1
|
Hughes LE, Adams NE, Rouse MA, Naessens M, Shaw A, Murley AG, Cope TE, Holland N, Nesbitt D, Street D, Whiteside DJ, Rowe JB. GABAergic modulation of beta power enhances motor adaptation in frontotemporal lobar degeneration. Alzheimers Dement 2025; 21:e14531. [PMID: 39968697 PMCID: PMC7617437 DOI: 10.1002/alz.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/20/2025]
Abstract
INTRODUCTION We examined how abnormal prefrontal neurophysiology and changes in gamma-aminobutyric acid-ergic (GABAergic) neurotransmission contribute to behavioral impairments in disorders associated with frontotemporal lobar degeneration (FTLD). METHODS We recorded magnetoencephalography during an adaptive visuomotor task from 11 people with behavioral-variant frontotemporal dementia, 11 with progressive supranuclear palsy, and 20 age-matched controls. We used tiagabine, a gamma-aminobutyric acid (GABA) re-uptake inhibitor, as a pharmacological probe to assess the role of GABA during motor-related beta power changes. RESULTS Task impairments were associated with diminished movement-related beta power. Tiagabine facilitated partial recovery of behavioral impairments and neurophysiology, moderated by executive function, such that the greatest improvements were seen in those with higher cognitive scores. The right prefrontal cortex was revealed as a key site of drug interaction. DISCUSSION Behavioral and neurophysiological deficits can be mitigated by enhancement of GABAergic neurotransmission. Clinical trials are warranted to test for enduring clinical benefits from this restorative-psychopharmacology strategy. HIGHLIGHTS Event-related beta power changes during movement can be altered by the GABA reuptake inhibitor, tiagabine. In people with behavioral-variant frontotemporal dementia and progressive supranuclear palsy, tiagabine enhanced beta modulation and concurrently improved task performance, dependent on baseline cognition, and diagnosis. The effects of the drug suggest a GABA-dependent beta-related mechanism that underlies adaptive motor control. Restoring selective deficits in neurotransmission is a potential means to improve behavioral symptoms in patients with dementia.
Collapse
Affiliation(s)
- Laura E. Hughes
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - Natalie E. Adams
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Matthew A. Rouse
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - Michelle Naessens
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | | | - Alexander G. Murley
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - Thomas E. Cope
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - Negin Holland
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - David Nesbitt
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - Duncan Street
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Cambridge University HospitalsCambridgeUK
| | - David J. Whiteside
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
- Cambridge University HospitalsCambridgeUK
| |
Collapse
|
2
|
Mujunen T, Sompa U, Muñoz-Ruiz M, Monto E, Rissanen V, Ruuskanen H, Ahtiainen P, Piitulainen H. Early peripheral nerve impairments in type 1 diabetes are associated with cortical inhibition of ankle joint proprioceptive afference. Clin Neurophysiol 2025; 173:99-112. [PMID: 40090238 DOI: 10.1016/j.clinph.2025.02.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE Diabetic sensorimotor peripheral neuropathy (DSPN) is a common complication of type 1 diabetes mellitus (T1DM). However, it is still unclear how the cortical processing of proprioceptive afference is altered due to DSPN. METHODS Cortical responses to right and left ankle joint rotations were recorded with magnetoencephalography and pooled together in 20 T1DM participants and 20 healthy controls for source space comparisons. T1DM participants also underwent a lower limb nerve-conduction study to correlate peripheral nerve function with the cortical responses. RESULTS Primary sensorimotor (SM1) cortex activation was wider in T1DM patients during beta suppression, with no between-group differences in the response strength. However, stronger beta suppressions in T1DM patients were correlated with axon-loss in the peripheral sensory afferents (p < 0.05). Weaker beta rebounds and stronger SM1 evoked field amplitudes were associated with impaired conduction velocities in the mixed nerves (p < 0.05). Lastly, stronger SM1 beta power was associated with both demyelination and axon-loss in the lower limb sensory afferents (p < 0.05). CONCLUSIONS T1DM is accompanied with wider SM1 cortex activation to proprioceptive stimuli, and the early asymptomatic DSPN impairments are linked to increased levels of cortical inhibition. SIGNIFICANCE T1DM is associated with comprehensive central pathophysiology evident in early DSPN.
Collapse
Affiliation(s)
- Toni Mujunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland.
| | - Urho Sompa
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Miguel Muñoz-Ruiz
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Elina Monto
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Valtteri Rissanen
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Heli Ruuskanen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Petteri Ahtiainen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
3
|
Thölke P, Arcand-Lavigne M, Lajnef T, Frenette S, Carrier J, Jerbi K. Caffeine induces age-dependent increases in brain complexity and criticality during sleep. Commun Biol 2025; 8:685. [PMID: 40307472 PMCID: PMC12044076 DOI: 10.1038/s42003-025-08090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain, especially during sleep. We analyzed sleep electroencephalography (EEG) in 40 subjects, contrasting 200 mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum's 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during non-rapid eye movement (NREM) sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) during rapid eye movement (REM) sleep, while no significant age effects were observed during NREM. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance suggests that caffeine promotes a shift in brain dynamics towards increased neural excitation and closer proximity to a critical regime, particularly during NREM sleep.
Collapse
Affiliation(s)
- Philipp Thölke
- Computational and Cognitive Neuroscience Lab (CoCo Lab), Université de Montréal, Montréal, QC, Canada.
- Psychology Department, Université de Montréal, Montréal, QC, Canada.
| | - Maxine Arcand-Lavigne
- Computational and Cognitive Neuroscience Lab (CoCo Lab), Université de Montréal, Montréal, QC, Canada
- Psychology Department, Université de Montréal, Montréal, QC, Canada
| | - Tarek Lajnef
- Computational and Cognitive Neuroscience Lab (CoCo Lab), Université de Montréal, Montréal, QC, Canada
- Psychology Department, Université de Montréal, Montréal, QC, Canada
| | - Sonia Frenette
- Psychology Department, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine, Research Center CIUSSS du Nord-de-l'Ile-de-Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Psychology Department, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine, Research Center CIUSSS du Nord-de-l'Ile-de-Montréal, Montréal, QC, Canada
| | - Karim Jerbi
- Computational and Cognitive Neuroscience Lab (CoCo Lab), Université de Montréal, Montréal, QC, Canada
- Psychology Department, Université de Montréal, Montréal, QC, Canada
- MILA (Quebec Artificial Intelligence Institute), Montréal, QC, Canada
- UNIQUE Center (Quebec Neuro-AI Research Center), Montréal, QC, Canada
| |
Collapse
|
4
|
Merkler M, Ip NY, Sakata S. Developmental overproduction of cortical superficial neurons impairs adult auditory cortical processing. Sci Rep 2025; 15:11993. [PMID: 40200030 PMCID: PMC11978756 DOI: 10.1038/s41598-025-95968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.
Collapse
Affiliation(s)
- Mirna Merkler
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
5
|
Glica A, Wasilewska K, Jurkowska J, Żygierewicz J, Kossowski B, Jednoróg K. Reevaluating the neural noise in dyslexia using biomarkers from electroencephalography and high-resolution magnetic resonance spectroscopy. eLife 2025; 13:RP99920. [PMID: 40029268 PMCID: PMC11875536 DOI: 10.7554/elife.99920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agnieszka Glica
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Katarzyna Wasilewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | | | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
6
|
Zich C, Ward NS, Forss N, Bestmann S, Quinn AJ, Karhunen E, Laaksonen K. Post-stroke changes in brain structure and function can both influence acute upper limb function and subsequent recovery. Neuroimage Clin 2025; 45:103754. [PMID: 39978147 PMCID: PMC11889610 DOI: 10.1016/j.nicl.2025.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Improving outcomes after stroke depends on understanding both the causes of initial function/impairment and the mechanisms of recovery. Recovery in patients with initially low function/high impairment is variable, suggesting the factors relating to initial function/impairment are different to the factors important for subsequent recovery. Here we aimed to determine the contribution of altered brain structure and function to initial severity and subsequent recovery of the upper limb post-stroke. The Nine-Hole Peg Test was recorded in week 1 and one-month post-stroke and used to divide 36 stroke patients (18 females, age: M = 66.56 years) into those with high/low initial function and high/low subsequent recovery. We determined differences in week 1 brain structure (Magnetic Resonance Imaging) and function (Magnetoencephalography, tactile stimulation) between high/low patients for both initial function and subsequent recovery. Lastly, we examined the relative contribution of changes in brain structure and function to recovery in patients with low levels of initial function. Low initial function and low subsequent recovery are related to lower sensorimotor β power and greater lesion-induced disconnection of contralateral [ipsilesional] white-matter motor projection connections. Moreover, differences in intra-hemispheric connectivity (structural and functional) are unique to initial motor function, while differences in inter-hemispheric connectivity (structural and functional) are unique to subsequent motor recovery. Function-related and recovery-related differences in brain function and structure after stroke are related, yet not identical. Separating out the factors that contribute to each process is key to identifying potential therapeutic targets for improving outcomes.
