1
|
Mansour H, Azrak R, Cook JJ, Hornburg KJ, Qi Y, Tian Y, Williams RW, Yeh FC, White LE, Johnson GA. The Duke Mouse Brain Atlas: MRI and light sheet microscopy stereotaxic atlas of the mouse brain. SCIENCE ADVANCES 2025; 11:eadq8089. [PMID: 40305623 PMCID: PMC12042906 DOI: 10.1126/sciadv.adq8089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Atlases of the brain are critical resources that make it possible to share data in a common reference frame. Unexpectedly, there is no three-dimensional (3D) stereotaxic atlas of the mouse brain that provides whole brain coverage at macro to single-cell levels. Diffusion tensor images from five perfusion-fixed (in skull) specimens were acquired at 15 micrometers, the highest resolution ever reported. Diffusion tensor imaging yields multiple 3D volumes, each of which highlights unique cytoarchitecture. The averages were mapped into micro-computed tomography of the mouse skull to create external landmarks (bregma and lambda). Light sheet images of the same brains were coregistered, providing cell maps in the same stereotaxic space. The Allen Reference Atlas was registered to the volume to correct the geometric distortion in that atlas and bring it into the stereotaxic space. The resulting multiscalar (13 terabytes) atlas provides a common spatial framework to anneal data across molecular, structural, and functional studies of mice.
Collapse
Affiliation(s)
- Harrison Mansour
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ryan Azrak
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - James J. Cook
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kathryn J. Hornburg
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yi Qi
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yuqi Tian
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonard E. White
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - G. Allan Johnson
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Im J, Xiang B, Levasseur VA, Sukstanskii AL, Quirk JD, Kothapalli SVVN, Cross AH, Yablonskiy DA. Unraveling the major role of vascular (R2') contributions to R2* signal relaxation at ultra-high-field MRI: A comprehensive analysis with quantitative gradient recalled echo in mouse brain. Magn Reson Med 2025. [PMID: 40294081 DOI: 10.1002/mrm.30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Ultra-high-field (UHF) R2* relaxometry is often used for in vivo analysis of biological tissue microstructure without accounting for vascular contributions to R2* signal, that is, the BOLD signal component, and magnetic field inhomogeneities. These effects are especially important at UHF as their contribution to R2* scales linearly with magnetic field. Our study aims to report on the results of separate contributions of R2t* (tissue-specific sub-component) and R2' (vascular BOLD sub-component), corrected for the adverse effects of magnetic field inhomogeneities, to the total R2* signal at in vivo UHF MRI of mouse brain. METHODS Four healthy, 8-week-old C57BL/6J mice were imaged in vivo with multi-gradient echo MRI at 9.4 T and analyzed using the quantitative gradient recalled echo (qGRE) approach. A segmentation protocol was established using the Dorr Mouse Brain Atlas and ANTs Syn registration to warp template brain region labels to subject qGRE maps. RESULTS By separating R2' contribution from R2* signal, we have established normative R2t* data in mouse brain. Our findings revealed significant contributions of R2' to R2*, with approximately 42% of the R2* signal arising from vascular contributions, thus suggesting the R2t* as a more accurate metric for quantifying tissue microstructural information and its changes in neurodegenerative diseases. CONCLUSION qGRE approach allows efficient separation of tissue microstructure-specific (R2t*), vascular BOLD (R2'), and background gradients contributions to the total R2* relaxation at UHF MRI. Due to low concentration of non-heme iron in mouse brain, major contribution to R2t* results from tissue cellular components.
Collapse
Affiliation(s)
- Joanna Im
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Biao Xiang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Victoria A Levasseur
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander L Sukstanskii
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Satya V V N Kothapalli
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dmitriy A Yablonskiy
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Kamau NR, Tamplin MR, Lee CY, Axelson ED, Grumbach IM, Petronek MS. Combined MR Volumetry and T2* Relaxometry Reveals the Olfactory System as an Iron-Dependent Structure Affected by Radiation. Neurol Int 2025; 17:53. [PMID: 40278424 PMCID: PMC12029731 DOI: 10.3390/neurolint17040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Radiation therapy can often lead to structural and functional changes in the brain resulting in radiation-induced brain injury. This study investigates the MRI-detectable effects of whole-brain irradiation across all neuroanatomical structures in adult mice, with a specific focus on T2* MRI measurements, to evaluate regions that may be particularly sensitive to iron accumulation. Methods: One year following irradiation or sham treatment, mice were imaged with a 7T MRI to evaluate changes in regional volume and T2* relaxation times across more than 652 neuroanatomical using the DSURQE mouse brain atlas. Results: Statistical analysis identified 301 altered regions with respect to regional volume and 85 regions with respect to T2* relaxation showing significant differences relative to the control group (p < 0.05). Further data refinement, including the consolidation of redundant, bi-lateral structures revealed 18 subregions with significant changes in both volume and T2*. The data refinement revealed that the most represented system was the olfactory system (8/18 regions, 44%). The olfactory regions also showed the most pronounced changes and greatest correlation between the two metrics. Conclusions: These findings are suggestive that ionizing radiation may cause a pronounced disruption in the olfactory system that coincides with potential iron accumulation.
Collapse
Affiliation(s)
- Njenga R. Kamau
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Michelle R. Tamplin
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chu-Yu Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| | - Eric D. Axelson
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Michael S. Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Weston KP, Gunelson AM, Maloney SE, Ge X, Stelzer JA, Kim KS, Collier S, Mindt MM, Agajanian MJ, Major MB, Goldfarb D, Noguchi KK, Yi JJ. The gain-of-function UBE3A Q588E variant causes Angelman-like neurodevelopmental phenotypes in mice. Sci Rep 2025; 15:9152. [PMID: 40097479 PMCID: PMC11914044 DOI: 10.1038/s41598-025-92511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Mutations in the E3 ubiquitin ligase UBE3A that cause enzymatic gain-of-function result in disease phenotypes which differ from classic Angelman syndrome. However, these phenotypes are highly heterogeneous raising questions about the mechanistic basis of such phenotypic diversity. Here, we characterize a mouse model harboring a Ube3aQ606E gain of function variant (UBE3AQ588E in humans). Extensive behavioral phenotyping showed that animals possessing a maternally inherited mutation (Ube3amQ606E) paradoxically show many behavioral deficits indicative of overall UBE3A loss-of-function. These included pronounced motor deficits, hypoactivity, and reduced stereotypic behaviors. Moreover, brain weights and MRI analysis revealed global microcephaly with a postnatal onset, consistent with phenotypes described in Angelman syndrome model mice. Additional biochemical analyses demonstrated an increased abundance of UBE3A substrates in brain tissue and immunofluorescence analyses showed that microcephaly is not caused by increased apoptotic cell death. Together, our results strongly suggest a novel mechanism by which the Ube3amQ606E mutation leads to enhanced self-targeted degradation of UBE3A, leading to an overall loss of enzyme activity, resulting in Angelman-like phenotypes in vivo.
