1
|
Qiu Z, Deng X, Fu Y, Jiang M, Cui X. Exploring the triad: VPS35, neurogenesis, and neurodegenerative diseases. J Neurochem 2024; 168:2363-2378. [PMID: 39022884 DOI: 10.1111/jnc.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Vacuolar protein sorting 35 (VPS35), a critical component of the retromer complex, plays a pivotal role in the pathogenesis of neurodegenerative diseases (NDs). It is involved in protein transmembrane sorting, facilitating the transport from endosomes to the trans-Golgi network (TGN) and plasma membrane. Recent investigations have compellingly associated mutations in the VPS35 gene with neurodegenerative disorders such as Parkinson's and Alzheimer's disease. These genetic alterations are implicated in protein misfolding, disrupted autophagic processes, mitochondrial dysregulation, and synaptic impairment. Furthermore, VPS35 exerts a notable impact on neurogenesis by influencing neuronal functionality, protein conveyance, and synaptic performance. Dysregulation or mutation of VPS35 may escalate the progression of neurodegenerative conditions, underscoring its pivotal role in safeguarding neuronal integrity. This review comprehensively discusses the role of VPS35 and its functional impairments in NDs. Furthermore, we provide an overview of the impact of VPS35 on neurogenesis and further explore the intricate relationship between neurogenesis and NDs. These research advancements offer novel perspectives and valuable insights for identifying potential therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
- School of Medicine, Kashi University, Xinjiang, China
| |
Collapse
|
2
|
Guo Q, Chen KE, Gimenez-Andres M, Jellett AP, Gao Y, Simonetti B, Liu M, Danson CM, Heesom KJ, Cullen PJ, Collins BM. Structural basis for coupling of the WASH subunit FAM21 with the endosomal SNX27-Retromer complex. Proc Natl Acad Sci U S A 2024; 121:e2405041121. [PMID: 39116126 PMCID: PMC11331091 DOI: 10.1073/pnas.2405041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Endosomal membrane trafficking is mediated by specific protein coats and formation of actin-rich membrane domains. The Retromer complex coordinates with sorting nexin (SNX) cargo adaptors including SNX27, and the SNX27-Retromer assembly interacts with the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex which nucleates actin filaments establishing the endosomal recycling domain. Crystal structures, modeling, biochemical, and cellular validation reveal how the FAM21 subunit of WASH interacts with both Retromer and SNX27. FAM21 binds the FERM domain of SNX27 using acidic-Asp-Leu-Phe (aDLF) motifs similar to those found in the SNX1 and SNX2 subunits of the ESCPE-1 complex. Overlapping FAM21 repeats and a specific Pro-Leu containing motif bind three distinct sites on Retromer involving both the VPS35 and VPS29 subunits. Mutation of the major VPS35-binding site does not prevent cargo recycling; however, it partially reduces endosomal WASH association indicating that a network of redundant interactions promote endosomal activity of the WASH complex. These studies establish the molecular basis for how SNX27-Retromer is coupled to the WASH complex via overlapping and multiplexed motif-based interactions required for the dynamic assembly of endosomal membrane recycling domains.
Collapse
Affiliation(s)
- Qian Guo
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD4072, Australia
| | - Kai-en Chen
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD4072, Australia
| | - Manuel Gimenez-Andres
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Adam P. Jellett
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Ya Gao
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD4072, Australia
| | - Boris Simonetti
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Meihan Liu
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD4072, Australia
| | - Chris M. Danson
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Kate J. Heesom
- Bristol Proteomics Facility, School of Biochemistry, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, BristolBS8 1TD, United Kingdom
| | - Brett M. Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD4072, Australia
| |
Collapse
|
3
|
Sasner M, Preuss C, Pandey RS, Uyar A, Garceau D, Kotredes KP, Williams H, Oblak AL, Lin PB, Perkins B, Soni D, Ingraham C, Lee‐Gosselin A, Lamb BT, Howell GR, Carter GW. In vivo validation of late-onset Alzheimer's disease genetic risk factors. Alzheimers Dement 2024; 20:4970-4984. [PMID: 38687251 PMCID: PMC11247676 DOI: 10.1002/alz.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.
Collapse
Affiliation(s)
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Asli Uyar
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | | | | | | | - Adrian L. Oblak
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Peter Bor‐Chian Lin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bridget Perkins
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Disha Soni
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Cindy Ingraham
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Audrey Lee‐Gosselin
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, School of Medicine, Indiana UniversityIndianapolisIndianaUSA
| | | | - Gregory W. Carter
- The Jackson LaboratoryBar HarborMaineUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| |
Collapse
|
4
|
Herman M, Randall GW, Spiegel JL, Maldonado DJ, Simoes S. Endo-lysosomal dysfunction in neurodegenerative diseases: opinion on current progress and future direction in the use of exosomes as biomarkers. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220387. [PMID: 38368936 PMCID: PMC10874701 DOI: 10.1098/rstb.2022.0387] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Over the past two decades, increased research has highlighted the connection between endosomal trafficking defects and neurodegeneration. The endo-lysosomal network is an important, complex cellular system specialized in the transport of proteins, lipids, and other metabolites, essential for cell homeostasis. Disruption of this pathway is linked to a wide range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and frontotemporal dementia. Furthermore, there is strong evidence that defects in this pathway create opportunities for diagnostic and therapeutic intervention. In this Opinion piece, we concisely address the role of endo-lysosomal dysfunction in five neurodegenerative diseases and discuss how future research can investigate this intracellular pathway, including extracellular vesicles with a specific focus on exosomes for the identification of novel disease biomarkers. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Mathieu Herman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Grace W. Randall
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia L. Spiegel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Delphina J. Maldonado
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Abdul-Rahman T, Ghosh S, Kalmanovich JB, Awuah AW, Zivcevska M, Khalifa S, Bassey EE, Ali NA, Ferreira MMDS, Umar TP, Garg N, Nweze VN, Inturu VSS, Abdelwahab MM, Kurian S, Alexiou A, Alfaleh M, Alqurashi TMA, Ashraf GM. The role of membrane trafficking and retromer complex in Parkinson's and Alzheimer's disease. J Neurosci Res 2024; 102:e25261. [PMID: 38284858 DOI: 10.1002/jnr.25261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.
Collapse
Affiliation(s)
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, USA
| | - Samar Khalifa
- Clinical Psychology Department, Faculty of Arts, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | | | | | | | - Tungki Pratama Umar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Stratford, New Jersey, USA
| | | | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Mohammed Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M A Alqurashi
- Department of Pharmacology, Medical College, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Young JE, Holstege H, Andersen OM, Petsko GA, Small SA. On the causal role of retromer-dependent endosomal recycling in Alzheimer's disease. Nat Cell Biol 2023; 25:1394-1397. [PMID: 37803174 PMCID: PMC10788784 DOI: 10.1038/s41556-023-01245-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Recent findings ranging from genetics to structural biology, together with studies in human neurons, animal models and patient brains, implicate the retromer-dependent endosomal recycling pathway as both causal and common in Alzheimer’s disease.
Collapse
Affiliation(s)
- Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Henne Holstege
- Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olav M Andersen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregory A Petsko
- Department of Neurology and the Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Scott A Small
- Department of Neurology, Columbia University, New York, NY, USA.
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Logue MW, Dasgupta S, Farrer LA. Genetics of Alzheimer's Disease in the African American Population. J Clin Med 2023; 12:5189. [PMID: 37629231 PMCID: PMC10455208 DOI: 10.3390/jcm12165189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Black/African American (AA) individuals have a higher risk of Alzheimer's disease (AD) than White non-Hispanic persons of European ancestry (EUR) for reasons that may include economic disparities, cardiovascular health, quality of education, and biases in the methods used to diagnose AD. AD is also heritable, and some of the differences in risk may be due to genetics. Many AD-associated variants have been identified by candidate gene studies, genome-wide association studies (GWAS), and genome-sequencing studies. However, most of these studies have been performed using EUR cohorts. In this paper, we review the genetics of AD and AD-related traits in AA individuals. Importantly, studies of genetic risk factors in AA cohorts can elucidate the molecular mechanisms underlying AD risk in AA and other populations. In fact, such studies are essential to enable reliable precision medicine approaches in persons with considerable African ancestry. Furthermore, genetic studies of AA cohorts allow exploration of the ways the impact of genes can vary by ancestry, culture, and economic and environmental disparities. They have yielded important gains in our knowledge of AD genetics, and increasing AA individual representation within genetic studies should remain a priority for inclusive genetic study design.
