1
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025; 45:800-830. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Rossato RC, Salles GR, Albuquerque AL, Porcionatto MA, Granato AEC, Ulrich H, Dos Santos MIB, Pacheco-Soares C. Photobiomodulation by LED 660 nm and Taurine against H 2O 2 oxidative stress in SH-SY5Y cells. Lasers Med Sci 2025; 40:211. [PMID: 40274660 DOI: 10.1007/s10103-025-04467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Alzheimer's Disease (AD) is a progressive uncurable neurodegenerative pathology affecting millions worldwide. Photobiomodulation and Taurine are promising alternatives for preventing and reducing the rapid progression of neurodegeneration, stimulating the reconstructing of neural tissue structures, especially improving mitochondrial activity, which is highly impaired in AD. In this study, the mitochondrial effects of Taurine combined with light emitting diode (LED) irradiation were evaluated on human neuroblastoma cells (SH-SY5Y), under oxidative stress condition by hydrogen peroxide (H2O2) exposure, a considerable modulator in AD. We evaluated LED irradiation at the wavelength of 660 nm and Taurine under different concentrations before and together with exposing SH-SY5Y cells to different concentrations of H2O2, assessing mitochondrial activity by the MTT colorimetric test and labeling live cells mitochondria by the fluorescent probe MitoTracker. Cell viability was also evaluated by the trypan blue exclusion assay, and cellular morphological structures were imaged by scanning electron microscopy (SEM). Neuroprotective effects were achieved by both LED irradiation and LED irradiation + Taurine when cells were exposed to them before H2O2-induced stress. Comparing both agents, LED irradiation at 660 nm is sufficient to improve mitochondrial activity, however, healthy mitochondrial morphology was only observed when cells were treated with Taurine together with LED irradiation, representing affordable candidates that act in synergy against oxidative stress, one of the main contributors to neurodegeneration.
Collapse
Affiliation(s)
- Rafaella Carvalho Rossato
- Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, 12244‑000, Brazil
| | - Geisa Rodrigues Salles
- Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, 12244‑000, Brazil.
- Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, 04039 - 032, Brazil.
| | - Amanda Lira Albuquerque
- Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, 12244‑000, Brazil
| | - Marimélia Aparecida Porcionatto
- Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 669, Vila Clementino, São Paulo, SP, 04039 - 032, Brazil
- National Institute of Science and Technology in Modeling Human Complex Diseases With 3D Platforms (INCT Model 3D), São Paulo, Brazil
| | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508 - 000, Brazil
| | | | - Cristina Pacheco-Soares
- Universidade Do Vale Do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José Dos Campos, SP, 12244‑000, Brazil.
| |
Collapse
|
3
|
You J, Fuchs J, Wang M, Hu Q, Tao X, Krolczyk E, Tirumala T, Bragin A, Liu H, Engel J, Li L. Preventive effects of transcranial photobiomodulation on epileptogenesis in a kainic acid-induced rat epilepsy model. Exp Neurol 2025; 383:115005. [PMID: 39419434 DOI: 10.1016/j.expneurol.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control. This research explored the effectiveness of transcranial photobiomodulation (tPBM), a non-invasive method utilizing photon-tissue interactions, for preventing epileptogenesis and controlling seizures. METHODS In a kainic acid (KA)-induced rat model of epilepsy, two different wavelengths of tPBM, 808 nm and 940 nm, were applied separately in two groups of animals (KA+808 and KA+940). The ability of tPBM for seizure control was evaluated by comparing the occurrence rate of interictal epileptiform discharges (IED) and behavioral seizures among three groups: KA, KA+808, KA+940. Prevention of epileptogenesis was assessed by comparing the occurrence rate of high frequency oscillations (HFOs), especially fast ripple (FR) rate, among the three groups. Nissl staining and immunostaining for the apoptosis marker caspase-3 were used as indications of neuroprotection. RESULTS The KA+808 group and the KA+940 group showed significantly lower FR and IED rates compared to the KA group. Weekly FR rates started to drop during the first week of tPBM treatment. The KA+808 and KA+940 groups also displayed milder seizure behaviors and less neuronal loss in hippocampal areas compared to KA rats without tPBM treatment. Similarly, lower caspase-3 levels in the KA+808 and KA+940 compared with the KA group suggested effectiveness of tPBM in reducing cell death. SIGNIFICANCE tPBM of 808 nm/940 nm showed effectiveness in suppressing epileptogenesis and ictogenesis in the KA-induced rat epilepsy model. This effectiveness of tPBM can be linked to the neuroprotection benefits of photon-tissue interactions. Further studies are warranted to elucidate the fundamental mechanism of tPBM protection, determine optimal treatment parameters and validate its effectiveness in other epilepsy models.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Jannon Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Qichan Hu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Xiaoxiao Tao
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Elizabeth Krolczyk
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Tanya Tirumala
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, California, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA; Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
4
|
Rodríguez-Fernández L, Zorzo C, Arias JL. Photobiomodulation in the aging brain: a systematic review from animal models to humans. GeroScience 2024; 46:6583-6623. [PMID: 38861125 PMCID: PMC11493890 DOI: 10.1007/s11357-024-01231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Aging is a multifactorial biological process that may be associated with cognitive decline. Photobiomodulation (PBM) is a non-pharmacological therapy that shows promising results in the treatment or prevention of age-related cognitive impairments. The aim of this review is to compile the preclinical and clinical evidence of the effect of PBM during aging in healthy and pathological conditions, including behavioral analysis and neuropsychological assessment, as well as brain-related modifications. 37 studies were identified by searching in PubMed, Scopus, and PsycInfo databases. Most studies use wavelengths of 800, 810, or 1064 nm but intensity and days of application were highly variable. In animal studies, it has been shown improvements in spatial memory, episodic-like memory, social memory, while different results have been found in recognition memory. Locomotor activity improved in Parkinson disease models. In healthy aged humans, it has been outlined improvements in working memory, cognitive inhibition, and lexical/semantic access, while general cognition was mainly enhanced on Alzheimer disease or mild cognitive impairment. Anxiety assessment is scarce and shows mixed results. As for brain activity, results outline promising effects of PBM in reversing metabolic alterations and enhancing mitochondrial function, as evidenced by restored CCO activity and ATP levels. Additionally, PBM demonstrated neuroprotective, anti-inflammatory, immunomodulatory and hemodynamic effects. The findings suggest that PBM holds promise as a non-invasive intervention for enhancing cognitive function, and in the modulation of brain functional reorganization. It is necessary to develop standardized protocols for the correct, beneficial, and homogeneous use of PBM.
Collapse
Affiliation(s)
| | - Candela Zorzo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
| | - Jorge L Arias
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
5
|
He Y, Ye R, Peng Y, Pei Q, Wu L, Wang C, Ni W, Li M, Zhang Y, Yao M. Photobiomodulation ameliorates ovarian aging by alleviating oxidative stress and inflammation damage and improving mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113024. [PMID: 39276447 DOI: 10.1016/j.jphotobiol.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.
Collapse
Affiliation(s)
- Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rongan Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Pei
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wu
- Shanghai Institute of Laser Technology, Shanghai 200233, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqiu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
6
|
Gouveia D, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Lopes B, Coelho A, Alvites R, Varejão AS, Maurício AC, Ferreira A, Martins Â. Early Intensive Neurorehabilitation in Traumatic Peripheral Nerve Injury-State of the Art. Animals (Basel) 2024; 14:884. [PMID: 38539981 PMCID: PMC10967370 DOI: 10.3390/ani14060884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 02/24/2025] Open
Abstract
Traumatic nerve injuries are common lesions that affect several hundred thousand humans, as well as dogs and cats. The assessment of nerve regeneration through animal models may provide information for translational research and future therapeutic options that can be applied mutually in veterinary and human medicine, from a One Health perspective. This review offers a hands-on vision of the non-invasive and conservative approaches to peripheral nerve injury, focusing on the role of neurorehabilitation in nerve repair and regeneration. The peripheral nerve injury may lead to hypersensitivity, allodynia and hyperalgesia, with the possibility of joint contractures, decreasing functionality and impairing the quality of life. The question remains regarding how to improve nerve repair with surgical possibilities, but also considering electrical stimulation modalities by modulating sensory feedback, upregulation of BDNF, GFNF, TrKB and adenosine monophosphate, maintaining muscle mass and modulating fatigue. This could be improved by the positive synergetic effect of exercises and physical activity with locomotor training, and other physical modalities (low-level laser therapy, ultrasounds, pulsed electromagnetic fields, electroacupuncture and others). In addition, the use of cell-based therapies is an innovative treatment tool in this field. These strategies may help avoid situations of permanent monoplegic limbs that could lead to amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| |
Collapse
|
7
|
Lutfy RH, Salam SA, Mohammed HS, Shakweer MM, Essawy AE. Photomodulatory effects in the hypothalamus of sleep-deprived young and aged rats. Behav Brain Res 2024; 458:114731. [PMID: 37898350 DOI: 10.1016/j.bbr.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Zoology Department, Faculty of Science, Alexandria University, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
8
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
9
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
10
|
Zorzo C, Rodríguez-Fernández L, Martínez JA, Arias JL. Photobiomodulation increases brain metabolic activity through a combination of 810 and 660 wavelengths: a comparative study in male and female rats. Lasers Med Sci 2024; 39:26. [PMID: 38214813 PMCID: PMC10786747 DOI: 10.1007/s10103-023-03966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Photobiomodulation (PBM), an emerging and non-invasive intervention, has been shown to benefit the nervous system by modifying the mitochondrial cytochrome c-oxidase (CCO) enzyme, which has red (620-680 nm) or infrared (760-825 nm) spectral absorption peaks. The effect of a single 810-nm wavelength with a combination of 810 nm and 660 nm lights in the brain metabolic activity of male and female rats was compared. PBM, with a wavelength of 810 nm and a combination of 810 nm and 660 nm, was applied for 5 days on the prefrontal cortex. Then, brain metabolic activity in the prefrontal area, hippocampus, retrosplenial, and parietal cortex was explored. Sex differences were found in cortical and subcortical regions, indicating higher male brain oxidative metabolism, regardless of treatment. CCO activity in the cingulate and prelimbic area, dentate gyrus, retrosplenial and parietal cortex was enhanced in both treatments (810 + 660 nm and 810 nm). Moreover, using the combination of waves, CCO increased in the infralimbic area, and in CA1 and CA3 of the hippocampus. Thus, employment of a single NIR treatment or a combination of red to NIR treatment led to slight differences in CCO activity across the limbic system, suggesting that a combination of lights of the spectrum may be relevant.