Collapse
Affiliation(s)
- Kellan P Weston
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
- COMBINEDBrain, Brentwood, TN, 37027, USA
| | - Anna M Gunelson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jalin A Stelzer
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kwang-Soo Kim
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shylyn Collier
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marissa M Mindt
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Megan J Agajanian
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael B Major
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dennis Goldfarb
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Tullo S, Park J, Gallino D, Park M, Mar K, Novikov V, Sandoval Contreras R, Patel R, Del Cid-Pellitero E, Fon EA, Luo W, Shlaifer I, Durcan TM, Prado MAM, Prado VF, Devenyi GA, Chakravarty MM. Female mice exhibit resistance to disease progression despite early pathology in a transgenic mouse model inoculated with alpha-synuclein fibrils. Commun Biol 2025; 8:288. [PMID: 39987244 PMCID: PMC11846974 DOI: 10.1038/s42003-025-07680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025] Open
Abstract
Despite known sex differences in human synucleinopathies such as Parkinson's disease, the impact of sex on alpha-synuclein pathology in mouse models has been largely overlooked. To address this need, we examine sex differences in whole brain signatures of neurodegeneration due to aSyn toxicity in the M83 mouse model using longitudinal magnetic resonance imaging (MRI; T1-weighted; 100 μm3 isotropic voxel; -7, 30, 90 and 120 days post-injection [dpi]; n ≥ 8 mice/group/sex/time point). To initiate aSyn spreading, M83 mice are inoculated with recombinant human aSyn preformed fibrils (Hu-PFF) or phosphate buffered saline in the right striatum. We observe more aggressive neurodegenerative profiles over time for male Hu-PFF-injected mice when examining voxel-wise trajectories. However, at 90 dpi, we observe widespread patterns of neurodegeneration in the female Hu-PFF-injected mice. These differences are not accompanied by any differences in motor symptom onset between the sexes. However, male Hu-PFF-injected mice reached their humane endpoint sooner. These findings suggest that post-motor symptom onset, despite accelerated disease trajectories for male Hu-PFF-injected mice, neurodegeneration may appear sooner in the female Hu-PFF-injected mice (prior to motor symptomatology). These findings suggest that sex-specific synucleinopathy phenotypes urgently need to be considered to improve our understanding of neuroprotective and neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Stephanie Tullo
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada.
| | - Janice Park
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada
| | - Daniel Gallino
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada
| | - Megan Park
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada
| | - Kristie Mar
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada
| | - Vladislav Novikov
- Robarts Research Institute, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
| | - Rodrigo Sandoval Contreras
- Robarts Research Institute, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
| | - Raihaan Patel
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada
- Department of Biological & Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Esther Del Cid-Pellitero
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine, The University of Western Ontario, London, ON, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Cerebral Imaging Center, Douglas Research Center, McGill University, Verdun, QC, Canada.
- Department of Biological & Biomedical Engineering, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Gaudreault F, Desjardins M. Microvascular structure variability explains variance in fMRI functional connectivity. Brain Struct Funct 2025; 230:39. [PMID: 39921726 DOI: 10.1007/s00429-025-02899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
The influence of regional brain vasculature on resting-state fMRI BOLD signals is well documented. However, the role of brain vasculature is often overlooked in functional connectivity research. In the present report, utilizing publicly available whole-brain vasculature data in the mouse, we investigate the relationship between functional connectivity and brain vasculature. This is done by assessing interregional variations in vasculature through a novel metric termed vascular similarity. First, we identify features to describe the regional vasculature. Then, we employ multiple linear regression models to predict functional connectivity, incorporating vascular similarity alongside metrics from structural connectivity and spatial topology. Our findings reveal a significant correlation between functional connectivity strength and regional vasculature similarity, especially in anesthetized mice. We also show that multiple linear regression models of functional connectivity using standard predictors are improved by including vascular similarity. We perform this analysis at the cerebrum and whole-brain levels using data from both male and female mice. Our findings regarding the relation between functional connectivity and the underlying vascular anatomy may enhance our understanding of functional connectivity based on fMRI and provide insights into its disruption in neurological disorders.
Collapse
Affiliation(s)
- François Gaudreault
- Département de physique, de génie physique et d'optique, Université Laval, 2325 Rue de l'Université, Quebec, QC, G1V 0A6, Canada
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 2705 Bd Laurier, Quebec, QC, G1V 4G2, Canada
| | - Michèle Desjardins
- Département de physique, de génie physique et d'optique, Université Laval, 2325 Rue de l'Université, Quebec, QC, G1V 0A6, Canada.
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 2705 Bd Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
7
|
Rivera-Olvera A, Houwing DJ, Ellegood J, Masifi S, Martina SL, Silberfeld A, Pourquie O, Lerch JP, Francks C, Homberg JR, van Heukelum S, Grandjean J. The universe is asymmetric, the mouse brain too. Mol Psychiatry 2025; 30:489-496. [PMID: 39107583 DOI: 10.1038/s41380-024-02687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models to understand the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.
Collapse
Affiliation(s)
| | - Danielle J Houwing
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Shang Masifi
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Stephany Ll Martina
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Clyde Francks
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Vrooman RM, van den Berg M, Desrosiers-Gregoire G, van Engelenburg WA, Galteau ME, Lee SH, Veltien A, Barrière DA, Cash D, Chakravarty MM, Devenyi GA, Gozzi A, Gröhn O, Hess A, Homberg JR, Jelescu IO, Keliris GA, Scheenen T, Shih YYI, Verhoye M, Wary C, Zwiers M, Grandjean J. fMRI data acquisition and analysis for task-free, anesthetized rats. Nat Protoc 2025:10.1038/s41596-024-01110-y. [PMID: 39875591 DOI: 10.1038/s41596-024-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies. Here, we outline a procedure for the acquisition of fMRI datasets in rats and describe animal handling, MRI sequence parameters, data conversion, preprocessing, quality control and data analysis. The procedure is designed to be generalizable across laboratories, has been validated by using datasets across 20 research centers with different scanners and field strengths ranging from 4.7 to 17.2 T and can be used in studies in which it is useful to compare functional connectivity measures across an extensive range of datasets. The MRI procedure requires 1 h per rat to complete and can be carried out by users with limited expertise in rat handling, MRI and data processing.