Collapse
Affiliation(s)
- Mark W. Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Shoumita Dasgupta
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Medical Sciences and Education, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
8
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
10
|
Zhu Y, Saribas AS, Liu J, Lin Y, Bodnar B, Zhao R, Guo Q, Ting J, Wei Z, Ellis A, Li F, Wang X, Yang X, Wang H, Ho WZ, Yang L, Hu W. Protein expression/secretion boost by a novel unique 21-mer cis-regulatory motif (Exin21) via mRNA stabilization. Mol Ther 2023; 31:1136-1158. [PMID: 36793212 PMCID: PMC9927791 DOI: 10.1016/j.ymthe.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Boosting protein production is invaluable in both industrial and academic applications. We discovered a novel expression-increasing 21-mer cis-regulatory motif (Exin21) that inserts between SARS-CoV-2 envelope (E) protein-encoding sequence and luciferase reporter gene. This unique Exin21 (CAACCGCGGTTCGCGGCCGCT), encoding a heptapeptide (QPRFAAA, designated as Qα), significantly (34-fold on average) boosted E production. Both synonymous and nonsynonymous mutations within Exin21 diminished its boosting capability, indicating the exclusive composition and order of 21 nucleotides. Further investigations demonstrated that Exin21/Qα addition could boost the production of multiple SARS-CoV-2 structural proteins (S, M, and N) and accessory proteins (NSP2, NSP16, and ORF3), and host cellular gene products such as IL-2, IFN-γ, ACE2, and NIBP. Exin21/Qα enhanced the packaging yield of S-containing pseudoviruses and standard lentivirus. Exin21/Qα addition on the heavy and light chains of human anti-SARS-CoV monoclonal antibody robustly increased antibody production. The extent of such boosting varied with protein types, cellular density/function, transfection efficiency, reporter dosage, secretion signaling, and 2A-mediated auto-cleaving efficiency. Mechanistically, Exin21/Qα increased mRNA synthesis/stability, and facilitated protein expression and secretion. These findings indicate that Exin21/Qα has the potential to be used as a universal booster for protein production, which is of importance for biomedicine research and development of bioproducts, drugs, and vaccines.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - A. Sami Saribas
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Qian Guo
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Julia Ting
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Zhengyu Wei
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Aidan Ellis
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
11
|
Curtis ME, Smith T, Blass BE, Praticò D. Dysfunction of the retromer complex system contributes to amyloid and tau pathology in a stem cell model of Down syndrome. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12334. [PMID: 35910668 PMCID: PMC9322819 DOI: 10.1002/trc2.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Introduction Retromer complex proteins are decreased in Down syndrome (DS) brains and correlate inversely with brain amyloidosis. However, whether retromer dysfunction contributes to the amyloid beta (Aβ) and tau neuropathology of DS remains unknown. Methods Human trisomic induced Pluripotent Stem Cells (iPSCs) and isogenic controls were differentiated into forebrain neurons, and changes in retromer proteins, tau phosphorylated epitopes, and Aβ levels were assessed in euploid and trisomic neurons using western blot and enzyme-linked immunosorbent assay (ELISA). Genetic overexpression and pharmacological retromer stabilization were used to determine the functional role of the retromer complex system in modulating amyloid and tau pathology. Results Trisomic neurons developed age-dependent retromer core protein deficiency associated with accumulation of Aβ peptides and phosphorylated tau isoforms. Enhancing retromer function through overexpression or pharmacological retromer stabilization reduced amyloid and tau pathology in trisomic neurons. However, the effect was greater using a pharmacological approach, suggesting that targeting the complex stability may be more effective in addressing this neuropathology in DS. Discussion Our results demonstrate that the retromer complex is directly involved in the development of the neuropathologic phenotype in DS, and that pharmacological stabilization of the complex should be considered as a novel therapeutic tool in people with DS.
Collapse
Affiliation(s)
- Mary Elizabeth Curtis
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Tiffany Smith
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Domenico Praticò
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Pérez-Torres EJ, Utkina-Sosunova I, Mishra V, Barbuti P, De Planell-Saguer M, Dermentzaki G, Geiger H, Basile AO, Robine N, Fagegaltier D, Politi KA, Rinchetti P, Jackson-Lewis V, NYGC ALS Consortium, Harms M, Phatnani H, Lotti F, Przedborski S. Retromer dysfunction in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2022; 119:e2118755119. [PMID: 35749364 PMCID: PMC9245686 DOI: 10.1073/pnas.2118755119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/03/2022] [Indexed: 12/26/2022] Open
Abstract
Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.
Collapse
Affiliation(s)
- Eduardo J. Pérez-Torres
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Irina Utkina-Sosunova
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Vartika Mishra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Peter Barbuti
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Mariangels De Planell-Saguer
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Georgia Dermentzaki
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Heather Geiger
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Anna O. Basile
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Nicolas Robine
- Computational Biology, New York Genome Center, New York, NY 10013
| | - Delphine Fagegaltier
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013
| | - Kristin A. Politi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Paola Rinchetti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Vernice Jackson-Lewis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | | | - Matthew Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Hemali Phatnani
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
| | - Serge Przedborski
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Center for Motor Neuron Biology and Diseases, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neuroscience, Columbia University, New York, NY 10027
| |
Collapse
|
13
|
Understanding the contributions of VPS35 and the retromer in neurodegenerative disease. Neurobiol Dis 2022; 170:105768. [PMID: 35588987 DOI: 10.1016/j.nbd.2022.105768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Perturbations of the endolysosomal pathway have been suggested to play an important role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Specifically, VPS35 and the retromer complex play an important role in the endolysosomal system and are implicated in the pathophysiology of these diseases. A single missense mutation in VPS35, Asp620Asn (D620N), is known to cause late-onset, autosomal dominant familial PD. In this review, we focus on the emerging role of the PD-linked D620N mutation in causing retromer dysfunction and dissect its implications in neurodegeneration. Additionally, we will discuss how VPS35 and the retromer are linked to AD, amyotrophic lateral sclerosis, and primary tauopathies. Interestingly, reduced levels of VPS35 and other retromer components have been observed in post-mortem brain tissue, suggesting a role for the retromer in the pathophysiology of these diseases. This review will provide a comprehensive dive into the mechanisms of VPS35 dysfunction in neurodegenerative diseases. Furthermore, we will highlight outstanding questions in the field and the retromer as a therapeutic target for neurodegenerative disease at large.
