID: PMC4443725 DOI: 10.3389/fneur.2015.00109] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/03/2015] [Indexed: 11/13/2022] Open
Abstract
Chronic sleep disruption (CSD) is a cardinal feature of sleep apnea that predicts impaired wakefulness. Despite effective treatment of apneas and sleep disruption, patients with sleep apnea may have persistent somnolence. Lasting wake disturbances in treated sleep apnea raise the possibility that CSD may induce sufficient degeneration in wake-activated neurons (WAN) to cause irreversible wake impairments. Implementing a stereological approach in a murine model of CSD, we found reduced neuronal counts in representative WAN groups, locus coeruleus (LC) and orexinergic neurons, reduced by 50 and 25%, respectively. Mice exposed to CSD showed shortened sleep latencies lasting at least 4 weeks into recovery from CSD. As CSD results in frequent activation of WAN, we hypothesized that CSD promotes mitochondrial metabolic stress in WAN. In support, CSD increased lipofuscin within select WAN. Further, examining the LC as a representative WAN nucleus, we observed increased mitochondrial protein acetylation and down-regulation of anti-oxidant enzyme and brain-derived neurotrophic factor mRNA. Remarkably, CSD markedly increased tumor necrosis factor-alpha within WAN, and not in adjacent neurons or glia. Thus, CSD, as observed in sleep apnea, results in a composite of lasting wake impairments, loss of select neurons, a pro-inflammatory, pro-oxidative mitochondrial stress response in WAN, consistent with a degenerative process with behavioral consequences.
Collapse
Affiliation(s)
- Yan Zhu
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Polina Fenik
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Guanxia Zhan
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Ryan Xin
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Sigrid C Veasey
- Center for Sleep and Circadian Neurobiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
21
|
Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice. Transl Psychiatry 2015; 5:e493. [PMID: 25562843 PMCID: PMC4312829 DOI: 10.1038/tp.2014.135] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/19/2014] [Accepted: 11/17/2014] [Indexed: 12/30/2022] Open
Abstract
Flavanols found in natural products such as cocoa and green tea elicit structural and biochemical changes in the hippocampus, a brain area important for mood and cognition. Here, we evaluated the outcome of daily consumption of the flavanol (-)epicatechin (4 mg per day in water) by adult male C57BL/6 mice on measures of anxiety in the elevated plus maze (EPM) and open field (OF). Furthermore, pattern separation, the ability to distinguish between closely spaced identical stimuli, considered to be mediated by the hippocampal dentate gyrus (DG), was tested using the touchscreen. To investigate mechanisms through which (-)epicatechin may exert its effects, mice were injected with bromodeoxyuridine (50 mg kg(-1)) to evaluate adult hippocampal neurogenesis. In addition, monoaminergic and neurotrophin signaling pathway proteins were measured in tissue derived from subject cortices and hippocampi. Flavanol consumption reduced anxiety in the OF and EPM. Elevated hippocampal and cortical tyrosine hydroxylase, downregulated cortical monoamine oxidase-A levels, as well as increased hippocampal brain-derived neurotrophic factor (BDNF) and pro-BDNF support the flavanol's anxiolytic effects. In addition, elevated pAkt in hippocampus and cortex was observed. (-)Epicatechin ingestion did not facilitate touchscreen performance or DG neurogenesis, suggesting a non-neurogenic mechanism. The concurrent modulation of complementary neurotrophic and monoaminergic signaling pathways may contribute to beneficial mood-modulating effects of this flavanol.
