1
|
Ueda M, Ueno K, Yuri T, Aoki Y, Hata M, Inoue T, Ishii R, Naito Y. EEG Oscillatory Activity and Resting-State Networks Associated with Neurocognitive Function in Mild Traumatic Brain Injury. Clin EEG Neurosci 2025; 56:271-281. [PMID: 39420809 DOI: 10.1177/15500594241290858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study aimed to investigate the characteristics of resting-state electroencephalography (EEG) activity and brain networks in patients with mild traumatic brain injury (mTBI) and their association with neurocognitive function (NCF). We analyzed 26 patients with subacute mTBI and 21 healthy controls. The subacute mTBI group (9 females, 17 males) had a mean age of 29.9 ± 9.9 years, and the healthy controls (11 females, 10 males) had a mean age of 29.7 ± 11.5 years. Current source density, lagged phase synchronization, and resting-state network activity were analyzed using exact low-resolution electromagnetic tomography (eLORETA) with 60 s resting-state EEG data. In addition, a correlation analysis was performed between these EEG parameters and NCF in patients with mTBI. We used the statistical nonparametric mapping method in eLORETA to correct for multiple comparisons. There were no significant differences in EEG parameters between the patients with mTBI and healthy controls. However, in patients with mTBI, correlation analysis revealed negative correlations between theta activity in the anterior cingulate cortex and verbal short-term memory and between activity in the memory perception network and verbal memory. Our findings suggest that resting-state EEG may be clinically useful in investigating the mechanism of NCF decline in patients with mTBI.
Collapse
Affiliation(s)
- Masaya Ueda
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Takuma Yuri
- Department of Occupational Therapy, Kyoto Tachibana University, Kyoto, Japan
| | - Yasunori Aoki
- Department of Psychiatry, Nippon Life Hospital, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Hata
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Prieto A, Montoro PR, Jimenez M, Hinojosa JA. In Search of an Integrative Method to Study Unconscious Processing: An Application of Bayesian and General Recognition Theory Models to the Processing of Hierarchical Patterns in the Absence of Awareness. J Cogn 2025; 8:6. [PMID: 39803183 PMCID: PMC11720486 DOI: 10.5334/joc.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025] Open
Abstract
The dissociation between conscious and unconscious perception is one of the most relevant issues in the study of human cognition. While there is evidence suggesting that some stimuli might be unconsciously processed up to its meaning (e.g., high-level stimulus processing), some authors claim that most results on the processing of subliminal stimuli can be explained by a mixture of methodological artefacts and questionable assumptions about what can be considered non-conscious. Particularly, one of the most controversial topics involves the method by which the awareness of the stimuli is assessed. To address this question, we introduced an integrative approach to assess the extent to which masked hierarchical stimuli (i.e., global shapes composed of local elements) can be processed in the absence of awareness. We combined a priming task where participants had to report global or local shapes, with the use of subjective and objective awareness measures collected either in a separate block (offline), or trial-by-trial during the main task (online). The unconscious processing of the masked primes was then evaluated through two different novel model-based methods: a Bayesian and a General Recognition Theory modeling approach. Despite the high correlation between awareness measures, our results show that the use of alternative approaches based on different theoretical assumptions leads to diverging conclusions about the extent of the unconscious processing of the masked primes.
Collapse
Affiliation(s)
| | | | - Mikel Jimenez
- Department of Psychology, University of Durham, Durham, United Kingdom
| | - José Antonio Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Nebrija en Cognición (CINC), Universidad de Nebrija, Madrid, Spain
| |
Collapse
|
3
|
Schräder J, Herzberg L, Jo HG, Hernandez-Pena L, Koch J, Habel U, Wagels L. Neurophysiological Pathways of Unconscious Emotion Processing in Depression: Insights From a Simultaneous Electroencephalography-Functional Magnetic Resonance Imaging Measurement. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1121-1131. [PMID: 39038607 DOI: 10.1016/j.bpsc.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by strong emotional dysregulation. Mechanisms driving the negative affect in depression may be fast processes existing on an unconscious level. METHODS A priming task was conducted using simultaneous electroencephalography-functional magnetic resonance imaging measurement involving presentation of facial expressions (happy, sad, and neutral) to examine the neurophysiological pathway of biased unconscious emotion processing in MDD. Priming prior to a target emotion created unconscious (16.7-ms primer) and conscious (150-ms primer) trials. A large sample (N = 126) was recruited, containing healthy control participants (n = 66; 37 women) and participants with MDD (n = 60; 31 women). RESULTS The healthy control group showed a shorter reaction time in happy but not in sad or neutral trials compared with the MDD group. N170 amplitudes were lower in trials with unconscious than conscious primer presentation. N170 amplitudes correlated with cortical (right fusiform gyrus, right middle temporal gyrus, right inferior temporal gyrus, left supplementary motor area, right middle frontal gyrus) and subcortical brain regions (right amygdala). The strength of N170 and brain activity correlation increased when the stimulus was consciously presented. Presented emotions did not affect the correlation of N170 values and brain activity. CONCLUSIONS Our findings show that MDD may exhibit biased emotion regulation abilities at a behavioral and neurophysiological level. Face-sensitive event-related potentials demonstrate a correlation with heightened brain activity in regions associated with both face recognition (fusiform gyrus) and emotion processing (amygdala). These findings are evident in both MDD and healthy control groups, with lower effect sizes in the MDD group indicating reduced emotion recognition and processing abilities.
Collapse
Affiliation(s)
- Julia Schräder
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; JARA-Translational Brain Medicine, Aachen, Germany.
| | - Lennard Herzberg
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Han-Gue Jo
- School of Software, Kunsan National University, Gunsan-si, Jeollabuk-do, South Korea
| | - Lucia Hernandez-Pena
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; JARA-Translational Brain Medicine, Aachen, Germany
| | - Julia Koch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; JARA-Translational Brain Medicine, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; JARA-Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
4
|
Sun B, Xu Y, Kat S, Sun A, Yin T, Zhao L, Su X, Chen J, Wang H, Gong X, Liu Q, Han G, Peng S, Li X, Liu J. Exploring the most discriminative brain structural abnormalities in ASD with multi-stage progressive feature refinement approach. Front Psychiatry 2024; 15:1463654. [PMID: 39483728 PMCID: PMC11524921 DOI: 10.3389/fpsyt.2024.1463654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by increasing prevalence, diverse impairments, and unclear origins and mechanisms. To gain a better grasp of the origins of ASD, it is essential to identify the most distinctive structural brain abnormalities in individuals with ASD. Methods A Multi-Stage Progressive Feature Refinement Approach was employed to identify the most pivotal structural magnetic resonance imaging (MRI) features that distinguish individuals with ASD from typically developing (TD) individuals. The study included 175 individuals with ASD and 69 TD individuals, all aged between 7 and 18 years, matched in terms of age and gender. Both cortical and subcortical features were integrated, with a particular focus on hippocampal subfields. Results Out of 317 features, 9 had the most significant impact on distinguishing ASD from TD individuals. These structural features, which include a specific hippocampal subfield, are closely related to the brain areas associated with the reward system. Conclusion Structural irregularities in the reward system may play a crucial role in the pathophysiology of ASD, and specific hippocampal subfields may also contribute uniquely, warranting further investigation.
Collapse
Affiliation(s)
- Bingxi Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yingying Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Siuching Kat
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Anlan Sun
- Yizhun Medical AI Co., Ltd, Algorithm and Development Department, Beijing, China
| | - Tingni Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Liyang Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jialu Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoyun Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qinyi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gangqiang Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuchen Peng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
5
|
Del Vecchio M, Avanzini P, Gerbella M, Costa S, Zauli FM, d’Orio P, Focacci E, Sartori I, Caruana F. Anatomo-functional basis of emotional and motor resonance elicited by facial expressions. Brain 2024; 147:3018-3031. [PMID: 38365267 PMCID: PMC12007602 DOI: 10.1093/brain/awae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Sara Costa
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Flavia Maria Zauli
- ‘Claudio Munari’ Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Piergiorgio d’Orio
- ‘Claudio Munari’ Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Elena Focacci
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivana Sartori
- ‘Claudio Munari’ Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| |
Collapse
|
6
|
Lu T, Wang Q, Gu Z, Li Z, Yan Z. Non-invasive treatments improve patient outcomes in chronic tinnitus: a systematic review and network meta-analysis. Braz J Otorhinolaryngol 2024; 90:101438. [PMID: 38788246 PMCID: PMC11143903 DOI: 10.1016/j.bjorl.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE To investigate the relative effectiveness of various Non-Invasive Treatment Techniques (NITs) in chronic tinnitus management. METHODS We searched PubMed, Embase and Cochrane Library databases from the time of data construction to December 31, 2022. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, NITs were evaluated, including Aacceptance and commitment therapy (A), Cognitive behavioral therapy (C), Sound therapy (S), Transcranial magnetic stimulation (T), Electrical stimulation therapy (E), Virtual reality therapy (V), tinnitus Retraining therapy (R), general psychotherapy (D), and Placebo (P). The outcome indicators included the Tinnitus Handicap Inventory (THI), Tinnitus Questionnaire (TQ), Hospital Anxiety and Depression Scale-anxiety-Depression (HADS-D), Insomnia Severity Index (ISI), Visual Analogue Scales-Loudness (VAS-L), and Visual Analogue Scales-Distress (VAS-D). Statistical analysis was performed using Stata 14.0 for NMA. RESULTS This systematic review and meta-analysis included 22 randomized controlled trials comprising 2,354 patients. The treatment effects varied on each scale. For THI, S (86.9%) was the most effective, whereas P (6.5%) was the worst. For TQ, C (89.5%) was the most effective, whereas D (25.4%) was the worst. For HADS-D, A (82.4%) was the most effective, whereas D (9.47%) was the worst. For ISI, A (83.2%) was the most effective, whereas R (20.6%) was the worst. For VAS-L, S (73.5%) was the most effective, whereas E (18.9%) was the worst. For VAS-D, C (84.7%) was the most effective, whereas P (18.1%) was the worst. CONCLUSIONS The combination of acoustics and cognitive behavioral therapy may be an effectively treat patients with chronic tinnitus. LEVEL OF EVIDENCE How common is the problem? Level 2. Is this diagnostic or monitoring test accurate? (Diagnosis) Level 1. What will happen if we do not add a therapy? (Prognosis) Level 1. Does this intervention help? (Treatment Benefits) Level 1. What are the COMMON harms? (Treatment Harms) Level 1. What are the RARE harms? (Treatment Harms) Level 1. Is this (early detection) test worthwhile? (Screening) Level 1I.