Collapse
Affiliation(s)
- Roël M Vrooman
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Monica van den Berg
- Bio-imaging lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Gabriel Desrosiers-Gregoire
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | - Marie E Galteau
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sung-Ho Lee
- Center for Animal MRI, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David A Barrière
- UMR INRAE/CNRS 7247 Physiologie des Comportements et de la Reproduction, Physiologie de la reproduction et des comportements, Centre de recherche INRA de Nouzilly, Tours, France
| | - Diana Cash
- Biomarker Research And Imaging in Neuroscience (BRAIN) Centre, Department of Neuroimaging, King's College London, London, UK
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Olli Gröhn
- Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Ileana O Jelescu
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Georgios A Keliris
- Institute for Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Tom Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yen-Yu Ian Shih
- Center for Animal MRI, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marleen Verhoye
- Bio-imaging lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | | | - Marcel Zwiers
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Guo H, Xiao Y, Dong S, Yang J, Zhao P, Zhao T, Cai A, Tang L, Liu J, Wang H, Hua R, Liu R, Wei Y, Sun D, Liu Z, Xia M, He Y, Wu Y, Si T, Womer FY, Xu F, Tang Y, Wang J, Zhang W, Zhang X, Wang F. Bridging animal models and humans: neuroimaging as intermediate phenotypes linking genetic or stress factors to anhedonia. BMC Med 2025; 23:38. [PMID: 39849528 PMCID: PMC11755933 DOI: 10.1186/s12916-025-03850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intermediate phenotypes, such as characteristic neuroimaging patterns, offer unique insights into the genetic and stress-related underpinnings of neuropsychiatric disorders like depression. This study aimed to identify neuroimaging intermediate phenotypes associated with depression, bridging etiological factors to behavioral manifestations and connecting insights from animal models to diverse clinical populations. METHODS We analyzed datasets from both rodents and humans. The rodent studies included a genetic model (P11 knockout) and an environmental stress model (chronic unpredictable mild stress), while the human data comprised 748 participants from three cohorts. Using the amplitude of low-frequency fluctuations, we identified neuroimaging patterns in rodent models. We then applied a machine-learning approach to cluster neuroimaging subtypes of depression. To assess the genetic predispositions and stress-related changes associated with these subtypes, we analyzed genotype and metabolite data. Linear regression was employed to determine which neuroimaging features predicted core depression symptoms across species. RESULTS The genetic and environmental stress models exhibited distinct neuroimaging patterns in subcortical and sensorimotor regions. Consistent patterns emerged in two neuroimaging subtypes identified across three independent depressed cohorts. The subtype resembling P11 knockout demonstrated higher genetic susceptibility, with enriched expression of risk genes in brain tissues and abnormal metabolites linked to tryptophan metabolism. In contrast, the stress animal-like subtype did not show changes in genetic risk scores but exhibited enriched risk gene expression in somatic and endocrine tissues, along with mitochondrial dysfunction in the antioxidant stress system. Notably, these distinct subcortical-sensorimotor neuroimaging patterns predicted anhedonia, a core symptom of depression, in both rodent models and depressed subtypes. CONCLUSIONS This cross-species validation suggests that these neuroimaging patterns may serve as robust intermediate phenotypes, linking etiology to anhedonia and facilitating the translation of findings from animal models to humans with depression and other psychiatric disorders.
Collapse
Affiliation(s)
- Huiling Guo
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Shuai Dong
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Aoling Cai
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Changzhou Medical Center, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ruifang Hua
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Rongxun Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yange Wei
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Dandan Sun
- Department of Cardiac Function, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Fay Y Womer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, China
- Centerfor Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Tang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Wang
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weixiong Zhang
- Department of Health Technology and Informatics, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China.
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Asbury S, Lai JKY, Rilett KC, Haqqee Z, Darwin BC, Ellegood J, Lerch JP, Foster JA. Host genetics maps to behaviour and brain structure in developmental mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:1. [PMID: 39748372 PMCID: PMC11697848 DOI: 10.1186/s12993-024-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
Gene-environment interactions in the postnatal period have a long-term impact on neurodevelopment. To effectively assess neurodevelopment in the mouse, we developed a behavioural pipeline that incorporates several validated behavioural tests to measure translationally relevant milestones of behaviour in mice. The behavioral phenotype of 1060 wild type and genetically-modified mice was examined followed by structural brain imaging at 4 weeks of age. The influence of genetics, sex, and early life stress on behaviour and neuroanatomy was determined using traditional statistical and machine learning methods. Analytical results demonstrated that neuroanatomical diversity was primarily associated with genotype whereas behavioural phenotypic diversity was observed to be more susceptible to gene-environment variation. We describe a standardized mouse phenotyping pipeline, termed the Developmental Behavioural Milestones (DBM) Pipeline released alongside the 1000 Mouse Developmental Behavioural Milestones (1000 Mouse DBM) database to institute a novel framework for reproducible interventional neuroscience research.
Collapse
Affiliation(s)
- Sarah Asbury
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Y Lai
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Kelly C Rilett
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Zeeshan Haqqee
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benjamin C Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
- Research Institute at St. Joe's Hamilton, Hamilton, ON, Canada.
- Center for Depression Research and Clinical Care, Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Engel MG, Narayan S, Cui MH, Branch CA, Zhang X, Gandy SE, Ehrlich M, Huffman DM. Intranasal long R3 insulin-like growth factor-1 treatment promotes amyloid plaque remodeling in cerebral cortex but fails to preserve cognitive function in male 5XFAD mice. J Alzheimers Dis 2025; 103:113-126. [PMID: 39610283 DOI: 10.1177/13872877241299056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) promotes neurogenesis, cell survival, and glial function, making it a promising candidate therapy in Alzheimer's disease (AD). OBJECTIVE Long arginine 3-IGF-1 (LR3-IGF-1) is a potent IGF-1 analogue. We sought to determine whether intranasal (IN) LR3 treatment would delay cognitive decline and pathology in 5XFAD mice. METHODS Wildtype and 5XFAD male mice were treated for 7 months (3-10 months of age), with IN LR3-IGF-1 or IN Vehicle (Veh) (n = 19-27 mice/group). Behavior, memory, and brain imaging were assessed at 8-9 months of age and tissues collected at 10 months. A comprehensive amyloid-β (Aβ) profile and other pathologic features were conducted and supportive in vitro stimulation studies in BV-2 microglial cells were also performed. RESULTS In male 5XFAD mice, IN LR3-IGF-1 treatment improved body composition, but did not significantly alter cognitive symptoms, as assessed by multiple assays. In cortex, LR3 treatment improved some facets of pathology, including a reduction in filamentous plaques, and increase in inert plaques, corresponding with a reduction in low molecular weight Aβ oligomers. In vitro, uptake of Aβ1-42 peptide by BV2 cells was enhanced by LR3-IGF-1, which was also found to promote gene pathways implicated in actin remodeling and endocytosis. CONCLUSIONS LR3 promotes favorable effects on Aβ plaque remodeling in cortex of male 5XFAD mice but fails to preserve aspects of behavior or memory. While these data do not support LR3 as a monotherapy per se, they do warrant further investigation into its potential for combinatorial formulations aimed at targeting the complexity of AD.
Collapse
Affiliation(s)
- Matthew G Engel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sushma Narayan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samuel E Gandy
- Department of Neurology and the Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Ehrlich
- Department of Neurology and the Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Thompson SL, Ellegood J, Bowdish DM, Lerch JP, Foster JA. Sex- and brain region-specific alterations in brain volume in germ-free mice. iScience 2024; 27:111429. [PMID: 39735434 PMCID: PMC11681894 DOI: 10.1016/j.isci.2024.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/19/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Several lines of evidence demonstrate that microbiota influence brain development. Using high-resolution ex vivo magnetic resonance imaging (MRI), this study examined the impact of microbiota status on brain volume and revealed microbiota-related differences that were sex and brain region dependent. Cortical and hippocampal regions demonstrate increased sensitivity to microbiota status during the first 5 weeks of postnatal life, effects that were greater in male germ-free mice. Conventionalization of germ-free mice at puberty did not normalize brain volume changes. These data add to the existing literature and highlight the need to focus more attention on early-life microbiota-brain axis mechanisms in order to understand the regulatory role of the microbiome in brain development.