Collapse
Affiliation(s)
- Candela Zorzo
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain.
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.
| | - Lucía Rodríguez-Fernández
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Juan A Martínez
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Electronic Technology Area, University of Oviedo, Gijón, Spain
| | - Jorge L Arias
- Neuroscience Laboratory, Department of Psychology, University of Oviedo, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
11
|
Chamkouri H, Liu Q, Zhang Y, Chen C, Chen L. Brain photobiomodulation therapy on neurological and psychological diseases. JOURNAL OF BIOPHOTONICS 2024; 17:e202300145. [PMID: 37403428 DOI: 10.1002/jbio.202300145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Photobiomodulation (PBM) therapy is an innovative treatment for neurological and psychological conditions. Complex IV of the mitochondrial respiratory chain can be stimulated by red light, which increases ATP synthesis. In addition, the ion channels' light absorption causes the release of Ca2+, which activates transcription factors and changes gene expression. Neuronal metabolism is improved by brain PBM therapy, which also promotes synaptogenesis and neurogenesis as well as anti-inflammatory. Its depression-treating potential is attracting attention for other conditions, including Parkinson's disease and dementia. Giving enough dosage for optimum stimulation using the transcranial PBM technique is challenging because of the rapidly increasing attenuation of light transmission in tissue. Different strategies like intranasal and intracranial light delivery systems have been proposed to overcome this restriction. The most recent preclinical and clinical data on the effectiveness of brain PBM therapy are studied in this review article.
Collapse
Affiliation(s)
- Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Qi Liu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yuqin Zhang
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Changchun Chen
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
- Intelligent manufacturing institute of HFUT, Hefei, China
| |
Collapse
|
12
|
Kazmi S, Farajdokht F, Meynaghizadeh-Zargar R, Sadigh-Eteghad S, Pasokh A, Farzipour M, Farazi N, Hamblin MR, Mahmoudi J. Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res 2023; 1821:148583. [PMID: 37717889 DOI: 10.1016/j.brainres.2023.148583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pasokh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Mohammad Farzipour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
14
|
Fear EJ, Torkelsen FH, Zamboni E, Chen K, Scott M, Jeffery G, Baseler H, Kennerley AJ. Use of 31 P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 2023; 22:e14005. [PMID: 37803929 PMCID: PMC10652330 DOI: 10.1111/acel.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.
Collapse
Affiliation(s)
- Elizabeth J. Fear
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Elisa Zamboni
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | - Martin Scott
- Department of PsychologyUniversity of YorkYorkUK
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Glenn Jeffery
- Faculty of Brain SciencesInstitute of Ophthalmology, UCLLondonUK
| | - Heidi Baseler
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of PsychologyUniversity of YorkYorkUK
| | - Aneurin J. Kennerley
- Department of ChemistryUniversity of YorkYorkUK
- Institute of SportManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
15
|
da Silva HNM, Mizobuti DS, Pereira VA, da Rocha GL, da Cruz MV, de Oliveira AG, Silveira LR, Minatel E. LED therapy plus idebenone treatment targeting calcium and mitochondrial signaling pathways in dystrophic muscle cells. Cell Stress Chaperones 2023; 28:773-785. [PMID: 37578579 PMCID: PMC10746663 DOI: 10.1007/s12192-023-01369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Intracellular calcium dysregulation, oxidative stress, and mitochondrial dysfunction are some of the main pathway contributors towards disease progression in Duchenne muscular dystrophy (DMD). This study is aimed at investigating the effects of light emitting diode therapy (LEDT) and idebenone antioxidant treatment, applied alone or together in dystrophic primary muscle cells from mdx mice, the experimental model of DMD. Mdx primary muscle cells were submitted to LEDT and idebenone treatment and evaluated for cytotoxic effects and calcium and mitochondrial signaling pathways. LEDT and idebenone treatment showed no cytotoxic effects on the dystrophic muscle cells. Regarding the calcium pathways, after LEDT and idebenone treatment, a significant reduction in intracellular calcium content, calpain-1, calsequestrin, and sarcolipin levels, was observed. In addition, a significant reduction in oxidative stress level markers, such as H2O2, and 4-HNE levels, was observed. Regarding mitochondrial signaling pathways, a significant increase in oxidative capacity (by OCR and OXPHOS levels) was observed. In addition, the PGC-1α, SIRT-1, and PPARδ levels were significantly higher in the LEDT plus idebenone treated-dystrophic muscle cells. Together, the findings suggest that LEDT and idebenone treatment, alone or in conjunction, can modulate the calcium and mitochondrial signaling pathways, such as SLN, SERCA 1, and PGC-1α, contributing towards the improvement of the dystrophic phenotype in mdx muscle cells. In addition, data from the LEDT plus idebenone treatment showed slightly better results than those of each separate treatment in terms of SLN, OXPHOS, and SIRT-1.
Collapse
Affiliation(s)
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcos Vinícius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - André Gustavo de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
16
|
Pandolfo IL, Bonifacio M, Benfato ID, de Almeida Cruz M, Nagaoka MR, Carvalho CPDF, de Oliveira CAM, Renno ACM. Photobiomodulation in diabetic rats: Effects on morphological, pancreatic parameters, and glucose homeostasis. JOURNAL OF BIOPHOTONICS 2023; 16:e202300182. [PMID: 37528614 DOI: 10.1002/jbio.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Photobiomodulation (PBM) has therapeutic effects on wound healing, diabetic microangiopathy, and retinopathy. However, little is known about the use of PBM for the treatment of diabetes mellitus (DM). In this context, we aimed to evaluate the effects of PBM on pancreas morphology and insulin and glucose tolerance in an experimental model of DM. Thus, DM was induced by streptozotocin (STZ) (60 mg/kg). Subsequently, the rats were treated with PBM (808 nm and 30 J/cm2 ). After euthanasia, morphometric parameters and immunoreactivity for insulin and 8-OHdG were evaluated in the pancreas. The results showed that treated animals had higher values of body mass and higher values in the number of beta cells in the pancreas. In conclusion, PBM resulted in decreased weight loss in STZ-induced diabetic rats and presented a stimulatory effect on the pancreas of the treated animals, highlighting the promising effects of this therapy in the clinical condition of DM.