Collapse
Affiliation(s)
- Catharina Zich
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, United Kingdom.
| | - Nick S Ward
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Neurocenter, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom; Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, United Kingdom
| | - Andrew J Quinn
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Eeva Karhunen
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Kristina Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Lebihan B, Mobers L, Daley S, Battle R, Leclercq N, Misic K, Wansbrough K, Vallence AM, Tang A, Nitsche M, Fujiyama H. Bifocal tACS over the primary sensorimotor cortices increases interhemispheric inhibition and improves bimanual dexterity. Cereb Cortex 2025; 35:bhaf011. [PMID: 39895063 PMCID: PMC11814492 DOI: 10.1093/cercor/bhaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Concurrent application of transcranial alternating current stimulation over distant cortical regions has been shown to modulate functional connectivity between stimulated regions; however, the precise mechanisms remain unclear. Here, we investigated how bifocal transcranial alternating current stimulation applied over the bilateral primary sensorimotor cortices modulates connectivity between the left and right primary motor cortices (M1). Using a cross-over sham-controlled triple-blind design, 37 (27 female, age: 18 to 37 yrs) healthy participants received transcranial alternating current stimulation (1.0 mA, 20 Hz, 20 min) over the bilateral sensorimotor cortices. Before and after transcranial alternating current stimulation, functional connectivity between the left and right M1s was assessed using imaginary coherence measured via resting-state electroencephalography and interhemispheric inhibition via dual-site transcranial magnetic stimulation protocol. Additionally, manual dexterity was assessed using the Purdue pegboard task. While imaginary coherence remained unchanged after stimulation, beta (20 Hz) power decreased during the transcranial alternating current stimulation session. Bifocal transcranial alternating current stimulation but not sham strengthened interhemispheric inhibition between the left and right M1s and improved bimanual assembly performance. These results suggest that improvement in bimanual performance may be explained by modulation in interhemispheric inhibition, rather than by coupling in the oscillatory activity. As functional connectivity underlies many clinical symptoms in neurological and psychiatric disorders, these findings are invaluable in developing noninvasive therapeutic interventions that target neural networks to alleviate symptoms.
Collapse
Affiliation(s)
- Brooke Lebihan
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Lauren Mobers
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Shannae Daley
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Ruth Battle
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Natasia Leclercq
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Katherine Misic
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Kym Wansbrough
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Ann-Maree Vallence
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Personalised Medicine Centre, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Alexander Tang
- Experimental and Regenerative Neurosciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Sciences, Ground RR Block QE II Medical Centre Ralph & Patricia Sarich Neuroscience Building, 8 Verdun St, Nedlands, WA 6009, Australia
- Pharmacology and Toxicology Discipline, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley Western Australia, 6009, Australia
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, H1, Philipp-Reis-Platz 1a/Etage 8, 33602 Bielefeld, Germany
| | - Hakuei Fujiyama
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Personalised Medicine Centre, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
8
|
Afek N, Harmatiuk D, Gawłowska M, Ferreira JMA, Golonka K, Tukaiev S, Popov A, Marek T. Functional connectivity in burnout syndrome: a resting-state EEG study. Front Hum Neurosci 2025; 19:1481760. [PMID: 39963391 PMCID: PMC11831065 DOI: 10.3389/fnhum.2025.1481760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Chronic occupational stress is associated with a pronounced decline in emotional and cognitive functioning. Studies on neural mechanisms indicate significant changes in brain activity and changed patterns of event-related potentials in burnout subjects. This study presents an analysis of brain functional connectivity in a resting state, thus providing a deeper understanding of the mechanisms accompanying burnout syndrome. The sample consists of 49 burnout employees and 49 controls, matched by age, gender and occupation (Mage = 36.15, SD = 8.10; 59 women, 39 men). Continuous dense-array EEG data were collected from a 256-channel EEG system. The difference in functional connectivity between burnout and control subjects was tested in the eyes-closed (EC) and eyes-open (EO) conditions using the resting-state paradigm. The results indicate significant differences in brain activity between the burnout and the control groups. The resting-state network of the burnout group is characterized by decreased functional connectivity in frontal and midline areas in the alpha3 sub-band (11-13 Hz) in an eyes-open condition. The most significant effect of decreased connectivity was observed in the right frontal brain area. For the first time, these analyses point to distinctive aspects of functional connectivity within the alpha3 sub-band in burnout syndrome. These findings provide insights into the neurobiological underpinnings of burnout syndrome and its associations with changed resting-state networks. The data on neural characteristics in burnout subjects may help to understand the mechanisms of decline in cognitive function and emotion regulation and to search for adequate methods of treatment.
Collapse
Affiliation(s)
- Natalia Afek
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | - Dmytro Harmatiuk
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Magda Gawłowska
- Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | | | - Krystyna Golonka
- Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Sergii Tukaiev
- Institute of Public Health, Università della Svizzera italiana, Lugano, Switzerland
- Educational Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Popov
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
- Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, Ukraine
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University, Katowice, Poland
| |
Collapse
|
9
|
Ueno K, Yamada K, Ueda M, Naito Y, Ishii R. Current source density and functional connectivity extracted from resting-state electroencephalography as biomarkers for chronic low back pain. Pain Rep 2025; 10:e1233. [PMID: 39816905 PMCID: PMC11732644 DOI: 10.1097/pr9.0000000000001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025] Open
Abstract
Introduction Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies. Objectives To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms. Methods Thirty-four patients with CLBP and 34 healthy controls in an open data set were analyzed. Five-minute resting-state closed-eye EEG was acquired using the international 10-20 system. Current source density across frequency bands was calculated using exact low-resolution electromagnetic tomography. Functional connectivity was assessed between 24 cortical regions using lagged linear connectivity. Correlations between pain symptoms and CSD distribution and FC were examined in patients with CLBP. Results Current source density analysis showed no significant differences between the groups. The CLBP group exhibited significantly reduced FC in the β3 band between the left middle temporal gyrus and the posterior cingulate cortex, and between the ventral medial prefrontal cortex and the left inferior parietal lobule. Prefrontal θ and δ activity positively correlated with pain symptoms. Increased β1 band FC between the right dorsolateral prefrontal cortex and right auditory cortex correlated with greater pain intensity. Conclusions We found altered neural activity and connectivity in patients with CLBP, particularly in prefrontal and temporal regions. These results suggest potential targets for pain modulation through brain pathways and highlight the value of EEG biomarkers in understanding pain mechanisms and assessing treatment efficacy.
Collapse
Affiliation(s)
- Keita Ueno
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Keiko Yamada
- Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Anesthesiology and Pain Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masaya Ueda
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
10
|
Clements CC, Engelstad AM, Wilkinson CL, Hyde C, Hartney M, Simmons A, Tager-Flusberg H, Jeste S, Nelson CA. Resting state EEG in young children with Tuberous Sclerosis Complex: associations with medications and seizures. J Neurodev Disord 2025; 17:2. [PMID: 39827117 PMCID: PMC11742757 DOI: 10.1186/s11689-025-09590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Tuberous Sclerosis Complex (TSC) is a rare genetic condition caused by mutation to TSC1 or TSC2 genes, with a population prevalence of 1/7000 births. TSC manifests behaviorally with features of autism, epilepsy, and intellectual disability. Resting state electroencephalography (EEG) offers a window into neural oscillatory activity and may serve as an intermediate biomarker between gene expression and behavioral manifestations. Such a biomarker could be useful in clinical trials as an endpoint or predictor of treatment response. However, seizures and antiepileptic medications also affect resting neural oscillatory activity and could undermine the utility of resting state EEG features as biomarkers in neurodevelopmental disorders such as TSC. METHODS This paper compares resting state EEG features in a cross-sectional cohort of young children with TSC (n = 49, ages 12-37 months) to 49 age- and sex-matched typically developing controls. Within children with TSC, associations were examined between resting state EEG features, seizure severity composite score, and use of GABA agonists. RESULTS Compared to matched typically developing children, children with TSC showed significantly greater beta power in permutation cluster analyses. Children with TSC also showed significantly greater aperiodic offset (reflecting nonoscillatory neuronal firing) after power spectra were parameterized using SpecParam into aperiodic and periodic components. Within children with TSC, both greater seizure severity and use of GABAergic antiepileptic medication were significantly and independently associated with increased periodic peak beta power. CONCLUSIONS The elevated peak beta power observed in children with TSC compared to matched typically developing controls may be driven by both seizures and GABA agonist use. It is recommended to collect seizure and medication data alongside EEG data for clinical trials. These results highlight the challenge of using resting state EEG features as biomarkers in trials with neurodevelopmental disabilities when epilepsy and anti-epileptic medication are common.
Collapse
Affiliation(s)
- Caitlin C Clements
- Department of Psychology, University of Notre Dame, 340 Corbett Family Hall Notre Dame, South Bend, IN, 46556, USA.