Collapse
Affiliation(s)
- Shawna L. Thompson
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dawn M.E. Bowdish
- Department of Medicine and McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford UK
| | - Jane A. Foster
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Research Institute at St. Joe’s Hamilton, Hamilton, ON Canada
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Knopper RW, Skoven CS, Eskildsen SF, Østergaard L, Hansen B. The effects of locus coeruleus ablation on mouse brain volume and microstructure evaluated by high-field MRI. Front Cell Neurosci 2024; 18:1498133. [PMID: 39722677 PMCID: PMC11668759 DOI: 10.3389/fncel.2024.1498133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The locus coeruleus (LC) produces most of the brain's noradrenaline (NA). Among its many roles, NA is often said to be neuroprotective and important for brain upkeep. For this reason, loss of LC integrity is thought to impact brain volume and microstructure as well as plasticity broadly. LC dysfunction is also a suspected driver in the development of neurodegenerative diseases. Nevertheless, the impact of LC dysfunction on the gross structure and microstructure of normal brains is not well-studied. We employed high-field ex vivo magnetic resonance imaging (MRI) to investigate brain volumetrics and microstructure in control (CON) mice and mice with LC ablation (LCA) at two ages, representing the developing brain and the fully matured brain. These whole-brain methods are known to be capable of detecting subtle morphological changes and brain microstructural remodeling. We found mice behavior consistent with histologically confirmed LC ablation. However, MRI showed no difference between CON and LCA groups with regard to brain size, relative regional volumes, or regional microstructural indices. Our findings suggest that LC-NA is not needed for postnatal brain maturation and growth in mice. Nor is it required for maintenance in the normal adult mouse brain, as no atrophy or microstructural aberration is detected after weeks of LC dysfunction. This adds clarity to the often-encountered notion that LC-NA is important for brain "trophic support" as it shows that such effects are likely most relevant to mechanisms related to brain plasticity and neuroprotection in the (pre)diseased brain.
Collapse
Affiliation(s)
- Rasmus West Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Zhou C, Li J, Wu X, Liu F. Activation of spleen tyrosine kinase (SYK) contributes to neuronal pyroptosis and cognitive impairment in diabetic mice via the NLRP3/Caspase-1/GSDMD signaling pathway. Exp Gerontol 2024; 198:112626. [PMID: 39481697 DOI: 10.1016/j.exger.2024.112626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND/AIM Diabetes mellitus (DM) patients are at increased risk of cognitive impairment. The precise mechanisms underlying the association between DM and cognitive impairment remain unclear. Spleen tyrosine kinase (SYK), a crucial regulator of signal transduction, has been implicated in microglial pyroptosis in experimental ischemic stroke models. The present study investigated the potential role of SYK in DM-associated cognitive impairment. METHODS Diabetes was induced by streptozotocin (STZ) in C57BL/6 mice, and cognitive function and cerebral injury were assessed 12 weeks later using the Morris water maze (MWM), TUNEL assay and Western blotting. In vitro, the inhibition of SYK was investigated in a mouse hippocampal neuronal cell line cultured with high glucose. RESULTS Compared with control mice, DM mice presented impaired spatial learning and memory. Additionally, SYK activation was linked to neuronal pyroptosis, as evidenced by increases in the number of TUNEL-positive cells and protein levels of NLRP3, ASC, procaspase-1, caspase-1, GSDMD, the GSDMD N-terminal fragment, pro-IL-1β, and IL-1β in the hippocampus of DM mice. Compared with no treatment, SYK knockdown markedly attenuated cognitive impairment and histologic and ultrastructural pathological changes in the hippocampus of DM mice. The increased expression of pyroptosis-associated proteins and the increased number of TUNEL-positive cells were also significantly reduced. In vitro, high glucose significantly activated SYK to trigger the canonical pyroptotic pathway in cultured HT22 cells. The inhibition of SYK with a small interfering RNA or specific inhibitor significantly ameliorated the neuronal pyroptosis mediated by high glucose. CONCLUSION Our findings demonstrate that SYK activation plays a pivotal role in promoting the cognitive impairment associated with DM. This effect is mediated by triggering neuronal pyroptosis through the canonical NLRP3/Caspase-1/GSDMD pathway. These results suggest that SYK may serve as a potential target for preventing or mitigating cognitive impairment in patients with DM.
Collapse
Affiliation(s)
- Chenglong Zhou
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan Universtiy, China; National Clinical Research Center for Geriatrics (WCHSCU), Sichuan University West China Hospital, China
| | - Jun Li
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan Universtiy, China; National Clinical Research Center for Geriatrics (WCHSCU), Sichuan University West China Hospital, China
| | - Xiaochu Wu
- National Clinical Research Center for Geriatrics (WCHSCU), Sichuan University West China Hospital, China
| | - Fei Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Ayoub R, Yang S, Ji H, Fan L, De Michino S, Mabbott DJ, Nieman BJ. Brain volume and microglial density changes are correlated in a juvenile mouse model of cranial radiation and CSF1R inhibitor treatment. NMR IN BIOMEDICINE 2024; 37:e5222. [PMID: 39164196 DOI: 10.1002/nbm.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024]
Abstract
Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.
Collapse
Affiliation(s)
- Ramy Ayoub
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sabrina Yang
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Helen Ji
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lloyd Fan
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven De Michino
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Pham L, Guma E, Ellegood J, Lerch JP, Raznahan A. A cross-species analysis of neuroanatomical covariance sex difference in humans and mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622111. [PMID: 39574642 PMCID: PMC11580902 DOI: 10.1101/2024.11.05.622111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Structural covariance in brain anatomy is thought to reflect inter-regional sharing of developmental influences - although this hypothesis has proved hard to causally test. Here, we use neuroimaging in humans and mice to study sex-differences in anatomical covariance - asking if regions that have developed shared sex differences in volume across species also show shared sex difference in volume covariance. This study design illuminates both the biology of sex-differences and theoretical models for anatomical covariance - benefitting from tests of inter-species convergence. We find that volumetric structural covariance is stronger in adult females compared to adult males for both wild-type mice and healthy human subjects: 98% of all comparisons with statistically significant covariance sex differences in mice are female-biased, while 76% of all such comparisons are female-biased in humans (q < 0.05). In both species, a region's covariance and volumetric sex-biases have weak inverse relationships to each other: volumetrically male-biased regions contain more female-biased covariations, while volumetrically female-biased regions have more male-biased covariations (mice: r = -0.185, p = 0.002; humans: r = -0.189, p = 0.001). Our results identify a conserved tendency for females to show stronger neuroanatomical covariance than males, evident across species, which suggests that stronger structural covariance in females could be an evolutionarily conserved feature that is partially related to volumetric alterations through sex.
Collapse
Affiliation(s)
- Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
- South Texas Medical Scientist Training Program, University of Texas Health Science Center San Antonio, San Antonio, 78229, Texas
| | - Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
- Harvard Medical School, Boston, 02115, Massachusetts
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Lexington, 02421, Massachusetts
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| |
Collapse
|
17
|
Grouza V, Bagheri H, Liu H, Tuznik M, Wu Z, Robinson N, Siminovitch KA, Peterson AC, Rudko DA. Ultra-high-resolution mapping of myelin and g-ratio in a panel of Mbp enhancer-edited mouse strains using microstructural MRI. Neuroimage 2024; 300:120850. [PMID: 39260782 DOI: 10.1016/j.neuroimage.2024.120850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
Non-invasive myelin water fraction (MWF) and g-ratio mapping using microstructural MRI have the potential to offer critical insights into brain microstructure and our understanding of neuroplasticity and neuroinflammation. By leveraging a unique panel of variably hypomyelinating mouse strains, we validated a high-resolution, model-free image reconstruction method for whole-brain MWF mapping. Further, by employing a bipolar gradient echo MRI sequence, we achieved high spatial resolution and robust mapping of MWF and g-ratio across the whole mouse brain. Our regional white matter-tract specific analyses demonstrated a graded decrease in MWF in white matter tracts which correlated strongly with myelin basic protein gene (Mbp) mRNA levels. Using these measures, we derived the first sensitive calibrations between MWF and Mbp mRNA in the mouse. Minimal changes in axonal density supported our hypothesis that observed MWF alterations stem from hypomyelination. Overall, our work strongly emphasizes the potential of non-invasive, MRI-derived MWF and g-ratio modeling for both preclinical model validation and ultimately translation to humans.