Collapse
Affiliation(s)
- Isabella Liba Pandolfo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Mirian Bonifacio
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Izabelle Dias Benfato
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Márcia Regina Nagaoka
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | | | | | - Ana Cláudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
17
|
涂 静, 黄 媛, 黄 莺, 吴 蒙, 王 瑞. [Photobiomodulation Promotes Hippocampal Neurogenesis and Improves Cognitive Function and Anti-Inflammatory Injury in Rats With Chronic Cerebral Hypoperfusion]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:965-971. [PMID: 37866954 PMCID: PMC10579075 DOI: 10.12182/20230960202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 10/24/2023]
Abstract
Objective To investigate the effect of photobiomodulation (PBM) on hippocampal neurogenesis, cognitive function, and inflammatory injury in rats with chronic cerebral hypoperfusion. Methods Bilateral ovariectomy (OVX) was performed on female Sprague-Dawley (SD) rats. One week later, the rats were randomly assigned to three groups, Sham surgery (or Sham) group, bilateral common carotid artery occlusion (BCCAO) group, and PBM intervention (or BCCAO+PBM) group. There were 8 rats in each group. In the BCCAO group, chronic cerebral hyporeperfusion was induced by permanent ligation of bilateral common carotid arteries and no PBM was given. Rats in the Sham group underwent the same surgical procedure except for the occlusion of the two carotids arteries and no PBM was given. In addition to the BCCAO surgery, rats in the BCCAO+PBM group received 808 nm laser therapy (5 min each time at a laser dose of 20 mW/cm 2) of the frontal cortex every other day for 1 month. Between 86 and 90 days after BCCAO, Morris water maze (MWM) was used to observe the spatial learning and memory function of the rats. The rats were sacrificed on day 90 and immunofluorescence staining and Western blot were performed thereafter. Immunofluorescence staining was used to determine the expression of 5-bromodeoxyuracil nucleoside (BrdU), a cell proliferation marker, glial fibrillary acidic protein (GFAP), an astrocyte marker, doublecortin (DCX), a specific marker of newborn neuron precursor cells, NeuN, a marker of mature neurons, and Iba1, a microglia marker, in the hippocampal dentate gyrus (DG) region. Western blot was performed to analyze the protein expressions of inflammasome components, NLRP3, ASC, cleaved caspase-1, and Iba1 in the hippocampus. Results In the latency trial of MWM test, BCCAO+PBM rats spent shorter periods of time finding the underwater platform than the BCCAO rats did. In the probe trial, after the platform that was original placed in a quadrant was removed, the BCCAO+PBM rats spent longer periods of time exploring the quadrant than the BCCAO animals did ( P<0.05). Compared with BCCAO rats, BCCAO+PBM rats showed significant decrease in the immunofluorescence intensities of GFAP and Iba1 ( P<0.01). PBM intervention significantly increased the number of BrdU-positive cells in the hippocampal DG region compared with those of Sham and BCCAO groups ( P<0.05). Furthermore, the number of NeuN positive cells showed no significant difference among the three groups, while in BCCAO+PBM group, the number of DCX-positive cells was significantly increased ( P<0.001) and the number of DCX +/NeuN + co-located cells was significantly increased compared to that of the BCCAO group ( P<0.001). Compared with those of the BCCAO group, Western blot results showed that the protein expression levels of Iba1, NLRP3, and cleaved caspase-1 in the BCCAO+PBM group were significantly decreased ( P<0.05), while the ASC protein expression level showed no significant difference. Conclusion PBM can effectively improve the spatial learning and memory function in rats with chronic cerebral hypoperfusion, inhibit the activation of glial cells, reduce inflammatory damage mediated by NLRP3 inflammasome, and promote the regeneration of endogenous neural stem cells in the hippocampal DG region of rats.
Collapse
Affiliation(s)
- 静宜 涂
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 媛媛 黄
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 莺 黄
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 蒙 吴
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 瑞敏 王
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| |
Collapse
|
18
|
Cho Y, Tural U, Iosifescu DV. Efficacy of Transcranial Photobiomodulation on Depressive Symptoms: A Meta-Analysis. Photobiomodul Photomed Laser Surg 2023; 41:460-466. [PMID: 37651208 PMCID: PMC10518694 DOI: 10.1089/photob.2023.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
Background: Transcranial photobiomodulation (tPBM) is a novel, noninvasive, device-based intervention, which has been tested as a possible treatment for various neurological and psychiatric conditions. Recently, it has been investigated as an innovative treatment for major depressive disorder (MDD). There have been several animal and clinical studies that evaluated the underlying mechanism and the efficacy of its antidepressant effects, but results have been conflicting. Objective: Thus, we conducted the first meta-analysis on effects of tPBM on depressive symptoms. Materials and methods: Thirty original articles on tPBM were retrieved, eight of them met criteria for inclusion to a random effects meta-analysis. Results: tPBM appeared effective in decreasing depressive symptom severity regardless of diagnosis (Hedges' g = 1.415, p < 0.001, k = 8), but a significant heterogeneity has been found. The meta-analysis of single-arm studies (baseline to endpoint changes) limited to participants with MDD has supported the significant effect of tPBM in reducing the depression severity, without a significant heterogeneity (Hedges' g = 1.142, 95% confidence interval = 0.780-1.504, z = 6.19, p < 0.001, k = 5). However, the meta-analysis of the few double-blind, sham-controlled studies in MDD has not supported the statistically significant superiority of tPBM over sham (Hedges' g = 0.499, p = 0.211, k = 3), although a sample size bias is likely present. Conclusions: Overall, this meta-analysis provides weak support for the promising role of tPBM in the treatment of depressive symptoms. Dose finding studies to determine optimal tPBM parameters followed by larger, randomized, sham-controlled studies will be needed to fully demonstrate the antidepressant efficacy of tPBM.
Collapse
Affiliation(s)
- Yoonju Cho
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Umit Tural
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
19
|
Rahman MA, Shuvo AA, Apu MMH, Bhakta MR, Islam F, Rahman MA, Islam MR, Reza HM. Combination of epigallocatechin 3 gallate and curcumin improves D-galactose and normal-aging associated memory impairment in mice. Sci Rep 2023; 13:12681. [PMID: 37542120 PMCID: PMC10403524 DOI: 10.1038/s41598-023-39919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Previously, we observed curcumin improves aging-associated memory impairment in D-galactose (D-gal) and normal-aged (NA) mice. Evidence showed that multiple agents can be used in managing aging-induced memory dysfunction, drawn by the contribution of several pathways. Curcumin and Epigallocatechin 3 gallate (EGCG) combination substantially reduced the oxidative stress that commonly mediates aging. This study examined the combined effect of EGCG and curcumin on memory improvement in two recognized models, D-gal and normal-aged (NA) mice. The co-administration of EGCG and curcumin significantly (p < 0.05) increased retention time detected by passive avoidance (PA) and freezing response determined in contextual fear conditioning (CFC) compared to the discrete administration of EGCG or curcumin. Biochemical studies revealed that the combination of EGCG and curcumin remarkably ameliorated the levels (p < 0.05) of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation compared to the monotherapy of EGCG or curcumin in mice hippocampi. The behavioral and biochemical studies revealed that the combination of EGCG and curcumin showed better improvement in rescuing aging-associated memory disorders in mice. EGCG and curcumin combination could serve as a better choice in managing aging-related memory disorders.
Collapse
Affiliation(s)
- Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
- Department of Pharmaceutical Sciences, Wilkes University, Wilkes Barre, PA, 18766, USA.
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Monisha Rani Bhakta
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Farzana Islam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh.
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
20
|
Covatti C, Mizobuti DS, Rocha GLD, da Silva HNM, de Lourenço CC, Pertille A, Pereira ECL, Minatel E. Low-Level Photobiomodulation Therapy Modulates H 2O 2 Production, TRPC-6, and PGC-1α Levels in the Dystrophic Muscle. Photobiomodul Photomed Laser Surg 2023; 41:389-401. [PMID: 37527194 DOI: 10.1089/photob.2022.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Objective: This study evaluated photobiomodulation therapy (PBMT) effects on the factors involved in mitochondrial biogenesis, on the mitochondrial respiratory complexes, and on the transient receptor potential canonical channels (such as TRPC-1 and TRPC-6) in in vitro (mdx muscle cells) and in vivo studies (gastrocnemius muscle) from mdx mice, the dystrophin-deficient model of Duchenne muscular dystrophy (DMD). Background: There is no successful treatment for DMD, therefore demanding search for new therapies that can improve the muscle role, the quality of life, and the survival of dystrophic patients. Methods: The dystrophic primary muscle cells received PBMT at 0.6 J and 5 J, and the dystrophic gastrocnemius muscle received PBMT at 0.6 J. Results: The dystrophic muscle cells treated with PBMT (0.6 J and 5 J) showed no cytotoxicity and significantly lower levels in hydrogen peroxide (H2O2) production. We also demonstrated, for the first time, the capacity of PBMT, at a low dose (0.6 J), in reducing the TRPC-6 content and in raising the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) content in the dystrophic gastrocnemius muscle. Conclusions: PBMT modulates H2O2 production, TRPC-6, and PGC-1α content in the dystrophic muscle. These results suggest that laser therapy could act as an auxiliary therapy in the treatment of dystrophic patients.
Collapse
Affiliation(s)
- Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, São Paulo, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Universidade de Brasília (UnB), Faculdade de Ceilândia, Brasília, Distrito Federal, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
21
|
Shalaby RA, Qureshi MM, Khan MA, Salam SMA, Kwon HS, Lee KH, Chung E, Kim YR. Photobiomodulation therapy restores olfactory function impaired by photothrombosis in mouse olfactory bulb. Exp Neurol 2023:114462. [PMID: 37295546 DOI: 10.1016/j.expneurol.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
An ischemic stroke typically accompanies numerous disorders ranging from somatosensory dysfunction to cognitive impairments, inflicting patients with various neurologic symptoms. Among pathologic outcomes, post-stroke olfactory dysfunctions are frequently observed. Despite the well-known prevalence, therapy options for such compromised olfaction are limited, likely due to the complexity of olfactory bulb architecture, which encompasses both the peripheral and central nervous systems. As photobiomodulation (PBM) emerged for treating ischemia-associated symptoms, the effectiveness of PBM on stroke-induced impairment of olfactory function was explored. Novel mouse models with olfactory dysfunctions were prepared using photothrombosis (PT) in the olfactory bulb on day 0. The post-PT PBM was performed daily from day 2 to day 7 by irradiating the olfactory bulb via an 808 nm laser with a fluence of 40 J/cm2 (325 mW/cm2 for 2 min per day). The buried food test (BFT) was used to score behavioral acuity in food-deprived mice to assess the olfactory function before PT, after PT, and after PBM. Histopathological examinations and cytokine assays were performed on the mouse brains harvested on day 8. The results from BFT were specific to an individual, with positive correlations between the baseline latency time measured before PT and its alteration at the ensuing stages for both the PT and PT + PBM groups. Also, the correlation analysis in both groups showed highly similar, significant positive relationships between the early and late latency time change independent of PBM, implicating a common recovery mechanism. Particularly, PBM treatment accelerated the recovery of impaired olfaction following PT by suppressing inflammatory cytokines and enhancing both glial and vascular factors (e.g., GFAP, IBA-1, and CD31). PBM therapy during the acute phase of ischemia improves the compromised olfactory function by modulating microenvironments and inflammation status of the affected tissue.