Collapse
Affiliation(s)
- Tingting Lu
- Shandong University of Traditional Chinese Medicine, First Clinical College of Medicine, Jinan, China
| | - Qingxin Wang
- The Second People's Hospital of Qingdao West Coast New District, Department of General Internal Medicine, Qingdao, China
| | - Ziyan Gu
- Shandong University of Traditional Chinese Medicine, First Clinical College of Medicine, Jinan, China
| | - Zefang Li
- Shandong University of Traditional Chinese Medicine, First Clinical College of Medicine, Jinan, China
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Physical and Mental Medicine, Jinan, China.
| |
Collapse
|
7
|
Hoshi H, Ishii A, Shigihara Y, Yoshikawa T. Binocularly suppressed stimuli induce brain activities related to aesthetic emotions. Front Neurosci 2024; 18:1339479. [PMID: 38855441 PMCID: PMC11159128 DOI: 10.3389/fnins.2024.1339479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Aesthetic emotions are a class of emotions aroused by evaluating aesthetically appealing objects or events. While evolutionary aesthetics suggests the adaptive roles of these emotions, empirical assessments are lacking. Previous neuroscientific studies have demonstrated that visual stimuli carrying evolutionarily important information induce neural responses even when presented non-consciously. To examine the evolutionary importance of aesthetic emotions, we conducted a neuroscientific study using magnetoencephalography (MEG) to measure induced neural responses to non-consciously presented portrait paintings categorised as biological and non-biological and examined associations between the induced responses and aesthetic ratings. Methods MEG and pre-rating data were collected from 23 participants. The pre-rating included visual analogue scales for object saliency, facial saliency, liking, and beauty scores, in addition to 'biologi-ness,' which was used for subcategorising stimuli into biological and non-biological. The stimuli were presented non-consciously using a continuous flash suppression paradigm or consciously using binocular presentation without flashing masks, while dichotomic behavioural responses were obtained (beauty or non-beauty). Time-frequency decomposed MEG data were used for correlation analysis with pre-rating scores for each category. Results Behavioural data revealed that saliency scores of non-consciously presented stimuli influenced dichotomic responses (beauty or non-beauty). MEG data showed that non-consciously presented portrait paintings induced spatiotemporally distributed low-frequency brain activities associated with aesthetic ratings, which were distinct between the biological and non-biological categories and conscious and non-conscious conditions. Conclusion Aesthetic emotion holds evolutionary significance for humans. Neural pathways are sensitive to visual images that arouse aesthetic emotion in distinct ways for biological and non-biological categories, which are further influenced by consciousness. These differences likely reflect the diversity in mechanisms of aesthetic processing, such as processing fluency, active elaboration, and predictive processing. The aesthetic processing of non-conscious stimuli appears to be characterised by fluency-driven affective processing, while top-down regulatory processes are suppressed. This study provides the first empirical evidence supporting the evolutionary significance of aesthetic processing.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Department of Sports Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Akira Ishii
- Department of Sports Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Takahiro Yoshikawa
- Department of Sports Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Klug M, Enneking V, Borgers T, Jacobs CM, Dohm K, Kraus A, Grotegerd D, Opel N, Repple J, Suslow T, Meinert S, Lemke H, Leehr EJ, Bauer J, Dannlowski U, Redlich R. Persistence of amygdala hyperactivity to subliminal negative emotion processing in the long-term course of depression. Mol Psychiatry 2024; 29:1501-1509. [PMID: 38278993 PMCID: PMC11189807 DOI: 10.1038/s41380-024-02429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression.
Collapse
Affiliation(s)
- Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Charlotte M Jacobs
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
- Department of Psychology, Martin-Luther University of Halle, Halle, Germany.
| |
Collapse
|
9
|
Lim RY, Lew WCL, Ang KK. Review of EEG Affective Recognition with a Neuroscience Perspective. Brain Sci 2024; 14:364. [PMID: 38672015 PMCID: PMC11048077 DOI: 10.3390/brainsci14040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Emotions are a series of subconscious, fleeting, and sometimes elusive manifestations of the human innate system. They play crucial roles in everyday life-influencing the way we evaluate ourselves, our surroundings, and how we interact with our world. To date, there has been an abundance of research on the domains of neuroscience and affective computing, with experimental evidence and neural network models, respectively, to elucidate the neural circuitry involved in and neural correlates for emotion recognition. Recent advances in affective computing neural network models often relate closely to evidence and perspectives gathered from neuroscience to explain the models. Specifically, there has been growing interest in the area of EEG-based emotion recognition to adopt models based on the neural underpinnings of the processing, generation, and subsequent collection of EEG data. In this respect, our review focuses on providing neuroscientific evidence and perspectives to discuss how emotions potentially come forth as the product of neural activities occurring at the level of subcortical structures within the brain's emotional circuitry and the association with current affective computing models in recognizing emotions. Furthermore, we discuss whether such biologically inspired modeling is the solution to advance the field in EEG-based emotion recognition and beyond.
Collapse
Affiliation(s)
- Rosary Yuting Lim
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
| | - Wai-Cheong Lincoln Lew
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science, Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore; (R.Y.L.); (W.-C.L.L.)
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., 32 Block N4 02a, Singapore 639798, Singapore
| |
Collapse
|
10
|
Sato W, Usui N, Kondo A, Kubota Y, Toichi M, Inoue Y. Impairment of unconscious emotional processing after unilateral medial temporal structure resection. Sci Rep 2024; 14:4269. [PMID: 38383855 PMCID: PMC10881984 DOI: 10.1038/s41598-024-54868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
The role of the amygdala in unconscious emotional processing remains a topic of debate. Past lesion studies have indicated that amygdala damage leads to impaired electrodermal activity in response to subliminally presented emotional stimuli. However, electrodermal activity can reflect both emotional and nonemotional processes. To provide behavioral evidence highlighting the critical role of the amygdala in unconscious emotional processing, we examined patients (n = 16) who had undergone unilateral resection of medial temporal lobe structures, including the amygdala. We utilized the subliminal affective priming paradigm in conjunction with unilateral visual presentation. Fearful or happy dynamic facial expressions were presented in unilateral visual fields for 30 ms, serving as negative or positive primes. Subsequently, neutral target faces were displayed, and participants were tasked with rating the valence of these targets. Positive primes, compared to negative ones, enhanced valence ratings of the target to a greater extent when they stimulated the intact hemisphere (i.e., were presented in the contralateral visual field of the intact hemisphere) than when they stimulated the resected hemisphere (i.e., were presented in the contralateral visual field of the resected hemisphere). These results suggest that the amygdala is causally involved in unconscious emotional processing.
Collapse
Affiliation(s)
- Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan.
| | - Akihiko Kondo
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, 1-1-1 Baba, Hikone, Shiga, 522-8522, Japan
| | - Motomi Toichi
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto, 606-8507, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan
| |
Collapse
|
11
|
Esposito M, Palermo S, Nahi YC, Tamietto M, Celeghin A. Implicit Selective Attention: The Role of the Mesencephalic-basal Ganglia System. Curr Neuropharmacol 2024; 22:1497-1512. [PMID: 37653629 PMCID: PMC11097991 DOI: 10.2174/1570159x21666230831163052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 09/02/2023] Open
Abstract
The ability of the brain to recognize and orient attention to relevant stimuli appearing in the visual field is highlighted by a tuning process, which involves modulating the early visual system by both cortical and subcortical brain areas. Selective attention is coordinated not only by the output of stimulus-based saliency maps but is also influenced by top-down cognitive factors, such as internal states, goals, or previous experiences. The basal ganglia system plays a key role in implicitly modulating the underlying mechanisms of selective attention, favouring the formation and maintenance of implicit sensory-motor memories that are capable of automatically modifying the output of priority maps in sensory-motor structures of the midbrain, such as the superior colliculus. The article presents an overview of the recent literature outlining the crucial contribution of several subcortical structures to the processing of different sources of salient stimuli. In detail, we will focus on how the mesencephalic- basal ganglia closed loops contribute to implicitly addressing and modulating selective attention to prioritized stimuli. We conclude by discussing implicit behavioural responses observed in clinical populations in which awareness is compromised at some level. Implicit (emergent) awareness in clinical conditions that can be accompanied by manifest anosognosic symptomatology (i.e., hemiplegia) or involving abnormal conscious processing of visual information (i.e., unilateral spatial neglect and blindsight) represents interesting neurocognitive "test cases" for inferences about mesencephalicbasal ganglia closed-loops involvement in the formation of implicit sensory-motor memories.
Collapse
Affiliation(s)
- Matteo Esposito
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
| | - Sara Palermo
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
- Neuroradiology Unit, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Marco Tamietto
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
- Department of Medical and Clinical Psychology, and CoRPS - Center of Research on Psychology in Somatic Diseases, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
| | - Alessia Celeghin
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
| |
Collapse
|
12
|
Kawamoto M, Takagishi H, Ishihara T, Takagi S, Kanai R, Sugihara G, Takahashi H, Matsuda T. Hippocampal volume mediates the relationship of parental rejection in childhood with social cognition in healthy adults. Sci Rep 2023; 13:19167. [PMID: 37932349 PMCID: PMC10628272 DOI: 10.1038/s41598-023-46512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Childhood abuse reduces hippocampal and amygdala volumes and impairs social cognition, including the ability to recognize facial expressions. However, these associations have been studied primarily in individuals with a history of severe abuse and psychiatric symptoms; researchers have not determined whether these associations can also be observed in healthy adults. In the present study, we analyzed data from 400 healthy adults (208 men and 192 women) at Tamagawa University. Parental rejection reflecting childhood abuse was assessed using the short form of Egna Minnen Beträffande Uppfostran, while social cognition was assessed using the "Fake Smile Detection Task." Hippocampal and amygdala volumes were extracted from T1-weighted magnetic resonance imaging data using FreeSurfer. We found that greater parental rejection resulted in smaller hippocampal and amygdala volumes and poorer performance in the Fake Smile Detection Task. Structural equation modeling analysis supported the model that hippocampal volume mediates maternal rejection effect on performance on the Fake Smile Detection Task, with involvement of the amygdala. These findings are in line with the structural and functional connectivity found between the hippocampus and amygdala and their joint involvement in social cognition. Therefore, parental rejection may affect hippocampal and amygdala volumes and social cognitive function even in symptom-free adults.