Collapse
|
14
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
15
|
Chae CW, Choi GE, Jung YH, Lim JR, Cho JH, Yoon JH, Han HJ. High glucose-mediated VPS26a downregulation dysregulates neuronal amyloid precursor protein processing and tau phosphorylation. Br J Pharmacol 2022; 179:3934-3950. [PMID: 35297035 DOI: 10.1111/bph.15836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The relationship between hyperglycaemia-induced retromer dysfunction impairing intracellular trafficking and AD remains unclear, although Diabetes mellitus (DM) is considered a risk factor for Alzheimer's disease (AD). Here, we investigated the effects of high glucose on the retromer, and defined the dysregulation of mechanisms of amyloid precursor protein (APP) processing and tau phosphorylation. EXPERIMENTAL APPROACH We used human induced-pluripotent stem cell-derived neuronal differentiated cells and SH-SY5Ys exposed to high glucose to identify the underlying mechanisms. Streptozotocin-induced diabetic mice were used to elucidate whether the retromer contributes to the AD-like pathology. KEY RESULTS We found that vacuolar protein sorting-associated protein 26a (VPS26a) was decreased in the hippocampus of diabetic mice and high glucose-treated human neuronal cells. High glucose downregulated VPS26a through ROS/NF-κB/DNA methyltransferase1-mediated promoter hypermethylation. VPS26a recovery blocked retention of APP and cation-independent mannose-6-phosphate receptor in endosomes and promoted transport to the trans-Golgi, which decreased Aβ levels, and improved Cathepsin D activity, reducing p-tau levels, respectively. Retromer enhancement ameliorated synaptic deficits, astrocyte over-activation, and cognitive impairment in diabetic mice. CONCLUSION AND IMPLICATIONS In conclusion, VPS26a is a promising candidate for the inhibition of DM-associated AD pathogenesis by modulating APP processing and tau phosphorylation.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Curtis ME, Smith T, Yu D, Praticò D. The association of retromer deficiency and tau pathology in Down syndrome. Ann Neurol 2022; 91:561-567. [PMID: 35150166 PMCID: PMC8940634 DOI: 10.1002/ana.26321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022]
Abstract
Retromer deficiency is reported in Down syndrome and correlates with amyloidosis, however, its association with tau neuropathology remains unclear. Down syndrome and control brain tissues were evaluated for phosphorylated tau, tau modulators, and cathepsin-D activity. Several kinases and phosphatase PP2A were unchanged, but tau phosphorylation was elevated, and cathepsin-D activity decreased in aged Down syndrome subjects. Retromer proteins positively associated with soluble tau, whereas pathogenic tau negatively correlated with retromer proteins and cathepsin-D activity. Retromer deficiency and consequent reduction of cathepsin-D activity may contribute to pathogenic tau accumulation, thus, retromer represents a viable therapeutic target against tau pathology in Down syndrome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mary Elizabeth Curtis
- Alzheimer's Center at Temple, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Tiffany Smith
- Alzheimer's Center at Temple, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Daohai Yu
- Department of Clinical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Domenico Praticò
- Alzheimer's Center at Temple, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
17
|
EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene 2022; 41:220-232. [PMID: 34718348 PMCID: PMC8883427 DOI: 10.1038/s41388-021-02086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor receptor (EGFR) has critical roles in epithelial cell physiology. Over-expression and over-activation of EGFR have been implicated in diverse cancers, including triple-negative breast cancers (TNBCs), prompting anti-EGFR therapies. Therefore, developing potent therapies and addressing the inevitable drug resistance mechanisms necessitates deciphering of EGFR related networks. Here, we describe Sorting Nexin 3 (SNX3), a member of the recycling retromer complex, as a critical player in the epidermal growth factor (EGF) stimulated EGFR network in TNBCs. We show that SNX3 is an immediate and sustained target of EGF stimulation initially at the protein level and later at the transcriptional level, causing increased SNX3 abundance. Using a proximity labeling approach, we observed increased interaction of SNX3 and EGFR upon EGF stimulation. We also detected colocalization of SNX3 with early endosomes and endocytosed EGF. Moreover, we show that EGFR protein levels are sensitive to SNX3 loss. Transient RNAi models of SNX3 downregulation have a temporary reduction in EGFR levels. In contrast, long-term silencing forces cells to recover and overexpress EGFR mRNA and protein, resulting in increased proliferation, colony formation, migration, invasion in TNBC cells, and increased tumor growth and metastasis in syngeneic models. Consistent with these results, low SNX3 and high EGFR mRNA levels correlate with poor relapse-free survival in breast cancer patients. Overall, our results suggest that SNX3 is a critical player in the EGFR network in TNBCs with implications for other cancers dependent on EGFR activity.
Collapse
|
18
|
Wen YF, Xiao XW, Zhou L, Jiang YL, Zhu Y, Guo LN, Wang X, Liu H, Zhou YF, Wang JL, Liao XX, Shen L, Jiao B. Mutations in GBA, SNCA, and VPS35 are not associated with Alzheimer's disease in a Chinese population: a case-control study. Neural Regen Res 2022; 17:682-689. [PMID: 34380910 PMCID: PMC8504399 DOI: 10.4103/1673-5374.321000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SNCA, GBA, and VPS35 are three common genes associated with Parkinson’s disease. Previous studies have shown that these three genes may be associated with Alzheimer’s disease (AD). However, it is unclear whether these genes increase the risk of AD in Chinese populations. In this study, we used a targeted gene sequencing panel to screen all the exon regions and the nearby sequences of GBA, SNCA, and VPS35 in a cohort including 721 AD patients and 365 healthy controls from China. The results revealed that neither common variants nor rare variants of these three genes were associated with AD in a Chinese population. These findings suggest that the mutations in GBA, SNCA, and VPS35 are not likely to play an important role in the genetic susceptibility to AD in Chinese populations. The study was approved by the Ethics Committee of Xiangya Hospital, Central South University, China on March 9, 2016 (approval No. 201603198).
Collapse
Affiliation(s)
- Ya-Fei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Ling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li-Na Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Fang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Xin-Xin Liao
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Moulton MJ, Barish S, Ralhan I, Chang J, Goodman LD, Harland JG, Marcogliese PC, Johansson JO, Ioannou MS, Bellen HJ. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer's disease-associated genes. Proc Natl Acad Sci U S A 2021; 118:e2112095118. [PMID: 34949639 PMCID: PMC8719885 DOI: 10.1073/pnas.2112095118] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Jake G Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
| | | | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030;
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
20
|
Rubin L, Ingram LA, Resciniti NV, Ashford-Carroll B, Leith KH, Rose A, Ureña S, McCollum Q, Friedman DB. Genetic Risk Factors for Alzheimer's Disease in Racial/Ethnic Minority Populations in the U.S.: A Scoping Review. Front Public Health 2021; 9:784958. [PMID: 35004586 PMCID: PMC8739784 DOI: 10.3389/fpubh.2021.784958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: As the United States (U.S.) population rapidly ages, the incidence of Alzheimer's Disease and Related Dementias (ADRDs) is rising, with racial/ethnic minorities affected at disproportionate rates. Much research has been undertaken to test, sequence, and analyze genetic risk factors for ADRDs in Caucasian populations, but comparatively little has been done with racial/ethnic minority populations. We conducted a scoping review to examine the nature and extent of the research that has been published about the genetic factors of ADRDs among racial/ethnic minorities in the U.S. Design: Using an established scoping review methodological framework, we searched electronic databases for articles describing peer-reviewed empirical studies or Genome-Wide Association Studies that had been published 2005-2018 and focused on ADRD-related genes or genetic factors among underrepresented racial/ethnic minority population in the U.S. Results: Sixty-six articles met the inclusion criteria for full text review. Well-established ADRD genetic risk factors for Caucasian populations including APOE, APP, PSEN1, and PSEN2 have not been studied to the same degree in minority U.S. populations. Compared to the amount of research that has been conducted with Caucasian populations in the U.S., racial/ethnic minority communities are underrepresented. Conclusion: Given the projected growth of the aging population and incidence of ADRDs, particularly among racial/ethnic minorities, increased focus on this important segment of the population is warranted. Our review can aid researchers in developing fundamental research questions to determine the role that ADRD risk genes play in the heavier burden of ADRDs in racial/ethnic minority populations.