Collapse
Affiliation(s)
- Reham A Shalaby
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Muhammad Mohsin Qureshi
- Division of Biophysics and Bioimaging, Princess Margret Cancer Center, Toronto, Ontario, Canada
| | - Mohd Afzal Khan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - S M Abdus Salam
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea
| | - Hyuk Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea; AI Graduate School, Gwangju Institute of Science and Technology, South Korea.
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Vieira WF, Gersten M, Caldieraro MAK, Cassano P. Photobiomodulation for Major Depressive Disorder: Linking Transcranial Infrared Light, Biophotons and Oxidative Stress. Harv Rev Psychiatry 2023; 31:124-141. [PMID: 37171473 DOI: 10.1097/hrp.0000000000000363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Incompletely treated major depressive disorder (MDD) poses an enormous global health burden. Conventional treatment for MDD consists of pharmacotherapy and psychotherapy, though a significant number of patients do not achieve remission with such treatments. Transcranial photobiomodulation (t-PBM) is a promising novel therapy that uses extracranial light, especially in the near-infrared (NIR) and red spectra, for biological and therapeutic effects. The aims of this Review are to evaluate the current clinical and preclinical literature on t-PBM in MDD and to discuss candidate mechanisms for effects of t-PBM in MDD, with specific attention to biophotons and oxidative stress. A search on PubMed and ClinicalTrials.gov identified clinical and preclinical studies using t-PBM for the treatment of MDD as a primary focus. After a systematic screening, only 19 studies containing original data were included in this review (9 clinical and 10 preclinical trials). Study results demonstrate consensus that t-PBM is a safe and potentially effective treatment; however, varying treatment parameters among studies complicate definitive conclusions about efficacy. Among other mechanisms of action, t-PBM stimulates the complex IV of the mitochondrial respiratory chain and induces an increase in cellular energy metabolism. We suggest that future trials include biological measures to better understand the mechanisms of action of t-PBM and to optimize treatment efficiency. Of particular interest going forward will be studying potential effects of t-PBM-an external light source on the NIR spectra-on neural circuitry implicated in depression.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- From Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA (Drs. Vieira, Gersten, Cassano); Department of Psychiatry, Harvard Medical School, Boston, MA (Drs. Vieira, Cassano); Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Sao Paulo, SP, Brazil (Dr. Vieira); Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil (Dr. Caldieraro); Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria e Medicina Legal, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil (Dr. Caldieraro)
| | | | | | | |
Collapse
|
23
|
Dole M, Auboiroux V, Langar L, Mitrofanis J. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Rev Neurosci 2023:revneuro-2023-0003. [PMID: 36927734 DOI: 10.1515/revneuro-2023-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In recent years, transcranial photobiomodulation (tPBM) has been developing as a promising method to protect and repair brain tissues against damages. The aim of our systematic review is to examine the results available in the literature concerning the efficacy of tPBM in changing brain activity in humans, either in healthy individuals, or in patients with neurological diseases. Four databases were screened for references containing terms encompassing photobiomodulation, brain activity, brain imaging, and human. We also analysed the quality of the included studies using validated tools. Results in healthy subjects showed that even after a single session, tPBM can be effective in influencing brain activity. In particular, the different transcranial approaches - using a focal stimulation or helmet for global brain stimulation - seemed to act at both the vascular level by increasing regional cerebral blood flow (rCBF) and at the neural level by changing the activity of the neurons. In addition, studies also showed that even a focal stimulation was sufficient to induce a global change in functional connectivity across brain networks. Results in patients with neurological disease were sparser; nevertheless, they indicated that tPBM could improve rCBF and functional connectivity in several regions. Our systematic review also highlighted the heterogeneity in the methods and results generated, together with the need for more randomised controlled trials in patients with neurological diseases. In summary, tPBM could be a promising method to act on brain function, but more consistency is needed in order appreciate fully the underlying mechanisms and the precise outcomes.
Collapse
Affiliation(s)
- Marjorie Dole
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France
| | | | - Lilia Langar
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Clinatec, 38000 Grenoble, France
| | - John Mitrofanis
- Univ. Grenoble Alpes, FDD Clinatec, 38000 Grenoble, France.,Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
24
|
Zhong J, Zhao L, Wu W, Chen J, Yuan S, Zhang X, Wang Z. Transcranial near-infrared laser improves postoperative neurocognitive disorder in aged mice via SIRT3/AMPK/Nrf2 pathway. Front Neurosci 2023; 16:1100915. [PMID: 36760797 PMCID: PMC9904281 DOI: 10.3389/fnins.2022.1100915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background Postoperative neurocognitive disorder (PND) is a common central nervous system (CNS) complication that might increase the morbidity and mortality of elderly patients after anesthesia/surgery. Neuroinflammation, oxidative stress, and synaptic dysfunction are closely related to cognitive dysfunction, an important clinical feature of PND. Transcranial near-infrared laser (TNIL) is regarded as an effective treatment for cognitive-related diseases by improving mitochondrial function and alleviating neuroinflammation and oxidative stress damage. Materials and methods Aged male C57BL/6 mice underwent a carotid artery exposure procedure under isoflurane anesthesia. We treated PND-aged mice for three consecutive days (4 h post-operation, 1-laser) with 810 nm continuous wave (CW) laser 18 J/cm2 at 120 mW/cm2. The post-treatment evaluation included behavioral tests, RTq-PCR, immunofluorescence, and Western blot. Results The results demonstrated that TNIL improved PND and the levels of synaptic function-associated proteins such as post-synaptic density protein 95 (PSD95), synaptophysin (SYP), and brain-derived neurotrophic factor (BDNF). Besides, neuroinflammatory cytokine levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β as well as microglia activation and oxidative stress damage were attenuated after TNIL treatment in aged mice with PND. Further investigation suggested that TNIL relieved oxidative stress response by activating the SIRT3/AMPK/Nrf2 pathway. Conclusion Transcranial near-infrared laser improved cognitive impairment in aged mice with PND, which may be a promising therapeutic for PND.
Collapse
Affiliation(s)
- Junying Zhong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Le Zhao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wensi Wu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiawei Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shangyan Yuan
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,*Correspondence: Xiaojun Zhang,
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Zhi Wang,
| |
Collapse
|
25
|
Cardoso FDS, de Souza Oliveira Tavares C, Araujo BHS, Mansur F, Lopes-Martins RÁB, Gomes da Silva S. Improved Spatial Memory And Neuroinflammatory Profile Changes in Aged Rats Submitted to Photobiomodulation Therapy. Cell Mol Neurobiol 2022; 42:1875-1886. [PMID: 33704604 PMCID: PMC11421705 DOI: 10.1007/s10571-021-01069-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 01/11/2023]
Abstract
Recent evidences have shown the therapeutic potential of transcranial photobiomodulation on traumatic brain injury and Alzheimer's disease. Despite the promising benefits in the brain, little is known about the laser's effects in the absence of pathological conditions. We submitted young (4 months old) and aged (20 months old) rats to transcranial low-level laser and evaluated their exploratory activity and habituation in open field, anxiety in elevated plus maze, spatial memory in Barnes maze, and aversive memory in a step-down inhibitory avoidance task. Additionally, the levels of a panel of inflammatory cytokines and chemokines were quantified in two different brain regions: the cerebral cortex and the hippocampus. Young and aged rats submitted to transcranial laser exhibited better cognitive performance in Barnes maze than did control rats. Transcranial laser therapy decreased cortical levels of GM-CSF, IL-10, MCP-1, LIX, and TNFα in young rats and IL-5 in aged rats. High levels of IL-6, IL-10, and TNF-alpha were found in the cerebral cortex of aged rats submitted to transcranial laser. In the hippocampus, a decrease in IP-10 and fractalkine levels was observed in the aged rats from the laser group when compared to the aged rats from the control group. Our data indicate that transcranial photobiomodulation improves spatial learning and memory and alters the neuroinflammatory profile of young and aged rats' brains.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, São Paulo, SP, CEP 08780-911, Brazil
| | - Cristiane de Souza Oliveira Tavares
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, São Paulo, SP, CEP 08780-911, Brazil
| | - Bruno Henrique Silva Araujo
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa Em Energia E Materiais (CNPEM), Campinas, SP, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, São Paulo, SP, CEP 08780-911, Brazil.
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil.