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA.
| | - Anne-Michelle Engelstad
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA
- Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Carol L Wilkinson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Carly Hyde
- School of Public Health, UCLA, Los Angeles, CA, USA
| | - Megan Hartney
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA
| | - Alexandra Simmons
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA
| | - Helen Tager-Flusberg
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Shafali Jeste
- Department of Neurology, Children's Hospital LA, Los Angeles, CA, USA
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Brookline, MA, USA
- Graduate School of Education, Harvard University, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Taube W, Lauber B. Changes in the cortical GABAergic inhibitory system with ageing and ageing-related neurodegenerative diseases. J Physiol 2024. [PMID: 39722574 DOI: 10.1113/jp285656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The human cortical inhibitory system is known to play a vital role for normal brain development, function, and plasticity. GABA is the most prominent inhibitory neurotransmitter in the CNS and is a key regulator not only for motor control and motor learning, but also for cognitive processes. With ageing and many neurodegenerative pathologies, a decline in GABAergic function in several cortical regions together with a reduced ability to task-specifically modulate and increase inhibition in the primary motor cortex has been observed. This decline in intracortical inhibition is associated with impaired motor control but also with diminished motor-cognitive (i.e. dual-tasking) and cognitive performance (e.g. executive functions). Furthermore, more general well-being such as sleep quality, stress resistance or non-specific pain perception are also associated with reduced GABA functioning. The current review highlights the interplay between changes in GABAergic function and changes in motor control, motor-cognitive and cognitive performance associated with healthy ageing, as well as in seniors with neurodegenerative diseases such as mild cognitive impairment. Furthermore, recent evidence highlighting the ability to up- or downregulate cortical inhibition by means of physical exercise programs is presented and discussed.
Collapse
Affiliation(s)
- Wolfgang Taube
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Benedikt Lauber
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Mao L, Che X, Wang J, Jiang X, Zhao Y, Zou L, Wei S, Pan S, Guo D, Zhu X, Hu D, Yang X, Chen Z, Wang D. Sub-acute stroke demonstrates altered beta oscillation and connectivity pattern in working memory. J Neuroeng Rehabil 2024; 21:212. [PMID: 39633420 PMCID: PMC11619298 DOI: 10.1186/s12984-024-01516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Working memory (WM) is suggested to play a pivotal role in relearning and neural restoration during stroke rehabilitation. Using EEG, this study investigated the oscillatory mechanisms of WM in subacute stroke. METHODS This study included 48 first subacute stroke patients (26 good-recovery, 22 poor-recovery, based on prognosis after a 4-week period) and 24 matched health controls. We examined the oscillatory characteristics and functional connectivity of the 0-back WM paradigm and assessed their associations with prognosis. RESULTS Patients of poor recovery are characterised by a loss of significant beta rebound, beta-band connectivity, as well as impaired working memory speed and performances. Meanwhile, patients with good recovery have preserved these capacities to some extent. Our data further identified beta rebound to be closely associated with working memory speed and performances. CONCLUSIONS We provided novel findings that beta rebound and network connectivity as mechanistic evidence of impaired working memory in subacute stroke. These oscillatory features could potentially serve as a biomarker for brain stimulation technologies in stroke recovery.
Collapse
Affiliation(s)
- Lin Mao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310003, China
| | - Juehan Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xiaorui Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Yuhang District, Hangzhou, 311100, China
| | - Yifan Zhao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Liliang Zou
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuang Wei
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Xueqiong Zhu
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Dongxia Hu
- Departments of Physical Medicine and Rehabilitation, The Second Affiliated Hospital, Nanchang University School of Medicine, Nanchang, 330038, China
| | - Xiaofeng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zuobing Chen
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| | - Daming Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Eskikurt G, Özerman Edis B, Dalanay AU, Özen I, Nurten A, Kara I, Karamürsel S. Long-term administration of paroxetine increases cortical EEG beta and gamma band activities in healthy awake rats. Pharmacol Biochem Behav 2024; 245:173896. [PMID: 39433160 DOI: 10.1016/j.pbb.2024.173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Understanding the electrophysiological properties of antidepressant medications is important to resolve the response heterogeneity of these drugs in clinical practice. Administration of paroxetine, a selective serotonin reuptake inhibitor, has been shown to increase serotonin levels that affect cortical activities in healthy subjects. However, the extent to which cortical oscillations can be altered by ongoing administration of paroxetine is not known. Here, we develop EEG biomarkers showing long-term effects of paroxetine. EEG changes were analyzed using Neuroscan in healthy wakeful rats administered paroxetine (4 mg/kg/day) for six weeks. Subsequent EEG recordings taken at 3 and 6 weeks after treatment showed differences in cortical oscillations obtained from both hemispheres and frontal-central-parietal regions. Chronic paroxetine administration resulted in an increase in gamma band activity. Comparison of EEG frequency bands of paroxetine and saline groups showed an enhancement in higher frequency activities at third weeks after the treatment. Higher activity of alpha oscillations in the temporal cortex was persistent at sixth week of the administration. Overall, our results suggest that chronic paroxetine administration affects cortical oscillations across an expansive network.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Department of Psychology, Faculty of Humanities and Social Sciences, Istinye University, Istanbul, Turkey; Innovative Center of Applied Neurosciences, Istinye University, Istanbul, Turkey.
| | - Bilge Özerman Edis
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, Istanbul, Turkey.
| | - Ali Umut Dalanay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilknur Özen
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey.
| | - Ihsan Kara
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, Koç Üniversitesi School of Medicine, Istanbul, Turkey.
| |
Collapse
|
14
|
Rossi C, Vidaurre D, Costers L, D'hooghe MB, Akbarian F, D'haeseleer M, Woolrich M, Nagels G, Van Schependom J. Disrupted working memory event-related network dynamics in multiple sclerosis. Commun Biol 2024; 7:1592. [PMID: 39614100 DOI: 10.1038/s42003-024-07283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
In multiple sclerosis (MS), working memory (WM) impairment can occur soon after disease onset and significantly affects the patient's quality of life. Functional imaging research in MS aims to investigate the neurophysiological underpinnings of WM impairment. In this context, we utilize a data-driven technique, the time delay embedded-hidden Markov model, to extract spectrally defined functional networks in magnetoencephalographic (MEG) data acquired during a WM visual-verbal n-back task. Here, we show that the activation of two networks is altered in relapsing remitting-MS patients. First, the activation of an early theta prefrontal network linked to stimulus encoding and attentional control significantly decreases in MS compared to HC. This diminished activation correlates with reduced accuracy and higher reaction time, suggesting that impaired attention control impacts task performance in MS patients. Secondly, a frontoparietal network characterized by beta coupling is activated between 300 and 600 ms post-stimulus, resembling the event-related P300, a cognitive marker extensively explored in EEG studies. The activation of this network is amplified in patients treated with benzodiazepine, in line with the well-known benzodiazepine-induced beta enhancement. Altogether, the TDE-HMM technique extracts task-relevant functional networks showing disease-specific and treatment-related alterations, revealing potential new markers to assess and track WM impairment in MS.
Collapse
Affiliation(s)
- Chiara Rossi
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Diego Vidaurre
- Center of Functionally Integrative Neuroscience (FNIRS), Aarhus university, Aarhus, Denmark
- OHBA, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lars Costers
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- icometrix, Leuven, Belgium
| | | | - Fahimeh Akbarian
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Miguel D'haeseleer
- National MS Center, Melsbroek, Belgium
- UZ Brussel, Department of Neurology, Brussels, Belgium
| | - Mark Woolrich
- OHBA, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Guy Nagels
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- UZ Brussel, Department of Neurology, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, United Kingdom
| | - Jeroen Van Schependom
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
15
|
Cattani A, Arnold DB, McCarthy M, Kopell N. Basolateral amygdala oscillations enable fear learning in a biophysical model. eLife 2024; 12:RP89519. [PMID: 39590510 PMCID: PMC11594530 DOI: 10.7554/elife.89519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.
Collapse
Affiliation(s)
- Anna Cattani
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| | - Don B Arnold
- Department of Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Michelle McCarthy
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| |
Collapse
|
16
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
17
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Abdollahzade Z, Hadian MR, Talebian S, Khanmohammadi R, Sarfraz M. Comparison of mental fatigue using EEG signals and task performance in normal and slump posture adults during computer typing. J Bodyw Mov Ther 2024; 40:1686-1692. [PMID: 39593510 DOI: 10.1016/j.jbmt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES Slump sitting at workstations has been focused on by clinicians and researchers nowadays; however, there is limited evidence to date that improper positioning affects the mental state. Accordingly, the main objective of this research was to examine the impact of slump posture on mental fatigue and task performance. METHODS A sample of 60 participants, 30 in each group including those with normal and slump postures were recruited to perform an hour of typing on the computer. Mental fatigue through EEG and task performances were considered as outcome measures and then were analyzed statistically in the first and last 3 min of typing. RESULTS The EEG showed a significant increasing trend in theta rhythm at different brain regions during 60 min of typing (P < 0.05). Besides, an interaction between time and posture was observed; it can mean the increasing trend of theta rhythm is different in normal and slump posture acquired sets (P < 0.05). Interestingly the speed of typing was found to be better (P < 0.05) in the normal posture group while no difference found between the groups in terms of errors (P > 0.05). CONCLUSION Our results showed poor posture can induce more mental fatigue during the given task, than the normal posture. These findings have provided evidence to indicate that in addition to the peripheral and biomechanical component, the assessment of the cortex as the central component should be considered in poor posture individuals. Besides, for any possible physical therapy rehabilitation protocol for the management of poor posture, the peripheral and central components should be focused. TRIAL REGISTRATION Registered on the Iranian Registry of Clinical Trials on September 21, 2022, IRCT Identifier: IRCT20161026030516N2.