Collapse
Affiliation(s)
- Marino Kawamoto
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
- Tamagawa University Brain Science Institute, Tokyo, Japan
| | | | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | - Genichi Sugihara
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
- Tamagawa University Brain Science Institute, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
13
|
Bruns A, Pombo M, Ripollés P, Pelli DG. Emotions of subject and object affect beauty differently for images and music. J Vis 2023; 23:6. [PMID: 37971770 PMCID: PMC10664730 DOI: 10.1167/jov.23.13.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
What role do the emotions of subject and object play in judging the beauty of images and music? Eighty-one participants rated perceived beauty, liking, perceived happiness, and perceived sadness of 24 songs, 12 art images, and 12 nature photographs. Stimulus presentation was brief (2 seconds) or prolonged (20 seconds). The stimuli were presented in two blocks, and participants took the Positive and Negative Affect Score (PANAS) mood questionnaire before and after each block. They viewed a mood induction video between blocks either to increase their happiness or sadness or to maintain their mood. Using linear mixed-effects models, we found that perceived object happiness predicts an increase in image and song beauty regardless of duration. The effect of perceived object sadness on beauty, however, is stronger for songs than images and stronger for prolonged than brief durations. Subject emotion affects brief song beauty minimally and prolonged song beauty substantially. Whereas past studies of beauty and emotion emphasized sad music, here we analyze both happiness and sadness, both subject and object emotion, and both images and music. We conclude that the interactions between emotion and beauty are different for images and music and are strongly moderated by duration.
Collapse
Affiliation(s)
- Anna Bruns
- Center for Experimental Humanities, New York University, New York, NY, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Maria Pombo
- Department of Psychology, New York University, New York, NY, USA
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, NY, USA
- Music and Audio Research Lab (MARL), New York University, New York, NY, USA
- Center for Language, Music and Emotion (CLaME), New York University, Max-Planck Institute, New York, NY, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
14
|
Karl V, Rohe T. Structural brain changes in emotion recognition across the adult lifespan. Soc Cogn Affect Neurosci 2023; 18:nsad052. [PMID: 37769357 PMCID: PMC10627307 DOI: 10.1093/scan/nsad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Emotion recognition (ER) declines with increasing age, yet little is known whether this observation is based on structural brain changes conveyed by differential atrophy. To investigate whether age-related ER decline correlates with reduced grey matter (GM) volume in emotion-related brain regions, we conducted a voxel-based morphometry analysis using data of the Human Connectome Project-Aging (N = 238, aged 36-87) in which facial ER was tested. We expected to find brain regions that show an additive or super-additive age-related change in GM volume indicating atrophic processes that reduce ER in older adults. The data did not support our hypotheses after correction for multiple comparisons. Exploratory analyses with a threshold of P < 0.001 (uncorrected), however, suggested that relationships between GM volume and age-related general ER may be widely distributed across the cortex. Yet, small effect sizes imply that only a small fraction of the decline of ER in older adults can be attributed to local GM volume changes in single voxels or their multivariate patterns.
Collapse
Affiliation(s)
- Valerie Karl
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Tim Rohe
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
15
|
Lyu A, Abel L, Cheong AMY. Effect of habitual reading direction on saccadic eye movements: A pilot study. PLoS One 2023; 18:e0286801. [PMID: 37267410 DOI: 10.1371/journal.pone.0286801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Cognitive processes can influence the characteristics of saccadic eye movements. Reading habits, including habitual reading direction, also affect cognitive and visuospatial processes, favouring attention to the side where reading begins. Few studies have investigated the effect of habitual reading direction on saccade directionality of low-cognitive-demand stimuli (such as dots). The current study examined horizontal prosaccade, antisaccade, and self-paced saccade in subjects with two primary habitual reading directions. We hypothesised that saccades responding to the stimuli in subject's habitual reading direction would show a longer prosaccade latency and lower antisaccade error rate (errors being a reflexive glance to a sudden-appearing target, rather than a saccade away from it). Sixteen young Chinese participants with primary habitual reading direction from left to right and sixteen young Arabic and Persian participants with primary habitual reading direction from right to left were recruited. All subjects spoke/read English as their second language. Subjects needed to look towards a 5°/10° target in the prosaccade task or look towards the mirror image location of the target in the antisaccade task and look between two 10° targets in the self-paced saccade task. Only Arabic and Persian participants showed a shorter and directional prosaccade latency towards 5° stimuli against their habitual reading direction. No significant effect of reading direction on antisaccade latency towards the correct directions was found. Chinese readers were found to generate significantly shorter prosaccade latencies and higher antisaccade directional errors compared with Arabic and Persian readers for stimuli appearing at their habitual reading side. The present pilot study provides insights into the effect of reading habits on saccadic eye movements of low-cognitive-demand stimuli and offers a platform for future studies to investigate the relationship between reading habits and eye movement behaviours.
Collapse
Affiliation(s)
- Anqi Lyu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Larry Abel
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- School of Medicine, Deakin University, Melbourne, Victoria, Australia
| | - Allen M Y Cheong
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
16
|
Opposing and emotion-specific associations between frontal activation with depression and anxiety symptoms during facial emotion processing in generalized anxiety and depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110716. [PMID: 36623581 DOI: 10.1016/j.pnpbp.2023.110716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Major depression (MDD) and generalized anxiety disorder (GAD) have become one of the leading global causes of disability and both are characterized by marked interpersonal and social impairments. However, despite high comorbidity and overlapping social-emotional deficits, it remains unclear whether MDD and GAD share a common neural basis during interpersonal processing. In the present study, we combined an emotional face processing paradigm with fMRI and dimensional and categorical analyses in a sample of unmedicated MDD and GAD patients (N = 72) as well as healthy controls (N = 35). No group differences were found in categorical analyses. However, the dimensional analyses revealed that dorsolateral prefrontal cortex (dlPFC) reactivity to sad facial expressions was positively associated with depression symptom load, yet negatively associated with anxiety symptom load in the entire sample. On the network level depression symptom load was positively associated with functional connectivity between the bilateral amygdala and a widespread network including the anterior cingulate and insular cortex. Together, these findings suggest that the dlPFC - engaged in cognitive and emotional processing - exhibits symptom- and emotion-specific alteration during interpersonal processing. Dysregulated communication between the amygdala and core regions of the salience network may represent depression-specific neural dysregulations.
Collapse
|
17
|
Schräder J, Habel U, Jo HG, Walter F, Wagels L. Identifying the duration of emotional stimulus presentation for conscious versus subconscious perception via hierarchical drift diffusion models. Conscious Cogn 2023; 110:103493. [PMID: 36898167 DOI: 10.1016/j.concog.2023.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
To investigate subliminal priming effects, different durations for stimulus presentation are applied ranging from 8 to 30 ms. This study aims to select an optimal presentation span whichleads to a subconscious processing. 40 healthy participants rated emotional faces (sad, neutral or happy expression) presented for 8.3 ms, 16.7 ms and 25 ms. Alongside subjective and objectivestimulus awareness, task performance was estimated via hierarchical drift diffusion models. Participants reported stimulus awareness in 65 % of the 25 ms trials,in 36 % of 16.7 ms trials, and in 2.5 % of 8.3 ms trials.Emotion-dependent responses were reflected in decreased performance (drift rates, accuracy)during sad trials. The detection rate (probability of making a correct response) during 8.3 ms was 12.2 % and slightly above chance level (33.333 % for three response options) during 16.7 ms trials (36.8 %). The experiments suggest a presentation time of 16.7 ms as optimal for subconscious priming. An emotion-specific response was detected during 16.7 ms while the performanceindicates a subconscious processing.
Collapse
Affiliation(s)
- Julia Schräder
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Han-Gue Jo
- School of Computer Information and Communication Engineering, College of Engineering, Kunsan National University, 558 Daehak Road, Gunsan 54150, Korea
| | - Franziska Walter
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
18
|
Ware ME, Kadan-Lottick NS, Devidas M, Terrell S, Chow EJ, Ehrhardt MJ, Hardy KK, Chemaitilly W, Hein W, Winick N, Teachey D, Esbenshade A, Armenian SH, Partin RE, Ness KK. Design and methods of a randomized web-based physical activity intervention among children with cancer: A report from the Children's Oncology Group. Contemp Clin Trials 2022; 122:106961. [PMID: 36228982 PMCID: PMC9669240 DOI: 10.1016/j.cct.2022.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Promoting physical activity soon after treatment for childhood cancer may benefit health because sedentary lifestyle during curative therapy may perpetuate physical and emotional complications. The primary goals of this study are to evaluate the effects of a 6-month web-based, rewards-based physical activity intervention on fitness, biomarkers of cardiometabolic health, inflammation, adipokine status, quality of life and school attendance, and determine if effect of intervention on markers of cardiometabolic health is mediated by changes in fitness. The primary outcome of interest is fitness (physiological cost index, six-minute walk test) measured at end of intervention. METHODS This ongoing study is a two-arm, prospective, randomized design with accrual goals of 192 children for intervention and control groups. Children ≥8 years and < 16 years of age, not meeting recommended levels of physical activity, who completed therapy within the past 12 months are eligible. Both groups receive: 1) educational materials encouraging physical activity, 2) activity monitor, 3) access to web-based interface designed to motivate physical activity, 4) rewards based on physical activity levels, and 5) access to their activity data on the web-interface. Those randomized to intervention: 1) can view others' activity and interact with other participants, and 2) receive rewards based on physical activity levels throughout the intervention (vs. at the end of the intervention for control group). CONCLUSION Unique, scalable, and portable physical activity interventions that motivate young survivors are needed. This study will inform future web-based physical activity interventions for children with cancer by demonstrating effects of rewards and social interaction. CLINICAL TRIALS ClinicalTrials.gov Identifier: NCT03223753; COG Identifier: ALTE1631.