- Hospital Do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
26
|
Rahman MA, Shuvo AA, Bepari AK, Hasan Apu M, Shill MC, Hossain M, Uddin M, Islam MR, Bakshi MK, Hasan J, Rahman A, Rahman GMS, Reza HM. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies. PLoS One 2022; 17:e0270123. [PMID: 35767571 PMCID: PMC9242463 DOI: 10.1371/journal.pone.0270123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelch-like ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, Curcumin-Control, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.
Collapse
Affiliation(s)
- Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center (TTUHSC), Amarillo, TX, United States of America
- * E-mail: (MAR); (HMR)
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Md. Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Monjurul Kader Bakshi
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Javed Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- * E-mail: (MAR); (HMR)
| |
Collapse
|
27
|
Cardoso FDS, Gonzalez-Lima F, Coimbra NC. Mitochondrial Photobiomodulation as a Neurotherapeutic Strategy for Epilepsy. Front Neurol 2022; 13:873496. [PMID: 35785362 PMCID: PMC9243228 DOI: 10.3389/fneur.2022.873496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Francisco Gonzalez-Lima
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
28
|
Chan MH, Huang WT, Chen KC, Su TY, Chan YC, Hsiao M, Liu RS. The optical research progress of nanophosphors composed of transition elements in the fourth period of near-infrared windows I and II for deep-tissue theranostics. NANOSCALE 2022; 14:7123-7136. [PMID: 35353112 DOI: 10.1039/d2nr00343k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research in the field of nano-optics is advancing by leaps and bounds, among which near-infrared (NIR) light optics have attracted much attention. NIR light has a longer wavelength than visible light, such that it can avoid shielding caused by biological tissues. This advantage has driven its importance and practicality in human treatment applications and has attracted significant attention from researchers in academia and industry. In the broad spectrum of infrared light wavelengths, the most noticeable ones are the NIR biological window I of 700-900 nm and window II of 1000-1700 nm. Luminescent materials can effectively cover the NIR biological window with different doping strategies. These doped elements are mostly transition elements with multielectron orbitals. Several nanomaterials based on narrow-spectrum lanthanides have been developed to correspond to biological applications of different wavelengths. However, this review explicitly introduces the absorption and reflection/luminescence interactions between NIR light and biological tissues independently. Unlike the adjustment of the wavelength of the lanthanide series, this review analyzes the NIR optical properties of the fourth-period element ions in transition elements (such as Cr3+ and Ni2+). These elements have a broadband wavelength of NIR light emission and higher quantum efficiency, corresponding to the absorption and emission spectrum and photobiological absorption of different NIR windows for therapeutic diagnosis. Finally, this review lists and explores other broadband NIR phosphors and has tried to discover the possibility of non-invasive precision medicine in the future.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Kuan-Chun Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yung-Chieh Chan
- Intelligent Minimally Invasive Device Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ru-Shi Liu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
29
|
Park SK, Lee HL, Kang JY, Kim JM, Heo HJ. Peanut (Arachis hypogaea) sprout prevents high-fat diet-induced cognitive impairment by improving mitochondrial function. Sci Rep 2022; 12:6213. [PMID: 35418581 PMCID: PMC9008020 DOI: 10.1038/s41598-022-10520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
This study was performed to evaluate the improvement effect of the ethyl acetate fraction from peanut (Arachis hypogaea) sprout (EFPS) on high-fat diet (HFD)-induced cognitive deficits in C57BL/6 mice. Mice were randomly divided four groups (n = 13) as control (normal chow), HFD, EFPS 20 (20 mg/kg of body weight; intragastric administration) and EFPS 50 (50 mg/kg of body weight; intragastric administration) groups. HFD was provide for 15 weeks excepting control group. EFPS ameliorated cognitive dysfunction in Y-maze, passive avoidance test and Morris water maze test. EFPS significantly improved glucose tolerance and serum lipid profile, and reduced body weight. EFPS ameliorated oxidative stress by regulating MDA levels and SOD activity in liver and brain tissues. In addition, EFPS restored brain mitochondrial dysfunction related to energy metabolism. Moreover, the bioactive compounds of EFPS were identified as di-caffeic acid, caffeic acid, dihydrokaempferol-hexoside, di-p-coumaroyl tartaric acid isomer and group B soyasaponins using ultra-performance liquid chromatography-quadrupole-time-of-flight (UPLC-Q-TOF) mass spectrometry. These results show that EFPS can improve cognitive functions in HFD-induced diabetic mice.
Collapse
Affiliation(s)
- Seon Kyeong Park
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Hyo Lim Lee
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
30
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
31
|
Cardoso FDS, Barrett DW, Wade Z, Gomes da Silva S, Gonzalez-Lima F. Photobiomodulation of Cytochrome c Oxidase by Chronic Transcranial Laser in Young and Aged Brains. Front Neurosci 2022; 16:818005. [PMID: 35368252 PMCID: PMC8971717 DOI: 10.3389/fnins.2022.818005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
In cellular bioenergetics, cytochrome c oxidase (CCO) is the enzyme responsible for oxygen consumption in the mitochondrial electron transport chain, which drives oxidative phosphorylation for adenosine triphosphate (ATP) production. CCO is also the major intracellular acceptor of photons in the light wavelengths used for photobiomodulation (PBM). Brain function is critically dependent on oxygen consumption by CCO for ATP production. Therefore, our objectives were (1) to conduct the first detailed brain mapping study of the effects of PBM on regional CCO activity, and (2) to compare the chronic effects of PBM on young and aged brains. Specifically, we used quantitative CCO histochemistry to map the differences in CCO activity of brain regions in healthy young (4 months old) and aged (20 months old) rats from control groups with sham stimulation and from treated groups with 58 consecutive days of transcranial laser PBM (810 nm wavelength and 100 mW power). We found that aging predominantly decreased regional brain CCO activity and systems-level functional connectivity, while the chronic laser stimulation predominantly reversed these age-related effects. We concluded that chronic PBM modified the effects of aging by causing the CCO activity on brain regions in laser-treated aged rats to reach levels similar to those found in young rats. Given the crucial role of CCO in bioenergetics, PBM may be used to augment brain and behavioral functions of older individuals by improving oxidative energy metabolism.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Douglas W. Barrett
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Zachary Wade
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Centro Universitário UNIFAMINAS, Muriaé, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella, Muriaé, Brazil
| | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: F. Gonzalez-Lima,
| |
Collapse
|
32
|
Zhang X, Wu W, Luo Y, Wang Z. Transcranial photobiomodulation therapy ameliorates perioperative neurocognitive disorder through modulation of mitochondrial function in aged mice. Neuroscience 2021; 490:236-249. [PMID: 34979260 DOI: 10.1016/j.neuroscience.2021.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
Perioperative neurocognitive disorder (PND) is a serious nervous system complication characterized by progressive cognitive impairment, especially in geriatric population. However, the neuropathogenesis of PND is complex, and there are no approved disease-modifying therapeutic options. Mitochondrial dysfunction has been demonstrated to contribute to the occurrence and development of PND. Transcranial near-infrared (tNIR) light treatment helps to improve mitochondrial dysfunction and enhance cognition, but its effect on PND remains unclear. Here, we evaluated the effect of tNIR light treatment on PND caused by anesthesia and surgery in aged mice. We built the PND models with 18-month C57BL/6 male mice by exploratory laparotomy under isoflurane inhalation anesthesia, and treated by tNIR light with wavelength 810 nm for 2 weeks. The short-term and long-term changes in cognitive function were analyzed by behavioral tests. We further explored the effects of tNIR light on mitochondria, synapses, neurons, and signaling pathways through different experimental methods. The results demonstrated that the cognitive impairment and mitochondrial dysfunction in PND mice were ameliorated after tNIR light treatment. Further experiments demonstrated that photobiomodulation therapy (PBMT) increased synapse-related protein expression, neuronal survival, and protected synapse from depletion. Moreover, downregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were increased after tNIR light treatment. Our results suggested that tNIR light was an effective treatment of PND through PBMT effect, accompanied by synaptic and neuronal improvement. The improvement of mitochondrial dysfunction mediated by SIRT1/PGC-1α signaling pathway might participate in this process. Those findings might provide a novel and noninvasive therapeutic target for PND.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wensi Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuelian Luo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Arjmand B, Khodadost M, Jahani Sherafat S, Rezaei Tavirani M, Ahmadi N, Hamzeloo Moghadam M, Okhovatian F, Rezaei Tavirani S, Rostami-Nejad M. Low-Level Laser Therapy: Potential and Complications. J Lasers Med Sci 2021; 12:e42. [PMID: 34733765 DOI: 10.34172/jlms.2021.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 12/26/2022]
Abstract
Introduction: Laser therapy has attracted experts' attention in medical sciences. Many benefits of laser therapy are presented besides some complications. In the present study, it is tried to present a new perspective of laser therapy in the various fields of medicine. Methods: Laser therapy-related articles which are combined with regenerative medicine, cosmetic, dentistry, neurodegenerative diseases, kidney, bone fracture, and vaginal function in the English language were searched through the google scholar search engine in the range of 2000-2021. After title screening, the abstracts were evaluated to access the full texts. Results: Basic concepts and various kinds of lasers which are applied in medicine were explained. Applications of laser therapy in various fields of medicine such as pain reduction, wound healing, regenerative medicine, dentistry, and several other body organs were highlighted and some complications were pointed. Conclusion: High potential of laser therapy for application in medicine implies a reconsideration of the laser properties and also styles of laser applications to improve the treatment and prevention of its side effects.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Khodadost
- School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo Moghadam
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Okhovatian
- Physiotherapy Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Dos Santos Cardoso F, Mansur FCB, Araújo BHS, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation Improves the Inflammatory Response and Intracellular Signaling Proteins Linked to Vascular Function and Cell Survival in the Brain of Aged Rats. Mol Neurobiol 2021; 59:420-428. [PMID: 34708330 DOI: 10.1007/s12035-021-02606-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Photobiomodulation is a non-pharmacological tool widely used to reduce inflammation in many tissues. However, little is known about its effects on the inflammatory response in the aged brain. We conducted the study to examine anti-inflammatory effects of photobiomodulation in aging brains. We used aged rats (20 months old) with control (handled, laser off) or transcranial laser (660 nm wavelength, 100 mW power) treatments for 10 consecutive days and evaluated the level of inflammatory cytokines and chemokines, and the expression and activation of intracellular signaling proteins in the cerebral cortex and the hippocampus. Inflammatory analysis showed that aged rats submitted to transcranial laser treatment had increased levels of IL-1alpha and decreased levels of IL-5 in the cerebral cortex. In the hippocampus, the laser treatment increased the levels of IL-1alpha and decreased levels of IL-5, IL-18, and fractalkine. Regarding the intracellular signaling proteins, a reduction in the ERK and p38 expression and an increase in the STAT3 and ERK activation were observed in the cerebral cortex of aged rats from the laser group. In addition, the laser treatment increased the hippocampal expression of p70S6K, STAT3, and p38 of aged rats. Taken together, our data indicate that transcranial photobiomodulation can improve the inflammatory response and the activation of intracellular signaling proteins linked to vascular function and cell survival in the aged brain.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, SP, 08780-911, Brazil. .,Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA. .,Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brasil.
