1
|
Nawreen N, Oshima K, Chambers J, Smail M, Herman JP. Inhibition of prefrontal cortex parvalbumin interneurons mitigates behavioral and physiological sequelae of chronic stress in male mice. Stress 2024; 27:2361238. [PMID: 38962839 PMCID: PMC11725266 DOI: 10.1080/10253890.2024.2361238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Chronic stress leads to hypofunction of the medial prefrontal cortex (mPFC), mechanisms of which remain to be determined. Enhanced activation of GABAergic of parvalbumin (PV) expressing interneurons (INs) is thought to play a role in stress-induced prefrontal inhibition. In this study, we tested whether chemogenetic inhibition of mPFC PV INs after chronic stress can rescue chronic stress-related behavioral and physiological phenotypes. Mice underwent 2 weeks of chronic variable stress (CVS) followed by a battery of behavioral tests known to be affected by chronic stress exposure, e.g. an open field (OF), novel object recognition (NOR), tail suspension test (TST), sucrose preference test (SPT), and light dark (LD) box. Inhibitory DREADDs were actuated by 3 mg/kg CNO administered 30 min prior to each behavioral test. CVS caused hyperactivity in the OF, reduced sucrose preference in the SPT (indicative of enhanced anhedonia), and increased anxiety-like behavior in the LD box. Inhibition of PV IN after stress mitigated these effects. In addition, CVS also resulted in reduced thymus weight and body weight loss, which were also mitigated by PV IN inhibition. Our results indicate that chronic stress leads to plastic changes in PV INs that may be mitigated by chemogenetic inhibition. Our findings implicate cortical GABAergic INs as a therapeutic target in stress-related diseases.
Collapse
Affiliation(s)
- Nawshaba Nawreen
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
- Veterans Affairs Medical Center, Cincinnati, Ohio 45221, United States
| | - Kristen Oshima
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
- College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
| | - James Chambers
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
| | - Marissa Smail
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
- Veterans Affairs Medical Center, Cincinnati, Ohio 45221, United States
| | - James P. Herman
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45237-0506, United States
- Veterans Affairs Medical Center, Cincinnati, Ohio 45221, United States
- Dept. of Neurology, University of Cincinnati, Cincinnati, Ohio 45237, United States
| |
Collapse
|
2
|
Schalbroeck R, van Hooijdonk CFM, Bos DPA, Booij J, Selten JP. Chronic social stressors and striatal dopamine functioning in humans: A systematic review of SPECT and PET studies. Mol Psychiatry 2024; 29:3841-3856. [PMID: 38760501 DOI: 10.1038/s41380-024-02581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
The dopamine hypothesis of schizophrenia posits that elevated striatal dopamine functioning underlies the development of psychotic symptoms. Chronic exposure to social stressors increases psychosis risk, possibly by upregulating striatal dopamine functioning. Here we systematically review single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies that examined the relationship between chronic social stress exposure and in vivo striatal dopamine functioning in humans. We searched the scientific databases PubMed and PsycINFO from inception to August 2023. The quality of the included studies was evaluated with the ten-item Observational Study Quality Evaluation (PROSPERO: CRD42022308883). Twenty-eight studies were included, which measured different aspects of striatal dopamine functioning including dopamine synthesis capacity (DSC), vesicular monoamine transporter type 2 binding, dopamine release following a pharmacological or behavioral challenge, D2/3 receptor binding, and dopamine transporter binding. We observed preliminary evidence of an association between childhood trauma and increased striatal DSC and dopamine release. However, exposure to low socioeconomic status, stressful life events, or other social stressors was not consistently associated with altered striatal dopamine functioning. The quality of available studies was generally low. In conclusion, there is insufficient evidence that chronic social stressors upregulate striatal dopamine functioning in humans. We propose avenues for future research, in particular to improve the measurement of chronic social stressors and the methodological quality of study designs.
Collapse
Affiliation(s)
- Rik Schalbroeck
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carmen F M van Hooijdonk
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle P A Bos
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Paul Selten
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Rivierduinen Institute for Mental Healthcare, Leiden, The Netherlands
| |
Collapse
|
3
|
Wang C, Zhu L, Zheng W, Peng H, Wang J, Cui Y, Liu B, Jiang T. Effects of childhood trauma on aggressive behaviors and hippocampal function: the modulation of COMT haplotypes. PSYCHORADIOLOGY 2023; 3:kkad013. [PMID: 38666110 PMCID: PMC11003423 DOI: 10.1093/psyrad/kkad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 04/28/2024]
Abstract
Background Aggression is a commonly hostile behavior linked to the hippocampal activity. Childhood trauma (CT) exposure has been associated with altered sensitization of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampal volume,which could increase violent aggressive behaviors. Additionally, Catechol-O-methyltransferase (COMT), the major dopamine metabolism enzyme, is implicated in stress responsivity, including aggression. Hence, CT exposure may affect aggression through the effect on the hippocampal function, which might also be modulated by the COMT variations. Objectives This study examined whether both CT and haplotypes of COMT moderate hippocampal function and thus affect human aggressive behavior. Methods We obtained bilateral hippocampal functional connectivity maps using resting state functional magnetic resonance imaging (MRI) data. COMT haplotype estimation was performed using Haploview 4.2 and PHASE 2.1. Then we constructed a moderated mediation model to study the effect of the CTQ × COMT on aggressive behavior. Results Three major haplotypes were generated from thirteen single nucleotide polymorphisms (SNPs) within the COMT gene and formed three haplotypes corresponding to high, medium, and low enzymatic activity of COMT. The results showed interactive relationships between the Childhood Trauma Questionnaire (CTQ) and COMT with respect to the functional connectivity (FC) of the bilateral hippocampus (HIP)-orbital frontal cortex (OFC). Specifically, CT experience predicted lower negative HIP-OFC coupling in the APS and HPS haplotypes corresponding to the medium and high enzymatic activity of COMT, but greater FC in the LPS haplotypes corresponding to the low enzymatic activity. We also observed a conditional mediation effect of the right HIP-OFC coupling in the link between COMT and aggressive behavior that was moderated by CT experience. Conclusions These results suggest that CT and COMT have a combined effect on aggressive behavior through hippocampal function. This mediation analysis sheds light on the influence of childhood experience on aggressive behavior in different genetic backgrounds.
Collapse
Affiliation(s)
- Chao Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Linfei Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Hanyuzhu Peng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Cui
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Tianzi Jiang
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
5
|
Zhong S, Chen P, Lai S, Chen G, Zhang Y, Lv S, He J, Tang G, Pan Y, Wang Y, Jia Y. Aberrant dynamic functional connectivity in corticostriatal circuitry in depressed bipolar II disorder with recent suicide attempt. J Affect Disord 2022; 319:538-548. [PMID: 36155235 DOI: 10.1016/j.jad.2022.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The underlying neurobiological mechanisms on suicidal behavior in bipolar disorder remain unclear. We aim to explore the mechanisms of suicide by detecting dynamic functional connectivity (dFC) of corticostriatal circuitry and cognition in depressed bipolar II disorder (BD II) with recent suicide attempt (SA). METHODS We analyzed resting-state functional magnetic resonance imaging (fMRI) data from 68 depressed patients with BD-II (30 with SA and 38 without SA) and 35 healthy controls (HCs). The whole-brain dFC variability of corticostriatal circuitry was calculated using a sliding-window analysis. Their correlations with cognitive dysfunction were further detected. Support vector machine (SVM) classification tested the potential of dFC to differentiate BD-II with SA from HCs. RESULTS Increased dFC variability between the right vCa and the right insula was found in SA compared to non-SA and HCs, and negatively correlated with speed of processing. Decreased dFC variability between the left dlPu and the right postcentral gyrus was found in non-SA compared to SA and HCs, and positively correlated with reasoning problem-solving. Both SA and non-SA exhibited decreased dFC variability between the right dCa and the left MTG, and between the right dlPu and the right calcarine when compared to HCs. SVM classification achieved an accuracy of 75.24 % and AUC of 0.835 to differentiate SA from non-SA, while combining the abnormal dFC features between SA and non-SA. CONCLUSIONS Aberrant dFC variability of corticostriatal circuitry may serve as potential neuromarker for SA in BD-II, which might help to discriminate suicidal BD-II patients from non-suicidal patients and HCs.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Youling Pan
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
6
|
Girotti M, Carreno FR, Morilak DA. Role of Orbitofrontal Cortex and Differential Effects of Acute and Chronic Stress on Motor Impulsivity Measured With 1-Choice Serial Reaction Time Test in Male Rats. Int J Neuropsychopharmacol 2022; 25:1026-1036. [PMID: 36087292 PMCID: PMC9743967 DOI: 10.1093/ijnp/pyac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Deficits in motor impulsivity, that is, the inability to inhibit a prepotent response, are frequently observed in psychiatric conditions. Several studies suggest that stress often correlates with higher impulsivity. Among the brain areas affected by stress, the orbitofrontal cortex (OFC) is notable because of its role in impulse control. OFC subregions with unique afferent and efferent circuitry play distinct roles in impulse control, yet it is not clear what OFC subregions are engaged during motor impulsivity tasks. METHODS In this study we used a rodent test of motor impulsivity, the 1-choice serial reaction time test, to explore activation of OFC subregions either during a well-learned motor impulsivity task or in a challenge task with a longer wait time that increases premature responding. We also examined the effects of acute inescapable stress, chronic intermittent cold stress and chronic unpredictable stress on motor impulsivity. RESULTS Fos expression increased in the lateral OFC and agranular insular cortex during performance in both the mastered and challenge conditions. In the ventral OFC, Fos expression increased only during challenge, and within the medial OFC, Fos was not induced in either condition. Inescapable stress produced a transient effect on premature responses in the mastered task, whereas chronic intermittent cold stress and chronic unpredictable stress altered premature responses in both conditions in ways specific to each stressor. CONCLUSIONS These results suggest that different OFC subregions have different roles in motor impulse control, and the effects of stress vary depending on the nature and duration of the stressor.