Collapse
Affiliation(s)
- Megan E Ware
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | | | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Sarah Terrell
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Eric J Chow
- Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - Matthew J Ehrhardt
- Oncology Department, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Kristina K Hardy
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Wassim Chemaitilly
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Wendy Hein
- Children's Mercy, Kansas City, MO, United States of America
| | - Naomi Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - David Teachey
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Adam Esbenshade
- Department of Pediatrics, Vanderbilt University, Nashville, TN, United States of America
| | - Saro H Armenian
- Department of Pediatrics, City of Hope, Duarte, CA, United States of America
| | - Robyn E Partin
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, United States of America.
| |
Collapse
|
19
|
Shribman S, Burrows M, Convery R, Bocchetta M, Sudre CH, Acosta-Cabronero J, Thomas DL, Gillett GT, Tsochatzis EA, Bandmann O, Rohrer JD, Warner TT. Neuroimaging Correlates of Cognitive Deficits in Wilson's Disease. Mov Disord 2022; 37:1728-1738. [PMID: 35723521 PMCID: PMC9542291 DOI: 10.1002/mds.29123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cognitive impairment is common in neurological presentations of Wilson's disease (WD). Various domains can be affected, and subclinical deficits have been reported in patients with hepatic presentations. Associations with imaging abnormalities have not been systematically tested. OBJECTIVE The aim was to determine the neuroanatomical basis for cognitive deficits in WD. METHODS We performed a 16-item neuropsychological test battery and magnetic resonance brain imaging in 40 patients with WD. The scores for each test were compared between patients with neurological and hepatic presentations and with normative data. Associations with Unified Wilson's Disease Rating Scale neurological examination subscores were examined. Quantitative, whole-brain, multimodal imaging analyses were used to identify associations with neuroimaging abnormalities in chronically treated stable patients. RESULTS Abstract reasoning, executive function, processing speed, calculation, and visuospatial function scores were lower in patients with neurological presentations than in those with hepatic presentations and correlated with neurological examination subscores. Deficits in abstract reasoning and phonemic fluency were associated with lower putamen volumes even after controlling for neurological severity. About half of patients with hepatic presentations had poor performance in memory for faces, cognitive flexibility, or associative learning relative to normative data. These deficits were associated with widespread cortical atrophy and/or white matter diffusion abnormalities. CONCLUSIONS Subtle cognitive deficits in patients with seemingly hepatic presentations represent a distinct neurological phenotype associated with diffuse cortical and white matter pathology. This may precede the classical neurological phenotype characterized by movement disorders and executive dysfunction and be associated with basal ganglia damage. A binary phenotypic classification for WD may no longer be appropriate. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Samuel Shribman
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| | - Maggie Burrows
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| | - Rhian Convery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Carole H Sudre
- MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom.,Centre for Medical Image Computing, University College London, London, United Kingdom.,Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | | | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Godfrey T Gillett
- Department of Clinical Chemistry, Northern General Hospital, Sheffield, United Kingdom
| | - Emmanuel A Tsochatzis
- UCL Institute of Liver and Digestive Health and Royal Free Hospital, London, United Kingdom
| | - Oliver Bandmann
- Sheffield Institute of Translational Neuroscience, Sheffield, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London
| |
Collapse
|
20
|
Dahlén AD, Schofield A, Schiöth HB, Brooks SJ. Subliminal Emotional Faces Elicit Predominantly Right-Lateralized Amygdala Activation: A Systematic Meta-Analysis of fMRI Studies. Front Neurosci 2022; 16:868366. [PMID: 35924231 PMCID: PMC9339677 DOI: 10.3389/fnins.2022.868366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Prior research suggests that conscious face processing occurs preferentially in right hemisphere occipito-parietal regions. However, less is known about brain regions associated with non-conscious processing of faces, and whether a right-hemispheric dominance persists in line with specific affective responses. We aim to review the neural responses systematically, quantitatively, and qualitatively underlying subliminal face processing. PubMed was searched for Functional Magnetic Resonance Imaging (fMRI) publications assessing subliminal emotional face stimuli up to March 2022. Activation Likelihood Estimation (ALE) meta-analyses and narrative reviews were conducted on all studies that met ALE requirements. Risk of bias was assessed using the AXIS tool. In a meta-analysis of all 22 eligible studies (merging clinical and non-clinical populations, whole brain and region of interest analyses), bilateral amygdala activation was reported in the left (x = −19.2, y = 1.5, z = −17.1) in 59% of studies, and in the right (x = 24.4, y = −1.7, z = −17.4) in 68% of studies. In a second meta-analysis of non-clinical participants only (n = 18), bilateral amygdala was again reported in the left (x = −18, y = 3.9, z = −18.4) and right (x = 22.8, y = −0.9, z = −17.4) in 56% of studies for both clusters. In a final meta-analysis of whole-brain studies only (n=14), bilateral amygdala was also reported in the left (x = −20.2, y = 2.9, z = −17.2) in 64% of studies, and right (x = 24.2, y = −0.7, z = −17.8) in 71% of studies. The findings suggest that non-consciously detected emotional faces may influence amygdala activation, especially right-lateralized (a higher percentage of convergence in studies), which are integral for pre-conscious affect and long-term memory processing.
Collapse
Affiliation(s)
- Amelia D. Dahlén
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Aphra Schofield
- Faculty of Health, School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helgi B. Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Samantha J. Brooks
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Faculty of Health, School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Psychology, School of Human and Community Development, University of Witwatersrand, Johannesburg, South Africa
- *Correspondence: Samantha J. Brooks
| |
Collapse
|
21
|
Weidner EM, Schindler S, Grewe P, Moratti S, Bien CG, Kissler J. Emotion and attention in face processing: Complementary evidence from surface event-related potentials and intracranial amygdala recordings. Biol Psychol 2022; 173:108399. [PMID: 35850159 DOI: 10.1016/j.biopsycho.2022.108399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Face processing is biased by emotional and voluntarily directed attention, both of which modulate processing in distributed cortical areas. The amygdala is assumed to contribute to an attentional bias for emotional faces, although its interaction with directed attention awaits further clarification. Here, we studied the interaction of emotion and attention during face processing via scalp EEG potentials of healthy participants and intracranial EEG (iEEG) recordings of the right amygdala in one patient. Three randomized blocks consisting of angry, neutral, and happy facial expressions were presented, and one expression was denoted as the target category in each block. Happy targets were detected fastest and most accurately both in the group study and by the iEEG patient. Occipital scalp potentials revealed emotion differentiation for happy faces in the early posterior negativity (EPN) around 300 ms after stimulus onset regardless of the target condition. A similar response to happy faces occurred in the amygdala only for happy targets. On the scalp, a late positive potential (LPP, around 600 ms) enhancement for targets occurred for all target conditions alike. A simultaneous late signal in the amygdala was largest for emotional targets. No late signal enhancements were found for neutral targets in the amygdala. Cortical modulations, by contrast, showed both attention-independent effects of emotion and emotion-independent effects of attention. These results demonstrate an attention-dependence of amygdala activity during the processing of facial expressions and partly independent cortical mechanisms.
Collapse
Affiliation(s)
- Enya M Weidner
- Department of Psychology, Bielefeld University, Bielefeld, Germany.
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Philip Grewe
- Clinical Neuropsychology and Epilepsy Research, Medical School OWL, Bielefeld University, Bielefeld, Germany; Department of Epileptology (Krankenhaus Mara), Bielefeld University, Medical School OWL, Bielefeld, Germany
| | - Stephan Moratti
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Technical University of Madrid, Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Medical School OWL, Bielefeld, Germany
| | - Johanna Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Abstract
The extent to which we are affected by perceptual input of which we are unaware is widely debated. By measuring neural responses to sensory stimulation, neuroscientific data could complement behavioral results with valuable evidence. Here we review neuroscientific findings of processing of high-level information, as well as interactions with attention and memory. Although the results are mixed, we find initial support for processing object categories and words, possibly to the semantic level, as well as emotional expressions. Robust neural evidence for face individuation and integration of sentences or scenes is lacking. Attention affects the processing of stimuli that are not consciously perceived, and such stimuli may exogenously but not endogenously capture attention when relevant, and be maintained in memory over time. Sources of inconsistency in the literature include variability in control for awareness as well as individual differences, calling for future studies that adopt stricter measures of awareness and probe multiple processes within subjects.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel;
| | - Leon Y Deouell
- Department of Psychology and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
23
|
Showstark M, Bahadursingh R, Zhang S, Fry A, Kozminski B, Lundstam P, Putrino D. Comparison of Hemodynamic Brain Responses Between Big Wave Surfers and Non-big Wave Surfers During Affective Image Presentation. Front Psychol 2022; 13:800275. [PMID: 35783705 PMCID: PMC9245544 DOI: 10.3389/fpsyg.2022.800275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background Big wave surfers are extreme sports athletes who expose themselves to life-threatening risk when training and competing. Little is known about how and why extreme sports athletes choose to participate in their chosen sports. This exploratory study investigated potential neurophysiological and psychometric differences between big and non-big wave surfers. Methods Thirteen big wave surfers (BWS) and 10 non-big wave surfers (CON) viewed a series of images from the International Affective Picture System (IAPS) while undergoing brain functional magnetic resonance imaging (fMRI). The Fear Schedule Survey-III, Arnett Inventory of Sensation Seeking, Discrete Emotions Questionnaire, and Positive and Negative Affect Schedule were also completed. Results The BWS group demonstrated higher blood-oxygen level-dependent (BOLD) signal change in the insula, visual cortex, and periaqueductal gray, whereas the CON group displayed increased hypothalamus activation in response to high amplitude negative-valence (HAN) image presentation. Psychophysiological interaction (PPI) analyses found CON showed significant interactions between frontal and temporal cortical regions as well as between the hypothalamus and the insula, frontal, and temporal cortices during HAN image presentation that were not seen in BWS. No differences between groups were found in their responses to the questionnaires. Conclusion Our findings demonstrate significant differences in brain activation between BWS and CON in response to the presentation of HAN IAPS images, despite no significant differences in scores on psychometric questionnaires.