Collapse
Affiliation(s)
- Lindsey Rubin
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Lucy A. Ingram
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Nicholas V. Resciniti
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States
| | - Brianna Ashford-Carroll
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Katherine Henrietta Leith
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Aubrey Rose
- School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Stephanie Ureña
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| | - Quentin McCollum
- College of Social Work, University of South Carolina, Columbia, SC, United States
| | - Daniela B. Friedman
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
21
|
Dominko K, Rastija A, Sobocanec S, Vidatic L, Meglaj S, Lovincic Babic A, Hutter-Paier B, Colombo AV, Lichtenthaler SF, Tahirovic S, Hecimovic S. Impaired Retromer Function in Niemann-Pick Type C Disease Is Dependent on Intracellular Cholesterol Accumulation. Int J Mol Sci 2021; 22:13256. [PMID: 34948052 PMCID: PMC8705785 DOI: 10.3390/ijms222413256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
Niemann-Pick type C disease (NPC) is a rare inherited neurodegenerative disorder characterized by an accumulation of intracellular cholesterol within late endosomes and lysosomes due to NPC1 or NPC2 dysfunction. In this work, we tested the hypothesis that retromer impairment may be involved in the pathogenesis of NPC and may contribute to increased amyloidogenic processing of APP and enhanced BACE1-mediated proteolysis observed in NPC disease. Using NPC1-null cells, primary mouse NPC1-deficient neurons and NPC1-deficient mice (BALB/cNctr-Npc1m1N), we show that retromer function is impaired in NPC. This is manifested by altered transport of the retromer core components Vps26, Vps35 and/or retromer receptor sorLA and by retromer accumulation in neuronal processes, such as within axonal swellings. Changes in retromer distribution in NPC1 mouse brains were observed already at the presymptomatic stage (at 4-weeks of age), indicating that the retromer defect occurs early in the course of NPC disease and may contribute to downstream pathological processes. Furthermore, we show that cholesterol depletion in NPC1-null cells and in NPC1 mouse brains reverts retromer dysfunction, suggesting that retromer impairment in NPC is mechanistically dependent on cholesterol accumulation. Thus, we characterized retromer dysfunction in NPC and propose that the rescue of retromer impairment may represent a novel therapeutic approach against NPC.
Collapse
Affiliation(s)
- Kristina Dominko
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| | - Ana Rastija
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| | - Sandra Sobocanec
- Laboratory for Mitochondrial Bioenergetics and Diabetes, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| | - Sarah Meglaj
- Division of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (S.M.); (A.L.B.)
| | - Andrea Lovincic Babic
- Division of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (S.M.); (A.L.B.)
| | | | - Alessio-Vittorio Colombo
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (A.-V.C.); (S.F.L.); (S.T.)
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (A.-V.C.); (S.F.L.); (S.T.)
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (A.-V.C.); (S.F.L.); (S.T.)
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (K.D.); (A.R.); (L.V.)
| |
Collapse
|
22
|
Chen KE, Guo Q, Hill TA, Cui Y, Kendall AK, Yang Z, Hall RJ, Healy MD, Sacharz J, Norwood SJ, Fonseka S, Xie B, Reid RC, Leneva N, Parton RG, Ghai R, Stroud DA, Fairlie DP, Suga H, Jackson LP, Teasdale RD, Passioura T, Collins BM. De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. SCIENCE ADVANCES 2021; 7:eabg4007. [PMID: 34851660 PMCID: PMC8635440 DOI: 10.1126/sciadv.abg4007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
The retromer complex (Vps35-Vps26-Vps29) is essential for endosomal membrane trafficking and signaling. Mutation of the retromer subunit Vps35 causes late-onset Parkinson’s disease, while viral and bacterial pathogens can hijack the complex during cellular infection. To modulate and probe its function, we have created a novel series of macrocyclic peptides that bind retromer with high affinity and specificity. Crystal structures show that most of the cyclic peptides bind to Vps29 via a Pro-Leu–containing sequence, structurally mimicking known interactors such as TBC1D5 and blocking their interaction with retromer in vitro and in cells. By contrast, macrocyclic peptide RT-L4 binds retromer at the Vps35-Vps26 interface and is a more effective molecular chaperone than reported small molecules, suggesting a new therapeutic avenue for targeting retromer. Last, tagged peptides can be used to probe the cellular localization of retromer and its functional interactions in cells, providing novel tools for studying retromer function.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yi Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhe Yang
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ryan J. Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joanna Sacharz
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sachini Fonseka
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| | - Rajesh Ghai
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David A. Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rohan D. Teasdale
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Sydney Analytical, School of Life and Environmental Sciences and School of Chemistry, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
23
|
Simoes S, Guo J, Buitrago L, Qureshi YH, Feng X, Kothiya M, Cortes E, Patel V, Kannan S, Kim YH, Chang KT, Hussaini SA, Moreno H, Di Paolo G, Andersen OM, Small SA. Alzheimer's vulnerable brain region relies on a distinct retromer core dedicated to endosomal recycling. Cell Rep 2021; 37:110182. [PMID: 34965419 PMCID: PMC8792909 DOI: 10.1016/j.celrep.2021.110182] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Whether and how the pathogenic disruptions in endosomal trafficking observed in Alzheimer’s disease (AD) are linked to its anatomical vulnerability remain unknown. Here, we began addressing these questions by showing that neurons are enriched with a second retromer core, organized around VPS26b, differentially dedicated to endosomal recycling. Next, by imaging mouse models, we show that the trans-entorhinal cortex, a region most vulnerable to AD, is most susceptible to VPS26b depletion—a finding validated by electrophysiology, immunocytochemistry, and behavior. VPS26b was then found enriched in the trans-entorhinal cortex of human brains, where both VPS26b and the retromer-related receptor SORL1 were found deficient in AD. Finally, by regulating glutamate receptor and SORL1 recycling, we show that VPS26b can mediate regionally selective synaptic dysfunction and SORL1 deficiency. Together with the trans-entorhinal’s unique network properties, hypothesized to impose a heavy demand on endosomal recycling, these results suggest a general mechanism that can explain AD’s regional vulnerability. Trans-entorhinal cortex neurons are most vulnerable to Alzheimer’s disease. Simoes et al. explain this vulnerability by showing that these neurons are dependent on a distinct VPS26b-retromer core differentially dedicated to endosomal recycling. VPS26b is highly expressed in these neurons, where they regulate synaptic function, GluA1/SORL1 recycling, and disease-associated pathologies
Collapse
Affiliation(s)
- Sabrina Simoes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA.
| | - Jia Guo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Luna Buitrago
- The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Yasir H Qureshi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Xinyang Feng
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Milankumar Kothiya
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Etty Cortes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Vivek Patel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Suvarnambiga Kannan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - S Abid Hussaini
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA; Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Herman Moreno
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Gilbert Di Paolo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA; Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Olav M Andersen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høgh-Guldbergs Gade 10, 8000 AarhusC, Denmark
| | - Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
VPS35 regulates tau phosphorylation and neuropathology in tauopathy. Mol Psychiatry 2021; 26:6992-7005. [PMID: 31289348 PMCID: PMC6949432 DOI: 10.1038/s41380-019-0453-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 04/11/2019] [Indexed: 01/27/2023]
Abstract
The vacuolar protein sorting 35 (VPS35) is a major component of the retromer recognition core complex which regulates intracellular protein sorting and trafficking. Deficiency in VPS35 by altering APP/Aβ metabolism has been linked to late-onset Alzheimer's disease. Here we report that VPS35 is significantly reduced in Progressive Supra-nuclear Palsy and Picks' disease, two distinct primary tauopathies. In vitro studies show that overexpression of VPS35 leads to a reduction of pathological tau in neuronal cells, whereas genetic silencing of VPS35 results in its accumulation. Mechanistically the availability of active cathepsin D mediates the effect of VPS35 on pathological tau accumulation. Moreover, in a relevant transgenic mouse model of tauopathy, down-regulation of VPS35 results in an exacerbation of motor and learning impairments as well as accumulation of pathological tau and loss of synaptic integrity. Taken together, our data identify VPS35 as a novel critical player in tau metabolism and neuropathology, and a new therapeutic target for human tauopathies.