Collapse
Affiliation(s)
- Milena Girotti
- Correspondence: Milena Girotti, PhD, Department of Pharmacology, Mail Code 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA ()
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
7
|
Smith AP, Kelly TH, Lile JA, Martin CA, Ramirez MP, Wesley MJ. Exploratory examination of the effects of d-amphetamine on active-state functional connectivity: Influence of impulsivity and sensation-seeking status. Exp Clin Psychopharmacol 2022; 30:194-208. [PMID: 33764102 PMCID: PMC8463640 DOI: 10.1037/pha0000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in diagnostic research identified that individuals with higher impulsivity and sensation-seeking scores tend to report more positive subjective responses to stimulant drugs such as amphetamine. The current exploratory study hypothesized that differences in underlying mesocorticolimbic circuitry may mediate the relationship between personality and responses to stimulants due to its previously established implication in reward processes as well as the overlap between its dopaminergic projections and the pharmacodynamics of many stimulants. Forty participants (20 female) were recruited with relatively high- and low-impulsivity and sensation-seeking scores as defined by the Zuckerman-Kuhlman Personality Questionnaire (Form IIIR; Zuckerman, Kuhlman, Joireman, Teta, & Kraft, 1993) for a double-blind, placebo-controlled, intranasal amphetamine administration study conducted within an MRI scanner. Active state seed-to-voxel connectivity analyses assessed the effects of amphetamine, personality, subjective responses to amphetamine, and their interactions with mesocorticolimbic seeds on data collected during monetary incentive delay and go/no-go task performance. Results indicated that amphetamine administration largely disrupted brain activity as evidenced by connectivity values shifting toward no correlation among brain stem, striatal, and frontal cortex regions. Additionally, associations of impulsivity and connectivity between ventral tegmental and medial orbitofrontal as well as lateral orbitofrontal and putamen regions were inverted from negative to positive during the placebo and amphetamine conditions, respectively. Personality was unrelated to subjective responses to amphetamine. Results are interpreted as providing evidence of underlying differences in mesocorticolimbic circuitry being a potential target for requisite diagnostic and treatment strategies implicated with stimulant use disorders, but further research is needed. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
8
|
Palamarchuk IS, Vaillancourt T. Mental Resilience and Coping With Stress: A Comprehensive, Multi-level Model of Cognitive Processing, Decision Making, and Behavior. Front Behav Neurosci 2021; 15:719674. [PMID: 34421556 PMCID: PMC8377204 DOI: 10.3389/fnbeh.2021.719674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aversive events can evoke strong emotions that trigger cerebral neuroactivity to facilitate behavioral and cognitive shifts to secure physiological stability. However, upon intense and/or chronic exposure to such events, the neural coping processes can be maladaptive and disrupt mental well-being. This maladaptation denotes a pivotal point when psychological stress occurs, which can trigger subconscious, "automatic" neuroreactivity as a defence mechanism to protect the individual from potential danger including overwhelming unpleasant feelings and disturbing or threatening thoughts.The outcomes of maladaptive neural activity are cognitive dysfunctions such as altered memory, decision making, and behavior that impose a risk for mental disorders. Although the neurocognitive phenomena associated with psychological stress are well documented, the complex neural activity and pathways related to stressor detection and stress coping have not been outlined in detail. Accordingly, we define acute and chronic stress-induced pathways, phases, and stages in relation to novel/unpredicted, uncontrollable, and ambiguous stressors. We offer a comprehensive model of the stress-induced alterations associated with multifaceted pathophysiology related to cognitive appraisal and executive functioning in stress.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Caravaggio F, Porco N, Kim J, Torres-Carmona E, Brown E, Iwata Y, Nakajima S, Gerretsen P, Remington G, Graff-Guerrero A. Measuring amphetamine-induced dopamine release in humans: A comparative meta-analysis of [ 11 C]-raclopride and [ 11 C]-(+)-PHNO studies. Synapse 2021; 75:e22195. [PMID: 33471400 DOI: 10.1002/syn.22195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
The radiotracers [11 C]-raclopride and [11 C]-(+)-PHNO are commonly used to measure differences in amphetamine-induced dopamine release between healthy persons and persons with neuropsychiatric diseases. As an agonist radiotracer, [11 C]-(+)-PHNO should theoretically be roughly 2.7 times more sensitive to displacement by endogenous dopamine than [11 C]raclopride. To date, only one study has been published comparing the sensitivity of these two radiotracers to amphetamine-induced dopamine release in healthy persons. Unfortunately, conflicting findings in the literature suggests that the dose of amphetamine they employed (0.3 mg/kg, p.o.) may not reliably reduce [11 C]-raclopride binding in the caudate. Thus, it is unclear whether the preponderance of evidence supports the theory that [11 C]-(+)-PHNO is more sensitive to displacement by amphetamine in humans than [11 C]-raclopride. In order to clarify these issues, we conducted a comparative meta-analysis summarizing the effects of amphetamine on [11 C]-raclopride and [11 C]-(+)-PHNO binding in healthy humans. Our analysis indicates that amphetamine given at 0.3 mg/kg, p.o. does not reliably reduce [11 C]-raclopride binding in the caudate. Second, the greater sensitivity of [11 C]-(+)-PHNO is evidenced at 0.5 mg/kg, p.o., but not at lower doses of amphetamine. Third, our analysis suggests that [11 C]-(+)-PHNO may be roughly 1.5 to 2.5 times more sensitive to displacement by amphetamine than [11 C]-raclopride in healthy persons. We recommend that future displacement studies with these radiotracers employ 0.5 mg/kg, p.o. of amphetamine with a dose, post-scan interval of at least 3 hr. Using this dose of amphetamine, [11 C]-raclopride studies should employ at least n = 34 participants per group, while [11 C]-(+)-PHNO studies should employ at least n = 6 participants per group, in order to be sufficiently powered (80%) to detect changes in radiotracer binding within the caudate.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Natasha Porco
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Edgardo Torres-Carmona
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Eric Brown
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi, Chuo, Japan
| | | | - Philip Gerretsen
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Cumming P, Gründer G, Brinson Z, Wong DF. Applications, Advances, and Limitations of Molecular Imaging of Brain Receptors. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Postolache TT, Wadhawan A, Rujescu D, Hoisington AJ, Dagdag A, Baca-Garcia E, Lowry CA, Okusaga OO, Brenner LA. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front Psychiatry 2021; 12:665682. [PMID: 34177652 PMCID: PMC8226025 DOI: 10.3389/fpsyt.2021.665682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Within the general literature on infections and suicidal behavior, studies on Toxoplasma gondii (T. gondii) occupy a central position. This is related to the parasite's neurotropism, high prevalence of chronic infection, as well as specific and non-specific behavioral alterations in rodents that lead to increased risk taking, which are recapitulated in humans by T. gondii's associations with suicidal behavior, as well as trait impulsivity and aggression, mental illness and traffic accidents. This paper is a detailed review of the associations between T. gondii serology and suicidal behavior, a field of study that started 15 years ago with our publication of associations between T. gondii IgG serology and suicidal behavior in persons with mood disorders. This "legacy" article presents, chronologically, our primary studies in individuals with mood disorders and schizophrenia in Germany, recent attempters in Sweden, and in a large cohort of mothers in Denmark. Then, it reviews findings from all three meta-analyses published to date, confirming our reported associations and overall consistent in effect size [ranging between 39 and 57% elevation of odds of suicide attempt in T. gondii immunoglobulin (IgG) positives]. Finally, the article introduces certain links between T. gondii and biomarkers previously associated with suicidal behavior (kynurenines, phenylalanine/tyrosine), intermediate phenotypes of suicidal behavior (impulsivity, aggression) and state-dependent suicide risk factors (hopelessness/dysphoria, sleep impairment). In sum, an abundance of evidence supports a positive link between suicide attempts (but not suicidal ideation) and T. gondii IgG (but not IgM) seropositivity and serointensity. Trait impulsivity and aggression, endophenotypes of suicidal behavior have also been positively associated with T. gondii seropositivity in both the psychiatrically healthy as well as in patients with Intermittent Explosive Disorder. Yet, causality has not been demonstrated. Thus, randomized interventional studies are necessary to advance causal inferences and, if causality is confirmed, to provide hope that an etiological treatment for a distinct subgroup of individuals at an increased risk for suicide could emerge.
Collapse
Affiliation(s)
- Teodor T Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, United States
| | - Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Psychiatry, Saint Elizabeth's Hospital, Washington, DC, United States
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle, Halle, Germany
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Systems Engineering and Management, Air Force Institute of Technology, Dayton, OH, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Enrique Baca-Garcia
- Department of Psychiatry, Jimenez Diaz Foundation Hospital, Madrid, Spain.,Department of Psychiatry, Madrid Autonomous University, Madrid, Spain.,Department of Psychiatry, Rey Juan Carlos University Hospital, Móstoles, Spain.,Department of Psychiatry, General Hospital of Villalba, Madrid, Spain.,Department of Psychiatry, Infanta Elena University Hospital, Valdemoro, Spain.,Universidad Catolica del Maule, Talca, Chile.,Department of Psychiatry, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Olaoluwa O Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.,Michael E DeBakey VA Medical Center, Houston, TX, United States
| | - Lisa A Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Psychiatry & Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Smillie LD. What is reinforcement sensitivity? Neuroscience paradigms for approach‐avoidance process theories of personality. EUROPEAN JOURNAL OF PERSONALITY 2020. [DOI: 10.1002/per.674] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Reinforcement sensitivity is a concept proposed by Gray (1973) to describe the biological antecedents of personality, and has become the common mechanism among a family of personality theories concerning approach and avoidance processes. These theories suggest that 2–3 biobehavioural systems mediate the effects of reward and punishment on emotion and motivation, and that individual differences in the functioning of these systems manifest as personality. Identifying paradigms for operationalising reinforcement sensitivity is therefore critical for testing and developing these theories, and evaluating their footprint in personality space. In this paper I suggest that, while traditional self‐report paradigms in personality psychology may be less‐than‐ideal for this purpose, neuroscience paradigms may offer operations of reinforcement sensitivity at multiple levels of approach and avoidance processes. After brief reflection on the use of such methods in animal models—which first spawned the concept of reinforcement sensitivity—recent developments in four domains of neuroscience are reviewed. These are psychogenomics, psychopharmacology, neuroimaging and category‐learning. By exploring these paradigms as potential operations of reinforcement sensitivity we may enrich our understanding of the putative biobehavioural bases of personality. Copyright © 2008 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Luke D. Smillie
- Department of Psychology, Goldsmiths, University of London, London, UK
| |
Collapse
|
13
|