Collapse
Affiliation(s)
- Mary Showstark
- Yale School of Medicine Physician Assistant Online Program, New Haven, CT, United States
| | | | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Adam Fry
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Barbara Kozminski
- Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, WA, United States
| | - Per Lundstam
- Red Bull North America, Santa Monica, CA, United States
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: David Putrino,
| |
Collapse
|
24
|
Wong JJ, Wong NML, Chang DHF, Qi D, Chen L, Lee TMC. Amygdala-pons connectivity is hyperactive and associated with symptom severity in depression. Commun Biol 2022; 5:574. [PMID: 35688901 PMCID: PMC9187701 DOI: 10.1038/s42003-022-03463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the neural underpinnings of processing sad information and how it differs in people with depression could elucidate the neural mechanisms perpetuating sad mood in depression. Here, we conduct a 7 T fMRI study to delineate the neural correlates involved only in processing sad information, including pons, amygdala, and corticolimbic regions. We then conduct a 3 T fMRI study to examine the resting-state connectivity in another sample of people with and without depression. Only clinically depressed people demonstrate hyperactive amygdala–pons connectivity. Furthermore, this connectivity is related to depression symptom severity and is a significant indicator of depression. We speculate that visual sad information reinforces depressed mood and stimulates the pons, strengthening the amygdala–pons connectivity. The relationship between this connectivity and depressive symptom severity suggests that guiding one’s visual attention and processing of sad information may benefit mood regulation. A study on patients with major depressive disorder (MDD) suggests that a specific sadness-processing connection between the amygdala and pons appears to be dysfunctional among people with MDD and associated with severity of depression.
Collapse
Affiliation(s)
- Jing Jun Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Di Qi
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China. .,Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Hong Kong, China.
| |
Collapse
|
25
|
The Effects of Attentional Deployment on Reinterpretation in Depressed Adolescents: Evidence from an Eye-Tracking Study. COGNITIVE THERAPY AND RESEARCH 2022. [DOI: 10.1007/s10608-022-10303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Background
Individuals with major depression have difficulties employing cognitive reappraisal. Most prior studies have not accounted for attentional deployment, which seems to be involved in this process.
Methods
We investigated the cognitive reappraisal tactic reinterpretation in 20 depressed and 28 healthy youths and assessed regulation success in response to negative pictures via self-report. To investigate attentional deployment during reinterpretation, we applied eye-tracking and manipulated gaze focus by instructing participants to direct their attention towards/away from emotional picture aspects.
Results
Depressed adolescents, compared with healthy youths, had a diminished regulation success when their gaze was focused on emotional aspects. Both depressed and healthy adolescents spent less time fixating on emotional facets of negative pictures when using reinterpretation as compared with simply attending to the pictures.
Conclusions
Results from this study suggest that adolescents with major depression have emotion regulation deficits when being confronted with negative emotional facets, while showing intact overt attentional processes. The findings provide important starting points for future research investigating the role of other factors which might impact on emotion regulation processes in this patient group, such as cognitive control deficits.
Collapse
|
26
|
Neuromodulation of facial emotion recognition in health and disease: A systematic review. Neurophysiol Clin 2022; 52:183-201. [DOI: 10.1016/j.neucli.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
|
27
|
Faustino B. Minding my brain: Fourteen neuroscience-based principles to enhance psychotherapy responsiveness. Clin Psychol Psychother 2022; 29:1254-1275. [PMID: 35112428 DOI: 10.1002/cpp.2719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022]
Abstract
Intersections between psychotherapy and neurosciences are at its dawn. The quest to understand the neural underpinnings of psychological processes has led several generations of scientists to explore neural correlates between mind, brain, and behavior. Neuroscience methods and research has given psychology new perspectives and insights about the structure and function of complex neural pathways, that underly human functioning (cognition, emotion, motivation, and interpersonal behavior). By translating neuroscientific findings into psychotherapeutic principles of change, it is possible to promote responsiveness towards brain dysfunction that underlies patients' psychological malfunctioning. In psychotherapy, responsiveness is a core aspect of the therapeutic change process, especially to adapt psychological interventions to patients' motivational stages and preferences, coping styles, neurobehavioral modes, and emotional needs. Within a transtheoretical and translational approach, contemporary neuroscientific findings are revised, discussed, and used to attempt to build-on fourteen theoretical brain-based principles that may be applied to psychotherapy. Translating these empirical findings into practical principles, clinical strategies and tasks is expected to enhance psychotherapy responsiveness grounded on a science-based knowledge of brain functioning.
Collapse
Affiliation(s)
- Bruno Faustino
- Faculdade de Psicologia da Universidade de Lisboa, Portugal.,HEI-Lab, Lusófona University, Lisbon, Portugal
| |
Collapse
|
28
|
Spatially Adjacent Regions in Posterior Cingulate Cortex Represent Familiar Faces at Different Levels of Complexity. J Neurosci 2021; 41:9807-9826. [PMID: 34670848 PMCID: PMC8612644 DOI: 10.1523/jneurosci.1580-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022] Open
Abstract
Extensive research has shown that perceptual information of faces is processed in a network of hierarchically-organized areas within ventral temporal cortex. For familiar and famous faces, perceptual processing of faces is normally accompanied by extraction of semantic knowledge about the social status of persons. Semantic processing of familiar faces could entail progressive stages of information abstraction. However, the cortical mechanisms supporting multistage processing of familiar faces have not been characterized. Here, using an event-related fMRI experiment, familiar faces from four celebrity groups (actors, singers, politicians, and football players) and unfamiliar faces were presented to the human subjects (both males and females) while they were engaged in a face categorization task. We systematically explored the cortical representations for faces, familiar faces, subcategories of familiar faces, and familiar face identities using whole-brain univariate analysis, searchlight-based multivariate pattern analysis (MVPA), and functional connectivity analysis. Convergent evidence from all these analyses revealed a set of overlapping regions within posterior cingulate cortex (PCC) that contained decodable fMRI responses for representing different levels of semantic knowledge about familiar faces. Our results suggest a multistage pathway in PCC for processing semantic information of faces, analogous to the multistage pathway in ventral temporal cortex for processing perceptual information of faces.SIGNIFICANCE STATEMENT Recognizing familiar faces is an important component of social communications. Previous research has shown that a distributed network of brain areas is involved in processing the semantic information of familiar faces. However, it is not clear how different levels of semantic information are represented in the brain. Here, we evaluated the multivariate response patterns across the entire cortex to discover the areas that contain information for familiar faces, subcategories of familiar faces, and identities of familiar faces. The searchlight maps revealed that different levels of semantic information are represented in topographically adjacent areas within posterior cingulate cortex (PCC). The results suggest that semantic processing of faces is mediated through progressive stages of information abstraction in PCC.
Collapse
|
29
|
van Boxtel A, Zaalberg R, de Wied M. Subnormal short-latency facial mimicry responses to dynamic emotional facial expressions in male adolescents with disruptive behavior disorders and callous-unemotional traits. Psychophysiology 2021; 59:e13945. [PMID: 34553782 PMCID: PMC9286451 DOI: 10.1111/psyp.13945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023]
Abstract
Using still pictures of emotional facial expressions as experimental stimuli, reduced amygdala responses or impaired recognition of basic emotions were repeatedly found in people with psychopathic traits. The amygdala also plays an important role in short‐latency facial mimicry responses. Since dynamic emotional facial expressions may have higher ecological validity than still pictures, we compared short‐latency facial mimicry responses to dynamic and static emotional expressions between adolescents with psychopathic traits and normal controls. Facial EMG responses to videos or still pictures of emotional expressions (happiness, anger, sadness, fear) were measured. Responses to 500‐ms dynamic expressions in videos, as well as the subsequent 1500‐ms phase of maximal (i.e., static) expression, were compared between male adolescents with disruptive behavior disorders and high (n = 14) or low (n = 17) callous‐unemotional (CU) traits, and normal control subjects (n = 32). Responses to still pictures were also compared between groups. EMG responses to dynamic expressions were generally significantly smaller in the high‐CU group than in the other two groups, which generally did not differ. These group differences gradually emerged during the 500‐ms stimulus presentation period but in general they were already seen a few hundred milliseconds after stimulus onset. Group differences were absent during the 1500‐ms phase of maximal expression and during exposure to still pictures. Subnormal short‐latency mimicry responses to dynamic emotional facial expressions in the high‐CU group might have negative consequences for understanding emotional facial expressions of others during daily life when human facial interactions are primarily dynamic. During human interactions, short‐latency facial mimicry responses occur to dynamic emotional facial expressions of others. These are preconscious, automatic responses which cannot be voluntarily controlled. They may be important for emotional understanding of others and appear to be subnormal in male adolescents with psychopathic traits.