Collapse
|
25
|
Dehghani N, Guven G, Kun-Rodrigues C, Gouveia C, Foster K, Hanagasi H, Lohmann E, Samanci B, Gurvit H, Bilgic B, Bras J, Guerreiro R. A comprehensive analysis of copy number variation in a Turkish dementia cohort. Hum Genomics 2021; 15:48. [PMID: 34321086 PMCID: PMC8317312 DOI: 10.1186/s40246-021-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) include deletions or multiplications spanning genomic regions. These regions vary in size and may span genes known to play a role in human diseases. As examples, duplications and triplications of SNCA have been shown to cause forms of Parkinson's disease, while duplications of APP cause early onset Alzheimer's disease (AD). RESULTS Here, we performed a systematic analysis of CNVs in a Turkish dementia cohort in order to further characterize the genetic causes of dementia in this population. One hundred twenty-four Turkish individuals, either at risk of dementia due to family history, diagnosed with mild cognitive impairment, AD, or frontotemporal dementia, were whole-genome genotyped and CNVs were detected. We integrated family analysis with a comprehensive assessment of potentially disease-associated CNVs in this Turkish dementia cohort. We also utilized both dementia and non-dementia individuals from the UK Biobank in order to further elucidate the potential role of the identified CNVs in neurodegenerative diseases. We report CNVs overlapping the previously implicated genes ZNF804A, SNORA70B, USP34, XPO1, and a locus on chromosome 9 which includes a cluster of olfactory receptors and ABCA1. Additionally, we also describe novel CNVs potentially associated with dementia, overlapping the genes AFG1L, SNX3, VWDE, and BC039545. CONCLUSIONS Genotyping data from understudied populations can be utilized to identify copy number variation which may contribute to dementia.
Collapse
Affiliation(s)
- Nadia Dehghani
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Gamze Guven
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Celia Kun-Rodrigues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Catarina Gouveia
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Kalina Foster
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
- Neuroscience Department, Michigan State University College of Natural Science, East Lansing, MI, USA
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ebba Lohmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Bedia Samanci
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
26
|
Simoes S, Neufeld JL, Triana-Baltzer G, Moughadam S, Chen EI, Kothiya M, Qureshi YH, Patel V, Honig LS, Kolb H, Small SA. Tau and other proteins found in Alzheimer's disease spinal fluid are linked to retromer-mediated endosomal traffic in mice and humans. Sci Transl Med 2021; 12:12/571/eaba6334. [PMID: 33239387 DOI: 10.1126/scitranslmed.aba6334] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/21/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Endosomal trafficking has emerged as a defective biological pathway in Alzheimer's disease (AD), and the pathway is a source of cerebrospinal fluid (CSF) protein accumulation. Nevertheless, the identity of the CSF proteins that accumulate in the setting of defects in AD's endosomal trafficking pathway remains unknown. Here, we performed a CSF proteomic screen in mice with a neuronal-selective knockout of the core of the retromer complex VPS35, a master conductor of endosomal traffic that has been implicated in AD. We then validated three of the most relevant proteomic findings: the amino terminus of the transmembrane proteins APLP1 and CHL1, and the mid-domain of tau, which is known to be unconventionally secreted and elevated in AD. In patients with AD dementia, the concentration of amino-terminal APLP1 and CHL1 in the CSF correlated with tau and phosphorylated tau. Similar results were observed in healthy controls, where both proteins correlated with tau and phosphorylated tau and were elevated in about 70% of patients in the prodromal stages of AD. Collectively, the mouse-to-human studies suggest that retromer-dependent endosomal trafficking can regulate tau, APLP1, and CHL1 CSF concentration, informing on how AD's trafficking pathway might contribute to disease spread and how to identify its trafficking impairments in vivo.
Collapse
Affiliation(s)
- Sabrina Simoes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jessica L Neufeld
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Setareh Moughadam
- Neuroscience Biomarkers, Janssen Research and Development, San Diego, CA 92121, USA
| | - Emily I Chen
- Thermo Fisher Precision Medicine Science Center, 790 Memorial Drive, Cambridge, MA 02139, USA
| | - Milankumar Kothiya
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yasir H Qureshi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vivek Patel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lawrence S Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hartmuth Kolb
- Neuroscience Biomarkers, Janssen Research and Development, San Diego, CA 92121, USA
| | - Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
27
|
Tu Y, Seaman MNJ. Navigating the Controversies of Retromer-Mediated Endosomal Protein Sorting. Front Cell Dev Biol 2021; 9:658741. [PMID: 34222232 PMCID: PMC8247582 DOI: 10.3389/fcell.2021.658741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
The retromer complex was first identified more than 20 years ago through studies conducted in the yeast Saccharomyces cerevisiae. Data obtained using many different model systems have revealed that retromer is a key component of the endosomal protein sorting machinery being necessary for recognition of membrane “cargo” proteins and formation of tubular carriers that function as transport intermediates. Naturally, over the course of time and with literally hundreds of papers published on retromer, there have arisen disparities, conflicting observations and some controversies as to how retromer functions in endosomal protein sorting – the most note-worthy being associated with the two activities that define a vesicle coat: cargo selection and vesicle/tubule formation. In this review, we will attempt to chart a course through some of the more fundamental controversies to arrive at a clearer understanding of retromer.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
29
|
Walsh RB, Dresselhaus EC, Becalska AN, Zunitch MJ, Blanchette CR, Scalera AL, Lemos T, Lee SM, Apiki J, Wang S, Isaac B, Yeh A, Koles K, Rodal AA. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J Cell Biol 2021; 220:212178. [PMID: 34019080 PMCID: PMC8144913 DOI: 10.1083/jcb.202012034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer's disease, and suggest that misregulated EV traffic may be an underlying defect.
Collapse
Affiliation(s)
- Rylie B Walsh
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | - Amy L Scalera
- Department of Biology, Brandeis University, Waltham, MA
| | - Tania Lemos
- Department of Biology, Brandeis University, Waltham, MA
| | - So Min Lee
- Department of Biology, Brandeis University, Waltham, MA
| | - Julia Apiki
- Department of Biology, Brandeis University, Waltham, MA
| | - ShiYu Wang
- Department of Biology, Brandeis University, Waltham, MA
| | - Berith Isaac
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | |
Collapse
|
30
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Brewer GJ, Herrera RA, Philipp S, Sosna J, Reyes-Ruiz JM, Glabe CG. Age-Related Intraneuronal Aggregation of Amyloid-β in Endosomes, Mitochondria, Autophagosomes, and Lysosomes. J Alzheimers Dis 2021; 73:229-246. [PMID: 31771065 PMCID: PMC7029321 DOI: 10.3233/jad-190835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work provides new insight into the age-related basis of Alzheimer’s disease (AD), the composition of intraneuronal amyloid (iAβ), and the mechanism of an age-related increase in iAβ in adult AD-model mouse neurons. A new end-specific antibody for Aβ45 and another for aggregated forms of Aβ provide new insight into the composition of iAβ and the mechanism of accumulation in old adult neurons from the 3xTg-AD model mouse. iAβ levels containing aggregates of Aβ45 increased 30-50-fold in neurons from young to old age and were further stimulated upon glutamate treatment. iAβ was 8 times more abundant in 3xTg-AD than non-transgenic neurons with imaged particle sizes following the same log-log distribution, suggesting a similar snow-ball mechanism of intracellular biogenesis. Pathologically misfolded and mislocalized Alz50 tau colocalized with iAβ and rapidly increased following a brief metabolic stress with glutamate. AβPP-CTF, Aβ45, and aggregated Aβ colocalized most strongly with mitochondria and endosomes and less with lysosomes and autophagosomes. Differences in iAβ by sex were minor. These results suggest that incomplete carboxyl-terminal trimming of long Aβs by gamma-secretase produced large intracellular deposits which limited completion of autophagy in aged neurons. Understanding the mechanism of age-related changes in iAβ processing may lead to application of countermeasures to prolong dementia-free health span.