Collapse
Affiliation(s)
- Zahra Abdollahzade
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Hadian
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saeed Talebian
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roya Khanmohammadi
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Muhammad Sarfraz
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Dow University of Health Sciences, Karachi, Pakistan.
| |
Collapse
|
19
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
20
|
Ameen MS, Petzka M, Peigneux P, Hoedlmoser K. Post-training sleep modulates motor adaptation and task-related beta oscillations. J Sleep Res 2024; 33:e14082. [PMID: 37950689 DOI: 10.1111/jsr.14082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
Motor adaptation reflects the ability of the brain's sensorimotor system to flexibly deal with environmental changes to generate effective motor behaviour. Whether sleep contributes to the consolidation of motor adaptation remains controversial. In this study, we investigated the impact of sleep on motor adaptation and its neurophysiological correlates in a novel motor adaptation task that leverages a highly automatised motor skill, that is, typing. We hypothesised that sleep-associated memory consolidation would benefit motor adaptation and induce modulations in task-related beta band (13-30 Hz) activity during adaptation. Healthy young male experts in typing on the regular computer keyboard were trained to type on a vertically mirrored keyboard while brain activity was recorded using electroencephalography. Typing performance was assessed either after a full night of sleep with polysomnography or a similar period of daytime wakefulness. Results showed improved motor adaptation performance after nocturnal sleep but not after daytime wakefulness, and decreased beta power: (a) during mirrored typing as compared with regular typing; and (b) in the post-sleep versus the pre-sleep mirrored typing sessions. Furthermore, the slope of the electroencephalography signal, a measure of aperiodic brain activity, decreased during mirrored as compared with regular typing. Changes in the electroencephalography spectral slope from pre- to post-sleep mirrored typing sessions were correlated with changes in task performance. Finally, increased fast sleep spindle density (13-15 Hz) during the night following motor adaptation training was predictive of successful motor adaptation. These findings suggest that post-training sleep modulates neural activity supporting adaptive motor functions.
Collapse
Affiliation(s)
- Mohamed S Ameen
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Marit Petzka
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN-Center for Research in Cognition and Neurosciences, UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Lim RY, Jiang M, Ang KK, Lin X, Guan C. Brain-Computer-Brain system for individualized transcranial alternating current stimulation with concurrent EEG recording: a healthy subject pilot study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039276 DOI: 10.1109/embc53108.2024.10782251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In this study, we introduce a novel brain-computer-brain (BCB) system to investigate the aftereffects of individualized, task-dependent transcranial alternating current stimulation (tACS) delivered to the motor cortex. While previous studies utilized either a generic stimulation frequency or matched it to an individual's resting frequency (e.g. individual alpha frequency, iAF), our study employed a trial-by-trial tACS stimulation design wherein the stimulation frequency delivered matches the individual's peak motor imagery (MI) performance frequency. 14 healthy subjects participated in both tACS and tACS-sham on separate days in a within-subject, randomized controlled design. We found that active tACS delivered to subjects receiving alpha (α)-tACS resulted in a decline in MI performance while that with tACS-sham did not differ significantly from baseline. However, subjects receiving beta (β)-tACS showed no significant difference in effect for both active tACS and tACS-sham conditions. These findings indirectly corroborated with that from literature advocating the notion of α tACS as functionally inhibitory; hence the consequential deterioration of MI performance observed only in α-tACS subjects. A more conclusive analysis will be conducted once more data is collected from this ongoing study.Clinical Relevance: The results gathered suggest the differential functional significance of α- and β-tACS in an individualized MI task-specific tACS delivery to the motor cortex with concurrent EEG recording. Although insignificant at the point of data analysis where sample size is small in this ongoing study, tACS-sham (30 Hz) seemed to potentially modulate neural oscillations in the direction of improving MI performance. These findings can inform future tACS study designs based on a system with personalized stimulation delivery for MI task investigations within laboratory and clinical settings - potentially beneficial towards upper limb stroke rehabilitation.
Collapse
|
22
|
Nougaret S, López-Galdo L, Caytan E, Poitreau J, Barthélemy FV, Kilavik BE. Low and high beta rhythms have different motor cortical sources and distinct roles in movement control and spatiotemporal attention. PLoS Biol 2024; 22:e3002670. [PMID: 38917200 PMCID: PMC11198906 DOI: 10.1371/journal.pbio.3002670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
Low and high beta frequency rhythms were observed in the motor cortex, but their respective sources and behavioral correlates remain unknown. We studied local field potentials (LFPs) during pre-cued reaching behavior in macaques. They contained a low beta band (<20 Hz) dominant in primary motor cortex and a high beta band (>20 Hz) dominant in dorsal premotor cortex (PMd). Low beta correlated positively with reaction time (RT) from visual cue onset and negatively with uninstructed hand postural micro-movements throughout the trial. High beta reflected temporal task prediction, with selective modulations before and during cues, which were enhanced in moments of increased focal attention when the gaze was on the work area. This double-dissociation in sources and behavioral correlates of motor cortical low and high beta, with respect to both task-instructed and spontaneous behavior, reconciles the largely disparate roles proposed for the beta rhythm, by suggesting band-specific roles in both movement control and spatiotemporal attention.
Collapse
Affiliation(s)
- Simon Nougaret
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Laura López-Galdo
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Emile Caytan
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Julien Poitreau
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| | - Frédéric V. Barthélemy
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
- Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, Jülich, Germany
| | - Bjørg Elisabeth Kilavik
- Institut de Neurosciences de la Timone (INT), UMR 7289, Aix-Marseille Université, CNRS, Marseille, France
| |
Collapse
|
23
|
Zamm A, Loehr JD, Vesper C, Konvalinka I, Kappel SL, Heggli OA, Vuust P, Keller PE. A practical guide to EEG hyperscanning in joint action research: from motivation to implementation. Soc Cogn Affect Neurosci 2024; 19:nsae026. [PMID: 38584414 PMCID: PMC11086947 DOI: 10.1093/scan/nsae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Developments in cognitive neuroscience have led to the emergence of hyperscanning, the simultaneous measurement of brain activity from multiple people. Hyperscanning is useful for investigating social cognition, including joint action, because of its ability to capture neural processes that occur within and between people as they coordinate actions toward a shared goal. Here, we provide a practical guide for researchers considering using hyperscanning to study joint action and seeking to avoid frequently raised concerns from hyperscanning skeptics. We focus specifically on Electroencephalography (EEG) hyperscanning, which is widely available and optimally suited for capturing fine-grained temporal dynamics of action coordination. Our guidelines cover questions that are likely to arise when planning a hyperscanning project, ranging from whether hyperscanning is appropriate for answering one's research questions to considerations for study design, dependent variable selection, data analysis and visualization. By following clear guidelines that facilitate careful consideration of the theoretical implications of research design choices and other methodological decisions, joint action researchers can mitigate interpretability issues and maximize the benefits of hyperscanning paradigms.
Collapse
Affiliation(s)
- Anna Zamm
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Janeen D Loehr
- Department of Psychology and Health Studies, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada
| | - Cordula Vesper
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Simon L Kappel
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus N 8200, Denmark
| | - Ole A Heggli
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
24
|
De Martino E, Casali A, Casarotto S, Hassan G, Couto BA, Rosanova M, Graven‐Nielsen T, de Andrade DC. Evoked oscillatory cortical activity during acute pain: Probing brain in pain by transcranial magnetic stimulation combined with electroencephalogram. Hum Brain Mapp 2024; 45:e26679. [PMID: 38647038 PMCID: PMC11034005 DOI: 10.1002/hbm.26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, β1, and β2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased β1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and β band oscillations and may have relevance for pain therapies.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| | - Adenauer Casali
- Institute of Science and TechnologyFederal University of São PauloSão PauloBrazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- IRCCS Fondazione Don Carlo GnocchiMilanItaly
| | - Gabriel Hassan
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Bruno Andry Couto
- Institute of Science and TechnologyFederal University of São PauloSão PauloBrazil
| | - Mario Rosanova
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Thomas Graven‐Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of MedicineAalborg UniversityAalborgDenmark
| |
Collapse
|
25
|
Paci M, Cardellicchio P, Di Luzio P, Perrucci MG, Ferri F, Costantini M. When the heart inhibits the brain: Cardiac phases modulate short-interval intracortical inhibition. iScience 2024; 27:109140. [PMID: 38414850 PMCID: PMC10897847 DOI: 10.1016/j.isci.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
The phasic cardiovascular activity influences the central nervous system through the systolic baroreceptor inputs, inducing widespread inhibitory effects on behavior. Through transcranial magnetic stimulation (TMS) delivered during resting-state over the left primary motor cortex and across the different cardiac phases, we measured corticospinal excitability (CSE) and distinct indices of intracortical motor inhibition: short (SICI) and long (LICI) interval, corresponding to GABAA and GABAB neurotransmission, respectively. We found a significant effect of the cardiac phase on short-intracortical inhibition, without any influence on LICI. Specifically, SICI was stronger at systole compared to diastole. These results show a tight relationship between the cardiac cycle and the inhibitory neurotransmission within M1, and in particular with GABAA-ergic-mediated motor inhibition. We hypothesize that this process requires greater motor control via the gating mechanism and that this, in turn, needs to be recalibrated through the modulation of intracortical inhibition.