Collapse
Affiliation(s)
- Anton van Boxtel
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Ruud Zaalberg
- Wageningen University & Research, Biometris, Wageningen, The Netherlands
| | - Minet de Wied
- Department of Youth and Family, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Huang K, Kang Y, Wu Z, Wang Y, Cai S, Huang L. Asymmetrical alterations of grey matter among psychiatric disorders: A systematic analysis by voxel-based activation likelihood estimation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110322. [PMID: 33838150 DOI: 10.1016/j.pnpbp.2021.110322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Schizophrenia (SZ), bipolar disorder (BD) and major depression disorder (MDD) have been regarded as highly diverged independent entities in current psychiatric diagnosis. However, ample new evidence suggests that they may have common biological traits. Neuroimaging studies showed that psychiatric disorders might associated with altered grey matter (GM) asymmetry compared to controls; however, the degree to which SZ, BD and MDD have common and/or distinct asymmetrical alterations in GM is still ambiguous. In this study, we analysed 169 voxel-based studies (including 3517 SZ patients, 1575 BD patients, 3280 MDD patients and 9733 controls) using activation likelihood estimation (ALE) meta-analysis to systematically review the existence of similar GM atrophy and asymmetrical alteration patterns among these psychiatric disorders, and the functional association between behaviour domains and topological alterations. We found that the right parahippocampal gyrus and left superior frontal gyrus showed commonly altered GM volume across all three illnesses, but did not identify common asymmetrical alteration. The asymmetrical alteration with leftward bias appeared in SZ and bipolar disorder at different locations, but more asymmetrical alteration with rightward bias appeared in MDD. Moreover, these changes have been confirmed to be associate with several symptoms and may have roles in functional networks. Our findings support the existence of common neurobiological damnification in these psychiatric disorders and provides valuable insights for the neural commonalties among different psychiatric disorders based on a large sample size.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yafei Kang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Zhongcheng Wu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Suping Cai
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
31
|
Modeling Skin Conductance Response Time Series during Consecutive Rapid Decision-Making under Concurrent Temporal Pressure and Information Ambiguity. Brain Sci 2021; 11:brainsci11091122. [PMID: 34573144 PMCID: PMC8469606 DOI: 10.3390/brainsci11091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/20/2022] Open
Abstract
Emergency situations promote risk-taking behaviors associated with anxiety reactivity. A previous study using the Iowa Gambling Task (IGT) has demonstrated that prespecified state anxiety predicts moderate risk-taking (middle-risk/high-return) after salient penalty events under temporal pressure and information ambiguity. Such moderate risk-taking can be used as a behavioral background in the case of fraud damage. We conducted two psychophysiological experiments using the IGT and used a psychophysiological modeling approach to examine how moderate risk-taking under temporal pressure and information ambiguity is associated with automatic physiological responses, such as a skin conductance response (SCR). The first experiment created template SCR functions under concurrent temporal pressure and information ambiguity. The second experiment produced a convolution model using the SCR functions and fitted the model to the SCR time series recorded under temporal pressure and no temporal pressure, respectively. We also collected the participants’ anxiety profiles before the IGT experiment. The first finding indicated that participants with higher state anxiety scores yielded better model fitting (that is, event-related physiological responses) under temporal pressure. The second finding demonstrated that participants with better model fitting made consecutive Deck A selections under temporal pressure more frequently. In summary, a psychophysiological modeling approach is effective for capturing overlapping SCRs and moderate risk-taking under concurrent temporal pressure and information ambiguity is associated with automatic physiological and emotional reactivity.
Collapse
|
32
|
Doulatova M. Emotion’s role in the unity of consciousness. PHILOSOPHICAL PSYCHOLOGY 2021. [DOI: 10.1080/09515089.2021.1915971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maria Doulatova
- Department of Philosophy, Washington University in St. Louis
| |
Collapse
|
33
|
Abbas A, Chalup S. Affective analysis of visual scenes using face pareidolia and scene-context. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Motomura Y, Katsunuma R, Ayabe N, Oba K, Terasawa Y, Kitamura S, Moriguchi Y, Hida A, Kamei Y, Mishima K. Decreased activity in the reward network of chronic insomnia patients. Sci Rep 2021; 11:3600. [PMID: 33574355 PMCID: PMC7878866 DOI: 10.1038/s41598-020-79989-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/04/2020] [Indexed: 12/03/2022] Open
Abstract
In modern society, many people have insomnia. Chronic insomnia has been noted as a risk factor for depression. However, there are few functional imaging studies of the brain on affective functions in chronic insomnia. This study aimed to investigate brain activities induced by emotional stimuli in chronic insomnia patients. Fifteen patients with primary insomnia and 30 age and gender matched healthy controls participated in this study. Both groups were presented images of fearful, happy, and neutral expressions consciously and non-consciously while undergoing MRI to compare the activity in regions of the brain responsible for emotions. Conscious presentation of the Happy-Neutral contrast showed significantly lower activation in the right orbitofrontal cortex of patients compared to healthy controls. The Happy-Neutral contrast presented in a non-conscious manner resulted in significantly lower activation of the ventral striatum, right insula, putamen, orbitofrontal cortex and ventral tegmental area in patients compared to healthy controls. Our findings revealed that responsiveness to positive emotional stimuli were decreased in insomniac patients. Specifically, brain networks associated with rewards and processing positive emotions showed decreased responsiveness to happy emotions especially for non-conscious image. The magnitude of activity in these areas also correlated with severity of insomnia, even after controlling for depression scale scores. These findings suggest that insomnia induces an affective functional disorder through an underlying mechanism of decreased sensitivity in the regions of the brain responsible for emotions and rewards to positive emotional stimuli.
Collapse
Affiliation(s)
- Yuki Motomura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan. .,Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan. .,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.
| | - Ruri Katsunuma
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Naoko Ayabe
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Department of Regional Studies and Humanities, Faculty of Education and Human Studies, Akita University, 1-1, Tegata-Gakuenmachi, Akita, 010-8502, Japan
| | - Kentaro Oba
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuri Terasawa
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Department of Psychology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan
| | - Shingo Kitamura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Yoshiya Moriguchi
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Akiko Hida
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Yuichi Kamei
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Kamisuwa Hospital, 1-17-7 Ote, Suwa, Nagano, Japan
| | - Kazuo Mishima
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan. .,Faculty of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan. .,International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
35
|
Wang J, Chen A. High progesterone levels facilitate women's social information processing by optimizing attention allocation. Psychoneuroendocrinology 2020; 122:104882. [PMID: 33068952 DOI: 10.1016/j.psyneuen.2020.104882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Ovarian hormones exert an influence on social information processing, in which, however, the exact roles of estradiol and progesterone remain unclear. This study examines the specific influences of these two ovarian hormones on social information processing across the menstrual cycle using the emotional face flanker task and attentional network test (ANT). Twenty-six naturally cycling, healthy women were tested thrice: during menses, in the follicular phase, and in the luteal phase. In the emotional face flanker task, a significant positive relation was found between progesterone levels and reaction times (RTs) for sad faces, suggesting that high progesterone levels may activate the social monitoring system and allocate more attention to the social stimulus, which benefits individuals' survival and adaptation. In the ANT, a significant increase was found in RTs and accuracy during the luteal phase, suggesting that luteal women increase this accuracy by exerting a relatively conservative strategy of allocating more attention to the targets. Taken together, these findings indicate that high levels of progesterone may facilitate social information processing by optimizing attention allocation. Moreover, overactivation of the social monitoring system may make women more susceptible to stressors and promote affective disturbances, which may provide underlying pathophysiology of the premenstrual dysphoric disorder.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
36
|
Chan MMY, Han YMY. Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: a meta-analysis of neuroimaging studies. Mol Autism 2020; 11:72. [PMID: 32993782 PMCID: PMC7523366 DOI: 10.1186/s13229-020-00374-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background Impaired imitation has been found to be an important factor contributing to social communication deficits in individuals with autism spectrum disorder (ASD). It has been hypothesized that the neural correlate of imitation, the mirror neuron system (MNS), is dysfunctional in ASD, resulting in imitation impairment as one of the key behavioral manifestations in ASD. Previous MNS studies produced inconsistent results, leaving the debate of whether “broken” mirror neurons in ASD are unresolved. Methods This meta-analysis aimed to explore the differences in MNS activation patterns between typically developing (TD) and ASD individuals when they observe biological motions with or without social-emotional components. Effect size signed differential mapping (ES-SDM) was adopted to synthesize the available fMRI data. Results ES-SDM analysis revealed hyperactivation in the right inferior frontal gyrus and left supplementary motor area in ASD during observation of biological motions. Subgroup analysis of experiments involving the observation of stimuli with or without emotional component revealed hyperactivation in the left inferior parietal lobule and left supplementary motor during action observation without emotional components, whereas hyperactivation of the right inferior frontal gyrus was found during action observation with emotional components in ASD. Subgroup analyses of age showed hyperactivation of the bilateral inferior frontal gyrus in ASD adolescents, while hyperactivation in the right inferior frontal gyrus was noted in ASD adults. Meta-regression within ASD individuals indicated that the right cerebellum crus I activation increased with age, while the left inferior temporal gyrus activation decreased with age. Limitations This meta-analysis is limited in its generalization of the findings to individuals with ASD by the restricted age range, heterogeneous study sample, and the large within-group variation in MNS activation patterns during object observation. Furthermore, we only included action observation studies which might limit the generalization of our results to the imitation deficits in ASD. In addition, the relatively small sample size for individual studies might also potentially overestimate the effect sizes. Conclusion The MNS is impaired in ASD. The abnormal activation patterns were found to be modulated by the nature of stimuli and age, which might explain the contradictory results from earlier studies on the “broken mirror neuron” debate.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
37
|
Picó A, Espert R, Gadea M. How Our Gaze Reacts to Another Person's Tears? Experimental Insights Into Eye Tracking Technology. Front Psychol 2020; 11:2134. [PMID: 32982872 PMCID: PMC7492655 DOI: 10.3389/fpsyg.2020.02134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/30/2020] [Indexed: 02/03/2023] Open
Abstract
Crying is an ubiquitous human behavior through which an emotion is expressed on the face together with visible tears and constitutes a slippery riddle for researchers. To provide an answer to the question "How our gaze reacts to another person's tears?," we made use of eye tracking technology to study a series of visual stimuli. By presenting an illustrative example through an experimental setting specifically designed to study the "tearing effect," the present work aims to offer methodological insight on how to use eye-tracking technology to study non-verbal cues. A sample of 30 healthy young women with normal visual acuity performed a within-subjects task in which they evaluated images of real faces with and without tears while their eye movements were tracked. Tears were found to be a magnet for visual attention in the task of facial attribution, facilitating a greater perception of emotional intensity. Moreover, the inspection pattern changed qualitatively and quantitatively, with our participants becoming fully focused on the tears when they were visible. The mere presence of a single tear running down a cheek was associated with an increased emotional inference and greater perception of sincerity. Using normalized and validated tools (Reading the Eyes in the Mind Test and the SALAMANCA screening test for personality disorders), we measured the influence of certain characteristics of the participants on their performance of the experimental task. On the one hand, a higher level of cognitive empathy helped to classify tearful faces with higher emotional intensity and tearless faces with less emotional intensity. On the other hand, we observed that less sincerity was attributed to the tearful faces as the SALAMANCA test scores rose in clusters A (strange and extravagant) and B (immature and emotionally unstable) of our sample. The present findings highlight the advantages of using eye tracking technology to study non-verbal cues and draw attention to methodological issues that should be taken into account. Further exploration of the relationship between empathy and tear perception could be a fruitful avenue of future research using eye tracking.