Bellés L, Dimiziani A, Tsartsalis S, Millet P, Herrmann FR, Ginovart N. Dopamine D2/3 Receptor Availabilities and Evoked Dopamine Release in Striatum Differentially Predict Impulsivity and Novelty Preference in Roman High- and Low-Avoidance Rats. Int J Neuropsychopharmacol 2020; 24:239-251. [PMID: 33151278 PMCID: PMC7968620 DOI: 10.1093/ijnp/pyaa084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Impulsivity and novelty preference are both associated with an increased propensity to develop addiction-like behaviors, but their relationship and respective underlying dopamine (DA) underpinnings are not fully elucidated. METHODS We evaluated a large cohort (n = 49) of Roman high- and low-avoidance rats using single photon emission computed tomography to concurrently measure in vivo striatal D2/3 receptor (D2/3R) availability and amphetamine (AMPH)-induced DA release in relation to impulsivity and novelty preference using a within-subject design. To further examine the DA-dependent processes related to these traits, midbrain D2/3-autoreceptor levels were measured using ex vivo autoradiography in the same animals. RESULTS We replicated a robust inverse relationship between impulsivity, as measured with the 5-choice serial reaction time task, and D2/3R availability in ventral striatum and extended this relationship to D2/3R levels measured in dorsal striatum. Novelty preference was positively related to impulsivity and showed inverse associations with D2/3R availability in dorsal striatum and ventral striatum. A high magnitude of AMPH-induced DA release in striatum predicted both impulsivity and novelty preference, perhaps owing to the diminished midbrain D2/3-autoreceptor availability measured in high-impulsive/novelty-preferring Roman high-avoidance animals that may amplify AMPH effect on DA transmission. Mediation analyses revealed that while D2/3R availability and AMPH-induced DA release in striatum are both significant predictors of impulsivity, the effect of striatal D2/3R availability on novelty preference is fully mediated by evoked striatal DA release. CONCLUSIONS Impulsivity and novelty preference are related but mediated by overlapping, yet dissociable, DA-dependent mechanisms in striatum that may interact to promote the emergence of an addiction-prone phenotype.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, University of Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva, Switzerland
| | | | - Stergios Tsartsalis
- Faculty of Medicine, University of Geneva, Switzerland,Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University of Geneva, Switzerland,Faculty of Medicine, University of Geneva, Switzerland,Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - François R Herrmann
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Switzerland
| | - Nathalie Ginovart
- Department of Psychiatry, University of Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva, Switzerland,Correspondence: Nathalie Ginovart, PhD, Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, Room E07-2550A, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland ()
| |
Collapse
|
14
|
Anderson EM, McFadden LM, Matuszewich L. Interaction of stress and stimulants in female rats: Role of chronic stress on later reactivity to methamphetamine. Behav Brain Res 2019; 376:112176. [PMID: 31449910 PMCID: PMC6783376 DOI: 10.1016/j.bbr.2019.112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Previous research in humans and animals suggests that prior exposure to stress alters responsivity to drugs of abuse, including psychostimulants. Male rats show an augmented striatal dopamine response to methamphetamine following exposure to chronic unpredictable stress (CUS). Compared to males, female rats have been shown to be highly sensitive to the effects of stimulants and stress independently, however few studies have examined the interaction between stress and stimulants in female rats. Therefore, the current study investigated whether prior exposure to chronic stress potentiated the behavioral and neurochemical responses to an acute injection of methamphetamine in female rats. Adult female Sprague-Dawley rats were either exposed to CUS or left undisturbed (control) and then two weeks later received an injection of 1.0 or 7.5 mg/kg methamphetamine. Based on open field findings, a subsequent group of rats were exposed to CUS or left undisturbed and then two weeks later received 7.5 mg/kg methamphetamine and either dopamine efflux in the dorsal striatum or nucleus accumbens was measured or methamphetamine and amphetamine levels were measured in the brain and plasma. Female rats exposed to CUS traveled greater distances in the open field immediately following an injection of 7.5 mg/kg, but not 1.0 mg/kg, of methamphetamine and then showed high levels or stereotypy similar to control rats. Animals exposed to CUS had significantly greater increases in dorsal striatum dopamine following an acute injection of 7.5 mg/kg methamphetamine compared to control rats, but not in the nucleus accumbens. These differences were not due to group differences in levels of methamphetamine or amphetamine in the brain or plasma. The current findings demonstrate stress-augmented neurochemical responses to a dose of methamphetamine, similar to that self-administered, which increases understanding of the cross-sensitization between stress and methamphetamine in females.
Collapse
Affiliation(s)
- Eden M Anderson
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA; Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa M McFadden
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Leslie Matuszewich
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
15
|
Zack M, Lobo D, Biback C, Fang T, Smart K, Tatone D, Kalia A, Digiacomo D, Kennedy JL. Impulsivity moderates the effects of dopamine D2 and mixed D1-D2 antagonists in individuals with gambling disorder. J Psychopharmacol 2019; 33:1015-1029. [PMID: 31219367 DOI: 10.1177/0269881119855972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The functional role of dopamine D1 and D2 receptors in gambling disorder (GD) remains unclear. AIMS This study aimed to investigate the role of D1 activation and the moderating effects of impulsivity, a trait linked with weaker D2-mediated inhibition of dopamine release, in GD subjects. METHODS Thirty (nine female) non-comorbid GD subjects with low (LI), moderate (MI), or high impulsivity (HI) received the preferential D2 antagonist haloperidol (HAL; 3 mg) or the mixed D1-D2 antagonist fluphenazine (FLU; 3 mg), on separate sessions before a 15-minute slot machine game or amphetamine (AMPH; 20 mg), in a placebo-controlled, double-blind, counterbalanced design. RESULTS On their own, HAL and FLU led to linear increases and decreases, respectively, in desire to gamble across increasing levels of impulsivity. The slot machine and AMPH each evoked an inverted-U pattern of desire to gamble across increasing impulsivity. HAL reversed this effect of the game, whereas FLU did not alter post-game desire. HAL and FLU decreased and increased psychostimulant-like effects of the game, respectively, in LI and MI subjects, but consistently reduced these effects in HI subjects. HAL also altered the salience of negative affective words on a reading task, such that greater salience of negative words coincided with lower post-game desire to gamble. CONCLUSIONS D1 receptors appear to gauge the incentive value of gambling in GD subjects. D1 activation has negative reinforcing effects in HI gamblers and positive reinforcing effects in LI gamblers. Medications that activate D1 could curtail chasing in HI gamblers. D1 blockade could benefit HI gamblers whose main concern is craving.
Collapse
Affiliation(s)
- Martin Zack
- 1 Molecular Brain Sciences Research Department, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Daniela Lobo
- 1 Molecular Brain Sciences Research Department, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Candice Biback
- 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,4 Leslie Dan School of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Tim Fang
- 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Kelly Smart
- 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Daniel Tatone
- 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aditi Kalia
- 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Daniel Digiacomo
- 3 Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- 1 Molecular Brain Sciences Research Department, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,5 Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Cortese A, Delgado-Morales R, Almeida OFX, Romberg C. The Arctic/Swedish APP mutation alters the impact of chronic stress on cognition in mice. Eur J Neurosci 2019; 50:2773-2785. [PMID: 31231836 PMCID: PMC6852344 DOI: 10.1111/ejn.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Chronic stress is a major risk factor for developing Alzheimer's disease (AD) and promotes the processing of amyloid precursor protein (APP) to β-amyloid (Aβ). However, the precise relationship of stress and disease-typical cognitive decline is presently not well understood. The aim of this study was to investigate how early life stress may affect cognition in adult mice with and without soluble Aβ pathology typical for the early stages of the disease. We focussed on sustained attention and response control, aspects of cognition mediated by the prefrontal cortex that are consistently impaired both in early AD and after chronic stress exposure. Young wild-type mice as well as transgenic arcAβ mice overexpressing the hAPParc/swe transgene were exposed to a chronic unpredictable stress paradigm (age 3-8 weeks). At 15 weeks, these mice were tested on the 5-choice serial reaction time task, a test of sustained attention and executive control. We found that, expectedly, chronic stress increased impulsive choices and impaired sustained attention in wild-type mice. However, the same treatment reduced impulsivity and did not interfere with sustained attention in arcAβ mice. These findings suggest an unexpected interaction between chronic stress and Aβ whereby Aβ-pathology caused by the hAPParc/swe mutation prevented and/or reversed stress-induced cognitive changes through mechanisms that deserve further investigation. They also indicate that Aβ, in modest amounts, may have a beneficial role for cognitive stability, for example by protecting neural networks from the impact of further physiological or behavioural stress.
Collapse
Affiliation(s)
- Aurelio Cortese
- Max-Planck-Institute for Psychiatry, Munich, Germany.,Computational Neuroscience Laboratories, ATR Institute International, Kyoto, Japan
| | | | | | | |
Collapse
|
17
|
Mayo LM, Paul E, DeArcangelis J, Van Hedger K, de Wit H. Gender differences in the behavioral and subjective effects of methamphetamine in healthy humans. Psychopharmacology (Berl) 2019; 236:2413-2423. [PMID: 31165207 PMCID: PMC6695366 DOI: 10.1007/s00213-019-05276-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
RATIONALE Methamphetamine (MA) use is steadily increasing and thus constitutes a major public health concern. Women seem to be particularly vulnerable to developing MA use disorder, as they initiate use at a younger age and transition more quickly to problematic use. Initial drug responses may predict subsequent use, but little information exists on potential gender differences in the acute effects of MA prior to dependence. OBJECTIVE We examined gender differences in the acute effects of MA on subjective mood and reward-related behavior in healthy, non-dependent humans. METHODS Men (n = 44) and women (n = 29) completed 4 sessions in which they received placebo or MA under double-blind conditions twice each. During peak drug effect, participants completed the monetary incentive delay task to assess reaction times to cues signaling potential monetary losses or gains, in an effort to determine if MA would potentiate reward-motivated behavior. Cardiovascular and subjective drug effects were assessed throughout sessions. RESULTS Overall, participants responded more quickly to cues predicting incentivized trials, particularly large-magnitude incentives, than to cues predicting no incentive. MA produced faster reaction times in women, but not in men. MA produced typical stimulant-like subjective and cardiovascular effects in all participants, but subjective ratings of vigor and (reduced) sedation were greater in women than in men. CONCLUSIONS Women appear to be more sensitive to the psychomotor-related behavioral and subjective effects of MA. These findings provide initial insight into gender differences in acute effects of MA that may contribute to gender differences in problematic MA use.