Collapse
|
22
|
Effects of green tea and physical exercise on memory impairments associated with aging. Neurochem Int 2014; 78:53-60. [DOI: 10.1016/j.neuint.2014.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023]
|
23
|
Gibbons TE, Pence BD, Petr G, Ossyra JM, Mach HC, Bhattacharya TK, Perez S, Martin SA, McCusker RH, Kelley KW, Rhodes JS, Johnson RW, Woods JA. Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and β-alanine, improves learning, memory and hippocampal neurogenesis in aged mice. Behav Brain Res 2014; 272:131-40. [PMID: 25004447 DOI: 10.1016/j.bbr.2014.05.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022]
Abstract
Aging is associated with impaired learning and memory accompanied by reductions in adult hippocampal neurogenesis and brain expression of neurotrophic factors among other processes. Epigallocatechin-3-gallate (EGCG, a green tea catechin), β-alanine (β-ala, the precursor of carnosine), and exercise have independently been shown to be neuroprotective and to reduce inflammation and oxidative stress in the central nervous system. We hypothesized that EGCG, β-ala supplementation or exercise alone would improve learning and memory and increase neurogenesis in aged mice, and the combined intervention would be better than either treatment alone. Male Balb/cByJ mice (19 months) were given AIN-93M diet with or without EGCG (182mg/kg/d) and β-ala (417mg/kg/d). Half of the mice were given access to a running wheel (VWR). The first 10 days, animals received 50mg/kg bromodeoxyuridine (BrdU) daily. After 28 days, learning and memory was assessed by Morris water maze (MWM) and contextual fear conditioning (CFC). Brains were collected for immunohistochemical detection of BrdU and quantitative mRNA expression in the hippocampus. VWR increased the number of BrdU cells in the dentate gyrus, increased expression of brain-derived neurotrophic factor, decreased expression of the inflammatory cytokine interleukin-1β, and improved performance in the MWM and CFC tests. The dietary intervention reduced brain oxidative stress as measured by 4-hydroxynonenal in the cerebellum, but had no effect on BrdU labeling or behavioral performance. These results suggest that exercise, but not a diet containing EGCG and β-ala, exhibit pro-cognitive effects in aged mice when given at these doses in this relatively short time frame.
Collapse
Affiliation(s)
- Trisha E Gibbons
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brandt D Pence
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Geraldine Petr
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessica M Ossyra
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Houston C Mach
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tushar K Bhattacharya
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Samuel Perez
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A Martin
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Keith W Kelley
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeffrey A Woods
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
24
|
Gu M, Shen L, Bai L, Gao J, Marshall C, Wu T, Ding J, Miao D, Xiao M. Heterozygous knockout of the Bmi-1 gene causes an early onset of phenotypes associated with brain aging. AGE (DORDRECHT, NETHERLANDS) 2014; 36:129-139. [PMID: 23771506 PMCID: PMC3889899 DOI: 10.1007/s11357-013-9552-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Previous studies reported that the polycomb group gene Bmi-1 is downregulated in the aging brain. The aim of this study was to investigate whether decreased Bmi-1 expression accelerates brain aging by analyzing the brain phenotype of adult Bmi-1 heterozygous knockout (Bmi-1(+/-)) mice. An 8-month-old Bmi-1(+/-) brains demonstrated mild oxidative stress, revealed by significant increases in hydroxy radical and nitrotyrosine, and nonsignificant increases in reactive oxygen species and malonaldehyde compared with the wild-type littermates. Bmi-1(+/-) hippocampus had high apoptotic percentage and lipofuscin deposition in pyramidal neurons associated with upregulation of cyclin-dependent kinase inhibitors p19, p27, and p53 and downregulation of anti-apoptotic protein Bcl-2. Mild activation of astrocytes was also observed in Bmi-1(+/-) hippocampus. Furthermore, Bmi-1(+/-) mice showed mild spatial memory impairment in the Morris Water Maze test. These results demonstrate that heterozygous Bmi-1 gene knockout causes an early onset of age-related brain changes, suggesting that Bmi-1 has a role in regulating brain aging.