Collapse
Affiliation(s)
- Vladimir Grouza
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Hooman Bagheri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Hanwen Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Marius Tuznik
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Zhe Wu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nicole Robinson
- Histology Innovation Platform, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Katherine A Siminovitch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum and Toronto General Hospital Research Institutes, Toronto, Ontario, Canada
| | - Alan C Peterson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Soni ND, Swain A, Juul H, Cao Q, Haris M, Wolk DA, Lee VM, Detre JA, Nanga RPR, Reddy R. Detection of sex-specific glutamate changes in subregions of hippocampus in an early-stage Alzheimer's disease mouse model using GluCEST MRI. Alzheimers Dement 2024; 20:7124-7137. [PMID: 39262197 PMCID: PMC11485308 DOI: 10.1002/alz.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Regional glucose hypometabolism resulting in glutamate loss has been shown as one of the characteristics of Alzheimer's disease (AD). Because the impact of AD varies between the sexes, we utilized glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI) for high-resolution spatial mapping of cerebral glutamate and investigated subregional changes in a sex-specific manner. METHODS Eight-month-old male and female AD mice harboring mutant amyloid precursor protein (APPNL-F/NL-F: n = 36) and wild-type (WT: n = 39) mice underwent GluCEST MRI, followed by proton magnetic resonance spectroscopy (1H-MRS) in hippocampus and thalamus/hypothalamus using 9.4T preclinical MR scanner. RESULTS GluCEST measurements revealed significant (p ≤ 0.02) glutamate loss in the entorhinal cortex (% change ± standard error: 8.73 ± 2.12%), hippocampus (11.29 ± 2.41%), and hippocampal fimbriae (19.15 ± 2.95%) of male AD mice. A similar loss of hippocampal glutamate in male AD mice (11.22 ± 2.33%; p = 0.01) was also observed in 1H-MRS. DISCUSSIONS GluCEST MRI detected glutamate reductions in the fimbria and entorhinal cortex of male AD mice, which was not reported previously. Resilience in female AD mice against these changes indicates an intact status of cerebral energy metabolism. HIGHLIGHTS Glutamate levels were monitored in different brain regions of early-stage Alzheimer's disease (AD) and wild-type male and female mice using glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI). Male AD mice exhibited significant glutamate loss in the hippocampus, entorhinal cortex, and the fimbriae of the hippocampus. Interestingly, female AD mice did not have any glutamate loss in any brain region and should be investigated further to find the probable cause. These findings demonstrate previously unreported sex-specific glutamate changes in hippocampal sub-regions using high-resolution GluCEST MRI.
Collapse
Affiliation(s)
- Narayan Datt Soni
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Anshuman Swain
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Halvor Juul
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Quy Cao
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mohammad Haris
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Center for Cognitive NeuroscienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Alzheimer's Disease Research CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Virginia M.‐Y. Lee
- Alzheimer's Disease Research CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neurodegenerative Disease ResearchPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John A. Detre
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ravinder Reddy
- Department of Radiology, Perelman School of MedicineCenter for Advanced Metabolic Imaging in Precision MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
19
|
Kaller MS, Lazari A, Feng Y, van der Toorn A, Rühling S, Thomas CW, Shimizu T, Bannerman D, Vyazovskiy V, Richardson WD, Sampaio-Baptista C, Johansen-Berg H. Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioral deficits. Glia 2024; 72:1728-1745. [PMID: 38982743 DOI: 10.1002/glia.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.
Collapse
Affiliation(s)
- Malte S Kaller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yingshi Feng
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht & Utrecht University, Utrecht, The Netherlands
| | - Sebastian Rühling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Takahiro Shimizu
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - William D Richardson
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Yeung J, DeYoung T, Spring S, de Guzman AE, Elder MW, Beauchamp A, Wong CS, Palmert MR, Lerch JP, Nieman BJ. Sex chromosomes and hormones independently influence healthy brain development but act similarly after cranial radiation. Proc Natl Acad Sci U S A 2024; 121:e2404042121. [PMID: 39207735 PMCID: PMC11388377 DOI: 10.1073/pnas.2404042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The course of normal development and response to pathology are strongly influenced by biological sex. For instance, female childhood cancer survivors who have undergone cranial radiation therapy (CRT) tend to display more pronounced cognitive deficits than their male counterparts. Sex effects can be the result of sex chromosome complement (XX vs. XY) and/or gonadal hormone influence. The contributions of each can be separated using the four-core genotype mouse model (FCG), where sex chromosome complement and gonadal sex are decoupled. While studies of FCG mice have evaluated brain differences in adulthood, it is still unclear how sex chromosome and sex hormone effects emerge through development in both healthy and pathological contexts. Our study utilizes longitudinal MRI with the FCG model to investigate sex effects in healthy development and after CRT in wildtype and immune-modified Ccl2-knockout mice. Our findings in normally developing mice reveal a relatively prominent chromosome effect prepubertally, compared to sex hormone effects which largely emerge later. Spatially, sex chromosome and hormone influences were independent of one another. After CRT in Ccl2-knockout mice, both male chromosomes and male hormones similarly improved brain outcomes but did so more separately than in combination. Our findings highlight the crucial role of sex chromosomes in early development and identify roles for sex chromosomes and hormones after CRT-induced inflammation, highlighting the influences of biological sex in both normal brain development and pathology.
Collapse
Affiliation(s)
- Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
| | - A. Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, RoveretoTN38068, Italy
| | - Madeline W. Elder
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
| | - C. Shun Wong
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, TorontoONM4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, TorontoONM5T 1P5, Canada
| | - Mark R. Palmert
- Division of Endocrinology, The Hospital for Sick Children, University of Toronto, TorontoONM5G 1X8, Canada
- Department of Pediatrics, University of Toronto, TorontoONM5S 1A8, Canada
- Department of Physiology, University of Toronto, TorontoONM5S 1A8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, TorontoONM5G 1X8, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, Medical Sciences Division, University of Oxford, Oxford, OXFOX3 9DU, United Kingdom
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
| | - Brian J. Nieman
- Mouse Imaging Centre, Hospital for Sick Children, TorontoONM5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, TorontoONM5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, TorontoONM5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ONM5G 0A3, Canada
| |
Collapse
|
21
|
Munro DAD, Bestard-Cuche N, McQuaid C, Chagnot A, Shabestari SK, Chadarevian JP, Maheshwari U, Szymkowiak S, Morris K, Mohammad M, Corsinotti A, Bradford B, Mabbott N, Lennen RJ, Jansen MA, Pridans C, McColl BW, Keller A, Blurton-Jones M, Montagne A, Williams A, Priller J. Microglia protect against age-associated brain pathologies. Neuron 2024; 112:2732-2748.e8. [PMID: 38897208 DOI: 10.1016/j.neuron.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.