Collapse
Affiliation(s)
- Leah M. Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden ,Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Elisabeth Paul
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jessica DeArcangelis
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | | | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| |
Collapse
|
18
|
Caravaggio F, Plavén-Sigray P, Matheson GJ, Plitman E, Chakravarty MM, Borg J, Graff-Guerrero A, Cervenka S. Trait impulsivity is not related to post-commissural putamen volumes: A replication study in healthy men. PLoS One 2018; 13:e0209584. [PMID: 30571791 PMCID: PMC6301704 DOI: 10.1371/journal.pone.0209584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/07/2018] [Indexed: 01/18/2023] Open
Abstract
High levels of trait impulsivity are considered a risk factor for substance abuse and drug addiction. We recently found that non-planning trait impulsivity was negatively correlated with post-commissural putamen volumes in men, but not women, using the Karolinska Scales of Personality (KSP). Here, we attempted to replicate this finding in an independent sample using an updated version of the KSP: the Swedish Universities Scales of Personality (SSP). Data from 88 healthy male participants (Mean Age: 28.16±3.34), who provided structural T1-weighted magnetic resonance images (MRIs) and self-reported SSP impulsivity scores, were analyzed. Striatal sub-region volumes were acquired using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Contrary to our previous findings trait impulsivity measured using SSP was not a significant predictor of post-commissural putamen volumes (β = .14, df = 84, p = .94). A replication Bayes Factors analysis strongly supported this null result. Consistent with our previous findings, secondary exploratory analyses found no relationship between ventral striatum volumes and SSP trait impulsivity (β = -.05, df = 84, p = .28). An exploratory analysis of the other striatal compartments showed that there were no significant associations with trait impulsivity. While we could not replicate our previous findings in the current sample, we believe this work will aide future studies aimed at establishing meaningful brain biomarkers for addiction vulnerability in healthy humans.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Granville James Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| |
Collapse
|
19
|
Peng X, Brenner LA, Mathai AJ, Cook TB, Fuchs D, Postolache N, Groer MW, Pandey JP, Mohyuddin F, Giegling I, Wadhawan A, Hartmann AM, Konte B, Brundin L, Friedl M, Stiller JW, Lowry CA, Rujescu D, Postolache TT. Moderation of the relationship between Toxoplasma gondii seropositivity and trait impulsivity in younger men by the phenylalanine-tyrosine ratio. Psychiatry Res 2018; 270:992-1000. [PMID: 30057257 PMCID: PMC6371810 DOI: 10.1016/j.psychres.2018.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/23/2017] [Accepted: 03/20/2018] [Indexed: 11/27/2022]
Abstract
Previously, we reported that Toxoplasma gondii (T. gondii)-seropositivity is associated with higher impulsive sensation seeking in younger men. As dopaminergic and serotonergic signaling regulate impulsivity, and as T. gondii directly and indirectly affects dopaminergic signaling and induces activation of the kynurenine pathway leading to the diversion of tryptophan from serotonin production, we investigated if dopamine and serotonin precursors or the tryptophan metabolite kynurenine interact with the T. gondii-impulsivity association. In 950 psychiatrically healthy participants, trait impulsivity scores were related to T. gondii IgG seropositivity. Interactions were also identified between categorized levels of phenylalanine (Phe), tyrosine (Tyr), Phe:Tyr ratio, kynurenine (Kyn), tryptophan (Trp) and Kyn:Trp ratio, and age and gender. Only younger T. gondii-positive men with a high Phe:Tyr ratio, were found to have significantly higher impulsivity scores. There were no significant associations in other demographic groups, including women and older men. No significant effects or interactions were identified for Phe, Tyr, Kyn, Trp, or Kyn:Trp ratio. Phe:Tyr ratio, therefore, may play a moderating role in the association between T. gondii seropositivity and impulsivity in younger men. These results could potentially lead to individualized approaches to reduce impulsivity, based on combined demographic, biochemical and serological factors.
Collapse
Affiliation(s)
- Xiaoqing Peng
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Lisa A. Brenner
- Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC) for Suicide Prevention, Denver, CO, USA,University of Colorado Anschutz Medical Campus, Departments of Psychiatry, Physical Medicine and Rehabilitation, and Neurology, Denver, CO, USA,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE). Denver, CO, USA
| | - Ashwin J. Mathai
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Thomas B. Cook
- Department of Public Health & Mercyhurst Institute for Public Health, Mercyhurst University, Erie, PA, USA
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Nadine Postolache
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Janardan P. Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Farooq Mohyuddin
- Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Ina Giegling
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Abhishek Wadhawan
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Annette M. Hartmann
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Bettina Konte
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Lena Brundin
- Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University and the Van Andel Research Institute, Grand Rapids, MI, USA
| | - Marion Friedl
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - John W. Stiller
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Christopher A. Lowry
- Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC) for Suicide Prevention, Denver, CO, USA,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE). Denver, CO, USA,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Dan Rujescu
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Teodor T. Postolache
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA,Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC) for Suicide Prevention, Denver, CO, USA,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE). Denver, CO, USA,VA Capitol Health Care Network, Mental Illness Research, Education and Clinical Center (VISN 5 MIRECC), Baltimore, MD, USA,Correspondent author. (T.T. Postolache)
| |
Collapse
|
20
|
Farde L, Plavén-Sigray P, Borg J, Cervenka S. Brain neuroreceptor density and personality traits: towards dimensional biomarkers for psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170156. [PMID: 29483342 PMCID: PMC5832682 DOI: 10.1098/rstb.2017.0156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography has, for 30 years, been used in numerous case-control studies searching for hypothesized differences in the density of neuroreceptor or transporter proteins in psychiatric disorders such as schizophrenia and depression. In most cases, the results have not been conclusive. One reason could be the sizeable interindividual variability in biochemical markers, which in twin studies have shown to emanate from both environmental and genetic factors, leading to low statistical power for the detection of group effects. On the other hand, the same interindividual variability has served as an opportunity for correlative studies on the biological underpinning of behaviour. Using this approach, a series of studies has linked markers for the dopamine and serotonin system to personality traits associated with psychiatric conditions. Based on increasing evidence for the view that many psychopathological states represent extremes of a continuum rather than distinct categories, this research strategy may lead to new biological insights about the vulnerability to and pathophysiology of major psychiatric disorders.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- Precision Medicine and Genomics, AstraZeneca, PET Science Centre, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| |
Collapse
|
21
|
Caravaggio F, Plitman E, Chung JK, Gerretsen P, Kim J, Iwata Y, Chakravarty M, Remington G, Graff-Guerrero A. Trait impulsiveness is related to smaller post-commissural putamen volumes in males but not females. Eur J Neurosci 2017; 46:2253-2264. [PMID: 28833754 DOI: 10.1111/ejn.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/18/2023]
Abstract
Impulsivity is considered a vulnerability trait for addiction. Recently, we found trait non-planning impulsiveness measured with the Karolinska Scales of Personality was negatively correlated with dopamine D2/3 receptor availability in the ventral striatum of healthy humans. While also observed in rodents, human studies have failed to find this association with other measures of trait impulsivity. We explored whether another rodent finding, reduced ventral striatum volume with greater impulsivity, could also be observed in humans using this scale. Non-planning impulsiveness was measured in 52 healthy subjects (21 female; mean age: 33.06 ± 9.69) using the Karolinska Scales of Personality. Striatal subregion volumes, including the globus pallidus, were acquired using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Although failing to support our a priori hypothesis, there was a significant sex interaction in the post-commissural putamen with impulsiveness. Exploratory analyses revealed impulsiveness was negatively correlated with post-commissural putamen volumes in males, but positively correlated in females. We replicated this finding in males in an increased sample (including all 52 previous subjects) who provided impulsiveness measured by the Temperament and Character Inventory (n = 73; 32 female; mean age: 33.48 ± 9.75). These correlations by sex were statistically different from one another, the main finding with the Kasolinksa Scales of Personality surviving correction for multiple comparisons. While impulsivity may be related to reduced ventral striatal D2/3 receptors across sexes, males but not females may show significant reductions in post-commissural putamen volume. These findings have important implications for understanding biological markers underlying sex differences in drug addiction vulnerability.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, QC, Canada.,Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Bosker WM, Neuner I, Shah NJ. The role of impulsivity in psychostimulant- and stress-induced dopamine release: Review of human imaging studies. Neurosci Biobehav Rev 2017; 78:82-90. [PMID: 28438467 DOI: 10.1016/j.neubiorev.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/13/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Drug addiction is a debilitating disorder and its pivotal problem is the high relapse rate. To solve this problem, the aim is to prevent people from becoming addicted in the first place. One of the key questions that is still unanswered is why some people become addicted to drugs and others, who take drugs regularly, do not. In recent years extensive research has been done to untangle the many factors involved in this disorder. Here, we review some of the factors that are related to dopamine, i.e., impulsivity and stress (hormones), and aim to integrate this into a neurobiological model. Based on this, we draw two conclusions: (1) in order to understand the transition from recreational drug use to addiction, we need to focus more on these recreational users; and (2) research should be aimed at finding therapies that can restore inhibitory control/frontal functioning and improve stress resiliency in addicts.
Collapse
Affiliation(s)
- Wendy M Bosker
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Irene Neuner
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic Disorders, University Clinic Aachen, 52074 Aachen, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic Disorders, University Clinic Aachen, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Jaworska N, Cox SM, Casey KF, Boileau I, Cherkasova M, Larcher K, Dagher A, Benkelfat C, Leyton M. Is there a relation between novelty seeking, striatal dopamine release and frontal cortical thickness? PLoS One 2017; 12:e0174219. [PMID: 28346539 PMCID: PMC5367687 DOI: 10.1371/journal.pone.0174219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Novelty-seeking (NS) and impulsive personality traits have been proposed to reflect an interplay between fronto-cortical and limbic systems, including the limbic striatum (LS). Although neuroimaging studies have provided some evidence for this, most are comprised of small samples and many report surprisingly large effects given the challenges of trying to relate a snapshot of brain function or structure to an entity as complex as personality. The current work tested a priori hypotheses about associations between striatal dopamine (DA) release, cortical thickness (CT), and NS in a large sample of healthy adults. METHODS Fifty-two healthy adults (45M/7F; age: 23.8±4.93) underwent two positron emission tomography scans with [11C]raclopride (specific for striatal DA D2/3 receptors) with or without amphetamine (0.3 mg/kg, p.o.). Structural magnetic resonance image scans were acquired, as were Tridimensional Personality Questionnaire data. Amphetamine-induced changes in [11C]raclopride binding potential values (ΔBPND) were examined in the limbic, sensorimotor (SMS) and associative (AST) striatum. CT measures, adjusted for whole brain volume, were extracted from the dorsolateral sensorimotor and ventromedial/limbic cortices. RESULTS BPND values were lower in the amphetamine vs. no-drug sessions, with the largest effect in the LS. When comparing low vs. high LS ΔBPND groups (median split), higher NS2 (impulsiveness) scores were found in the high ΔBPND group. Partial correlations (age and gender as covariates) yielded a negative relation between ASTS ΔBPND and sensorimotor CT; trends for inverse associations existed between ΔBPND values in other striatal regions and frontal CT. In other words, the greater the amphetamine-induced striatal DA response, the thinner the frontal cortex. CONCLUSIONS These data expand upon previously reported associations between striatal DA release in the LS and both NS related impulsiveness and CT in the largest sample reported to date. The findings add to the plausibility of these associations while suggesting that the effects are likely weaker than has been previously proposed.