| | | | - Bruno Henrique Silva Araújo
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa Em Energia E Materiais (CNPEM), Campinas, SP, Brazil
| | - F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, SP, 08780-911, Brazil. .,Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil. .,Hospital Do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
35
|
Bonifacio M, Benfato ID, de Almeida Cruz M, de Sales DC, Pandolfo IL, Quintana HT, Carvalho CPDF, de Oliveira CAM, Renno ACM. Effects of photobiomodulation on glucose homeostasis and morphometric parameters in pancreatic islets of diabetic mice. Lasers Med Sci 2021; 37:1799-1809. [PMID: 34604943 DOI: 10.1007/s10103-021-03434-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resistance and type II diabetes mellitus. On the other hand, photobiomodulation (PBM) is an electrophysical resource that interacts with cells, stimulating mitochondrial respiration, increasing ATP production, reducing key inflammatory mediators, inhibiting apoptosis, and stimulating angiogenesis. However, little is known about its therapeutic effectiveness on the development of diabetes in diet-induced obese mice. Thus, our aim was to evaluate the effect of PBM applied single point over the pancreas area on glucose homeostasis, insulin expression, and pancreatic morphometric parameters of mice submitted to high-fat diet for 12 weeks. Male mice C57BL6/J were divided into three groups: control group (C), diabetic group (D), and diabetic + PBM (D + PBM). The treatment with PBM started at 9th week and ended in the 12th week, applied 3 × /week. Body mass, fast blood glucose, and glucose and insulin tolerance were evaluated. Immunohistochemistry to detect insulin expression and pancreatic morphometry were also performed. At the end of 12th week, both groups submitted to high-fat diet showed an increase in body mass, adiposity, disturbances on glucose homeostasis, and high insulin expression when compared to the control group. However, mice treated with PBM had more discrete impairments on glucose homeostasis during the glucose tolerance test when compared to untreated D animals. Despite modest, the results were positive and encourage future investigations to explore different doses and duration of PBM to better elucidate its role in obesity-associated type 2 diabetes development.
Collapse
Affiliation(s)
- Mirian Bonifacio
- Graduação em Fisioterapia, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Izabelle Dias Benfato
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil. .,Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136. Vila Mathias, 11015-020, Santos, São Paulo, Brazil.
| | - Matheus de Almeida Cruz
- Departamento de Biociências, Programa de Pós-Graduação em Bioprodutos e Bioprocessos, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniele Correia de Sales
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Isabella Liba Pandolfo
- Graduação em Fisioterapia, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Hananiah Tardivo Quintana
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Camila Aparecida Machado de Oliveira
- Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136. Vila Mathias, 11015-020, Santos, São Paulo, Brazil.,Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Ana Cláudia Muniz Renno
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
36
|
Hosseini L, Farazi N, Erfani M, Mahmoudi J, Akbari M, Hosseini SH, Sadigh-Eteghad S. Effect of transcranial near-infrared photobiomodulation on cognitive outcomes in D-galactose/AlCl 3 induced brain aging in BALB/c mice. Lasers Med Sci 2021; 37:1787-1798. [PMID: 34596786 DOI: 10.1007/s10103-021-03433-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Brain photobiomodulation (PBM) therapy (PBMT) modulates various biological and cognitive processes in senescence rodent models. This study was designed to investigate the effects of transcranial near-infrared (NIR) laser treatment on D-galactose (D-gal)/aluminum chloride (AlCl3) induced inflammation, synaptic dysfunction, and cognitive impairment in mice. The aged mouse model was induced by subcutaneously injecting D-gal (60 mg/kg/day) followed by intragastrically administering AlCl3 (200 mg/kg/day) for 2 months. NIR PBM (810 nm laser, 32, 16, and 8 J/cm2) was administered transcranially every other day (3 days/week) for 2 months. Social, contextual, and spatial memories were assessed by social interaction test, passive avoidance test, and Lashley III maze, respectively. Then, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and synaptic markers including growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), and synaptophysin (SYN) levels were measured in the hippocampus using western blot method. Behavioral results revealed that NIR PBM at fluencies of 16 and 8 J/cm2 could reduce D-gal/AlCl3 impaired social and spatial memories. Treatment with NIR attenuated neuroinflammation through down-regulation of TNF-α and IL-6. Additionally, NIR significantly inhibited the down-regulation of GAP-43 and SYN. The results indicate that transcranial PBM at the fluencies 16 and 8 J/cm2 effectively prevents cognitive impairment in mice model of aging by inhibiting the production of the inflammatory cytokines and enhancing synaptic markers.