Collapse
Affiliation(s)
- David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | - Nadine Bestard-Cuche
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Conor McQuaid
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Audrey Chagnot
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Szymkowiak
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Kim Morris
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Mehreen Mohammad
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Andrea Corsinotti
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Barry Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Neil Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Ross J Lennen
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Maurits A Jansen
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Axel Montagne
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Anna Williams
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Josef Priller
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Department of Psychiatry and Psychotherapy, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, and German Center for Mental Health (DZPG), 81675 Munich, Germany; Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin and DZNE, 10117 Berlin, Germany.
| |
Collapse
|
22
|
Desrosiers-Grégoire G, Devenyi GA, Grandjean J, Chakravarty MM. A standardized image processing and data quality platform for rodent fMRI. Nat Commun 2024; 15:6708. [PMID: 39112455 PMCID: PMC11306392 DOI: 10.1038/s41467-024-50826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Functional magnetic resonance imaging in rodents holds great potential for advancing our understanding of brain networks. Unlike the human community, there remains no standardized resource in rodents for image processing, analysis and quality control, posing significant reproducibility limitations. Our software platform, Rodent Automated Bold Improvement of EPI Sequences, is a pipeline designed to address these limitations for preprocessing, quality control, and confound correction, along with best practices for reproducibility and transparency. We demonstrate the robustness of the preprocessing workflow by validating performance across multiple acquisition sites and both mouse and rat data. Building upon a thorough investigation into data quality metrics across acquisition sites, we introduce guidelines for the quality control of network analysis and offer recommendations for addressing issues. Taken together, this software platform will allow the emerging community to adopt reproducible practices and foster progress in translational neuroscience.
Collapse
Affiliation(s)
- Gabriel Desrosiers-Grégoire
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
23
|
Annio G, Holm S, Mangin G, Penney J, Bacquët R, Mustapha R, Darwish O, Wittgenstein AS, Schregel K, Vilgrain V, Paradis V, Sølna K, Nordsletten DA, Sinkus R. Making sense of scattering: Seeing microstructure through shear waves. SCIENCE ADVANCES 2024; 10:eadp3363. [PMID: 39083612 PMCID: PMC11290519 DOI: 10.1126/sciadv.adp3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The physics of shear waves traveling through matter carries fundamental insights into its structure, for instance, quantifying stiffness for disease characterization. However, the origin of shear wave attenuation in tissue is currently not properly understood. Attenuation is caused by two phenomena: absorption due to energy dissipation and scattering on structures such as vessels fundamentally tied to the material's microstructure. Here, we present a scattering theory in conjunction with magnetic resonance imaging, which enables the unraveling of a material's innate constitutive and scattering characteristics. By overcoming a three-order-of-magnitude scale difference between wavelength and average intervessel distance, we provide noninvasively a macroscopic measure of vascular architecture. The validity of the theory is demonstrated through simulations, phantoms, in vivo mice, and human experiments and compared against histology as gold standard. Our approach expands the field of imaging by using the dispersion properties of shear waves as macroscopic observable proxies for deciphering the underlying ultrastructures.
Collapse
Affiliation(s)
- Giacomo Annio
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Sverre Holm
- Department of Physics, University of Oslo, Oslo, Norway
| | - Gabrielle Mangin
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
| | - Jake Penney
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
| | | | - Rami Mustapha
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Omar Darwish
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Valérie Vilgrain
- Department of Radiology, Beaujon Hospital, Clichy, France
- Inflammation Research Center, CRI, U1149, National Institute for Health and Medical Research (INSERM), Paris, France
| | - Valérie Paradis
- Inflammation Research Center, CRI, U1149, National Institute for Health and Medical Research (INSERM), Paris, France
- Department of Pathology, Beaujon Hospital, Clichy, France
| | - Knut Sølna
- Department of Mathematics, University of California at Irvine, Irvine, CA, USA
| | - David Alexander Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Sinkus
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
24
|
Jiménez S, Santos-Álvarez I, Fernández-Valle E, Castejón D, Villa-Valverde P, Rojo-Salvador C, Pérez-Llorens P, Ruiz-Fernández MJ, Ariza-Pastrana S, Martín-Orti R, González-Soriano J, Moreno N. Comparative MRI analysis of the forebrain of three sauropsida models. Brain Struct Funct 2024; 229:1349-1364. [PMID: 38546870 PMCID: PMC11176103 DOI: 10.1007/s00429-024-02788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/12/2024] [Indexed: 06/15/2024]
Abstract
The study of the brain by magnetic resonance imaging (MRI) allows to obtain detailed anatomical images, useful to describe specific encephalic structures and to analyze possible variabilities. It is widely used in clinical practice and is becoming increasingly used in veterinary medicine, even in exotic animals; however, despite its potential, its use in comparative neuroanatomy studies is still incipient. It is a technology that in recent years has significantly improved anatomical resolution, together with the fact that it is non-invasive and allows for systematic comparative analysis. All this makes it particularly interesting and useful in evolutionary neuroscience studies, since it allows for the analysis and comparison of brains of rare or otherwise inaccessible species. In the present study, we have analyzed the prosencephalon of three representative sauropsid species, the turtle Trachemys scripta (order Testudine), the lizard Pogona vitticeps (order Squamata) and the snake Python regius (order Squamata) by MRI. In addition, we used MRI sections to analyze the total brain volume and ventricular system of these species, employing volumetric and chemometric analyses together. The raw MRI data of the sauropsida models analyzed in the present study are available for viewing and downloading and have allowed us to produce an atlas of the forebrain of each of the species analyzed, with the main brain regions. In addition, our volumetric data showed that the three groups presented clear differences in terms of total and ventricular brain volumes, particularly the turtles, which in all cases presented distinctive characteristics compared to the lizards and snakes.
Collapse
Affiliation(s)
- S Jiménez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Bilbao, 48940, Spain
| | - I Santos-Álvarez
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - E Fernández-Valle
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - D Castejón
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - P Villa-Valverde
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - C Rojo-Salvador
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - P Pérez-Llorens
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - M J Ruiz-Fernández
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - S Ariza-Pastrana
- Palmitos Park Canarias, Barranco de los Palmitos, s/n, Maspalomas, Las Palmas, 35109, Spain
| | - R Martín-Orti
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Juncal González-Soriano
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain.
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Avenida José Antonio Nováis 12, Madrid, 28040, Spain.
| |
Collapse
|
25
|
Patel Y, Woo A, Shi S, Ayoub R, Shin J, Botta A, Ketela T, Sung HK, Lerch J, Nieman B, Paus T, Pausova Z. Obesity and the cerebral cortex: Underlying neurobiology in mice and humans. Brain Behav Immun 2024; 119:637-647. [PMID: 38663773 DOI: 10.1016/j.bbi.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia, more than of other cell types, are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD.