Collapse
Affiliation(s)
- Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Institue of Mental Health Research, Ottawa, Ontario, Canada
| | - Sylvia M. Cox
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kevin F. Casey
- Le Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada
| | - Isabelle Boileau
- Centre for Addiction & Mental Health (CAMH), Toronto, Ontario, Canada
| | - Mariya Cherkasova
- University of British Columbia, Division of Neurology, Vancouver, British Columbia, Canada
| | - Kevin Larcher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Schippers MC, Bruinsma B, Gaastra M, Mesman TI, Denys D, De Vries TJ, Pattij T. Deep Brain Stimulation of the Nucleus Accumbens Core Affects Trait Impulsivity in a Baseline-Dependent Manner. Front Behav Neurosci 2017; 11:52. [PMID: 28386221 PMCID: PMC5362621 DOI: 10.3389/fnbeh.2017.00052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/07/2017] [Indexed: 12/29/2022] Open
Abstract
Deep brain stimulation (DBS) of the nucleus accumbens (NA) is explored as a treatment for refractory psychiatric disorders, such as obsessive-compulsive disorder (OCD), depressive disorder (MDD), and substance use disorder (SUD). A common feature of some of these disorders is pathological impulsivity. Here, the effects of NAcore DBS on impulsive choice and impulsive action, two distinct forms of impulsive behavior, were investigated in translational animal tasks, the delayed reward task (DRT) and five-choice serial reaction time task (5-CSRTT), respectively. In both tasks, the effects of NAcore DBS were negatively correlated with baseline impulsive behavior, with more pronounced effects in the 5-CSRTT. To further examine the effects of DBS on trait impulsive action, rats were screened for high (HI) and low (LI) impulsive responding in the 5-CSRTT. NAcore DBS decreased impulsive, premature responding in HI rats under conventional conditions. However, upon challenged conditions to increase impulsive responding, NAcore DBS did not alter impulsivity. These results strongly suggest a baseline-dependent effect of DBS on impulsivity, which is in line with clinical observations.
Collapse
Affiliation(s)
- Maria C Schippers
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Bastiaan Bruinsma
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Mathijs Gaastra
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Tanja I Mesman
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Damiaan Denys
- Amsterdam Neuroscience, Department of Psychiatry, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Taco J De Vries
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Tommy Pattij
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| |
Collapse
|
25
|
White TL. Beyond Sensation Seeking: A Conceptual Framework for Individual Differences in Psychostimulant Drug Effects in Healthy Humans. Curr Opin Behav Sci 2017; 13:63-70. [PMID: 28111627 DOI: 10.1016/j.cobeha.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Psychostimulant addiction is an important, relapsing condition for which there is no effective pharmacological treatment. Countering this problem requires an understanding of the specific risk factors that predispose individuals to initial misuse of these drugs. Healthy individuals display marked individual differences in emotional, behavioral and brain responses to low and moderate doses of stimulant drugs. These between-person differences have been most often studied using personality measures of sensation seeking. However, a growing body of work in healthy adults indicates potentially unique sources of variance in these responses that are related to four dissociable personality domains: extraversion, fearlessness, impulsivity and absorption. These four domains are empirically dissociable and can serve as endophenotypic markers of dopamine, norepinephrine and serotonin function in healthy individuals. The relationship between normal variation in these traits and the pharmacological effects of these drugs is here proposed as a framework for better understanding the specific sources of between-person variation in stimulant drug effects on mood, behavior and brain responses in healthy humans.
Collapse
Affiliation(s)
- Tara L White
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, and Institute for Brain Science, Brown University, Providence, RI. USA
| |
Collapse
|
26
|
Alvanzo AAH, Wand GS, Kuwabara H, Wong DF, Xu X, McCaul ME. Family history of alcoholism is related to increased D 2 /D 3 receptor binding potential: a marker of resilience or risk? Addict Biol 2017; 22:218-228. [PMID: 26416591 DOI: 10.1111/adb.12300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/21/2015] [Accepted: 08/08/2015] [Indexed: 12/01/2022]
Abstract
The aim of this study was to examine the relationship between family history of alcohol use disorder and striatal dopamine using positron emission tomography imaging. Participants were 84 healthy, 18- to 30-year-old, social drinkers recruited via fliers and newspaper advertisements. At assessment, participants completed measures of lifetime personal and family substance use and psychiatric symptoms. Participants underwent two consecutive positron emission tomography scans using the D2 /D3 dopamine receptor radioligand [11 C]raclopride. Scans were preceded by intravenous saline and amphetamine 0.3 mg/kg, providing measures of baseline [11 C]raclopride binding potential (BPND ) and change in [11 C]raclopride (ΔBPND ). Subjective ratings of stimulant drug effects were collected during scans. Subjects were classified as family history positive (FHP) if they reported any first-degree relative with alcohol use disorder (AUD) and family history negative (FHN) if no first-degree relatives had history of AUD. Participants were predominantly White (69.0 percent) and male (62.1 percent). Baseline [11 C]raclopride BPND was generally higher in FHP compared with FHN subjects across striatal subdivisions. There were no differences in ΔBPND across regions. Negative subjective drug effects were more pronounced in FHP than in FHN subjects. While FHN subjects evidenced the expected positive relationship between ΔBPND and positive subjective drug effects, this relationship was disrupted in FHP subjects. There are key differences in dopamine status and subjective stimulant drug experiences as a function of family AUD history. These findings have important implications for understanding risk for AUD development in FHP offspring.
Collapse
Affiliation(s)
- Anika A. H. Alvanzo
- Division of General Internal Medicine; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Gary S. Wand
- Department of Medicine; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Hiroto Kuwabara
- Department of Radiology and Radiological Sciences; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Dean F. Wong
- Department of Radiology and Radiological Sciences; Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins School of Medicine; Baltimore MD USA
- Solomon H. Snyder Department of Neuroscience; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Xiaoqiang Xu
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins School of Medicine; Baltimore MD USA
| | - Mary E. McCaul
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins School of Medicine; Baltimore MD USA
| |
Collapse
|
27
|
Mathai AJ, Lowry CA, Cook TB, Brenner LA, Brundin L, Groer MW, Peng X, Giegling I, Hartmann AM, Konte B, Friedl M, Fuchs D, Rujescu D, Postolache TT. Reciprocal moderation by Toxoplasma gondii seropositivity and blood phenylalanine - tyrosine ratio of their associations with trait aggression. Pteridines 2016; 27:77-85. [PMID: 28943719 DOI: 10.1515/pterid-2016-0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously reported that trait aggression, proposed as an endophenotype for suicidal behavior, is positively associated with Toxoplasma gondii (T. gondii) seropositivity in females, but not in males. Additionally, older males seropositive for T. gondii had lower scores on measures of trait aggression, including self-aggression. Trait aggression may be influenced by dopaminergic signaling, which is known to be moderated by gender and age, and potentially enhanced in T. gondii positives through the intrinsic production of dopamine by the microorganism. Therefore, we investigated associations between trait aggression and interactions between T. gondii enzyme-linked immunoabsorbant assay (ELISA) IgG titer-determined seropositivity and high-performance liquid chromatography- (HPLC-) measured blood levels of dopamine precursors phenylalanine (Phe), tyrosine (Tyr), and their ratio in a sample of 1000 psychiatrically healthy participants. Aggressive traits were assessed using the questionnaire for measuring factors of aggression (FAF), the German version of the Buss-Durkee hostility questionnaire. We found that 1) the decrease in trait aggression scores in T. gondii-positive older males was only present in individuals with a low Phe:Tyr ratio, and 2) that there was a positive correlation between Phe:Tyr ratio and total aggression and selected subscales of aggression in T. gondii-positive males, but not in T. gondii-negative males. These findings point toward a gender-specific reciprocal moderation by Phe:Tyr ratio and T. gondii seropositivity of their associations with aggression scores, and lead to experimental interventions geared to manipulating levels of dopamine precursors in selected T. gondii positive individuals with increased propensity for aggression.
Collapse
Affiliation(s)
- Ashwin Jacob Mathai
- Mood and Anxiety Program, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building, Baltimore, MD 21201, USA; and Saint Elizabeths Hospital-DBH Psychiatry Residency Training Program, Washington DC, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; and University of Colorado, Anschutz Medical Campus, Department of Physical Medicine and Rehabilitation, and Center for Neuroscience, Aurora, CO, USA
| | - Thomas B Cook
- Department of Public Health and Mercyhurst Institute for Public Health, Mercyhurst University, Erie, PA, USA
| | - Lisa A Brenner
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, USA; and University of Colorado, Anschutz Medical Campus, Departments of Psychiatry, Physical Medicine and Rehabilitation, and Neurology, Aurora, CO, USA
| | - Lena Brundin
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Xiaoqing Peng
- Mood and Anxiety Program, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building, Baltimore, MD 21201, USA; and Saint Elizabeths Hospital-DBH Psychiatry Residency Training Program, Washington DC, USA
| | - Ina Giegling
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Annette M Hartmann
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Bettina Konte
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Marion Friedl
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Dan Rujescu
- Department of Psychiatry, Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Teodor T Postolache
- Mood and Anxiety Program, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building, Baltimore, MD 21201, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver, CO, USA; and VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD, USA
| |
Collapse
|
28
|
Trifilieff P, Ducrocq F, van der Veldt S, Martinez D. Blunted Dopamine Transmission in Addiction: Potential Mechanisms and Implications for Behavior. Semin Nucl Med 2016; 47:64-74. [PMID: 27987559 DOI: 10.1053/j.semnuclmed.2016.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use.
Collapse
Affiliation(s)
- Pierre Trifilieff
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France.
| | - Fabien Ducrocq
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France
| | - Suzanne van der Veldt
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Diana Martinez
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical College, New York, NY.
| |
Collapse
|
29
|
Caravaggio F, Fervaha G, Chung JK, Gerretsen P, Nakajima S, Plitman E, Iwata Y, Wilson A, Graff-Guerrero A. Exploring personality traits related to dopamine D2/3 receptor availability in striatal subregions of humans. Eur Neuropsychopharmacol 2016; 26:644-52. [PMID: 26944295 PMCID: PMC4805526 DOI: 10.1016/j.euroneuro.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 02/12/2016] [Accepted: 02/20/2016] [Indexed: 12/11/2022]
Abstract
While several studies have examined how particular personality traits are related to dopamine D2/3 receptor (D2/3R) availability in the striatum of humans, few studies have reported how multiple traits measured in the same persons are differentially related to D2/3R availability in different striatal sub-regions. We examined how personality traits measured with the Karolinska Scales of Personality are related to striatal D2/3R availability measured with [(11)C]-raclopride in 30 healthy humans. Based on previous the literature, five personality traits were hypothesized to be most likely related to D2/3R availability: impulsiveness, monotony avoidance, detachment, social desirability, and socialization. We found self-reported impulsiveness was negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. After controlling for age and gender, monotony avoidance was also negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. Socialization was positively correlated with D2/3R availability in the ventral striatum and putamen. After controlling for age and gender, the relationship between socialization and D2/3R availability in these regions survived correction for multiple comparisons (p-threshold=.003). Thus, within the same persons, different personality traits are differentially related to in vivo D2/3R availability in different striatal sub-regions.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Gagan Fervaha
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Alan Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King׳s College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8.