Collapse
Affiliation(s)
- Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hojjat Hosseini
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Metabolic Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| |
Collapse
|
37
|
Cardoso FDS, Mansur FCB, Lopes-Martins RÁB, Gonzalez-Lima F, Gomes da Silva S. Transcranial Laser Photobiomodulation Improves Intracellular Signaling Linked to Cell Survival, Memory and Glucose Metabolism in the Aged Brain: A Preliminary Study. Front Cell Neurosci 2021; 15:683127. [PMID: 34539346 PMCID: PMC8446546 DOI: 10.3389/fncel.2021.683127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Aging is often accompanied by exacerbated activation of cell death-related signaling pathways and decreased energy metabolism. We hypothesized that transcranial near-infrared laser may increase intracellular signaling pathways beneficial to aging brains, such as those that regulate brain cell proliferation, apoptosis, and energy metabolism. To test this hypothesis, we investigated the expression and activation of intracellular signaling proteins in the cerebral cortex and hippocampus of aged rats (20 months old) treated with the transcranial near-infrared laser for 58 consecutive days. As compared to sham controls, transcranial laser treatment increased intracellular signaling proteins related to cell proliferation and cell survival, such as signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p70 ribosomal protein S6 kinase (p70S6K) and protein kinase B (PKB), also known as Akt that is linked to glucose metabolism. In addition, ERK is linked to memory, while ERK and JNK signaling pathways regulate glucose metabolism. Specifically, the laser treatment caused the activation of STAT3, ERK, and JNK signaling proteins in the cerebral cortex. In the hippocampus, the laser treatment increased the expression of p70S6K and STAT3 and the activation of Akt. Taken together, the data support the hypothesis that transcranial laser photobiomodulation improves intracellular signaling pathways linked to cell survival, memory, and glucose metabolism in the brain of aged rats.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil.,Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | | | | | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil.,Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, Brazil.,Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, Brazil
| |
Collapse
|
38
|
Mohammed HS, Khadrawy YA. Antidepressant and antioxidant effects of transcranial irradiation with 830-nm low-power laser in an animal model of depression. Lasers Med Sci 2021; 37:1615-1623. [PMID: 34487275 DOI: 10.1007/s10103-021-03410-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed at investigating the antidepressant and antioxidant actions of near-infrared (NIR) laser at a wavelength of 830 nm and power of 100 mW which applied transcranially on an animal model of depression induced by repeated doses of reserpine (0.2 mg/kg). Thirty male Wistar adult rats were divided into three groups: rat model of depression; rat model of depression irradiated with laser for 14 days after induction of depression; and the control group that was given the drug vehicle and sham-exposed to the laser. Forced swimming test (FST) was used to verify the induction of animal model of depression and to screen the effect of antidepressant effect of low-level laser at the end of the experiment. Monoamine level, oxidative stress markers, and activities of acetylcholinesterase (AchE) and monoamine oxidase (MAO) were determined in the cortex and hippocampus of the rat brain. Reserpine resulted in depletion of monoamines and elevation in the oxidative stress markers and change in the enzymatic activities measured in both brain areas. Laser irradiation has an inhibitory action on the monoamine oxidase (MAO) in the cortex and hippocampus leading to elevation of the monoamine levels and attenuation of the oxidative stress in the studied areas. FST has emphasized the antidepressant effect of the utilized laser irradiation parameters on the behavioral level. The present findings provide evidence for the antidepressant and antioxidant actions of NIR low-power laser in the rat model of depression. Accordingly, low-laser irradiation may be presented as a potential candidate modality for depression treatment.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| |
Collapse
|
39
|
Cardoso FDS, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the aging brain. Ageing Res Rev 2021; 70:101415. [PMID: 34325071 DOI: 10.1016/j.arr.2021.101415] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Longevity is one of the great triumphs of humanity. Worldwide, the elderly is the fastest growing segment of the population. As a consequence, the number of cases of age-related cognitive decline and neurological diseases associated with aging, such as Alzheimer's and Parkinson's, has been increasing. Among the non-pharmacological interventions studied for the treatment or prevention of age-related neurocognitive impairment, photobiomodulation (PBM) has gained prominence for its beneficial effects on brain functions relevant to aging brains. In animal models, the neuroprotective and neuromodulatory capacity of PBM has been observed. Studies using both animals and humans have shown promising metabolic and hemodynamic effects of PBM on the brain, such as improved mitochondrial and vascular functions. Studies in humans have shown that PBM can improve electrophysiological activity and cognitive functions such as attention, learning, memory and mood in older people. In this paper we will review the main brain effects of PBM during aging, discuss its mechanisms of action relevant to the aging brain, and call for more controlled studies in older populations.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil; Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
40
|
Baik JS, Lee TY, Kim NG, Pak K, Ko SH, Min JH, Shin YI. Effects of Photobiomodulation on Changes in Cognitive Function and Regional Cerebral Blood Flow in Patients with Mild Cognitive Impairment: A Pilot Uncontrolled Trial. J Alzheimers Dis 2021; 83:1513-1519. [PMID: 34420956 DOI: 10.3233/jad-210386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Photobiomodulation (PBM) affects local blood flow regulation through nitric oxide generation, and various studies have reported on its effect on improving cognitive function in neurodegenerative diseases. However, the effect of PBM in the areas of the vertebral arteries (VA) and internal carotid arteries (ICA), which are the major blood-supplying arteries to the brain, has not been previously investigated. OBJECTIVE We aimed to determine whether irradiating PBM in the areas of the VA and ICA, which are the major blood-supplying arteries to the brain, improved regional cerebral blood flow (rCBF) and cognitive function. METHODS Fourteen patients with mild cognitive impairments were treated with PBM. Cognitive assessment and single-photon emission computed tomography were implemented at the baseline and at the end of PBM. RESULTS Regarding rCBF, statistically significant trends were found in the medial prefrontal cortex, lateral prefrontal cortex, anterior cingulate cortex, and occipital lateral cortex. Based on the cognitive assessments, statistically significant trends were found in overall cognitive function, memory, and frontal/executive function. CONCLUSION We confirmed the possibility that PBM treatment in the VA and ICA areas could positively affect cognitive function by increasing rCBF. A study with a larger sample size is needed to validate the potential of PBM.
Collapse
Affiliation(s)
- Ji Soo Baik
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven. Seoul, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sung-Hwa Ko
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Ji Hong Min
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Rehabilitation Medicine & Institute of Medical Science, Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
41
|
Oubiña G, Pascuali N, Scotti L, Bianchi S, May M, Martínez JE, Marchese Ragona C, Higuera J, Abramovich D, Parborell F. Local application of low level laser therapy in mice ameliorates ovarian damage induced by cyclophosphamide. Mol Cell Endocrinol 2021; 531:111318. [PMID: 33989716 DOI: 10.1016/j.mce.2021.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/06/2023]
Abstract
The aim of the present study is to assess whether low level laser therapy (LLLT) can protect ovaries from chemotherapy-induced gonadotoxicity using a mice model of premature ovarian failure induced by cyclophosphamide (CTX). LLLT (64 J/cm2) increased the number of antral follicles whilst decreasing the number of atretic follicles compared to CTX alone. LLLT increased the number of primordial follicles compared with those in the CTX group but they did not differ from those in the control group. LLLT treatment increased the number of AMH-positive follicles compared to CTX alone. LLLT application increased ovarian weight, serum progesterone concentration and P450scc protein levels compared to CTX alone. LLLT reduced the apoptosis in antral follicles and the BAX/BCL-2 ratio compared to CTX alone. Vascular morphology, analysed by CD31 and α-SMA immunostaining, was restored in LLLT-treated ovaries compared to CTX alone. In conclusion, application of LLLT prior to CTX might serve as a promising and novel protocol to preserve female fertility in cancer survivors.
Collapse
Affiliation(s)
- Gonzalo Oubiña
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Leopoldina Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Silvia Bianchi
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Eroglu B, Genova E, Zhang Q, Su Y, Shi X, Isales C, Eroglu A. Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Sci Rep 2021; 11:13067. [PMID: 34158600 PMCID: PMC8219765 DOI: 10.1038/s41598-021-92584-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Evan Genova
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Yun Su
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Carlos Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
43
|
Méndez M, Fidalgo C, Arias JL, Arias N. Methylene blue and photobiomodulation recover cognitive impairment in hepatic encephalopathy through different effects on cytochrome c-oxidase. Behav Brain Res 2021; 403:113164. [PMID: 33549685 DOI: 10.1016/j.bbr.2021.113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction plays a central role in hepatic encephalopathy (HE), due to changes in enzyme cytochrome c-oxidase (CCO), causing a decline in brain metabolism. We used an HE animal model and applied intracranial administration of methylene blue (MB) and transcranial photobiomodulation (PBM), both targeting CCO, to determine their differential effects on recovering cognition. Five groups of rats were used: sham-operated group + saline (SHAM + SAL, n = 6), hepatic encephalopathy + SAL (HE + SAL, n = 7), SHAM + methylene blue (SHAM + MB, n = 7), HE + MB (n = 7), HE + PBM (n = 7). PBM animals were exposed transcranially to 670 +/- 10 nm LED light at a dose of 9 J/cm2 once a day for 7 days, and the MB and SAL groups were injected with 2.2 μg/0.5 μL in the accumbens. Cognitive dysfunction was evaluated on a striatal stimulus-response task using the Morris water maze. Our results showed cognitive improvement in the HE group when treated with MB. This improvement was accompanied by a decrease in CCO activity in the prefrontal cortex, dorsal striatum, and dorsal hippocampus. When comparing MB and PBM, we found that, although both treatments effectively improved the HE-memory deficit, there was a differential effect on CCO. A general decrease in CCO activity was found in the prefrontal and entorhinal cortices, dorsal striatum, and hippocampus when PBM, compared to MB, was applied. Our results suggest that mitochondrial dysfunction and brain metabolic decline in HE might involve CCO alteration and can be improved by administering MB and PBM.
Collapse
Affiliation(s)
- Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Camino Fidalgo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; Departamento de Psicología y Sociología, IIS Aragón, Universidad de Zaragoza, Ciudad Escolar s/n, Teruel, 44003, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
44
|
Li J, Wu G, Song W, Liu Y, Han Z, Shen Z, Li Y. Prophylactic Melatonin Treatment Ameliorated Propofol-Induced Cognitive Dysfunction in Aged Rats. Neurotox Res 2021; 39:227-239. [PMID: 33159663 DOI: 10.1007/s12640-020-00307-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Considering the fact that melatonin acts as protective agent in various cognitive impairment, we decided to explore the precise effect of pretreatment with melatonin on cognitive function, mitochondrial activity, apoptosis and synaptic integrity in aged rats anesthetized by propofol. We first randomly allocated the thirty Sprague Dawley rats into three groups: Control vehicle-treated group (Con), Propofol-treated group (Pro) and Melatonin + Propofol group (Mel + Pro). The Barnes maze, open field and contextual fear conditioning test were employed to evaluate spatial memory, exploratory behavior and general locomotor activity, and hippocampus-dependent learning and memory ability, respectively. Moreover, mitochondrial function (including reactive oxygen species, mitochondrial membrane potential and ATP levels) and apoptosis were detected in the regions of hippocampus (HIP) and prefrontal cortex (PFC). The results of behavioral tests suggested that melatonin improved propofol-induced memory impairment in aged rats. Melatonin mitigated mitochondrial dysfunction and decreased the apoptotic cell counts in the regions of HIP and PFC. Furthermore, prophylactic melatonin treatment also reversed the propofol-induced inactivation of PKA/CREB/BDNF signaling and synaptic dysfunction. On the whole, our results indicated that melatonin ameliorated the propofol-induced cognitive disorders via attenuating mitochondrial dysfunction, apoptosis, inactivation of PKA/CREB/BDNF signaling and synaptic dysfunction.