Collapse
Affiliation(s)
- Yash Patel
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anita Woo
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Sammy Shi
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Ramy Ayoub
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada
| | - Jean Shin
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Amy Botta
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Genomics Centre, Toronto, ON, Canada
| | - Hoon-Ki Sung
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada
| | - Jason Lerch
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, Great Britton
| | - Brian Nieman
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tomas Paus
- Department of Psychiatry and Addictology and Department of Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, QC, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, QC, Canada.
| |
Collapse
|
26
|
Martínez-Tazo P, Santos A, Selim MK, Espinós-Soler E, De Santis S. Sex matters: The MouseX DW-ALLEN Atlas for mice diffusion-weighted MR imaging. Neuroimage 2024; 292:120573. [PMID: 38521211 DOI: 10.1016/j.neuroimage.2024.120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Overcoming sex bias in preclinical research requires not only including animals of both sexes in the experiments, but also developing proper tools to handle such data. Recent work revealed sensitivity of diffusion-weighted MRI to glia morphological changes in response to inflammatory stimuli, opening up exciting possibilities to characterize inflammation in a variety of preclinical models of pathologies, the great majority of them available in mice. However, there are limited resources dedicated to mouse imaging, like those required for the data processing and analysis. To fill this gap, we build a mouse MRI template of both structural and diffusion contrasts, with anatomical annotation according to the Allen Mouse Brain Atlas, the most detailed public resource for mouse brain investigation. To achieve a standardized resource, we use a large cohort of animals in vivo, and include animals of both sexes. To prove the utility of this resource to integrate imaging and molecular data, we demonstrate significant association between the mean diffusivity from MRI and gene expression-based glia density. To demonstrate the need of equitable sex representation, we compared across sexes the warp fields needed to match a male-based template, and our template built with both sexes. Then, we use both templates for analysing mice imaging data obtained in animals of different ages, demonstrating that using a male-based template creates spurious significant sex effects, not present otherwise. All in all, our MouseX DW-ALLEN Atlas will be a widely useful resource getting us one step closer to equitable healthcare.
Collapse
Affiliation(s)
| | - Alexandra Santos
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - Mohamed Kotb Selim
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - Elena Espinós-Soler
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
27
|
Dhume SH, Balogun K, Sarkar A, Acosta S, Mount HTJ, Cahill LS, Sled JG, Serghides L. Perinatal exposure to atazanavir-based antiretroviral regimens in a mouse model leads to differential long-term motor and cognitive deficits dependent on the NRTI backbone. Front Mol Neurosci 2024; 17:1376681. [PMID: 38646101 PMCID: PMC11027900 DOI: 10.3389/fnmol.2024.1376681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Background Combination antiretroviral therapy (ART) use in pregnancy has been pivotal in improving maternal health and reducing perinatal HIV transmission. However, children born HIV-exposed uninfected fall behind their unexposed peers in several areas including neurodevelopment. The contribution of in utero ART exposure to these deficits is not clear. Here we present our findings of neurocognitive outcomes in adult mice exposed in utero to ART. Methods Dams were treated with a combination of ritonavir-boosted atazanavir with either abacavir plus lamivudine (ABC/3TC + ATV/r) or tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC + ATV/r), or water as a control, administered daily from day of plug detection to birth. Offspring underwent a battery of behavioral tests that investigated motor performance and cognition starting at 6-weeks of age and ending at 8 months. Changes in brain structure were assessed using magnetic resonance imaging and immunohistochemistry. Expression of genes involved in neural circuitry and synaptic transmission were assessed in the hippocampus, a region strongly associated with memory formation, using qPCR. Findings Pups exposed to TDF/FTC + ATV/r showed increased motor activity and exploratory drive, and deficits in hippocampal-dependent working memory and social interaction, while pups exposed to ABC/3TC + ATV/r showed increased grooming, and deficits in working memory and social interaction. Significant volumetric reductions in the brain were seen only in the ABC/3TC + ATV/r group and were associated with reduced neuronal counts in the hippocampus. Altered neurotransmitter receptor mRNA expression as well as changes in expression of the neurotrophic factor BDNF and its receptors were observed in both ART-exposed groups in a sex-dependent manner. Interpretation In our model, in utero ART exposure had long-term effects on brain development and cognitive and motor outcomes in adulthood. Our data show that neurological outcomes can be influenced by the type of nucleoside reverse transcriptase inhibitor backbone of the regimen and not just the base drug, and display sex differences.
Collapse
Affiliation(s)
- Shreya H. Dhume
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kayode Balogun
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ambalika Sarkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sebastian Acosta
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard T. J. Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Psychiatry and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
| | - John G. Sled
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Women’s College Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
29
|
Willekens SMA, Morini F, Mediavilla T, Nilsson E, Orädd G, Hahn M, Chotiwan N, Visa M, Berggren PO, Ilegems E, Överby AK, Ahlgren U, Marcellino D. An MR-based brain template and atlas for optical projection tomography and light sheet fluorescence microscopy in neuroscience. Front Neurosci 2024; 18:1328815. [PMID: 38601090 PMCID: PMC11004350 DOI: 10.3389/fnins.2024.1328815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Optical Projection Tomography (OPT) and light sheet fluorescence microscopy (LSFM) are high resolution optical imaging techniques, ideally suited for ex vivo 3D whole mouse brain imaging. Although they exhibit high specificity for their targets, the anatomical detail provided by tissue autofluorescence remains limited. Methods T1-weighted images were acquired from 19 BABB or DBE cleared brains to create an MR template using serial longitudinal registration. Afterwards, fluorescent OPT and LSFM images were coregistered/normalized to the MR template to create fusion images. Results Volumetric calculations revealed a significant difference between BABB and DBE cleared brains, leading to develop two optimized templates, with associated tissue priors and brain atlas, for BABB (OCUM) and DBE (iOCUM). By creating fusion images, we identified virus infected brain regions, mapped dopamine transporter and translocator protein expression, and traced innervation from the eye along the optic tract to the thalamus and superior colliculus using cholera toxin B. Fusion images allowed for precise anatomical identification of fluorescent signal in the detailed anatomical context provided by MR. Discussion The possibility to anatomically map fluorescent signals on magnetic resonance (MR) images, widely used in clinical and preclinical neuroscience, would greatly benefit applications of optical imaging of mouse brain. These specific MR templates for cleared brains enable a broad range of neuroscientific applications integrating 3D optical brain imaging.
Collapse
Affiliation(s)
- Stefanie M. A. Willekens
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Federico Morini
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Tomas Mediavilla
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Greger Orädd
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Max Hahn
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Nunya Chotiwan
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Montse Visa
- The Rolf Luft Research Centre for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Centre for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Erwin Ilegems
- The Rolf Luft Research Centre for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Ulf Ahlgren
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Daniel Marcellino
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Ister R, Sternak M, Škokić S, Gajović S. suMRak: a multi-tool solution for preclinical brain MRI data analysis. Front Neuroinform 2024; 18:1358917. [PMID: 38595906 PMCID: PMC11002116 DOI: 10.3389/fninf.2024.1358917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Magnetic resonance imaging (MRI) is invaluable for understanding brain disorders, but data complexity poses a challenge in experimental research. In this study, we introduce suMRak, a MATLAB application designed for efficient preclinical brain MRI analysis. SuMRak integrates brain segmentation, volumetry, image registration, and parameter map generation into a unified interface, thereby reducing the number of separate tools that researchers may require for straightforward data handling. Methods and implementation All functionalities of suMRak are implemented using the MATLAB App Designer and the MATLAB-integrated Python engine. A total of six helper applications were developed alongside the main suMRak interface to allow for a cohesive and streamlined workflow. The brain segmentation strategy was validated by comparing suMRak against manual segmentation and ITK-SNAP, a popular open-source application for biomedical image segmentation. Results When compared with the manual segmentation of coronal mouse brain slices, suMRak achieved a high Sørensen-Dice similarity coefficient (0.98 ± 0.01), approaching manual accuracy. Additionally, suMRak exhibited significant improvement (p = 0.03) when compared to ITK-SNAP, particularly for caudally located brain slices. Furthermore, suMRak was capable of effectively analyzing preclinical MRI data obtained in our own studies. Most notably, the results of brain perfusion map registration to T2-weighted images were shown, improving the topographic connection to anatomical areas and enabling further data analysis to better account for the inherent spatial distortions of echoplanar imaging. Discussion SuMRak offers efficient MRI data processing of preclinical brain images, enabling researchers' consistency and precision. Notably, the accelerated brain segmentation, achieved through K-means clustering and morphological operations, significantly reduces processing time and allows for easier handling of larger datasets.