Collapse
Affiliation(s)
- Alfonso Picó
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raul Espert
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marien Gadea
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)-Mental Health, Madrid, Spain
| |
Collapse
|
38
|
Li M, Su S, Cai W, Cao J, Miao X, Zang W, Gao S, Xu Y, Yang J, Tao YX, Ai Y. Differentially Expressed Genes in the Brain of Aging Mice With Cognitive Alteration and Depression- and Anxiety-Like Behaviors. Front Cell Dev Biol 2020; 8:814. [PMID: 33015035 PMCID: PMC7493670 DOI: 10.3389/fcell.2020.00814] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023] Open
Abstract
Despite the great increase in human lifespan with improved medical care, the physiological and pathological changes such as memory and cognitive disorders and associated anxiety and depression are major concern with aging. Molecular mechanisms underlying these changes are little known. The present study examined the differentially expressed genes (DEGs) and the genes with differentially expressed isoforms in three brain regions, anterior cingulate cortex (ACC), amygdala and hippocampus, throughout the lifespan of mice. Compared to 2-month old mice, both 12- and 24-month old mice displayed memory and cognitive impairments in the Morris water maze, Y-maze, and novel object recognition tests and depression- and anxiety-like behaviors in the tail suspension, forced swimming, open field, and elevated plus maze tests. RNA sequencing analysis identified 634 and 1078 DEGs in ACC, 453 and 1015 DEGs in the amygdala and 884 and 1054 DEGs in hippocampus in the 12- and 24-month old mice, respectively. Similarly, many genes with differentially expressed isoforms were also identified in these three brain regions in the 12- and 24-month old mice. Further functional analysis revealed that many DEGs and the genes with differentially expressed isoforms in the ACC and amygdala were mapped to depression- and anxiety-related genes, respectively and that a lot of DEGs and the genes with differentially expressed isoforms in hippocampus were mapped to cognitive dysfunction-related genes from both 12- and 24-month old mice. All of these mapped DEGs and the genes with differentially expressed isoforms were closely related to neuroinflammation. Our findings indicate that these neuroinflammation-related DEGs and the genes with differentially expressed isoforms are likely new targets in the management of memory/cognitive impairment and emotional disorders during the aging.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Songxue Su
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Weihua Cai
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Xuerong Miao
- Department of Anesthesiology and Intensive Care, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Weidong Zang
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Shichao Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, Buffalo, NY, United States
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, Buffalo, NY, United States
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|
39
|
Ding J, Wang Y, Wang C, d'Oleire Uquillas F, He Q, Cheng L, Zou Z. Negative Impact of Sadness on Response Inhibition in Females: An Explicit Emotional Stop Signal Task fMRI Study. Front Behav Neurosci 2020; 14:119. [PMID: 32903296 PMCID: PMC7396530 DOI: 10.3389/fnbeh.2020.00119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023] Open
Abstract
Response inhibition is a critical cognitive ability underlying executive control over reactions to external cues, or inner requirements. Previous studies suggest that high arousal negative emotions (e.g., anger or fear) could impair response inhibition in implicit emotional stop signal tasks (eSSTs). However, studies exploring how low arousal negative emotions (e.g., sadness) influence response inhibition remain sparse. In the current study, 20 female college students performed an explicit eSST to explore the influence of sadness on response inhibition and its neural mechanism. Participants are instructed to press a button to sad or neutral facial stimuli while inhibiting their response during the presentation of a stop signal. Results showed that compared with neutral stimuli, sad stimuli were related to increased stop signal reaction time (SSRT) (i.e., worse response inhibition). Compared with neutral condition, higher activation during sad condition was found within the right superior frontal gyrus (SFG), right insula, right middle cingulate cortex (MCC), bilateral superior temporal gyrus (STG), left lingual gyrus, and right motor cortex. These findings indicated that sadness, like other negative emotions, may impair response inhibition in an explicit way and highlight the explicit eSST as a new paradigm to investigate the subtle interaction between negative emotion processing and cognitive control.
Collapse
Affiliation(s)
- Jianrui Ding
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yongming Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing, China
| | - Chuan Wang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Federico d'Oleire Uquillas
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Li Cheng
- Faculty of Education, Beijing Normal University, Beijing, China
| | - Zhiling Zou
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
40
|
van Heukelum S, Mars RB, Guthrie M, Buitelaar JK, Beckmann CF, Tiesinga PHE, Vogt BA, Glennon JC, Havenith MN. Where is Cingulate Cortex? A Cross-Species View. Trends Neurosci 2020; 43:285-299. [PMID: 32353333 DOI: 10.1016/j.tins.2020.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023]
Abstract
To compare findings across species, neuroscience relies on cross-species homologies, particularly in terms of brain areas. For cingulate cortex, a structure implicated in behavioural adaptation and control, a homologous definition across mammals is available - but currently not employed by most rodent researchers. The standard partitioning of rodent cingulate cortex is inconsistent with that in any other model species, including humans. Reviewing the existing literature, we show that the homologous definition better aligns results of rodent studies with those of other species, and reveals a clearer structural and functional organisation within rodent cingulate cortex itself. Based on these insights, we call for widespread adoption of the homologous nomenclature, and reinterpretation of previous studies originally based on the nonhomologous partitioning of rodent cingulate cortex.
Collapse
Affiliation(s)
- Sabrina van Heukelum
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands.
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Martin Guthrie
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Paul H E Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Brent A Vogt
- Cingulum Neurosciences Institute, 4435 Stephanie Drive, Manlius, NY 13104, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands; Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Martha N Havenith
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboudumc, Nijmegen, The Netherlands; Zero-Noise Lab, Ernst Strüngmann Institute for Neuroscience, 60528 Frankfurt a.M., Germany
| |
Collapse
|
41
|
Abstract
As the worldwide population ages, the prevalence of Alzheimer's disease (AD) increases. However, the results of promising medications have been unsatisfactory. Chinese acupuncture has a long history of treating dementia, but lack of evidence from well-designed randomized controlled trials that validate its efficacy and safety, as well as its lack of clear underlying mechanisms, contribute to its limited application in clinical practice. In recent years, brain imaging technologies, such as functional magnetic resonance imaging and positron emission tomography, have been used to assess brain responses to acupuncture in a dynamic, visual, and objective way. These techniques are frequently used to explore neurological mechanisms of responses to acupuncture in AD and provide neuroimaging evidence as well as starting points to elucidate the possible mechanisms. This review summarizes the existing brain imaging evidence that explains the effects of acupuncture for AD and analyzes brain responses to acupuncture at cognitive-related acupoints [Baihui (GV 20), Shenmen (HT 7), Zusanli (ST 36), Neiguan (PC 6), and Taixi (KI 3)] from perspectives of acupoint specificity and acupoint combinations. Key issues and directions to consider in future studies are also put forward. This review should deepen our understanding of how brain imaging studies can be used to explore the underlying mechanisms of acupuncture in AD.
Collapse
|
42
|
Greimel E, Piechaczek C, Schulte-Rüther M, Feldmann L, Schulte-Körne G. The role of attentional deployment during distancing in adolescents with major depression. Behav Res Ther 2020; 126:103554. [PMID: 32036305 DOI: 10.1016/j.brat.2020.103554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 01/18/2023]
Abstract
Individuals with major depression (MD) show deficits in cognitive reappraisal. It is yet unexplored how the act of directing visual attention away from/towards emotional aspects impacts on cognitive reappraisal in MD. Thus, we examined the role of attentional deployment during cognitive reappraisal (specifially during distancing) in adolescent MD. 36 MD adolescents and 37 healthy controls (12-18 years) performed a cognitive reappraisal task during which they a) down-regulated self-reported negative affective responses to negative pictures via distancing, or b) simply attended to the pictures. During the task, attentional focus was systematically varied by directing participants' gaze to emotional vs. non-emotional picture aspects. The validity of this experimental manipulation was checked by continuous eye-tracking during the task. Across groups and gaze focus conditions, distancing diminished negative affective responses to the pictures. Regulation success significantly differed between groups dependent on gaze focus: MD adolescents showed relatively less regulation success than controls in the emotional gaze focus condition, while the reverse was true for the non-emotional gaze focus condition. The results suggest that in MD adolescents, an emotional context might interfere with emotion regulatory aims. The findings can provide an important starting point for the development of innovative training regimes that target deficient reappraisal processes in adolescents suffering from MD.
Collapse
Affiliation(s)
- E Greimel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
| | - C Piechaczek
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - M Schulte-Rüther
- Translational Brain Medicine in Psychiatry and Neurology, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, RWTH Aachen University, Germany; JARA-Brain, Aachen, Germany
| | - L Feldmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - G Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
43
|
Barbosa MR, Moraes JPA, Ventura PR. Alterações do córtex cingulado anterior como um preditor de resposta à terapia cognitivo-comportamental. JORNAL BRASILEIRO DE PSIQUIATRIA 2019. [DOI: 10.1590/0047-2085000000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO Objetivo A terapia cognitivo-comportamental (TCC) tem eficácia bem-documentada na literatura científica para transtornos relacionados aos sintomas da ansiedade. No entanto, há uma parcela de pacientes que não responde ao tratamento psicoterápico. Por isso, os estudos sobre as alterações no córtex cingulado anterior (CCA) como preditoras neurais do tratamento têm contribuído para encontrar respostas sobre as diferenças nas respostas ao tratamento. O objetivo do presente estudo é descrever, por meio de revisão sistemática, os estudos encontrados até o ano de 2018 sobre o papel do CCA na predição de resposta à terapia. Métodos Foram realizadas buscas nas bases PsycInfo, Web of Science e PubMed com termos referentes ao tema “córtex cingulado anterior”, “terapia cognitivo-comportamental” e “predição de respostas”, incluindo estudos com neuroimagem estrutural e funcional. Resultados As buscas apresentaram 14 artigos sobre “transtorno de estresse pós-traumático (TEPT)”, “transtorno obsessivo-compulsivo (TOC)” e “transtorno de ansiedade social (TAS)”. Os estudos com neuroimagem estrutural apresentaram resultados promissores. A maior espessura do CCA foi preditora de melhor resposta ao tratamento para TEPT e TOC. Os resultados de neuroimagem funcional foram promissores para maior ativação como preditora de melhor resposta para TAS. Por outro lado, os resultados para TEPT apontaram que a menor ativação pode ser preditora de melhores respostas. Conclusão As alterações nos estudos de neuroimagem sugerem que o CCA tenha um papel de predição de resposta ao tratamento com TCC. Estudos posteriores com amostras maiores podem contribuir para a ampliação da eficácia nos tratamentos de tais transtornos.