Collapse
Affiliation(s)
- Gregory J Brewer
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Robert A Herrera
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Stephan Philipp
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | - Justyna Sosna
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | | | - Charles G Glabe
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Retromer dysfunction at the nexus of tauopathies. Cell Death Differ 2021; 28:884-899. [PMID: 33473181 PMCID: PMC7937680 DOI: 10.1038/s41418-020-00727-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Tauopathies define a broad range of neurodegenerative diseases that encompass pathological aggregation of the microtubule-associated protein tau. Although tau aggregation is a central feature of these diseases, their underlying pathobiology is remarkably heterogeneous at the molecular level. In this review, we summarize critical differences that account for this heterogeneity and contrast the physiological and pathological functions of tau. We focus on the recent understanding of its prion-like behavior that accounts for its spread in the brain. Moreover, we acknowledge the limited appreciation about how upstream cellular changes influence tauopathy. Dysfunction of the highly conserved endosomal trafficking complex retromer is found in numerous tauopathies such as Alzheimer's disease, Pick's disease, and progressive supranuclear palsy, and we discuss how this has emerged as a major contributor to various aspects of neurodegenerative diseases. In particular, we highlight recent investigations that have elucidated the contribution of retromer dysfunction to distinct measures of tauopathy such as tau hyperphosphorylation, aggregation, and impaired cognition and behavior. Finally, we discuss the potential benefit of targeting retromer for modifying disease burden and identify important considerations with such an approach moving toward clinical translation.
Collapse
|
33
|
Hondius DC, Koopmans F, Leistner C, Pita-Illobre D, Peferoen-Baert RM, Marbus F, Paliukhovich I, Li KW, Rozemuller AJM, Hoozemans JJM, Smit AB. The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathol 2021; 141:341-358. [PMID: 33492460 PMCID: PMC7882576 DOI: 10.1007/s00401-020-02261-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Granulovacuolar degeneration (GVD) is a common feature in Alzheimer's disease (AD). The occurrence of GVD is closely associated with that of neurofibrillary tangles (NFTs) and GVD is even considered to be a pre-NFT stage in the disease process of AD. Currently, the composition of GVD bodies, the mechanisms associated with GVD and how GVD exactly relates to NFTs is not well understood. By combining immunohistochemistry (IHC) and laser microdissection (LMD) we isolated neurons with GVD and those bearing tangles separately from human post-mortem AD hippocampus (n = 12) using their typical markers casein kinase (CK)1δ and phosphorylated tau (AT8). Control neurons were isolated from cognitively healthy cases (n = 12). 3000 neurons per sample were used for proteome analysis by label free LC-MS/MS. In total 2596 proteins were quantified across samples and a significant change in abundance of 115 proteins in GVD and 197 in tangle bearing neurons was observed compared to control neurons. With IHC the presence of PPIA, TOMM34, HSP70, CHMP1A, TPPP and VXN was confirmed in GVD containing neurons. We found multiple proteins localizing specifically to the GVD bodies, with VXN and TOMM34 being the most prominent new protein markers for GVD bodies. In general, protein groups related to protein folding, proteasomal function, the endolysosomal pathway, microtubule and cytoskeletal related function, RNA processing and glycolysis were found to be changed in GVD neurons. In addition to these protein groups, tangle bearing neurons show a decrease in ribosomal proteins, as well as in various proteins related to protein folding. This study, for the first time, provides a comprehensive human based quantitative assessment of protein abundances in GVD and tangle bearing neurons. In line with previous functional data showing that tau pathology induces GVD, our data support the model that GVD is part of a pre-NFT stage representing a phase in which proteostasis and cellular homeostasis is disrupted. Elucidating the molecular mechanisms and cellular processes affected in GVD and its relation to the presence of tau pathology is highly relevant for the identification of new drug targets for therapy.
Collapse
Affiliation(s)
- David C Hondius
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands.
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Conny Leistner
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Débora Pita-Illobre
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Regina M Peferoen-Baert
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Fenna Marbus
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Seaman MNJ. The Retromer Complex: From Genesis to Revelations. Trends Biochem Sci 2021; 46:608-620. [PMID: 33526371 DOI: 10.1016/j.tibs.2020.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The retromer complex has a well-established role in endosomal protein sorting, being necessary for maintaining the dynamic localisation of hundreds of membrane proteins that traverse the endocytic system. Retromer function and dysfunction is linked with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, and many pathogens, both viral and bacterial, exploit or interfere in retromer function for their own ends. In this review, the history of retromer is distilled into a concentrated form that spans the identification of retromer to recent discoveries that have shed new light on how retromer functions in endosomal protein sorting and why retromer is increasingly being viewed as a potential therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
35
|
Das S, Maji S, Ruturaj, Bhattacharya I, Saha T, Naskar N, Gupta A. Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner. J Cell Sci 2020; 133:jcs246819. [PMID: 33268466 PMCID: PMC7611186 DOI: 10.1242/jcs.246819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
The Wilson disease protein, ATP7B maintains copper (herein referring to the Cu+ ion) homeostasis in the liver. ATP7B traffics from trans-Golgi network to endolysosomes to export excess copper. Regulation of ATP7B trafficking to and from endolysosomes is not well understood. We investigated the fate of ATP7B after copper export. At high copper levels, ATP7B traffics primarily to acidic, active hydrolase (cathepsin-B)-positive endolysosomes and, upon subsequent copper chelation, returns to the trans-Golgi network (TGN). At high copper, ATP7B colocalizes with endolysosomal markers and with a core member of retromer complex, VPS35. Knocking down VPS35 did not abrogate the copper export function of ATP7B or its copper-responsive anterograde trafficking to vesicles; rather upon subsequent copper chelation, ATP7B failed to relocalize to the TGN, which was rescued by overexpressing wild-type VPS35. Overexpressing mutants of the retromer complex-associated proteins Rab7A and COMMD1 yielded a similar non-recycling phenotype of ATP7B. At high copper, VPS35 and ATP7B are juxtaposed on the same endolysosome and form a large complex that is stabilized by in vivo photoamino acid labeling and UV-crosslinking. We demonstrate that retromer regulates endolysosome to TGN trafficking of copper transporter ATP7B in a manner that is dependent upon intracellular copper.
Collapse
Affiliation(s)
- Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Tanusree Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
36
|
VPS10P Domain Receptors: Sorting Out Brain Health and Disease. Trends Neurosci 2020; 43:870-885. [DOI: 10.1016/j.tins.2020.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
|
37
|
Bao Z, Zhou S, Zhou H. Sorting Nexin 27 as a potential target in G protein‑coupled receptor recycling for cancer therapy (Review). Oncol Rep 2020; 44:1779-1786. [PMID: 33000258 PMCID: PMC7551096 DOI: 10.3892/or.2020.7766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
G protein‑coupled receptors (GPCRs) are the largest family of membrane receptors and activate several downstream signaling pathways involved in numerous physiological cellular processes. GPCRs are usually internalized and desensitized by intracellular signals. Numerous studies have shown that several GPCRs interact with sorting nexin 27 (SNX27), a cargo selector of the retromer complex, and are recycled from endosomes to the plasma membrane. Recycled GPCRs usually contain specific C‑terminal postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ) binding motifs, which are specifically recognized by SNX27, and return to the cell surface as functionally naïve receptors. Aberrant endosome‑to‑membrane recycling of GPCRs mediated by SNX27 may serve a critical role in cancer growth and development. Therefore, SNX27 may be a novel target for cancer therapies.