Collapse
Affiliation(s)
- Mario Paci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Paolo Di Luzio
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
26
|
Zhang X, Wang H, Guo Y, Long J. Beta rebound reduces subsequent movement preparation time by modulating of GABAA inhibition. Cereb Cortex 2024; 34:bhae037. [PMID: 38342689 DOI: 10.1093/cercor/bhae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/13/2024] Open
Abstract
Post-movement beta synchronization is an increase of beta power relative to baseline, which commonly used to represent the status quo of the motor system. However, its functional role to the subsequent voluntary motor output and potential electrophysiological significance remain largely unknown. Here, we examined the reaction time of a Go/No-Go task of index finger tapping which performed at the phases of power baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds (ballistic/self-paced) in 13 healthy subjects. We found a correlation between the post-movement beta synchronization and reaction time that larger post-movement beta synchronization prolonged the reaction time during Go trials. To probe the electrophysiological significance of post-movement beta synchronization, we assessed intracortical inhibitory measures probably involving GABAB (long-interval intracortical inhibition) and GABAA (short-interval intracortical inhibition) receptors in beta baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds. We found that short-interval intracortical inhibition but not long-interval intracortical inhibition increased in post-movement beta synchronization peak compared with that in the power baseline, and was negatively correlated with the change of post-movement beta synchronization peak value. These novel findings indicate that the post-movement beta synchronization is related to forward model updating, with high beta rebound predicting longer time for the preparation of subsequent movement by inhibitory neural pathways of GABAA.
Collapse
Affiliation(s)
- Xiangzi Zhang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Houmin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaqiu Guo
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- Pazhou Lab, Guangzhou 510335, China
| |
Collapse
|
27
|
Vimolratana O, Aneksan B, Siripornpanich V, Hiengkaew V, Prathum T, Jeungprasopsuk W, Khaokhiew T, Vachalathiti R, Klomjai W. Effects of anodal tDCS on resting state eeg power and motor function in acute stroke: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:6. [PMID: 38172973 PMCID: PMC10765911 DOI: 10.1186/s12984-023-01300-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Anodal transcranial direct current stimulation (tDCS) is a beneficial adjunctive tool in stroke rehabilitation. However, only a few studies have investigated its effects on acute stroke and recruited only individuals with mild motor deficits. This study investigated the effect of five consecutive sessions of anodal tDCS and conventional physical therapy on brain activity and motor outcomes in individuals with acute stroke, with low and high motor impairments. METHODS Thirty participants were recruited and randomly allocated to either the anodal or sham tDCS group. Five consecutive sessions of tDCS (1.5 mA anodal or sham tDCS for 20 min) were administered, followed by conventional physical therapy. Electroencephalography (EEG), Fugl-Meyer Motor Assessment (FMA), and Wolf Motor Function Test (WMFT) were performed at pre-, post-intervention (day 5), and 1-month follow-up. Sub-analyses were performed on participants with low and high motor impairments. The relationship between EEG power and changes in motor functions was assessed. RESULTS Linear regression showed a significant positive correlation between beta bands and the FMA score in the anodal group. Elevated high frequency bands (alpha and beta) were observed at post-intervention and follow-up in all areas of both hemispheres in the anodal group, while only in the posterior area of the non-lesioned hemisphere in the sham group; however, such elevation induced by tDCS was not greater than sham. Lower limb function assessed by FMA was improved in the anodal group compared with the sham group at post-intervention and follow-up only in those with low motor impairment. For the upper limb outcomes, no difference between groups was found. CONCLUSIONS Five consecutive days of anodal tDCS and physical therapy in acute stroke did not result in a superior improvement of beta bands that commonly related to stroke recovery over sham, but improved lower extremity functions with a post-effect at 1-month follow-up in low motor impairment participants. The increase of beta bands in the lesioned brain in the anodal group was associated with improvement in lower limb function. TRIAL REGISTRATION NCT04578080, date of first registration 10/01/2020.
Collapse
Affiliation(s)
- O Vimolratana
- Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Neuro Electrical Stimulation Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, 73170, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B Aneksan
- Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Neuro Electrical Stimulation Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - V Siripornpanich
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - V Hiengkaew
- Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - T Prathum
- Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Neuro Electrical Stimulation Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - W Jeungprasopsuk
- Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - T Khaokhiew
- Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - R Vachalathiti
- Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - W Klomjai
- Faculty of Physical Therapy, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
- Neuro Electrical Stimulation Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
28
|
Zhu M, Gong Q. EEG spectral and microstate analysis originating residual inhibition of tinnitus induced by tailor-made notched music training. Front Neurosci 2023; 17:1254423. [PMID: 38148944 PMCID: PMC10750374 DOI: 10.3389/fnins.2023.1254423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Tailor-made notched music training (TMNMT) is a promising therapy for tinnitus. Residual inhibition (RI) is one of the few interventions that can temporarily inhibit tinnitus, which is a useful technique that can be applied to tinnitus research and explore tinnitus mechanisms. In this study, RI effect of TMNMT in tinnitus was investigated mainly using behavioral tests, EEG spectral and microstate analysis. To our knowledge, this study is the first to investigate RI effect of TMNMT. A total of 44 participants with tinnitus were divided into TMNMT group (22 participants; ECnm, NMnm, RInm represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by TMNMT music, respectively) and Placebo control group (22 participants; ECpb, PBpb, RIpb represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by Placebo music, respectively) in a single-blind manner. Behavioral tests, EEG spectral analysis (covering delta, theta, alpha, beta, gamma frequency bands) and microstate analysis (involving four microstate classes, A to D) were employed to evaluate RI effect of TMNMT. The results of the study showed that TMNMT had a stronger inhibition ability and longer inhibition time according to the behavioral tests compared to Placebo. Spectral analysis showed that RI effect of TMNMT increased significantly the power spectral density (PSD) of delta, theta bands and decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of TMNMT had shorter duration (microstate B, microstate C), higher Occurrence (microstate A, microstate C, microstate D), Coverage (microstate A) and transition probabilities (microstate A to microstate B, microstate A to microstate D and microstate D to microstate A). Meanwhile, RI effect of Placebo decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of Placebo had shorter duration (microstate C, microstate D), higher occurrence (microstate B, microstate C), lower coverage (microstate C, microstate D), higher transition probabilities (microstate A to microstate B, microstate B to microstate A). It was also found that the intensity of tinnitus symptoms was significant positively correlated with the duration of microstate B in five subgroups (ECnm, NMnm, RInm, ECpb, PBpb). Our study provided valuable experimental evidence and practical applications for the effectiveness of TMNMT as a novel music therapy for tinnitus. The observed stronger residual inhibition (RI) ability of TMNMT supported its potential applications in tinnitus treatment. Furthermore, the temporal dynamics of EEG microstates serve as novel functional and trait markers of synchronous brain activity that contribute to a deep understanding of the neural mechanism underlying TMNMT treatment for tinnitus.
Collapse
Affiliation(s)
- Min Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
29
|
Akbarian F, Rossi C, Costers L, D'hooghe MB, D'haeseleer M, Nagels G, Van Schependom J. The spectral slope as a marker of excitation/inhibition ratio and cognitive functioning in multiple sclerosis. Hum Brain Mapp 2023; 44:5784-5794. [PMID: 37672569 PMCID: PMC10619404 DOI: 10.1002/hbm.26476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by neuronal and synaptic loss, resulting in an imbalance of excitatory and inhibitory synaptic transmission and potentially cognitive impairment. Current methods for measuring the excitation/inhibition (E/I) ratio are mostly invasive, but recent research combining neurocomputational modeling with measurements of local field potentials has indicated that the slope with which the power spectrum of neuronal activity captured by electro- and/or magnetoencephalography rolls off, is a non-invasive biomarker of the E/I ratio. A steeper roll-off is associated with a stronger inhibition. This novel method can be applied to assess the E/I ratio in people with multiple sclerosis (pwMS), detect the effect of medication such as benzodiazepines, and explore its utility as a biomarker for cognition. We recruited 44 healthy control subjects and 95 pwMS who underwent resting-state magnetoencephalographic recordings. The 1/f spectral slope of the neural power spectra was calculated for each subject and for each brain region. As expected, the spectral slope was significantly steeper in pwMS treated with benzodiazepines (BZDs) compared to pwMS not receiving BZDs (p = .01). In the sub-cohort of pwMS not treated with BZDs, we observed a steeper slope in cognitively impaired pwMS compared to cognitively preserved pwMS (p = .01) and healthy subjects (p = .02). Furthermore, we observed a significant correlation between 1/f spectral slope and verbal and spatial working memory functioning in the brain regions located in the prefrontal and parietal cortex. In this study, we highlighted the value of the spectral slope in MS by quantifying the effect of benzodiazepines and by putting it forward as a potential biomarker of cognitive deficits in pwMS.