Collapse
Affiliation(s)
- Minxia Gu
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Lihua Shen
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Lei Bai
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Junying Gao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Charles Marshall
- />Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY 41701 USA
| | - Ting Wu
- />Department of Neurology, the First Affiliated Hospital of Nanjing Medical University Nanjing, Jiangsu, 210029 China
| | - Jiong Ding
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Dengshun Miao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Ming Xiao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| |
Collapse
|
25
|
Kumar H, Song SY, More SV, Kang SM, Kim BW, Kim IS, Choi DK. Traditional Korean East Asian medicines and herbal formulations for cognitive impairment. Molecules 2013; 18:14670-93. [PMID: 24287997 PMCID: PMC6270158 DOI: 10.3390/molecules181214670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023] Open
Abstract
Hanbang, the Traditional Korean Medicine (TKM), is an inseparable component of Korean culture both within the country, and further afield. Korean traditional herbs have been used medicinally to treat sickness and injury for thousands of years. Oriental medicine reflects our ancestor’s wisdom and experience, and as the elderly population in Korea is rapidly increasing, so is the importance of their health problems. The proportion of the population who are over 65 years of age is expected to increase to 24.3% by 2031. Cognitive impairment is common with increasing age, and efforts are made to retain and restore the cognition ability of the elderly. Herbal materials have been considered for this purpose because of their low adverse effects and their cognitive-enhancing or anti-dementia activities. Herbal materials are reported to contain several active compounds that have effects on cognitive function. Here, we enumerate evidence linking TKMs which have shown benefits in memory improvements. Moreover, we have also listed Korean herbal formulations which have been the subject of scientific reports relating to memory improvement.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chung-ju 380-701, Korea.
| | | | | | | | | | | | | |
Collapse
|
26
|
Characterization and Modulation of Glucose Uptake in a Human Blood–Brain Barrier Model. J Membr Biol 2013; 246:669-77. [DOI: 10.1007/s00232-013-9583-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
27
|
Loss of CB1 receptors leads to decreased cathepsin D levels and accelerated lipofuscin accumulation in the hippocampus. Mech Ageing Dev 2013; 134:391-9. [PMID: 23954857 DOI: 10.1016/j.mad.2013.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 08/03/2013] [Indexed: 02/08/2023]
Abstract
Early onset of age-related changes in the brain of cannabinoid 1 receptor knockout (Cnr1(-/-)) mice suggests that cannabinoid 1 (CB1) receptor activity significantly influences the progression of brain aging. In the present study we show that lack of CB1 receptors leads to a significant increase in lipofuscin accumulation and a reduced expression and activity of cathepsin D, lysosomal protease implicated in the degradation of damaged macromolecules, in the hippocampus of 12-month-old mice. The impaired clearance of damaged macromolecules due to the low cathepsin D levels and not enhanced oxidative stress may be responsible for the lipofuscin accumulation because macromolecule oxidation levels were comparable between the genotypes within the same age group. The altered levels of autophagy markers p62 and LC3-II suggest that autophagy is upregulated in CB1 knockout mice. Increased autophagic flux in the absence of CB1 receptors is probably a compensatory mechanism to partially counteract decreased lysosomal degradation capacity. Together, these results suggest that CB1 receptor activity affects lysosomal activity, degradation of damaged macromolecules and thus it may influence the course and onset of brain aging.
Collapse
|
28
|
Rodrigues J, Assunção M, Lukoyanov N, Cardoso A, Carvalho F, Andrade JP. Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats. Behav Brain Res 2013; 246:94-102. [PMID: 23473881 DOI: 10.1016/j.bbr.2013.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Green tea (GT) displays strong anti-oxidant and anti-inflammatory properties mostly attributed to (-)-epigallocatechin-3-gallate (EGCG), while experiments focusing on other catechins are scarce. With the present work we intended to analyze the neuroprotective effects of prolonged consumption of a GT extract (GTE) rich in catechins but poor in EGCG and other GT bioactive components that could also afford benefit. The endpoints evaluated were aging-induced biochemical and morphological changes in the rat hippocampal formation (HF) and behavioral alterations. Male Wistar rats aged 12 months were treated with GTE until 19 months of age. This group of animals was compared with control groups aged 19 (C-19M) or 12 months (C-12M). We found that aging increased oxidative markers but GTE consumption protected proteins and lipids against oxidation. The age-associated increase in lipofuscin content and lysosomal volume was also prevented by treatment with GTE. The dendritic arborizations of dentate granule cells of GTE-treated animals presented plastic changes accompanied by an improved spatial learning evaluated with the Morris water maze. Altogether our results demonstrate that the consumption of an extract rich in catechins other than EGCG protected the HF from aging-related declines contributing to improve the redox status and preventing the structural damage observed in old animals, with repercussions on behavioral performance.