Collapse
|
44
|
Amygdala activation during unconscious visual processing of food. Sci Rep 2019; 9:7277. [PMID: 31086241 PMCID: PMC6513994 DOI: 10.1038/s41598-019-43733-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Hedonic or emotional responses to food have important positive and negative effects on human life. Behavioral studies have shown that hedonic responses to food images are elicited rapidly, even in the absence of conscious awareness of food. Although a number of previous neuroimaging studies investigated neural activity during conscious processing of food images, the neural mechanisms underlying unconscious food processing remain unknown. To investigate this issue, we measured neural activity using functional magnetic resonance imaging while participants viewed food and mosaic images presented subliminally and supraliminally. Conjunction analyses revealed that the bilateral amygdala was more strongly activated in response to food images than to mosaic images under both subliminal and supraliminal conditions. Interaction analyses revealed that the broad bilateral posterior regions, peaking at the posterior fusiform gyrus, were particularly active when participants viewed food versus mosaic images under the supraliminal compared with the subliminal condition. Dynamic causal modeling analyses supported the model in which the subcortical visual pathway from the pulvinar to the amygdala was modulated by food under the subliminal condition; in contrast, the model in which both subcortical and cortical (connecting the primary visual cortex, fusiform gyrus, and the amygdala) visual pathways were modulated by food received the most support under the supraliminal condition. These results suggest the possibility that unconscious hedonic responses to food may exert an effect through amygdala activation via the subcortical visual pathway.
Collapse
|
45
|
Capitão LP, Chapman R, Murphy SE, Harvey CJ, James A, Cowen PJ, Harmer CJ. A single dose of fluoxetine reduces neural limbic responses to anger in depressed adolescents. Transl Psychiatry 2019; 9:30. [PMID: 30664639 PMCID: PMC6341087 DOI: 10.1038/s41398-018-0332-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023] Open
Abstract
Depression in adolescence is frequently characterised by symptoms of irritability. Fluoxetine is the antidepressant with the most favourable benefit:risk ratio profile to treat adolescent depression, but the neural mechanisms underlying antidepressant drugs in the young brain are still poorly understood. Previous studies have characterised the neural effects of long-term fluoxetine treatment in depressed adolescents, but these are limited by concurrent mood changes and a lack of placebo control. There is also recent evidence suggesting that fluoxetine reduces the processing of anger in young healthy volunteers, which is consistent with its effect for the treatment of irritability in this age group, but this remains to be investigated in depressed adolescents. Here we assessed the effects of a single, first dose of 10 mg fluoxetine vs. placebo on neural response to anger cues using fMRI in a sample of adolescents with Major Depressive Disorder (MDD) who had been recently prescribed fluoxetine. As predicted, adolescents receiving fluoxetine showed reduced activity in response to angry facial expressions in the amygdala-hippocampal region relative to placebo. Activity in the dorsal anterior cingulate cortex (dACC) was also increased. No changes in symptoms were observed. These results demonstrate, for the first time in depressed adolescents, that fluoxetine has immediate neural effects on core components of the cortico-limbic circuitry prior to clinical changes in mood. The effect on anger is consistent with our previous work and could represent a key mechanism through which fluoxetine may act to alleviate irritability symptoms in adolescent depression.
Collapse
Affiliation(s)
- Liliana P Capitão
- Oxford University Department of Psychiatry, Oxford, England.
- Oxford Health NHS Foundation Trust, Oxford, England.
| | - Robert Chapman
- Oxford University Department of Psychiatry, Oxford, England
- Oxford Health NHS Foundation Trust, Oxford, England
| | - Susannah E Murphy
- Oxford University Department of Psychiatry, Oxford, England
- Oxford Health NHS Foundation Trust, Oxford, England
| | | | - Anthony James
- Oxford University Department of Psychiatry, Oxford, England
- Oxford Health NHS Foundation Trust, Oxford, England
| | - Philip J Cowen
- Oxford University Department of Psychiatry, Oxford, England
- Oxford Health NHS Foundation Trust, Oxford, England
| | - Catherine J Harmer
- Oxford University Department of Psychiatry, Oxford, England
- Oxford Health NHS Foundation Trust, Oxford, England
| |
Collapse
|
46
|
Gainotti G. A historical review of investigations on laterality of emotions in the human brain. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2019; 28:23-41. [PMID: 30475661 DOI: 10.1080/0964704x.2018.1524683] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Different models of emotional lateralization, advanced since the first clinical observations raised this issue, will be reviewed following their historical progression. The clinical investigations that have suggested a general dominance of the right hemisphere for all kinds of emotions and the experimental studies that have proposed a different hemispheric specialization for positive vs. negative emotions (valence hypothesis) or for approach vs. withdrawal tendencies (motivational hypothesis) will be reviewed first and extensively. This historical review will be followed by a short discussion of recent anatomo-clinical and activation studies that have investigated (a) emotional and behavioral disorders of patients with asymmetrical forms of fronto-temporal degeneration and (b) laterality effects in specific brain structures (amygdala, ventro-medial prefrontal cortex, and anterior insula) playing a critical role in different components of emotions. Overall, these studies support the hypothesis of a right hemisphere dominance for all components of the emotional system.
Collapse
Affiliation(s)
- Guido Gainotti
- a Institute of Neurology, Università Cattolica del Sacro Cuore , and Department of Clinical and Behavioral Neurology , IRCCS Fondazione Santa Lucia, Rome , Italy
| |
Collapse
|
47
|
Zimmermann J, Deris N, Montag C, Reuter M, Felten A, Becker B, Weber B, Markett S. A common polymorphism on the oxytocin receptor gene (rs2268498) and resting-state functional connectivity of amygdala subregions - A genetic imaging study. Neuroimage 2018; 179:1-10. [DOI: 10.1016/j.neuroimage.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
|
48
|
Young KD, Zotev V, Phillips R, Misaki M, Drevets WC, Bodurka J. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review. Psychiatry Clin Neurosci 2018; 72:466-481. [PMID: 29687527 PMCID: PMC6035103 DOI: 10.1111/pcn.12665] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy.
Collapse
Affiliation(s)
- Kymberly D. Young
- Laureate Institute for Brain Research, Tulsa, OK
- University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, OK
| | | | | | - Wayne C. Drevets
- Janssen Research and Development, LLC, of Johnson & Johnson, Inc., New Brunswick, NJ
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK
| |
Collapse
|
49
|
Wang D, Yan X, Li M, Ma Y. Neural substrates underlying the effects of oxytocin: a quantitative meta-analysis of pharmaco-imaging studies. Soc Cogn Affect Neurosci 2018; 12:1565-1573. [PMID: 29048602 PMCID: PMC5647800 DOI: 10.1093/scan/nsx085] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
The hypothalamic peptide oxytocin (OT) is crucial in social adaptation and used to treat emotional and social deficits. Here, we conducted a systematic, quantitative meta-analysis of functional-MRI studies intranasally administering OT (IN-OT) to uncover neural substrates underlying the IN-OT effects and to elucidate differential IN-OT effects between healthy and clinical populations. Meta-analyses were conducted on 66 IN-OT fMRI studies, stratified by psychopathology, valence and sex. IN-OT increased bilateral amygdala, caudate head, and superior temporal activity in healthy individuals and increased dorsal anterior cingulate activity in patients. Moreover, IN-OT decreased amygdala activity in both patients and healthy individuals but did so to a greater degree in patients than healthy individuals. The OT-increased amygdala activity was only found on the negative social and affective processes, whereas the OT-decreased amygdala activity was mainly contributed by contrasts on negative-valenced processes. IN-OT increased parahippocampal activity and decreased amygdala activity during negative socio-affective processing. During positive socio-affective processes, IN-OT increased caudate head activity. This study indicates convergent neural substrates and the underlying neuropsychological mechanisms for IN-OT effects on social and affective processes. The common and different effects of IN-OT on patients and healthy individuals and the modulation of OT effects by valence have critical implications.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xinyuan Yan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
50
|
Bulut NS, Würz A, Yorguner Küpeli N, Çarkaxhıu Bulut G, Sungur MZ. Heart rate variability response to affective pictures processed in and outside of conscious awareness: Three consecutive studies on emotional regulation. Int J Psychophysiol 2018; 129:18-30. [PMID: 29787784 DOI: 10.1016/j.ijpsycho.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022]
Abstract
Previous research has increased understanding of the neurobiological basis of emotional regulation. However, less is known concerning the unconscious processing of affective information. Three experiments were performed to investigate the extent to which complex affective stimuli can be processed outside of consciousness and demonstrate possible mechanisms for regulation of resulting emotional responses. In Experiment 1, participants were either instructed to passively observe blocked-picture cues (neutral and negative) or to downregulate their emotions by distancing. Resulting emotional regulation activity was assessed with 0.1-Hz heart rate variability (HRV) indices. In Experiment 2, participants were presented with affective pictures that were rendered consciously invisible by means of continuous flash suppression (CFS). In Experiment 3, two equivalent sets of negative affective pictures were covertly presented and the effect of a cognitive task on emotional regulation was evaluated. Our findings revealed that 0.1-Hz HRV indices exhibited greater change over baseline in response to negative compared to neutral stimuli for both presentation conditions (consciously perceived or not). The implementation of distancing and the cognitive task were both associated with higher 0.1-Hz HRV change scores. These results indicate that even complex affective stimuli can be processed without awareness, resulting in a congruent emotional response that is physiologically detectable. Cognitive strategies can help more effectively regulate this response, implying that conscious perception of a triggering stimulus may not be essential for cognitive regulation.
Collapse
Affiliation(s)
- Necati Serkut Bulut
- Department of Psychiatry, Sakarya University Training and Research Hospital, Turkey.
| | - Axel Würz
- Department of Psychiatry, Marmara University Medical School, Turkey
| | | | - Gresa Çarkaxhıu Bulut
- Department of Child and Adolescent Psychiatry, Sakarya University Medical School, Turkey
| | | |
Collapse
|