Collapse
Affiliation(s)
- Fahimeh Akbarian
- Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Chiara Rossi
- Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Lars Costers
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
- icometrixLeuvenBelgium
| | | | - Miguel D'haeseleer
- National MS Center MelsbroekMelsbroekBelgium
- Department of NeurologyUZ BrusselBrusselsBelgium
| | - Guy Nagels
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
- Department of NeurologyUZ BrusselBrusselsBelgium
- St Edmund HallUniversity of OxfordOxfordUK
| | - Jeroen Van Schependom
- Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
- AIMS LabCenter for Neurosciences, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
30
|
Klimenko AV, Pertsov SS. Physiological Support of Goal-Directed Activity in Human. Bull Exp Biol Med 2023; 176:1-8. [PMID: 38085394 DOI: 10.1007/s10517-023-05956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 12/19/2023]
Abstract
The effectiveness of goal-directed human behavior and the processes underlying organization of such activity are the subjects of various biomedical studies. Here we review both classical and modern evidence on the fundamental principles of goal-directed human activity. Facts are presented about the basic mechanisms that ensure the effectiveness of goal-directed behavior and determine its physiological cost.
Collapse
Affiliation(s)
- A V Klimenko
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - S S Pertsov
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
31
|
Wimmer J, Rösch SA, Schmidt R, Hilbert A. Neurofeedback strategies in binge-eating disorder as predictors of EEG-neurofeedback regulation success. Front Hum Neurosci 2023; 17:1234085. [PMID: 38021247 PMCID: PMC10645064 DOI: 10.3389/fnhum.2023.1234085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Treatment options such as neurofeedback (NF) that directly target the link between aberrant brain activity patterns and dysfunctional eating behaviors in binge-eating disorder (BED) are emerging. However, virtually nothing is known about mental strategies used to modulate food-specific brain activity and the associated brain-based or subjective success of specific strategies. This study firstly investigated the use of mental strategies in response to individually appetitive food cues in adults with BED and overweight or obesity based on a randomized-controlled trial providing electroencephalography (EEG)- or real-time functional near-infrared spectroscopy (rtfNIRS)-NF to BED. Methods Strategy reports written by participants were classified with qualitative content analysis. Additionally, the mental strategies employed by the N = 23 patients who received EEG-NF targeting the reduction of fronto-central high beta activity were analyzed quantitatively through their link with subjective and EEG-NF regulation success. Results The following eight categories, ordered by frequency in descending order, were found: "Behavior," "Imagination," "Emotion," "Distraction," "Thought," "Concentration," "Self-Talk" and "No Strategy." Linear mixed models revealed "Imagination," "Behavior," and "Thought" strategies as positive predictors of EEG-NF regulation success (defined as high beta activity during regulation beneath the baseline), and "Concentration" as a negative predictor of subjective (i.e., self-reported) NF regulation success. Discussion In conclusion, our study offers a classification system that may be used in future studies assessing strategy use for regulating food-related responses in patients with BED and associated overweight/obesity, providing valuable information on potential benefits of specific strategies and transferability to situations outside the NF treatment.
Collapse
Affiliation(s)
- Jytte Wimmer
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Sarah Alica Rösch
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
32
|
Papadelis C, Ntolkeras G, Tokatly Latzer I, DiBacco ML, Afacan O, Warfield S, Shi X, Roullet JB, Gibson KM, Pearl PL. Reduced evoked cortical beta and gamma activity and neuronal synchronization in succinic semialdehyde dehydrogenase deficiency, a disorder of γ-aminobutyric acid metabolism. Brain Commun 2023; 5:fcad291. [PMID: 37953848 PMCID: PMC10636566 DOI: 10.1093/braincomms/fcad291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency is a rare autosomal recessively inherited metabolic disorder of γ-aminobutyric acid catabolism manifested by intellectual disability, expressive aphasia, movement disorders, psychiatric ailments and epilepsy. Subjects with succinic semialdehyde dehydrogenase deficiency are characterized by elevated γ-aminobutyric acid and related metabolites, such as γ-guanidinobutyric acid, and an age-dependent downregulation of cerebral γ-aminobutyric acid receptors. These findings indicate impaired γ-aminobutyric acid and γ-aminobutyric acid sub-type A (GABAA) receptor signalling as major factors underlying the pathophysiology of this neurometabolic disorder. We studied the cortical oscillation patterns and their relationship with γ-aminobutyric acid metabolism in 18 children affected by this condition and 10 healthy controls. Using high-density EEG, we recorded somatosensory cortical responses and resting-state activity. Using electrical source imaging, we estimated the relative power changes (compared with baseline) in both stimulus-evoked and stimulus-induced responses for physiologically relevant frequency bands and resting-state power. Stimulus-evoked oscillations are phase locked to the stimulus, whereas induced oscillations are not. Power changes for both evoked and induced responses as well as resting-state power were correlated with plasma γ-aminobutyric acid and γ-guanidinobutyric acid concentrations and with cortical γ-aminobutyric acid measured by proton magnetic resonance spectroscopy. Plasma γ-aminobutyric acid, γ-guanidinobutyric acid and cortical γ-aminobutyric acid were higher in patients than in controls (P < 0.001 for both). Beta and gamma relative power were suppressed for evoked responses in patients versus controls (P < 0.01). No group differences were observed for induced activity (P > 0.05). The mean gamma frequency of evoked responses was lower in patients versus controls (P = 0.002). Resting-state activity was suppressed in patients for theta (P = 0.011) and gamma (P < 0.001) bands. Evoked power changes were inversely correlated with plasma γ-aminobutyric acid and with γ-guanidinobutyric acid for beta (P < 0.001) and gamma (P < 0.001) bands. Similar relationships were observed between the evoked power changes and cortical γ-aminobutyric acid for all tested areas in the beta band (P < 0.001) and for the posterior cingulate gyrus in the gamma band (P < 0.001). We also observed a negative correlation between resting-state activity and plasma γ-aminobutyric acid and γ-guanidinobutyric acid for theta (P < 0.001; P = 0.003), alpha (P = 0.003; P = 0.02) and gamma (P = 0.02; P = 0.01) bands. Our findings indicate that increased γ-aminobutyric acid concentration is associated with reduced sensory-evoked beta and gamma activity and impaired neuronal synchronization in patients with succinic semialdehyde dehydrogenase deficiency. This further elucidates the pathophysiology of this neurometabolic disorder and serves as a potential biomarker for therapeutic trials.
Collapse
Affiliation(s)
- Christos Papadelis
- Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Georgios Ntolkeras
- Division of Newborn Medicine, Department of Medicine, Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Itay Tokatly Latzer
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02129, USA
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Melissa L DiBacco
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Onur Afacan
- Department of Radiology, Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Simon Warfield
- Department of Radiology, Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Xutong Shi
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
33
|
Rossi C, Vidaurre D, Costers L, Akbarian F, Woolrich M, Nagels G, Van Schependom J. A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes. Commun Biol 2023; 6:1079. [PMID: 37872313 PMCID: PMC10593846 DOI: 10.1038/s42003-023-05448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The brain dynamics underlying working memory (WM) unroll via transient frequency-specific large-scale brain networks. This multidimensionality (time, space, and frequency) challenges traditional analyses. Through an unsupervised technique, the time delay embedded-hidden Markov model (TDE-HMM), we pursue a functional network analysis of magnetoencephalographic data from 38 healthy subjects acquired during an n-back task. Here we show that this model inferred task-specific networks with unique temporal (activation), spectral (phase-coupling connections), and spatial (power spectral density distribution) profiles. A theta frontoparietal network exerts attentional control and encodes the stimulus, an alpha temporo-occipital network rehearses the verbal information, and a broad-band frontoparietal network with a P300-like temporal profile leads the retrieval process and motor response. Therefore, this work provides a unified and integrated description of the multidimensional working memory dynamics that can be interpreted within the neuropsychological multi-component model of WM, improving the overall neurophysiological and neuropsychological comprehension of WM functioning.
Collapse
Affiliation(s)
- Chiara Rossi
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Diego Vidaurre
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus university, Aarhus, Denmark
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lars Costers
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Fahimeh Akbarian
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark Woolrich
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Guy Nagels
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Jeroen Van Schependom
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
34
|
Jensen M, Hyder R, Westner BU, Højlund A, Shtyrov Y. Speech comprehension across time, space, frequency, and age: MEG-MVPA classification of intertrial phase coherence. Neuropsychologia 2023; 188:108602. [PMID: 37270028 DOI: 10.1016/j.neuropsychologia.2023.108602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Language is a key part of human cognition, essential for our well-being at all stages of our lives. Whereas many neurocognitive abilities decline with age, for language the picture is much less clear, and how exactly speech comprehension changes with ageing is still unknown. To investigate this, we employed magnetoencephalography (MEG) and recorded neuromagnetic brain responses to auditory linguistic stimuli in healthy participants of younger and older age using a passive task-free paradigm and a range of different linguistic stimulus contrasts, which enabled us to assess neural processing of spoken language at multiple levels (lexical, semantic, morphosyntactic). Using machine learning-based classification algorithms to scrutinise intertrial phase coherence of MEG responses in cortical source space, we found that patterns of oscillatory neural activity diverged between younger and older participants across several frequency bands (alpha, beta, gamma) for all tested linguistic information types. The results suggest multiple age-related changes in the brain's neurolinguistic circuits, which may be due to both healthy ageing in general and compensatory processes in particular.