Collapse
Affiliation(s)
- Zixu Bao
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine (5+3 Programme), Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shijun Zhou
- Department of Infectious Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
38
|
Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, Hu W. Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res 2020; 224:55-70. [PMID: 32434006 PMCID: PMC7442628 DOI: 10.1016/j.trsl.2020.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
NFκB signaling and protein trafficking network play important roles in various biological and pathological processes. NIK-and-IKK2-binding protein (NIBP), also known as trafficking protein particle complex 9 (TRAPPC9), is a prototype member of a novel protein family, and has been shown to regulate both NFκB signaling pathway and protein transport/trafficking. NIBP is extensively expressed in the nervous system and plays an important role in regulating neurogenesis and neuronal differentiation. NIBP/TRAPPC9 mutations have been linked to an autosomal recessive intellectual disability syndrome, called NIBP Syndrome, which is characterized by nonsyndromic autosomal recessive intellectual disability along with other symptoms such as obesity, microcephaly, and facial dysmorphia. As more cases of NIBP Syndrome are identified, new light is being shed on the role of NIBP/TRAPPC9 in the central nervous system developments and diseases. NIBP is also involved in the enteric nervous system. This review will highlight the importance of NIBP/TRAPPC9 in central and enteric nervous system diseases, and the established possible mechanisms for developing a potential therapeutic.
Collapse
Affiliation(s)
- Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arianna DeGruttola
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Li JG, Chiu J, Praticò D. Full recovery of the Alzheimer's disease phenotype by gain of function of vacuolar protein sorting 35. Mol Psychiatry 2020; 25:2630-2640. [PMID: 30733594 PMCID: PMC6685773 DOI: 10.1038/s41380-019-0364-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Deficit in retromer complex function secondary to lower levels of one of its major components, the vacuolar protein sorting 35 (VPS35), has been reported in Alzheimer's disease (AD) brains. VPS35 genetic reduction results in increased Aβ levels and synaptic pathology in mouse models of the disease. However, whether restoration of its levels has an effect on the AD-like phenotype which includes Aβ plaques, tau tangles and memory impairments remain unknown. In this paper, we investigated the effect of VPS35 gene delivery into the central nervous system on the development of the neuropathology and behavioral deficits of the triple transgenic (3xTg) mice. Compared with controls, animals overexpressing VPS35 had an amelioration of spatial learning and working memory, which associated with a significant reduction in Aβ levels and deposition and tau phosphorylation. Additionally, the same animals had a significant improvement of synaptic pathology and neuroinflammation. In vitro study confirmed that VPS35 up-regulation by reducing total levels of APP and results in a significant decrease in its metabolic products. Our results demonstrate for the first time that VPS35 is directly involved in the development of AD-like phenotype, and for this reason should be considered as a novel therapeutic target for AD.
Collapse
Affiliation(s)
| | | | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
40
|
Endosomal Trafficking in Alzheimer's Disease, Parkinson's Disease, and Neuronal Ceroid Lipofuscinosis. Mol Cell Biol 2020; 40:MCB.00262-20. [PMID: 32690545 DOI: 10.1128/mcb.00262-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is one of the most prevalent neurodegenerative disorders of early life, Parkinson's disease (PD) is the most common neurodegenerative disorder of midlife, while Alzheimer's disease (AD) is the most common neurodegenerative disorder of late life. While they are phenotypically distinct, recent studies suggest that they share a biological pathway, retromer-dependent endosomal trafficking. A retromer is a multimodular protein assembly critical for sorting and trafficking cargo out of the endosome. As a lysosomal storage disease, all 13 of NCL's causative genes affect endolysosomal function, and at least four have been directly linked to retromer. PD has several known causative genes, with one directly linked to retromer and others causing endolysosomal dysfunction. AD has over 25 causative genes/risk factors, with several of them linked to retromer or endosomal trafficking dysfunction. In this article, we summarize the emerging evidence on the association of genes causing NCL with retromer function and endosomal trafficking, review the recent evidence linking NCL genes to AD, and discuss how NCL, AD, and PD converge on a shared molecular pathway. We also discuss this pathway's role in microglia and neurons, cell populations which are critical to proper brain homeostasis and whose dysfunction plays a key role in neurodegeneration.
Collapse
|
41
|
Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC, Datta S. SNX27-retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol 2020; 219:132732. [PMID: 31820782 PMCID: PMC7039210 DOI: 10.1083/jcb.201812098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Recycling of MT-MMPs to actin-rich membrane-protrusive structures promotes breast cancer invasion. This study shows that SNX27–retromer, an endosomal sorting and recycling machinery, interacts with MT1-MMP and regulates its transport to the cell surface, thus promoting matrix invasive activity of the breast cancer cells. A variety of metastatic cancer cells use actin-rich membrane protrusions, known as invadopodia, for efficient ECM degradation, which involves trafficking of proteases from intracellular compartments to these structures. Here, we demonstrate that in the metastatic breast cancer cell line MDA-MB-231, retromer regulates the matrix invasion activity by recycling matrix metalloprotease, MT1-MMP. We further found that MT2-MMP, another abundantly expressed metalloprotease, is also invadopodia associated. MT1- and MT2-MMP showed a high degree of colocalization but were located on the distinct endosomal domains. Retromer and its associated sorting nexin, SNX27, phenocopied each other in matrix degradation via selectively recycling MT1-MMP but not MT2-MMP. ITC-based studies revealed that both SNX27 and retromer could directly interact with MT1-MMP. Analysis from a publicly available database showed SNX27 to be overexpressed or frequently altered in the patients having invasive breast cancer. In xenograft-based studies, SNX27-depleted cell lines showed prolonged survival of SCID mice, suggesting a possible implication for overexpression of the sorting nexin in tumor samples.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Lekha V Shah
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Madhumita Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | | | | | | | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| |
Collapse
|
42
|
Xie J, Heim EN, Crite M, DiMaio D. TBC1D5-Catalyzed Cycling of Rab7 Is Required for Retromer-Mediated Human Papillomavirus Trafficking during Virus Entry. Cell Rep 2020; 31:107750. [PMID: 32521275 PMCID: PMC7339955 DOI: 10.1016/j.celrep.2020.107750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
During virus entry, human papillomaviruses are sorted by the cellular trafficking complex, called retromer, into the retrograde transport pathway to traffic from the endosome to downstream cellular compartments, but regulation of retromer activity during HPV entry is poorly understood. Here we selected artificial proteins that modulate cellular proteins required for HPV infection and discovered that entry requires TBC1D5, a retromer-associated, Rab7-specific GTPase-activating protein. Binding of retromer to the HPV L2 capsid protein recruits TBC1D5 to retromer at the endosome membrane, which then stimulates hydrolysis of Rab7-GTP to drive retromer disassembly from HPV and delivery of HPV to the retrograde pathway. Although the cellular retromer cargos CIMPR and DMT1-II require only GTP-bound Rab7 for trafficking, HPV trafficking requires cycling between GTP- and GDP-bound Rab7. Thus, ongoing cargo-induced membrane recruitment, assembly, and disassembly of retromer complexes drive HPV trafficking.
Collapse
Affiliation(s)
- Jian Xie
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA
| | - Erin N Heim
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA
| | - Mac Crite
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA; Department of Therapeutic Radiology, Yale School of Medicine, PO Box 208040, New Haven, CT 06520-8040, USA; Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, PO Box 208024, New Haven, CT 06520-8024, USA; Yale Cancer Center, PO Box 208028, New Haven, CT 06520-8028, USA.