Collapse
Affiliation(s)
- Jorge Rodrigues
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Sagare AP, Deane R, Zlokovic BV. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 2012; 136:94-105. [PMID: 22820095 PMCID: PMC3432694 DOI: 10.1016/j.pharmthera.2012.07.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is the main cell surface receptor involved in brain and systemic clearance of the Alzheimer's disease (AD) toxin amyloid-beta (Aβ). In plasma, a soluble form of LRP1 (sLRP1) is the major transport protein for peripheral Aβ. LRP1 in brain endothelium and mural cells mediates Aβ efflux from brain by providing a transport mechanism for Aβ across the blood-brain barrier (BBB). sLRP1 maintains a plasma 'sink' activity for Aβ through binding of peripheral Aβ which in turn inhibits re-entry of free plasma Aβ into the brain. LRP1 in the liver mediates systemic clearance of Aβ. In AD, LRP1 expression at the BBB is reduced and Aβ binding to circulating sLRP1 is compromised by oxidation. Cell surface LRP1 and circulating sLRP1 represent druggable targets which can be therapeutically modified to restore the physiological mechanisms of brain Aβ homeostasis. In this review, we discuss how increasing LRP1 expression at the BBB and liver with lifestyle changes, statins, plant-based active principles and/or gene therapy on one hand, and how replacing dysfunctional plasma sLRP1 on the other regulate Aβ clearance from brain ultimately controlling the onset and/or progression of AD.
Collapse
Affiliation(s)
- Abhay P. Sagare
- Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90089, United States
| | - Rashid Deane
- Department of Neurosurgery, Arthur Kornberg Medical Research Building, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Berislav V. Zlokovic
- Department of Physiology and Biophysics, and Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, 1501 San Pablo Street, Los Angeles, CA 90089, United States
| |
Collapse
|
30
|
Promising therapeutics with natural bioactive compounds for improving learning and memory--a review of randomized trials. Molecules 2012; 17:10503-39. [PMID: 22945029 PMCID: PMC6268692 DOI: 10.3390/molecules170910503] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/06/2012] [Accepted: 08/27/2012] [Indexed: 12/19/2022] Open
Abstract
Cognitive disorders can be associated with brain trauma, neurodegenerative disease or as a part of physiological aging. Aging in humans is generally associated with deterioration of cognitive performance and, in particular, learning and memory. Different therapeutic approaches are available to treat cognitive impairment during physiological aging and neurodegenerative or psychiatric disorders. Traditional herbal medicine and numerous plants, either directly as supplements or indirectly in the form of food, improve brain functions including memory and attention. More than a hundred herbal medicinal plants have been traditionally used for learning and memory improvement, but only a few have been tested in randomized clinical trials. Here, we will enumerate those medicinal plants that show positive effects on various cognitive functions in learning and memory clinical trials. Moreover, besides natural products that show promising effects in clinical trials, we briefly discuss medicinal plants that have promising experimental data or initial clinical data and might have potential to reach a clinical trial in the near future.
Collapse
|
31
|
The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:541971. [PMID: 22829957 PMCID: PMC3395274 DOI: 10.1155/2012/541971] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/10/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022]
Abstract
Although it has been long believed that new neurons were only generated during development, there is now growing evidence indicating that at least two regions in the brain are capable of continuously generating functional neurons: the subventricular zone and the dentate gyrus of the hippocampus. Adult hippocampal neurogenesis (AHN) is a widely observed phenomenon verified in different adult mammalian species including humans. Factors such as environmental enrichment, voluntary exercise, and diet have been linked to increased levels of AHN. Conversely, aging, stress, anxiety and depression have been suggested to hinder it. However, the mechanisms underlying these effects are still unclear and yet to be determined. In this paper, we discuss some recent findings addressing the effects of different dietary polyphenols on hippocampal cell proliferation and differentiation, models of anxiety, and depression as well as some proposed molecular mechanisms underlying those effects with particular focus on those related to AHN. As a whole, dietary polyphenols seem to exert positive effects on anxiety and depression, possibly in part via regulation of AHN. Studies on the effects of dietary polyphenols on behaviour and AHN may play an important role in the approach to use diet as part of the therapeutic interventions for mental-health-related conditions.