Collapse
Affiliation(s)
- Mads Jensen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Research Unit for Robophilosophy and Integrative Social Robotics, School of Culture and Society, Aarhus University, Aarhus, Denmark; Interacting Minds Centre, School of Culture and Society, Aarhus University, Aarhus, Denmark.
| | - Rasha Hyder
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Britta U Westner
- Radboud University, Donders Centre for Cognition, Nijmegen, the Netherlands
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
35
|
Hamel R, Pearson J, Sifi L, Patel D, Hinder MR, Jenkinson N, Galea JM. The intracortical excitability changes underlying the enhancing effects of rewards and punishments on motor performance. Brain Stimul 2023; 16:1462-1475. [PMID: 37777109 DOI: 10.1016/j.brs.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Monetary rewards and punishments enhance motor performance and are associated with corticospinal excitability (CSE) increases within the motor cortex (M1) during movement preparation. However, such CSE changes have unclear origins. Based on converging evidence, one possibility is that they stem from increased glutamatergic (GLUTergic) facilitation and/or decreased type A gamma-aminobutyric acid (GABAA)-mediated inhibition within M1. To investigate this, paired-pulse transcranial magnetic stimulation was used over the left M1 to evaluate intracortical facilitation (ICF) and short intracortical inhibition (SICI), indirect assays of GLUTergic activity and GABAA-mediated inhibition, in an index finger muscle during the preparation of sequences initiated by either the right index or little finger. Behaviourally, rewards and punishments enhanced both reaction and movement time. During movement preparation, regardless of rewards or punishments, ICF increased when the index finger initiated sequences, whereas SICI decreased when both the index and little fingers initiated sequences. This finding suggests that GLUTergic activity increases in a finger-specific manner whilst GABAA-mediated inhibition decreases in a finger-unspecific manner during preparation. In parallel, both rewards and punishments non-specifically increased ICF, but only rewards non-specifically decreased SICI as compared to neutral. This suggests that to enhance performance rewards both increase GLUTergic activity and decrease GABAA-mediated inhibition, whereas punishments selectively increase GLUTergic activity. A control experiment revealed that such changes were not observed post-movement as participants processed reward and punishment feedback, indicating they were selective to movement preparation. Collectively, these results map the intracortical excitability changes in M1 by which incentives enhance motor performance.
Collapse
Affiliation(s)
- R Hamel
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom; School of Sport, Exercise, and Rehabilitation, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - J Pearson
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - L Sifi
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - D Patel
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - M R Hinder
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - N Jenkinson
- School of Sport, Exercise, and Rehabilitation, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - J M Galea
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
36
|
Neuhäußer AM, Bluschke A, Roessner V, Beste C. Distinct effects of different neurofeedback protocols on the neural mechanisms of response inhibition in ADHD. Clin Neurophysiol 2023; 153:111-122. [PMID: 37478508 DOI: 10.1016/j.clinph.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE In attention deficit/hyperactivity disorder (ADHD), impaired response inhibition is frequently observed. A promising non-pharmacological treatment is electroencephalography (EEG)-neurofeedback (NF) training. However, the widely used theta-down/beta-up regulation (↓θ↑β) NF protocol may not be optimal for targeting these deficits. We examined how neurofeedback protocols training the upregulation of theta and/or beta power affect inhibitory control in children and adolescents with ADHD. METHODS 64 patients with ADHD took part in the three NF trainings. Aside from parent-reported ADHD symptoms and behavioural performance data, neurophysiological parameters collected via a Go/Nogo task and corrected to account for intraindividual variability were compared in a pre-post design and to an ADHD (n = 20) as well as a typically developing control group (n = 24). RESULTS The examined NF protocols resulted in similar improvements in response inhibition with the neurophysiological mechanisms differing substantially. The upregulation of theta led to a specific Nogo-P3 increase, while training beta upregulation as well as the combined protocol resulted in less specific effects. CONCLUSIONS This study shows distinct effects of different theta/beta-neurofeedback protocols on the neural mechanisms underlying improvements in response inhibition in patients with ADHD. SIGNIFICANCE These effects shed further light on the oscillatory dynamics underlying cognitive control in ADHD and how these may be targeted in neurofeedback treatments.
Collapse
Affiliation(s)
- Anna Marie Neuhäußer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
37
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
38
|
Szul MJ, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J, Bonaiuto JJ. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog Neurobiol 2023; 228:102490. [PMID: 37391061 DOI: 10.1016/j.pneurobio.2023.102490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
Collapse
Affiliation(s)
- Maciej J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Sotirios Papadopoulos
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | | | - Denis Schwartz
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
39
|
Janiukstyte V, Owen TW, Chaudhary UJ, Diehl B, Lemieux L, Duncan JS, de Tisi J, Wang Y, Taylor PN. Normative brain mapping using scalp EEG and potential clinical application. Sci Rep 2023; 13:13442. [PMID: 37596291 PMCID: PMC10439201 DOI: 10.1038/s41598-023-39700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/29/2023] [Indexed: 08/20/2023] Open
Abstract
A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation.
Collapse
Affiliation(s)
- Vytene Janiukstyte
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
| | - Thomas W Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
| | - Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK.
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
40
|
Bergwell H, Trevarrow MP, Heinrichs-Graham E, Reelfs A, Ott LR, Penhale SH, Wilson TW, Kurz MJ. Aberrant age-related alterations in spontaneous cortical activity in participants with cerebral palsy. Front Neurol 2023; 14:1163964. [PMID: 37521295 PMCID: PMC10374009 DOI: 10.3389/fneur.2023.1163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Cerebral Palsy (CP) is the most common neurodevelopmental motor disability, resulting in life-long sensory, perception and motor impairments. Moreover, these impairments appear to drastically worsen as the population with CP transitions from adolescents to adulthood, although the underlying neurophysiological mechanisms remain poorly understood. Methods We began to address this knowledge gap by utilizing magnetoencephalographic (MEG) brain imaging to study how the amplitude of spontaneous cortical activity (i.e., resting state) is altered during this transition period in a cohort of 38 individuals with spastic diplegic CP (Age range = 9.80-47.50 years, 20 females) and 67 neurotypical controls (NT) (Age range = 9.08-49.40 years, Females = 27). MEG data from a five-minute eyes closed resting-state paradigm were source imaged, and the power within the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), and gamma (30-59 Hz) frequency bands were computed. Results For both groups, the delta and theta spontaneous power decreased in the bilateral temporoparietal and superior parietal regions with age, while alpha, beta, and gamma band spontaneous power increased in temporoparietal, frontoparietal and premotor regions with age. We also found a significant group x age interaction, such that participants with CP demonstrated significantly less age-related increases in the spontaneous beta activity in the bilateral sensorimotor cortices compared to NT controls. Discussion Overall, these results demonstrate that the spontaneous neural activity in individuals with CP has an altered trajectory when transitioning from adolescents to adulthood. We suggest that these differences in spontaneous cortical activity may play a critical role in the aberrant motor actions seen in this patient group, and may provide a neurophysiological marker for assessing the effectiveness of current treatment strategies that are directed at improving the mobility and sensorimotor impairments seen in individuals with CP.
Collapse
Affiliation(s)
- Hannah Bergwell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michael P. Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Anna Reelfs
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Max J. Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
41
|
Monroe DC, Berry NT, Fino PC, Rhea CK. A Dynamical Systems Approach to Characterizing Brain-Body Interactions during Movement: Challenges, Interpretations, and Recommendations. SENSORS (BASEL, SWITZERLAND) 2023; 23:6296. [PMID: 37514591 PMCID: PMC10385586 DOI: 10.3390/s23146296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Brain-body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of 'brain' activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus, this review is written as a tutorial to address both limitations for those interested in studying BBIs through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting, and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement. Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical systems. Third, we provide worked examples from both canonical model systems and from empirical EEG and kinematic data collected from two subjects during an overground walking task.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nathaniel T Berry
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
- Under Armour, Inc., Innovation, Baltimore, MD 21230, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher K Rhea
- College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
42
|
Paparella I, Vanderwalle G, Stagg CJ, Maquet P. An integrated measure of GABA to characterize post-stroke plasticity. Neuroimage Clin 2023; 39:103463. [PMID: 37406594 PMCID: PMC10339061 DOI: 10.1016/j.nicl.2023.103463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a major cause of death and chronic neurological disability. Despite the improvements in stroke care, the number of patients affected by stroke keeps increasing and many stroke survivors are left permanently disabled. Current therapies are limited in efficacy. Understanding the neurobiological mechanisms underlying post-stroke recovery is therefore crucial to find new therapeutic options to address this medical burden. Long-lasting and widespread alterations of γ-aminobutyric acid (GABA) neurotransmission seem to play a key role in stroke recovery. In this review we first discuss a possible model of GABAergic modulation of post-stroke plasticity. We then overview the techniques currently available to non-invasively assess GABA in patients and the conclusions drawn from this limited body of work. Finally, we address the remaining open questions to clarify GABAergic changes underlying post-stroke recovery, we briefly review possible ways to modulate GABA post stroke and propose a novel approach to thoroughly quantify GABA in stroke patients, by integrating its concentration, the activity of its receptors and its link with microstructural changes.