| |
Collapse
|
30
|
Vainik U, Mõttus R, Allik J, Esko T, Realo A. Are Trait–Outcome Associations Caused by Scales Or Particular Items? Example Analysis of Personality Facets and Bmi. EUROPEAN JOURNAL OF PERSONALITY 2015. [DOI: 10.1002/per.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In personality research, trait–outcome associations are often studied by correlating scale sum scores with an outcome. For example, an association between the NEO Impulsiveness scale and body mass index (BMI) is often interpreted to pertain to underlying trait Impulsiveness. We propose that this expectation can be corroborated by testing for Spearman's theorem of indifference of indicator. Namely, an underlying trait–outcome association should not depend on the specific items (i.e. indicators) used to measure the trait. To test this theorem, we outline an indicator exclusion procedure and demonstrate its viability using a simulation design. We then apply this procedure to test personality–BMI associations for indifference of indicator in a large population–based sample of adult Estonians (N = 2581) using self–ratings and informant ratings obtained with the NEO Personality Inventory–3. Our results show that the N5: Impulsiveness–BMI association mostly depends on two eating–related items, suggesting that the trait associated with BMI may be narrower than the trait the N5: Impulsiveness scale is supposed to measure. Associations between BMI, E3: Assertiveness and C2: Order seem to pertain to the trait. In sum, testing for indifference of indicator provides a potentially useful method to clarify trait–outcome relationships. R scripts are provided that implement the indicator exclusion procedure. Copyright © 2015 European Association of Personality Psychology
Collapse
Affiliation(s)
- Uku Vainik
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - René Mõttus
- Department of Psychology, University of Tartu, Tartu, Estonia
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jüri Allik
- Department of Psychology, University of Tartu, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Anu Realo
- Department of Psychology, University of Tartu, Tartu, Estonia
| |
Collapse
|
31
|
Schlüter T, Winz O, Henkel K, Eggermann T, Mohammadkhani-Shali S, Dietrich C, Heinzel A, Decker M, Cumming P, Zerres K, Piel M, Mottaghy FM, Vernaleken I. MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. Neuroimage 2015; 125:378-385. [PMID: 26481676 DOI: 10.1016/j.neuroimage.2015.10.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/24/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022] Open
Abstract
A recent [(18)F]FDOPA-PET study reports negative correlations between dopamine synthesis rates and aggressive behavior. Since dopamine is among the substrates for monoamine oxidase A (MAOA), this investigation examines whether functional allelic variants of the MAOA tandem repeat (VNTR) promotor polymorphism, which is known to modulate aggressive behavior, influences dopamine release and aggression in response to violent visual stimuli. We selected from a genetic prescreening sample, strictly case-matched groups of 2×12 healthy male subjects with VNTRs predictive of high (MAOA-High) and low (MAOA-Low) MAOA expression. Subjects underwent pairs of PET sessions (dopamine D2/3 ligand [(18)F]DMFP) while viewing a movie of neutral content, versus violent content. Directly afterwards, aggressive behavior was assessed by the Point Subtraction Aggression Paradigm (PSAP). Finally, PET data of 23 participants and behavioral data of 22 participants were analyzed due to post hoc exclusion criteria. In the genetic prescreening sample MAOA-Low carriers had significantly increased scores on the Buss-Perry Aggression Questionnaire. In the PET-study-group, aggressive behavior under the emotional neutral condition was significantly higher in the MAOA-Low group. Interestingly, the two MAOA-groups showed inverse dopaminergic and behavioral reactions to the violent movie: The MAOA-High group showed higher dopamine release and increased aggression after the violent movie; MAOA-Low subjects showed decreases in aggressive behavior and no consistent dopamine release. These results indicate a possible impact of the MAOA-promotor polymorphism on the neurobiological modulation of aggressive behavior. However, the data do not support approaches stating that MAOA-Low fosters aggression by a simple pro-dopaminergic mechanism.
Collapse
Affiliation(s)
- Thorben Schlüter
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany.
| | - Oliver Winz
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Karsten Henkel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Claudia Dietrich
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany; Jülich/Aachen Research Alliance (JARA), Jülich/Aachen, Germany
| | - Michel Decker
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Paul Cumming
- Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway; Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - Klaus Zerres
- Institute of Human Genetics, RWTH Aachen University, 52074 Aachen, Germany
| | - Markus Piel
- Institute of Nuclear Chemistry, University of Mainz, Mainz, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany; Jülich/Aachen Research Alliance (JARA), Jülich/Aachen, Germany; Department of Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Ingo Vernaleken
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany; Jülich/Aachen Research Alliance (JARA), Jülich/Aachen, Germany
| |
Collapse
|
32
|
Paterson LM, Flechais RSA, Murphy A, Reed LJ, Abbott S, Boyapati V, Elliott R, Erritzoe D, Ersche KD, Faluyi Y, Faravelli L, Fernandez-Egea E, Kalk NJ, Kuchibatla SS, McGonigle J, Metastasio A, Mick I, Nestor L, Orban C, Passetti F, Rabiner EA, Smith DG, Suckling J, Tait R, Taylor EM, Waldman AD, Robbins TW, Deakin JFW, Nutt DJ, Lingford-Hughes AR. The Imperial College Cambridge Manchester (ICCAM) platform study: An experimental medicine platform for evaluating new drugs for relapse prevention in addiction. Part A: Study description. J Psychopharmacol 2015; 29:943-60. [PMID: 26246443 DOI: 10.1177/0269881115596155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Drug and alcohol dependence are global problems with substantial societal costs. There are few treatments for relapse prevention and therefore a pressing need for further study of brain mechanisms underpinning relapse circuitry. The Imperial College Cambridge Manchester (ICCAM) platform study is an experimental medicine approach to this problem: using functional magnetic resonance imaging (fMRI) techniques and selective pharmacological tools, it aims to explore the neuropharmacology of putative relapse pathways in cocaine, alcohol, opiate dependent, and healthy individuals to inform future drug development. Addiction studies typically involve small samples because of recruitment difficulties and attrition. We established the platform in three centres to assess the feasibility of a multisite approach to address these issues. Pharmacological modulation of reward, impulsivity and emotional reactivity were investigated in a monetary incentive delay task, an inhibitory control task, and an evocative images task, using selective antagonists for µ-opioid, dopamine D3 receptor (DRD3) and neurokinin 1 (NK1) receptors (naltrexone, GSK598809, vofopitant/aprepitant), in a placebo-controlled, randomised, crossover design. In two years, 609 scans were performed, with 155 individuals scanned at baseline. Attrition was low and the majority of individuals were sufficiently motivated to complete all five sessions (n=87). We describe herein the study design, main aims, recruitment numbers, sample characteristics, and explain the test hypotheses and anticipated study outputs.
Collapse
Affiliation(s)
- Louise M Paterson
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Remy S A Flechais
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - Laurence J Reed
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Sanja Abbott
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | | | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - David Erritzoe
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Karen D Ersche
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Yetunde Faluyi
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Luca Faravelli
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Emilio Fernandez-Egea
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Nicola J Kalk
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | - John McGonigle
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Antonio Metastasio
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK 5 Boroughs Partnership NHS Foundation Trust, Warrington, UK
| | - Inge Mick
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Liam Nestor
- Centre for Neuropsychopharmacology, Imperial College London, London, UK Clinical Research Unit, GlaxoSmithKline, Cambridge, UK
| | - Csaba Orban
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Filippo Passetti
- Centre for Neuropsychopharmacology, Imperial College London, London, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Dana G Smith
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychology, University of Cambridge, Cambridge, UK
| | - John Suckling
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Roger Tait
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Eleanor M Taylor
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - Adam D Waldman
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychology, University of Cambridge, Cambridge, UK
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | | |
Collapse
|
33
|
McMorris T, Hale BJ, Corbett J, Robertson K, Hodgson CI. Does acute exercise affect the performance of whole-body, psychomotor skills in an inverted-U fashion? A meta-analytic investigation. Physiol Behav 2015; 141:180-9. [PMID: 25582516 DOI: 10.1016/j.physbeh.2015.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 01/13/2023]
Abstract
The primary purpose of this study was to examine, using meta-analytical measures, whether research into the performance of whole-body, psychomotor tasks following moderate and heavy exercise demonstrates an inverted-U effect. A secondary purpose was to compare the effects of acute exercise on tasks requiring static maintenance of posture versus dynamic, ballistic skills. Moderate intensity exercise was determined as being between 40% and 79% maximum power output (ẆMAX) or equivalent, while ≥80% ẆMAX was considered to be heavy. There was a significant difference (Zdiff=4.29, p=0.001, R(2)=0.42) between the mean effect size for moderate intensity exercise (g=0.15) and that for heavy exercise size (g=-0.86). These data suggest a catastrophe effect during heavy exercise. Mean effect size for static tasks (g=-1.24) was significantly different (Zdiff=3.24, p=0.001, R(2)=0.90) to those for dynamic/ballistic tasks (g=-0.30). The result for the static versus dynamic tasks moderating variables point to perception being more of an issue than peripheral fatigue for maintenance of static posture. The difference between this result and those found in meta-analyses examining the effects of acute exercise on cognition shows that, when perception and action are combined, the complexity of the interaction induces different effects to when cognition is detached from motor performance.
Collapse
Affiliation(s)
- Terry McMorris
- Department of Sport and Exercise Science, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom; Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, United Kingdom; Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Guildhall Walk, Portsmouth PO1 2BF, United Kingdom.
| | - Beverley J Hale
- Department of Sport and Exercise Science, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom
| | - Jo Corbett
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Guildhall Walk, Portsmouth PO1 2BF, United Kingdom
| | - Kevin Robertson
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Northumberland Road, Newcastle-upon-Tyne NE1 8ST, United Kingdom
| | - Christopher I Hodgson
- Department of Adventure Education, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom
| |
Collapse
|
34
|
Contoreggi C. Corticotropin releasing hormone and imaging, rethinking the stress axis. Nucl Med Biol 2014; 42:323-39. [PMID: 25573209 DOI: 10.1016/j.nucmedbio.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022]
Abstract
The stress system provides integration of both neurochemical and somatic physiologic functions within organisms as an adaptive mechanism to changing environmental conditions throughout evolution. In mammals and primates the complexity and sophistication of these systems have surpassed other species in triaging neurochemical and physiologic signaling to maximize chances of survival. Corticotropin releasing hormone (CRH) and its related peptides and receptors have been identified over the last three decades and are fundamental molecular initiators of the stress response. They are crucial in the top down regulatory cascade over a myriad of neurochemical, neuroendocrine and sympathetic nervous system events. From neuroscience, we've seen that stress activation impacts behavior, endocrine and somatic physiology and influences neurochemical events that one can capture in real time with current imaging technologies. To delineate these effects one can demonstrate how the CRH neuronal networks infiltrate critical cognitive, emotive and autonomic regions of the central nervous system (CNS) with somatic effects. Abundant preclinical and clinical studies show inter-regulatory actions of CRH with multiple neurotransmitters/peptides. Stress, both acute and chronic has epigenetic effects which magnify genetic susceptibilities to alter neurochemistry; stress system activation can add critical variables in design and interpretation of basic and clinical neuroscience and related research. This review will attempt to provide an overview of the spectrum of known functions and speculative actions of CRH and stress responses in light of imaging technology and its interpretation. Metabolic and neuroreceptor positron emission/single photon tomography (PET/SPECT), functional magnetic resonance imaging (fMRI), anatomic MRI, diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (pMRS) are technologies that can delineate basic mechanisms of neurophysiology and pharmacology. Stress modulates the myriad of neurochemical and networks within and controlled through the central and peripheral nervous system and the effects of stress activation on imaging will be highlighted.