Collapse
|
32
|
Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP. Effects of polyphenols on brain ageing and Alzheimer's disease: focus on mitochondria. Mol Neurobiol 2012; 46:161-78. [PMID: 22706880 DOI: 10.1007/s12035-012-8282-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/24/2012] [Indexed: 02/07/2023]
Abstract
The global trend of the phenomenon of population ageing has dramatic consequences on public health and the incidence of neurodegenerative diseases. Physiological changes that occur during normal ageing of the brain may exacerbate and initiate pathological processes that may lead to neurodegenerative disorders, especially Alzheimer's disease (AD). Hence, the risk of AD rises exponentially with age. While there is no cure currently available, sufficient intake of certain micronutrients and secondary plant metabolites may prevent disease onset. Polyphenols are highly abundant in the human diet, and several experimental and epidemiological evidences indicate that these secondary plant products have beneficial effects on AD risks. This study reviews current knowledge on the potential of polyphenols and selected polyphenol-rich diets on memory and cognition in human subjects, focusing on recent data showing in vivo efficacy of polyphenols in preventing neurodegenerative events during brain ageing and in dementia. Concentrations of polyphenols in animal brains following oral administration have been consistently reported to be very low, thus eliciting controversial discussion on their neuroprotective effects and potential mechanisms. Whether polyphenols exert any direct antioxidant effects in the brain or rather act by evoking alterations in regulatory systems of the brain or even the body periphery is still unclear. To understand the mechanisms behind the protective abilities of polyphenol-rich foods, an overall understanding of the biotransformation of polyphenols and identification of the various metabolites arising in the human body is also urgently needed.
Collapse
Affiliation(s)
- Sebastian Schaffer
- Department of Biochemistry, Centre for Life Sciences, National University of Singapore, 22 Medical Drive, Singapore 117456, Singapore
| | | | | | | | | |
Collapse
|
33
|
Khalaf A, Moselhy WA, Abdel-Hamed MI. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology 2012; 33:280-9. [DOI: 10.1016/j.neuro.2012.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/19/2012] [Accepted: 02/02/2012] [Indexed: 01/19/2023]
|
34
|
Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc Nutr Soc 2012; 71:246-62. [PMID: 22414320 DOI: 10.1017/s0029665112000146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is considerable interest in the potential of a group of dietary-derived phytochemicals known as flavonoids in modulating neuronal function and thereby influencing memory, learning and cognitive function. The present review begins by detailing the molecular events that underlie the acquisition and consolidation of new memories in the brain in order to provide a critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on memory. Data suggests that despite limited brain bioavailability, dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular studies suggest that the mechanisms underpinning their ability to induce improvements in memory are linked to the potential of absorbed flavonoids and their metabolites to interact with and modulate critical signalling pathways, transcription factors and gene and/or protein expression which control memory and learning processes in the hippocampus; the brain structure where spatial learning occurs. Overall, current evidence suggests that human translation of these animal investigations are warranted, as are further studies, to better understand the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.