Collapse
Affiliation(s)
- Junhua Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wen Song
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yafang Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhixiao Han
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhiwen Shen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
45
|
Effect of photobiomodulation on mitochondrial dynamics in peripheral nervous system in streptozotocin-induced type 1 diabetes in rats. Photochem Photobiol Sci 2021; 20:293-301. [PMID: 33721255 DOI: 10.1007/s43630-021-00018-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
There is no effective treatment to halt peripheral nervous system damage in diabetic peripheral neuropathy. Mitochondria have been at the center of discussions as important factors in the development of neuropathy in diabetes. Photobiomodulation has been gaining clinical acceptance as it shows beneficial effects on a variety of nervous system disorders. In this study, the effects of photobiomodulation (904 nm, 45 mW, 6.23 J/cm2, 0.13 cm2, 60 ns pulsed time) on mitochondrial dynamics were evaluated in an adult male rat experimental model of streptozotocin-induced type 1 diabetes. Results presented here indicate that photobiomodulation could have an important role in preventing or reversing mitochondrial dynamics dysfunction in the course of peripheral nervous system damage in diabetic peripheral neuropathy. Photobiomodulation showed its effects on modulating the protein expression of mitofusin 2 and dynamin-related protein 1 in the sciatic nerve and in the dorsal root ganglia neurons of streptozotocin-induced type 1 diabetes in rats.
Collapse
|
46
|
You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jing You
- Department of Biomedical Engineering University of North Texas Denton Texas USA
| | - Anatol Bragin
- Department of Neurology University of California Los Angeles Los Angeles California USA
- Brain Research Institute University of California Los Angeles Los Angeles California USA
| | - Hanli Liu
- Department of Bioengineering University of Texas at Arlington Arlington Texas USA
| | - Lin Li
- Department of Biomedical Engineering University of North Texas Denton Texas USA
- Department of Neurology University of California Los Angeles Los Angeles California USA
| |
Collapse
|
47
|
Mahoney JJ, Hanlon CA, Marshalek PJ, Rezai AR, Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci 2020; 418:117149. [PMID: 33002757 PMCID: PMC7702181 DOI: 10.1016/j.jns.2020.117149] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Given the high prevalence of individuals diagnosed with substance use disorder, along with the elevated rate of relapse following treatment initiation, investigating novel approaches and new modalities for substance use disorder treatment is of vital importance. One such approach involves neuromodulation which has been used therapeutically for neurological and psychiatric disorders and has demonstrated positive preliminary findings for the treatment of substance use disorder. The following article provides a review of several forms of neuromodulation which warrant consideration as potential treatments for substance use disorder. PubMed, PsycINFO, Ovid MEDLINE, and Web of Science were used to identify published articles and clinicaltrials.gov was used to identify currently ongoing or planned studies. Search criteria for Brain Stimulation included the following terminology: transcranial direct current stimulation, transcranial magnetic stimulation, theta burst stimulation, deep brain stimulation, vagus nerve stimulation, trigeminal nerve stimulation, percutaneous nerve field stimulation, auricular nerve stimulation, and low intensity focused ultrasound. Search criteria for Addiction included the following terminology: addiction, substance use disorder, substance-related disorder, cocaine, methamphetamine, amphetamine, alcohol, nicotine, tobacco, smoking, marijuana, cannabis, heroin, opiates, opioids, and hallucinogens. Results revealed that there are currently several forms of neuromodulation, both invasive and non-invasive, which are being investigated for the treatment of substance use disorder. Preliminary findings have demonstrated the potential of these various neuromodulation techniques in improving substance treatment outcomes by reducing those risk factors (e.g. substance craving) associated with relapse. Specifically, transcranial magnetic stimulation has shown the most promise with several well-designed studies supporting the potential for reducing substance craving. Deep brain stimulation has also shown promise, though lacks well-controlled clinical trials to support its efficacy. Transcranial direct current stimulation has also demonstrated promising results though consistently designed, randomized trials are also needed. There are several other forms of neuromodulation which have not yet been investigated clinically but warrant further investigation given their mechanisms and potential efficacy based on findings from other studied indications. In summary, given promising findings in reducing substance use and craving, neuromodulation may provide a non-pharmacological option as a potential treatment and/or treatment augmentation for substance use disorder. Further research investigating neuromodulation, both alone and in combination with already established substance use disorder treatment (e.g. medication treatment), warrants consideration.
Collapse
Affiliation(s)
- James J Mahoney
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America.
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Cancer Biology and Center for Substance Use and Addiction, 475 Vine Street, Winston-Salem, NC 27101, United States of America
| | - Patrick J Marshalek
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Ali R Rezai
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neurosurgery, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Lothar Krinke
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; Magstim Inc., 9855 West 78 Street, Suite 12, Eden Prairie, MN 55344, United States of America
| |
Collapse
|
48
|
Xu W, Liu X, He X, Jiang Y, Zhang J, Zhang Q, Wang N, Qin L, Xin H. Bajitianwan attenuates D-galactose-induced memory impairment and bone loss through suppression of oxidative stress in aging rat model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112992. [PMID: 32590113 DOI: 10.1016/j.jep.2020.112992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis and Alzheimer's disease (AD) are both senile diseases, which are closely related to oxidative stress. Bajitianwan (BJTW) is a classic Chinese formulation consisting of seven herbal drugs: the root of Morinda officinalis F.C.How., root and rhizome of Acorus tatarinowii Schott, the root bark of Lycium chinense Mill., the sclerotium of Poria cocos (Schw.) Wolf, the root of Polygala tenuifolia Willd., sclerotium with host wood of Poria cocos (Schw.) Wolf and root and rhizome of Panax ginseng C. A. Mey. BJTW has been used for the treatment of osteoporosis and AD for hundreds of years. AIM OF THE STUDY This study aimed to investigate the protective effects of BJTW in the amelioration of memory impairment and bone loss induced by D-galactose and to explore the underlying mechanism. MATERIALS AND METHODS The aging model was established in male Wistar rats by subcutaneous injection of D-galactose (100 mg/kg), and the rats were treated with huperzine-A, alendronate sodium, or the aqueous extract of BJTW for 4 months. Cognitive performance was evaluated with the Morris water maze. Rat femurs were scanned using microcomputed tomography to obtain three-dimensional imagery of bone microstructure. The impact of D-galactose on the expression of Forkhead box O1 and superoxide dismutase 2 in femur tissue was also evaluated. RESULTS For the model group, BJTW treatment significantly reduced the latency time for finding the target platform in the directional swimming test and increased time spent swimming in the target quadrant with the probe test. Additionally, BJTW treatment alleviated D-galactose-induced bone loss through regulation of levels of alkaline phosphatase, osteocalcin, osteoprotegerin, and receptor activator of nuclear factor kappa B ligand. Furthermore, BJTW treatment increased catalase and glutathione peroxidase levels in serum, reduced malondialdehyde content in hippocampus, and upregulated expression of Forkhead O1, which upregulated superoxide dismutase 2 in the femur. CONCLUSIONS BJTW had positive effects on age-related memory impairments and bone loss. It may be a promising antioxidant candidate for treatment of Alzheimer's disease and osteoporosis.
Collapse
Affiliation(s)
- Wumu Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaoyan Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xuhui He
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Yiping Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jiabao Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Qiaoyan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Nani Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Luping Qin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hailiang Xin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
49
|
Arias JL, Mendez M, Martínez JÁ, Arias N. Differential effects of photobiomodulation interval schedules on brain cytochrome c-oxidase and proto-oncogene expression. NEUROPHOTONICS 2020; 7:045011. [PMID: 33313338 PMCID: PMC7723391 DOI: 10.1117/1.nph.7.4.045011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Significance: Transcranial photobiomodulation (PBM) is a noninvasive neuromodulation technique capable of producing changes in the mitochondrial cytochrome c-oxidase (CCO) activity of neurons. Although the application of PBM in clinical practice and as a neurophysiological tool is increasing, less is known about how different treatment time intervals may result in different outcomes. Aim: We evaluated the effects of different PBM treatment intervals on brain metabolic activity through the CCO and proto-oncogene expression (c-Fos). Approach: We studied PBM effects on brain CCO and c-Fos expression in three groups of animals: Control (CN, n = 8 ), long interval PBM treatment (LI, n = 5 ), and short interval PBM treatment (SI, n = 5 ). Results: Increased CCO activity in the LI group, compared to the SI and CN groups, was found in the prefrontal cortices, dorsal and ventral striatum, and hippocampus. Regarding c-Fos expression, we found a significant increase in the SI group compared to LI and CN, whereas LI showed increased c-Fos expression compared to CN in the cingulate and infralimbic cortices. Conclusions: We show the effectiveness of different PBM interval schedules in increasing brain metabolic activity or proto-oncogene expression.
Collapse
Affiliation(s)
- Jorge L. Arias
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Marta Mendez
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Juan Ángel Martínez
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- University of Oviedo, Escuela Politécnica de Gijón, Departamento Ingeniería Eléctrica, Electrónica, Computadores y Sistemas, Gijón, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King´s College London, Department of Basic and Clinical Neuroscience, London, United Kingdom
| |
Collapse
|
50
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 555] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|