Collapse
Affiliation(s)
- Ilenia Paparella
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium.
| | - Gilles Vanderwalle
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Pierre Maquet
- GIGA-Research, Cyclotron Research Center-In Vivo Imaging Unit, 8 allée du Six Août, Batiment B30, University of Liège, 4000 Liège, Belgium; Department of Neurology, Domaine Universitaire du Sart Tilman, Bâtiment B35, CHU de Liège, 4000 Liège, Belgium
| |
Collapse
|
43
|
Frohlich J, Mediano PAM, Bavato F, Gharabaghi A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun Biol 2023; 6:654. [PMID: 37340024 DOI: 10.1038/s42003-023-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Low-frequency (<4 Hz) neural activity, particularly in the delta band, is generally indicative of loss of consciousness and cortical down states, particularly when it is diffuse and high amplitude. Remarkably, however, drug challenge studies of several diverse classes of pharmacological agents-including drugs which treat epilepsy, activate GABAB receptors, block acetylcholine receptors, or produce psychedelic effects-demonstrate neural activity resembling cortical down states even as the participants remain conscious. Of those substances that are safe to use in healthy volunteers, some may be highly valuable research tools for investigating which neural activity patterns are sufficient for consciousness or its absence.
Collapse
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
44
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
45
|
Guerra A, Colella D, Cannavacciuolo A, Giangrosso M, Paparella G, Fabbrini G, Berardelli A, Bologna M. Short-term plasticity of the motor cortex compensates for bradykinesia in Parkinson's disease. Neurobiol Dis 2023; 182:106137. [PMID: 37120094 DOI: 10.1016/j.nbd.2023.106137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Patients with Parkinson's disease (PD) show impaired short-term potentiation (STP) mechanisms in the primary motor cortex (M1). However, the role played by this neurophysiological abnormality in bradykinesia pathophysiology is unknown. In this study, we used a multimodal neuromodulation approach to test whether defective STP contributes to bradykinesia. We evaluated STP by measuring motor-evoked potential facilitation during 5 Hz-repetitive transcranial magnetic stimulation (rTMS) and assessed repetitive finger tapping movements through kinematic techniques. Also, we used transcranial alternating current stimulation (tACS) to drive M1 oscillations and experimentally modulate bradykinesia. STP was assessed during tACS delivered at beta (β) and gamma (γ) frequency, and during sham-tACS. Data were compared to those recorded in a group of healthy subjects. In PD, we found that STP was impaired during sham- and γ-tACS, while it was restored during β-tACS. Importantly, the degree of STP impairment was associated with the severity of movement slowness and amplitude reduction. Moreover, β-tACS-related improvements in STP were linked to changes in movement slowness and intracortical GABA-A-ergic inhibition during stimulation, as assessed by short-interval intracortical inhibition (SICI). Patients with prominent STP amelioration had greater SICI reduction (cortical disinhibition) and less slowness worsening during β-tACS. Dopaminergic medications did not modify β-tACS effects. These data demonstrate that abnormal STP processes are involved in bradykinesia pathophysiology and return to normal levels when β oscillations increase. STP changes are likely mediated by modifications in GABA-A-ergic intracortical circuits and may represent a compensatory mechanism against β-induced bradykinesia in PD.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | | | | | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
46
|
Lin YH, Yang D, Ni HY, Xu XM, Wu F, Lin L, Chen J, Sun YY, Huang ZQ, Li SY, Jiang PL, Wu HY, Chang L, Hu B, Luo CX, Wu J, Zhu DY. Ketone bodies promote stroke recovery via GAT-1-dependent cortical network remodeling. Cell Rep 2023; 42:112294. [PMID: 36947544 DOI: 10.1016/j.celrep.2023.112294] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/31/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
Stroke is a leading cause of adult disability worldwide, and better drugs are needed to promote functional recovery after stroke. Growing evidence suggests the critical role of network excitability during the repair phase for stroke recovery. Here, we show that β-hydroxybutyrate (β-HB), an essential ketone body (KB) component, is positively correlated with improved outcomes in patients with stroke and promotes functional recovery in rodents with stroke during the repair phase. These beneficial effects of β-HB depend on HDAC2/HDAC3-GABA transporter 1 (GAT-1) signaling-mediated enhancement of excitability and phasic GABA inhibition in the peri-infarct cortex and structural and functional plasticity in the ipsilateral cortex, the contralateral cortex, and the corticospinal tract. Together with available clinical approaches to elevate KB levels, our results offer a clinically translatable means to promote stroke recovery. Furthermore, GAT-1 can serve as a pharmacological target for developing drugs to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Mei Xu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Long Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jie Chen
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yan-Yu Sun
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Zhen-Quan Huang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shi-Yi Li
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei-Lin Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
47
|
Kang L, Ranft J, Hakim V. Beta oscillations and waves in motor cortex can be accounted for by the interplay of spatially structured connectivity and fluctuating inputs. eLife 2023; 12:e81446. [PMID: 36917621 PMCID: PMC10112891 DOI: 10.7554/elife.81446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
The beta rhythm (13-30 Hz) is a prominent brain rhythm. Recordings in primates during instructed-delay reaching tasks have shown that different types of traveling waves of oscillatory activity are associated with episodes of beta oscillations in motor cortex during movement preparation. We propose here a simple model of motor cortex based on local excitatory-inhibitory neuronal populations coupled by long-range excitation, where additionally inputs to the motor cortex from other neural structures are represented by stochastic inputs on the different model populations. We show that the model accurately reproduces the statistics of recording data when these external inputs are correlated on a short time scale (25 ms) and have two different components, one that targets the motor cortex locally and another one that targets it in a global and synchronized way. The model reproduces the distribution of beta burst durations, the proportion of the different observed wave types, and wave speeds, which we show not to be linked to axonal propagation speed. When the long-range connectivity or the local input targets are anisotropic, traveling waves are found to preferentially propagate along the axis where connectivity decays the fastest. Different from previously proposed mechanistic explanations, the model suggests that traveling waves in motor cortex are the reflection of the dephasing by external inputs, putatively of thalamic origin, of an oscillatory activity that would otherwise be spatially synchronized by recurrent connectivity.
Collapse
Affiliation(s)
- Ling Kang
- Laboratoire de Physique de l’Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de ParisParisFrance
- School of Physics and Electronic Science, East China Normal UniversityShanghaiChina
| | - Jonas Ranft
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, Ecole Normale Supérieure, PSL UniversityParisFrance
| | - Vincent Hakim
- Laboratoire de Physique de l’Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de ParisParisFrance
| |
Collapse
|
48
|
Fujio K, Obata H, Takeda K, Kawashima N. Cortical oscillations and interareal synchronization as a preparatory activity for postural response. Eur J Neurosci 2023; 57:1516-1528. [PMID: 36878880 DOI: 10.1111/ejn.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Science Laboratory, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Kenta Takeda
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
49
|
West TO, Duchet B, Farmer SF, Friston KJ, Cagnan H. When do bursts matter in the primary motor cortex? Investigating changes in the intermittencies of beta rhythms associated with movement states. Prog Neurobiol 2023; 221:102397. [PMID: 36565984 PMCID: PMC7614511 DOI: 10.1016/j.pneurobio.2022.102397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural activity (i.e. bursts), yet the mechanisms that regulate them are unknown. Here, we present evidence from electrocorticography recordings made over the motor cortex to show that the statistics of bursts, such as duration or amplitude, in the beta frequency (14-30 Hz) band, significantly aid the classification of motor states such as rest, movement preparation, execution, and imagery. These features reflect nonlinearities not detectable in the power spectrum, with states increasing in nonlinearity from movement execution to preparation to rest. Further, we show using a computational model of the cortical microcircuit, constrained to account for burst features, that modulations of laminar specific inhibitory interneurons are responsible for the temporal organisation of activity. Finally, we show that the temporal characteristics of spontaneous activity can be used to infer the balance of cortical integration between incoming sensory information and endogenous activity. Critically, we contribute to the understanding of how transient brain rhythms may underwrite cortical processing, which in turn, could inform novel approaches for brain state classification, and modulation with novel brain-computer interfaces.
Collapse
Affiliation(s)
- Timothy O West
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Benoit Duchet
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Hayriye Cagnan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
50
|
Krause MR, Vieira PG, Pack CC. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLoS Biol 2023; 21:e3001973. [PMID: 36716309 PMCID: PMC9886255 DOI: 10.1371/journal.pbio.3001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.
Collapse
Affiliation(s)
- Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| |
Collapse
|