| |
Collapse
|
43
|
Curtis ME, Yu D, Praticò D. Dysregulation of the Retromer Complex System in Down Syndrome. Ann Neurol 2020; 88:137-147. [PMID: 32320094 PMCID: PMC7384049 DOI: 10.1002/ana.25752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/27/2022]
Abstract
Objective Most of the patients with Down syndrome (DS) develop Alzheimer's disease (AD) neuropathology by age 40. Although this increased susceptibility to AD in DS is thought to be primarily due to triplication of the amyloid precursor protein located on chromosome 21, the precise molecular mechanisms are not well understood. Recent evidence has implicated defective protein sorting and trafficking secondary to deficiencies in retromer complex proteins in AD pathogenesis. Thus, the objective of the present study is to assess the retromer complex system in DS. Methods Human postmortem brain tissue and fibroblasts from subjects with DS and healthy controls were examined for the various retromer protein components using Western blot analysis and reverse transcription quantitative polymerase chain reaction (RT‐qPCR). Results Retromer recognition core proteins were significantly decreased in DS fibroblasts, and in both the hippocampi and cortices of young (age 15–40 years old) and aged (40–65 years old) subjects with DS compared with controls. Correlation analyses showed a significant inverse relationship between recognition core proteins and levels of soluble forms of Aβ 1–40 and 1–42 in both hippocampus (n = 33, Spearman = −0.59 to −0.38, p ≤ 0.03 for VPS35, VPS26, VPS29, and VPS26B) and cortex tissue (n = 57, Spearman = −0.46 to −0.27, p ≤ 0.04 for VPS35, VPS26, and VPS29) of the same patients. Interpretation We conclude that dysregulation of the retromer complex system is an early event in the development of the AD‐like pathology and cognitive decline in DS, and for this reason the system could represent a novel potential therapeutic target for DS. ANN NEUROL 2020 ANN NEUROL 2020;88:137–147
Collapse
Affiliation(s)
- Mary Elizabeth Curtis
- Alzheimer's Center at Temple, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
44
|
Barthelson K, Newman M, Lardelli M. Sorting Out the Role of the Sortilin-Related Receptor 1 in Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:123-140. [PMID: 32587946 PMCID: PMC7306921 DOI: 10.3233/adr-200177] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Sortilin-related receptor 1 (SORL1) encodes a large, multi-domain containing, membrane-bound receptor involved in endosomal sorting of proteins between the trans-Golgi network, endosomes and the plasma membrane. It is genetically associated with Alzheimer's disease (AD), the most common form of dementia. SORL1 is a unique gene in AD, as it appears to show strong associations with the common, late-onset, sporadic form of AD and the rare, early-onset familial form of AD. Here, we review the genetics of SORL1 in AD and discuss potential roles it could play in AD pathogenesis.
Collapse
Affiliation(s)
- Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
45
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Li JG, Chiu J, Ramanjulu M, Blass BE, Praticò D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener 2020; 15:1. [PMID: 31964406 PMCID: PMC6975032 DOI: 10.1186/s13024-019-0350-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Background The vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex system, an ubiquitous multiprotein assembly responsible for sorting and trafficking protein cargos out of the endosomes. VPS35 can regulate APP metabolism and Aβ formation, and its levels are reduced in Alzheimer’s disease (AD) brains. We and others demonstrated that VPS35 genetic manipulation modulates the phenotype of mouse models of AD. However, the translational value of this observation remains to be investigated. Methods Triple transgenic mice were randomized to receive a pharmacological chaperone, which stabilizes the retromer complex, and the effect on their AD-like phenotype assessed. Results Compared with controls, treated mice had a significant improvement in learning and memory, an elevation of VPS35 levels, and improved synaptic integrity. Additionally, the same animals had a significant decrease in Aβ levels and deposition, reduced tau phosphorylation and less astrocytes activation. Conclusions Our study demonstrates that the enhancement of retromer function by pharmacological chaperones is a potentially novel and viable therapy against AD.
Collapse
Affiliation(s)
- Jian-Guo Li
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB, suite 1160, Philadelphia, PA, 19140, USA
| | - Jin Chiu
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB, suite 1160, Philadelphia, PA, 19140, USA
| | - Mercy Ramanjulu
- Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB, suite 1160, Philadelphia, PA, 19140, USA.
| |
Collapse
|
47
|
Botté A, Potier MC. Focusing on cellular biomarkers: The endo-lysosomal pathway in Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:209-243. [PMID: 32057308 DOI: 10.1016/bs.pbr.2019.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most frequent chromosomal disorder. It is caused by the triplication of human chromosome 21, leading to increased dosage of a variety of genes including APP (Amyloid Precursor Protein). Mainly for this reason, individuals with DS are at high risk to develop Alzheimer's disease (AD). Extensive literature identified various morphological and molecular abnormalities in the endo-lysosomal pathway both in DS and AD. Most studies in this field investigated the causative role of APP (Amyloid Precursor Protein) in endo-lysosomal dysfunctions, thus linking phenotypes observed in DS and AD. In DS context, several lines of evidence and emerging hypotheses suggest that other molecular players and pathways may be implicated in these complex phenotypes. In this review, we outline the normal functioning of endosomal trafficking and summarize the research on endo-lysosomal dysfunction in DS in light of AD findings. We emphasize the role of genes of chromosome 21 implicated in endocytosis to explain endosomal abnormalities and set the limitations and perspectives of models used to explore endo-lysosomal dysfunction in DS and find new biomarkers. The review highlights the complexity of endo-lysosomal dysfunction in DS and suggests directions for future research in the field.
Collapse
Affiliation(s)
- Alexandra Botté
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
48
|
Structural and functional studies of TBC1D23 C-terminal domain provide a link between endosomal trafficking and PCH. Proc Natl Acad Sci U S A 2019; 116:22598-22608. [PMID: 31624125 DOI: 10.1073/pnas.1909316116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a group of neurological disorders that affect the development of the brain, in particular, the pons and cerebellum. Homozygous mutations of TBC1D23 have been found recently to lead to PCH; however, the underlying molecular mechanisms remain unclear. Here, we show that the crystal structure of the TBC1D23 C-terminal domain adopts a Pleckstrin homology domain fold and selectively binds to phosphoinositides, in particular, PtdIns(4)P, through one surface while binding FAM21 via the opposite surface. Mutation of key residues of TBC1D23 or FAM21 selectively disrupts the endosomal vesicular trafficking toward the Trans-Golgi Network. Finally, using the zebrafish model, we show that PCH patient-derived mutants, impacting either phosphoinositide binding or FAM21 binding, lead to abnormal neuronal growth and brain development. Taken together, our data provide a molecular basis for the interaction between TBC1D23 and FAM21, and suggest a plausible role for PtdIns(4)P in the TBC1D23-mediating endosome-to-TGN trafficking pathway. Defects in this trafficking pathway are, at least partially, responsible for the pathogenesis of certain types of PCH.
Collapse
|
49
|
Chen K, Healy MD, Collins BM. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 2019; 20:465-478. [DOI: 10.1111/tra.12649] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kai‐En Chen
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
50
|
Cao J, Zhong MB, Toro CA, Zhang L, Cai D. Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer's disease pathogenesis. Neurosci Lett 2019; 703:68-78. [PMID: 30890471 PMCID: PMC6760990 DOI: 10.1016/j.neulet.2019.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023]
Abstract
Several lines of evidence have shown that defects in the endo-lysosomal autophagy degradation pathway and the ubiquitin-proteasome system play a role in Alzheimer's Disease (AD) pathogenesis and pathophysiology. Early pathological changes, such as marked enlargement of endosomal compartments, gradual accumulation of autophagic vacuoles (AVs) and lysosome dyshomeostasis, are well-recognized in AD. In addition to these pathological indicators, many genetic variants of key regulators in the endo-lysosomal autophagy networks and the ubiquitin-proteasome system have been found to be associated with AD. Furthermore, altered expression levels of key proteins in these pathways have been found in AD human brain tissues, primary cells and AD mouse models. In this review, we discuss potential disease mechanisms underlying the dysregulation of protein homeostasis governing systems. While the importance of two major protein degradation pathways in AD pathogenesis has been highlighted, targeted therapy at key components of these pathways has great potential in developing novel therapeutic interventions for AD. Future investigations are needed to define molecular mechanisms by which these complex regulatory systems become malfunctional at specific stages of AD development and progression, which will facilitate future development of novel therapeutic interventions. It is also critical to investigate all key components of the protein degradation pathways, both upstream and downstream, to improve our abilities to manipulate transport pathways with higher efficacy and less side effects.
Collapse
Affiliation(s)
- Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China.
| | - Margaret B Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Barnard College of Columbia University, New York, NY 10027, United States.
| | - Carlos A Toro
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China.
| |
Collapse
|