Collapse
|
35
|
Choi DY, Lee YJ, Hong JT, Lee HJ. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease. Brain Res Bull 2011; 87:144-53. [PMID: 22155297 DOI: 10.1016/j.brainresbull.2011.11.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/06/2011] [Accepted: 11/17/2011] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and most common cause of dementia. However, there is no known way to halt or cure the neurodegenerative disease. Oxidative stress is a cardinal hallmark of the disease and has been considered as therapeutic target for AD treatment. Several factors may contribute to oxidative stress in AD brains. First, mitochondrion is a key player that produces reactive oxygen species (ROS). Mitochondrial dysfunction found in AD patients may exaggerate generation of ROS and oxidative stress. Second, amyloid-beta peptide generates ROS in the presence of metal ions such as Fe(2+) and Cu(2+). Third, activated glial cells in AD brains may produce excessive amount of superoxide and nitric oxide through NADPH oxidase and inducible nitric oxide synthase, respectively. Increased ROS can cause damage to protein, lipid and nucleic acids. Numerous studies demonstrated that natural polyphenolic compounds protect against various neurotoxic insults in vitro and in vivo AD models. In these studies, dietary polyphenolic compounds exhibit neuroprotective effects through scavenging free radicals and increasing antioxidant capacity. Furthermore, they could facilitate the endogenous antioxidant system by stimulating transcription. Some epidemiological and clinical studies highlighted their therapeutic potential for AD treatment. In this review, we will briefly discuss causes of oxidative stress in AD brains, and describe antioxidant neuroprotective effects and therapeutic potential for AD of selected natural polyphenolic compounds.
Collapse
Affiliation(s)
- Dong-Young Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | |
Collapse
|
36
|
Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 2011; 43:1686-97. [PMID: 21907822 DOI: 10.1016/j.biocel.2011.08.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 02/07/2023]
Abstract
Iron is the most abundant transition metal in the earth's crust. It cycles easily between ferric (oxidized; Fe(III)) and ferrous (reduced; Fe(II)) and readily forms complexes with oxygen, making this metal a central player in respiration and related redox processes. However, 'loose' iron, not within heme or iron-sulfur cluster proteins, can be destructively redox-active, causing damage to almost all cellular components, killing both cells and organisms. This may explain why iron is so carefully handled by aerobic organisms. Iron uptake from the environment is carefully limited and carried out by specialized iron transport mechanisms. One reason that iron uptake is tightly controlled is that most organisms and cells cannot efficiently excrete excess iron. When even small amounts of intracellular free iron occur, most of it is safely stored in a non-redox-active form in ferritins. Within nucleated cells, iron is constantly being recycled from aged iron-rich organelles such as mitochondria and used for construction of new organelles. Much of this recycling occurs within the lysosome, an acidic digestive organelle. Because of this, most lysosomes contain relatively large amounts of redox-active iron and are therefore unusually susceptible to oxidant-mediated destabilization or rupture. In many cell types, iron transit through the lysosomal compartment can be remarkably brisk. However, conditions adversely affecting lysosomal iron handling (or oxidant stress) can contribute to a variety of acute and chronic diseases. These considerations make normal and abnormal lysosomal handling of iron central to the understanding and, perhaps, therapy of a wide range of diseases.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| | | | | |
Collapse
|
37
|
Gomez-Pinilla F, Gomez AG. The influence of dietary factors in central nervous system plasticity and injury recovery. PM R 2011; 3:S111-6. [PMID: 21703566 PMCID: PMC3258094 DOI: 10.1016/j.pmrj.2011.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/04/2011] [Indexed: 11/22/2022]
Abstract
Although feeding is an essential component of life, it is only recently that the actions of foods on brain plasticity and function have been scrutinized. There is evidence that select dietary factors are important modifiers of brain plasticity and can have an impact on central nervous system health and disease. Results of new research indicate that dietary factors exert their effects by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Recent study results show that select dietary factors have mechanisms similar to those of exercise, and that, in some cases, dietary factors can complement the action of exercise. Abundant research findings in animal models of central nervous system injury support the idea that nutrients can be taken in through whole foods and dietary supplements to reduce the consequences of neural damage. Therefore, exercise and dietary management appear as a noninvasive and effective strategy to help counteract neurologic and cognitive disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Neurosurgery, University of California Los Angeles Brain Injury Research Center, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
38
|
Chronic green tea catechins administration prevents oxidative stress-related brain aging in C57BL/6J mice. Brain Res 2010; 1353:28-35. [DOI: 10.1016/j.brainres.2010.07.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 07/10/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
|