Collapse
Affiliation(s)
- Carlo Contoreggi
- Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224.
| |
Collapse
|
35
|
Weiland BJ, Heitzeg MM, Zald D, Cummiford C, Love T, Zucker RA, Zubieta JK. Relationship between impulsivity, prefrontal anticipatory activation, and striatal dopamine release during rewarded task performance. Psychiatry Res 2014; 223:244-52. [PMID: 24969539 PMCID: PMC4136473 DOI: 10.1016/j.pscychresns.2014.05.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 05/05/2014] [Accepted: 05/26/2014] [Indexed: 11/29/2022]
Abstract
Impulsivity, and in particular the negative urgency aspect of this trait, is associated with poor inhibitory control when experiencing negative emotion. Individual differences in aspects of impulsivity have been correlated with striatal dopamine D2/D3 receptor availability and function. This multi-modal pilot study used both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to evaluate dopaminergic and neural activity, respectively, using modified versions of the monetary incentive delay task. Twelve healthy female subjects underwent both scans and completed the NEO Personality Inventory Revised to assess Impulsiveness (IMP). We examined the relationship between nucleus accumbens (NAcc) dopaminergic incentive/reward release, measured as a change in D2/D3 binding potential between neutral and incentive/reward conditions with [(11)C]raclopride PET, and blood oxygen level-dependent (BOLD) activation elicited during the anticipation of rewards, measured with fMRI. Left NAcc incentive/reward dopaminergic release correlated with anticipatory reward activation within the medial prefrontal cortex (mPFC), left angular gyrus, mammillary bodies, and left superior frontal cortex. Activation in the mPFC negatively correlated with IMP and mediated the relationship between IMP and incentive/reward dopaminergic release in left NAcc. The mPFC, with a regulatory role in learning and valuation, may influence dopamine incentive/reward release.
Collapse
Affiliation(s)
- Barbara J Weiland
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA; Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA.
| | - Mary M Heitzeg
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA
| | - David Zald
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Chelsea Cummiford
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA
| | - Tiffany Love
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA
| | - Robert A Zucker
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Casey KF, Benkelfat C, Cherkasova MV, Baker GB, Dagher A, Leyton M. Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction. Biol Psychiatry 2014; 76:23-30. [PMID: 24138922 DOI: 10.1016/j.biopsych.2013.08.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 08/06/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Not everyone who tries addictive drugs develops a substance use disorder. One of the best predictors of risk is a family history (FH) of substance use problems. In part, this might reflect perturbed mesolimbic dopamine responses. METHODS We measured amphetamine-induced changes in [(11)C]raclopride binding in 1) high-risk young adults with a multigenerational FH of substance use disorders (n = 16); 2) stimulant drug-naïve healthy control subjects with no known risk factors for addiction (n = 17); and 3) subjects matched to the high-risk group on personal drug use but without a FH of substance use problems (n = 15). RESULTS Compared with either control group, the high-risk young adults with a multigenerational FH of substance use disorders exhibited smaller [(11)C]raclopride responses, particularly within the right ventral striatum. Past drug use predicted the dopamine response also, but including it as a covariate increased the group differences. CONCLUSIONS Together, the results suggest that young people at familial high risk for substance use disorders have decreased dopamine responses to an amphetamine challenge, an effect that predates the onset of addiction.
Collapse
Affiliation(s)
- Kevin F Casey
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec
| | - Chawki Benkelfat
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec; Department of Psychiatry, McGill University, Montreal, Quebec
| | | | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, Alberta
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec
| | - Marco Leyton
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec; Department of Psychology, McGill University, Montreal, Quebec; Department of Psychiatry, McGill University, Montreal, Quebec; Center for Studies in Behavioral Neurobiology (ML), Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
37
|
An interview with Lynn M. Oswald, PhD, RN. J Addict Nurs 2014; 24:123-5. [PMID: 24621492 DOI: 10.1097/jan.0b013e31829297d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Joffe ME, Grueter CA, Grueter BA. Biological substrates of addiction. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2014; 5:151-171. [PMID: 24999377 PMCID: PMC4078878 DOI: 10.1002/wcs.1273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/01/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022]
Abstract
This review is an introduction to addiction, the reward circuitry, and laboratory addiction models. Addiction is a chronic disease hallmarked by a state of compulsive drug seeking that persists despite negative consequences. Most of the advances in addiction research have centered on the canonical and contemporary drugs of abuse; however, addictions to other activities and stimuli also exist. Substances of abuse have the potential to induce long-lasting changes in the brain at the behavioral, circuit, and synaptic levels. Addiction-related behavioral changes involve initiation, escalation, and obsession to drug seeking and much of the current research is focused on mapping these manifestations to specific neural pathways. Drug abuse is well known to recruit components of the mesolimbic dopamine system, including the nucleus accumbens and ventral tegmental area. In addition, altered function of a wide variety of brain regions is tightly associated with specific manifestations of drug abuse. These regions peripheral to the mesolimbic pathway likely play a role in specific observed comorbidities and endophenotypes that can facilitate, or be caused by, substance abuse. Alterations in synaptic structure, function, and connectivity, as well as epigenetic and genetic mechanisms are thought to underlie the pathologies of addiction. In preclinical models, these persistent changes are studied at the levels of molecular pharmacology and biochemistry, ex vivo and in vivo electrophysiology, radiography, and behavior. Coordinating research efforts across these disciplines and examining cell type- and circuit-specific phenomena are crucial components for translating preclinical findings to viable medical interventions that effectively treat addiction and related disorders. WIREs Cogn Sci 2014, 5:151-171. doi: 10.1002/wcs.1273 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University School of Medicine
| | - Carrie A. Grueter
- Department of Anesthesiology, Vanderbilt University School of Medicine
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt Brain Institute, Vanderbilt University School of Medicine
| |
Collapse
|
39
|
Dopamine D(2/3) receptor availability and human cognitive impulsivity: a high-resolution positron emission tomography imaging study with [¹¹C]raclopride. Acta Neuropsychiatr 2014; 26:35-42. [PMID: 25142098 DOI: 10.1017/neu.2013.29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Human impulsivity is a complex multidimensional construct encompassing cognitive, emotional, and behavioural aspects. Previous animal studies have suggested that striatal dopamine receptors play a critical role in impulsivity. In this study, we investigated the relationship between self-reported impulsiveness and dopamine D(2/3) receptor availability in striatal subdivisions in healthy subjects using high-resolution positron emission tomography (PET) with [11C]raclopride. METHODS Twenty-one participants completed 3-T magnetic resonance imaging and high-resolution PET scans with [11C]raclopride. The trait of impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11). Partial correlation analysis was performed between BIS-11 scores and D(2/3) receptor availability in striatal subregions, controlling for the confounding effects of temperament characteristics that are conceptually or empirically related to dopamine, which were measured by the Temperament and Character Inventory. RESULTS The analysis revealed that the non-planning (p = 0.004) and attentional (p = 0.007) impulsiveness subscale scores on the BIS-11 had significant positive correlations with D(2/3) receptor availability in the pre-commissural dorsal caudate. There was a tendency towards positive correlation between non-planning impulsiveness score and D(2/3) receptor availability in the post-commissural caudate. CONCLUSION These results suggest that cognitive subtrait of impulsivity is associated with D(2/3) receptor availability in the associative striatum that plays a critical role in cognitive processes involving attention to detail, judgement of alternative outcomes, and inhibitory control.
Collapse
|
40
|
Abstract
Cerebral dopamine (DA) transmission is thought to be an important modulator for the development and occurrence of aggressive behavior. However, the link between aggression and DA transmission in humans has not been investigated using molecular imaging and standardized behavioral tasks. We investigated aggression as a function of DA transmission in a group of (N = 21) healthy male volunteers undergoing 6-[18F]-fluoro-L-DOPA (FDOPA)-positron emission tomography (PET) and a modified version of the Point Subtraction Aggression Paradigm (PSAP). This task measures aggressive behavior during a monetary reward-related paradigm, where a putative adversary habitually tries to cheat. The participant can react in three ways (i.e., money substraction of the putative opponent [aggressive punishment], pressing a defense button, or continuing his money-making behavior). FDOPA-PET was analyzed using a steady-state model yielding estimates of the DA-synthesis capacity (K), the turnover of tracer DA formed in living brain (kloss), and the tracer distribution volume (Vd), which is an index of DA storage capacity. Significant negative correlations between PSAP aggressive responses and the DA-synthesis capacity were present in several regions, most prominently in the midbrain (r = -0.640; p = 0.002). Lower degrees of aggressive responses were associated with higher DA storage capacity in the striatum and midbrain. Additionally, there was a significant positive correlation between the investment into monetary incentive responses on the PSAP and DA-synthesis capacity, notably in the midbrain (r = +0.618, p = 0.003). The results suggest that individuals with low DA transmission capacity are more vulnerable to reactive/impulsive aggression in response to provocation.
Collapse
|
41
|
Striatal circuit function is associated with prior self-harm in remitted major depression. Neurosci Lett 2013; 557 Pt B:154-8. [DOI: 10.1016/j.neulet.2013.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/23/2022]
|
42
|
Denys D, de Vries F, Cath D, Figee M, Vulink N, Veltman DJ, van der Doef TF, Boellaard R, Westenberg H, van Balkom A, Lammertsma AA, van Berckel BNM. Dopaminergic activity in Tourette syndrome and obsessive-compulsive disorder. Eur Neuropsychopharmacol 2013; 23:1423-31. [PMID: 23876376 DOI: 10.1016/j.euroneuro.2013.05.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 11/26/2022]
Abstract
Tourette syndrome (TS) and obsessive-compulsive disorder (OCD) both are neuropsychiatric disorders associated with abnormalities in dopamine neurotransmission. Aims of this study were to quantify striatal D2/3 receptor availability in TS and OCD, and to examine dopamine release and symptom severity changes in both disorders following amphetamine challenge. Changes in [(11)C]raclopride binding potential (BP(ND)) were assessed using positron emission tomography before and after administration of d-amphetamine (0.3 mg kg(-1)) in 12 TS patients without comorbid OCD, 12 OCD patients without comorbid tics, and 12 healthy controls. Main outcome measures were baseline striatal D2/3 receptor BP(ND) and change in BP(ND) following amphetamine as a measure of dopamine release. Voxel-based analysis revealed significantly decreased baseline [(11)C]raclopride BP(ND) in bilateral putamen of both patient groups vs. healthy controls, differences being more pronounced in the TS than in the OCD group. Changes in BP(ND) following amphetamine were not significantly different between groups. Following amphetamine administration, tic severity increased in the TS group, which correlated with BP(ND) changes in right ventral striatum. Symptom severity in the OCD group did not change significantly following amphetamine challenge and was not associated with changes in BP(ND). This study provides evidence for decreased striatal D2/3 receptor availability in TS and OCD, presumably reflecting higher endogenous dopamine levels in both disorders. In addition, it provides the first direct evidence that ventral striatal dopamine release is related to the pathophysiology of tics.
Collapse
Affiliation(s)
- Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Weafer J, de Wit H. Inattention, impulsive action, and subjective response to D-amphetamine. Drug Alcohol Depend 2013; 133:127-33. [PMID: 23790566 PMCID: PMC3786022 DOI: 10.1016/j.drugalcdep.2013.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Both impulsivity and sensitivity to the rewarding effects of drugs have long been considered risk factors for drug abuse. There is some preclinical evidence to suggest that the two are related; however, there is little information about how specific behavioral components of impulsivity are related to the acute euphorigenic effects of drugs in humans. The aim of the current study was to examine the degree to which both inattention and impulsive action predicted subjective response to amphetamine. METHODS Healthy adults (n=165) performed the behavioral tasks and rated their subjective response to amphetamine (0, 5, 10, and 20 mg). Inattention was assessed as attention lapses on a simple reaction time task, and impulsive action was measured by stop RT on the stop task. Subjective response to amphetamine was assessed with the Drug Effects Questionnaire (DEQ) and the Profile of Mood States (POMS). RESULTS Hierarchical linear regression analyses showed significant negative associations between attention lapses and subjective response to amphetamine on DEQ measures. By contrast, stop RT was positively associated with responses on both DEQ and POMS measures. Additionally, a dose-response relationship was observed, such that the strength of these associations increased with higher doses of amphetamine. CONCLUSIONS These findings suggest that inattention is associated with less subjective response to amphetamine. By contrast, the heightened sensitivity to stimulant drug reward observed in individuals high in impulsive action suggests that this might be one mechanism contributing to increased risk for stimulant drug abuse in these individuals.
Collapse
Affiliation(s)
| | - Harriet de Wit
- Corresponding author: Harriet de Wit, Department of Psychiatry and Behavioral Neuroscience, MC 3077, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, Phone: 773-702-1537, Fax: 773-834-7698,
| |
Collapse
|
44
|
Caprioli D, Fryer TD, Sawiak SJ, Aigbirhio FI, Dalley JW. Translating positron emission tomography studies in animals to stimulant addiction: promises and pitfalls. Curr Opin Neurobiol 2013; 23:597-606. [DOI: 10.1016/j.conb.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 11/27/2022]
|
45
|
Trifilieff P, Martinez D. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology 2013; 76 Pt B:498-509. [PMID: 23851257 DOI: 10.1016/j.neuropharm.2013.06.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/12/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022]
Abstract
Dependence to drugs of abuse is closely associated with impulsivity, or the propensity to choose a lower, but immediate, reward over a delayed, but more valuable outcome. Here, we review clinical and preclinical studies showing that striatal dopamine signaling and D2 receptor levels - which have been shown to be decreased in addiction - directly impact impulsivity, which is itself predictive of drug self-administration. Based on these studies, we propose that the alterations in D2 receptor binding and dopamine release seen in imaging studies of addiction constitute neurobiological markers of impulsivity. Recent studies in animals also show that higher striatal dopamine signaling at the D2 receptor is associated with a greater willingness to expend effort to reach goals, and we propose that this same relationship applies to humans, particularly with respect to recovery from addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Pierre Trifilieff
- New York State Psychiatric Institute, 1051 Riverside Drive #32, New York, NY 10032, USA; Nutrition and Integrative Neurobiology, INRA UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, F-33076 Bordeaux, France
| | | |
Collapse
|
46
|
Kirkpatrick MG, Johanson CE, de Wit H. Personality and the acute subjective effects of d-amphetamine in humans. J Psychopharmacol 2013; 27:256-64. [PMID: 23343596 PMCID: PMC4241296 DOI: 10.1177/0269881112472564] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is evidence that subjective responses to psychoactive drugs are related to personality traits. Here, we extend previous findings by examining personality measures in relation to acute responses to d-amphetamine (AMPH) in a large sample of healthy volunteers. Healthy adults (n=286) completed the Multidimensional Personality Questionnaire Brief Form (MPQ-BF) and participated in four sessions during which they received oral AMPH (0, 5, 10, 20 mg), under double-blind conditions. Subjective responses to the drug were measured using the Profile of Mood States, Addiction Research Center Inventory, and Drug Effects Questionnaire. Drug responses were reduced via principal components analysis to three higher-order factors ('Euphoria', 'Arousal', 'Dysphoria'). Participants were rank ordered on selected MPQ-BF scales; the top and bottom third on each trait were compared on the drug response factors. High trait physical fearlessness was significantly associated with greater amphetamine-related Arousal, and high trait reward sensitivity was significantly associated with greater Euphoria. In addition, high trait impulsivity was significantly associated with greater Arousal and Euphoria. These results provide further evidence that individual differences in the subjective effects of AMPH are partially explained by differences in personality, and are consistent with the idea that both personality and responses to stimulants depend upon shared neurochemical systems.
Collapse
Affiliation(s)
- Matthew G Kirkpatrick
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, USA
| | - Chris-Ellyn Johanson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, USA
| |
Collapse
|
47
|
de Manzano Ö, Cervenka S, Jucaite A, Hellenäs O, Farde L, Ullén F. Individual differences in the proneness to have flow experiences are linked to dopamine D2-receptor availability in the dorsal striatum. Neuroimage 2013; 67:1-6. [PMID: 23128075 DOI: 10.1016/j.neuroimage.2012.10.072] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/15/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022] Open
|
48
|
Jupp B, Caprioli D, Dalley JW. Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction. Dis Model Mech 2013; 6:302-11. [PMID: 23355644 PMCID: PMC3597013 DOI: 10.1242/dmm.010934] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Impulsivity describes the tendency of an individual to act prematurely without foresight and is associated with a number of neuropsychiatric co-morbidities, including drug addiction. As such, there is increasing interest in the neurobiological mechanisms of impulsivity, as well as the genetic and environmental influences that govern the expression of this behaviour. Tests used on rodent models of impulsivity share strong parallels with tasks used to assess this trait in humans, and studies in both suggest a crucial role of monoaminergic corticostriatal systems in the expression of this behavioural trait. Furthermore, rodent models have enabled investigation of the causal relationship between drug abuse and impulsivity. Here, we review the use of rodent models of impulsivity for investigating the mechanisms involved in this trait, and how these mechanisms could contribute to the pathogenesis of addiction.
Collapse
Affiliation(s)
- Bianca Jupp
- Behavioural and Cognitive Neurosciences Institute and The Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|
49
|
Mosing MA, Pedersen NL, Cesarini D, Johannesson M, Magnusson PKE, Nakamura J, Madison G, Ullén F. Genetic and environmental influences on the relationship between flow proneness, locus of control and behavioral inhibition. PLoS One 2012; 7:e47958. [PMID: 23133606 PMCID: PMC3487896 DOI: 10.1371/journal.pone.0047958] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/18/2012] [Indexed: 11/24/2022] Open
Abstract
Flow is a psychological state of high but subjectively effortless attention that typically occurs during active performance of challenging tasks and is accompanied by a sense of automaticity, high control, low self-awareness, and enjoyment. Flow proneness is associated with traits and behaviors related to low neuroticism such as emotional stability, conscientiousness, active coping, self-esteem and life satisfaction. Little is known about the genetic architecture of flow proneness, behavioral inhibition and locus of control--traits also associated with neuroticism--and their interrelation. Here, we hypothesized that individuals low in behavioral inhibition and with an internal locus of control would be more likely to experience flow and explored the genetic and environmental architecture of the relationship between the three variables. Behavioral inhibition and locus of control was measured in a large population sample of 3,375 full twin pairs and 4,527 single twins, about 26% of whom also scored the flow proneness questionnaire. Findings revealed significant but relatively low correlations between the three traits and moderate heritability estimates of .41, .45, and .30 for flow proneness, behavioral inhibition, and locus of control, respectively, with some indication of non-additive genetic influences. For behavioral inhibition we found significant sex differences in heritability, with females showing a higher estimate including significant non-additive genetic influences, while in males the entire heritability was due to additive genetic variance. We also found a mainly genetically mediated relationship between the three traits, suggesting that individuals who are genetically predisposed to experience flow, show less behavioral inhibition (less anxious) and feel that they are in control of their own destiny (internal locus of control). We discuss that some of the genes underlying this relationship may include those influencing the function of dopaminergic neural systems.
Collapse
Affiliation(s)
- Miriam A Mosing
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Aiello G, Horowitz M, Hepgul N, Pariante CM, Mondelli V. Stress abnormalities in individuals at risk for psychosis: a review of studies in subjects with familial risk or with "at risk" mental state. Psychoneuroendocrinology 2012; 37:1600-13. [PMID: 22663896 DOI: 10.1016/j.psyneuen.2012.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 01/17/2023]
Abstract
Increased sensitivity to stress is known to play an important role in the transition to first episode psychosis (FEP). Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and, in general, an increased sensitivity to stress, have been hypothesised to be components of the vulnerability to psychosis, but whether these abnormalities are already present before the onset of psychosis has not yet been systematically reviewed. Here we have reviewed all studies examining psychological and biological markers of the stress response in the relatives of psychotic patients and in individuals at Ultra High Risk (UHR) for psychosis. In relatives, there is evidence of increased sensitivity to stress, as shown by increased emotional reactivity to daily life stress, increased adrenocorticotropic hormone (ACTH) in response to stress, increased pituitary volume and reduced hippocampal volume. However, evidence of increased cortisol levels is less consistent. On the other hand, subjects who experience attenuated psychotic symptoms show increased cortisol levels as well as increased pituitary and reduced hippocampal volumes. Moreover, this HPA axis hyperactivity seems to be even greater among those individuals who subsequently develop frank psychosis. In summary, an enhanced HPA axis response to stress appears to be part of the biological vulnerability to psychosis which is present prior to the onset of psychosis. A further increase in cortisol levels during the transition to FEP suggests the presence of an additive factor, possibly environmental, at this stage of the illness. Possible causes and consequences of HPA axis impairment in risk for psychosis are discussed.
Collapse
Affiliation(s)
- Giuliano Aiello
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, London, UK
| | | | | | | | | |
Collapse
|