Collapse
Affiliation(s)
- Rok Ister
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marko Sternak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Srećko Gajović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
31
|
Oelschlegel AM, Bhattacharjee R, Wenk P, Harit K, Rothkötter HJ, Koch SP, Boehm-Sturm P, Matuschewski K, Budinger E, Schlüter D, Goldschmidt J, Nishanth G. Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria. Nat Commun 2024; 15:2396. [PMID: 38493187 PMCID: PMC10944460 DOI: 10.1038/s41467-024-46617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Sequestration of infected red blood cells (iRBCs) in the microcirculation is a hallmark of cerebral malaria (CM) in post-mortem human brains. It remains controversial how this might be linked to the different disease manifestations, in particular brain swelling leading to brain herniation and death. The main hypotheses focus on iRBC-triggered inflammation and mechanical obstruction of blood flow. Here, we test these hypotheses using murine models of experimental CM (ECM), SPECT-imaging of radiolabeled iRBCs and cerebral perfusion, MR-angiography, q-PCR, and immunohistochemistry. We show that iRBC accumulation and reduced flow precede inflammation. Unexpectedly, we find that iRBCs accumulate not only in the microcirculation but also in large draining veins and sinuses, particularly at the rostral confluence. We identify two parallel venous streams from the superior sagittal sinus that open into the rostral rhinal veins and are partially connected to infected skull bone marrow. The flow in these vessels is reduced early, and the spatial patterns of pathology correspond to venous drainage territories. Our data suggest that venous efflux reductions downstream of the microcirculation are causally linked to ECM pathology, and that the different spatiotemporal patterns of edema development in mice and humans could be related to anatomical differences in venous anatomy.
Collapse
Affiliation(s)
- A M Oelschlegel
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Research group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - R Bhattacharjee
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - P Wenk
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - K Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - S P Koch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - P Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - K Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - E Budinger
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - D Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - J Goldschmidt
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - G Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
32
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. eLife 2024; 13:RP92200. [PMID: 38488854 PMCID: PMC10942785 DOI: 10.7554/elife.92200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Antoine Beauchamp
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jacob Ellegood
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jason P Lerch
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
33
|
Cardarelli S, Biglietto M, Orsini T, Fustaino V, Monaco L, de Oliveira do Rêgo AG, Liccardo F, Masciarelli S, Fazi F, Naro F, De Angelis L, Pellegrini M. Modulation of cAMP/cGMP signaling as prevention of congenital heart defects in Pde2A deficient embryos: a matter of oxidative stress. Cell Death Dis 2024; 15:169. [PMID: 38395995 PMCID: PMC10891154 DOI: 10.1038/s41419-024-06549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Martina Biglietto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Luciana De Angelis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
34
|
Knyzeliene A, Wimberley C, MacAskill MG, Alcaide-Corral CJ, Morgan TEF, Henry MC, Lucatelli C, Pimlott SL, Sutherland A, Tavares AAS. Sexually dimorphic murine brain uptake of the 18 kDa translocator protein PET radiotracer [ 18F]LW223. Brain Commun 2024; 6:fcae008. [PMID: 38304004 PMCID: PMC10833650 DOI: 10.1093/braincomms/fcae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The 18 kDa translocator protein is a well-known biomarker of neuroinflammation, but also plays a role in homeostasis. PET with 18 kDa translocator protein radiotracers [11C]PBR28 in humans and [18F]GE180 in mice has demonstrated sex-dependent uptake patterns in the healthy brain, suggesting sex-dependent 18 kDa translocator protein expression, although humans and mice had differing results. This study aimed to assess whether the 18 kDa translocator protein PET radiotracer [18F]LW223 exhibited sexually dimorphic uptake in healthy murine brain and peripheral organs. Male and female C57Bl6/J mice (13.6 ± 5.4 weeks, 26.8 ± 5.4 g, mean ± SD) underwent 2 h PET scanning post-administration of [18F]LW223 (6.7 ± 3.6 MBq). Volume of interest and parametric analyses were performed using standard uptake values (90-120 min). Statistical differences were assessed by unpaired t-test or two-way ANOVA with Šidak's test (alpha = 0.05). The uptake of [18F]LW223 was significantly higher across multiple regions of the male mouse brain, with the most pronounced difference detected in hypothalamus (P < 0.0001). Males also exhibited significantly higher [18F]LW223 uptake in the heart when compared to females (P = 0.0107). Data support previous findings on sexually dimorphic 18 kDa translocator protein radiotracer uptake patterns in mice and highlight the need to conduct sex-controlled comparisons in 18 kDa translocator protein PET imaging studies.
Collapse
Affiliation(s)
- Agne Knyzeliene
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Catriona Wimberley
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark G MacAskill
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carlos J Alcaide-Corral
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timaeus E F Morgan
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martyn C Henry
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow G12 0YN, UK
| | | | - Adriana A S Tavares
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
35
|
Cho CH, Deyneko IV, Cordova-Martinez D, Vazquez J, Maguire AS, Diaz JR, Carbonell AU, Tindi JO, Cui MH, Fleysher R, Molholm S, Lipton ML, Branch CA, Hodgson L, Jordan BA. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat Commun 2023; 14:8499. [PMID: 38129387 PMCID: PMC10739966 DOI: 10.1038/s41467-023-43438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., San Francisco, CA, USA
| | - Ilana Vasilisa Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne S Maguire
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny R Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roman Fleysher
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
36
|
Michell-Robinson MA, Watt KEN, Grouza V, Macintosh J, Pinard M, Tuznik M, Chen X, Darbelli L, Wu CL, Perrier S, Chitsaz D, Uccelli NA, Liu H, Cox TC, Müller CW, Kennedy TE, Coulombe B, Rudko DA, Trainor PA, Bernard G. Hypomyelination, hypodontia and craniofacial abnormalities in a Polr3b mouse model of leukodystrophy. Brain 2023; 146:5070-5085. [PMID: 37635302 PMCID: PMC10690025 DOI: 10.1093/brain/awad249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Mackenzie A Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Kristin E N Watt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Vladimir Grouza
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC H3A 2B4, Canada
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Maxime Pinard
- Translational Proteomics Research Unit, Montreal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - Marius Tuznik
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC H3A 2B4, Canada
| | - Xiaoru Chen
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Lama Darbelli
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Chia-Lun Wu
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Daryan Chitsaz
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Nonthué A Uccelli
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Hanwen Liu
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC H3A 2B4, Canada
| | - Timothy C Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri – Kansas City, Kansas City, MO 64108, USA
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
| | - Benoit Coulombe
- Translational Proteomics Research Unit, Montreal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, QC H3C 3J7, Canada
| | - David A Rudko
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4, Canada
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montréal, QC H4A 0C7, Canada
- Department of Specialized Medicine, Division of Medical Genetics, Montreal Children’s Hospital and McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
37
|
Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, Han W, Jung S. Nuanced contribution of gut microbiome in the early brain development of mice. Gut Microbes 2023; 15:2283911. [PMID: 38010368 PMCID: PMC10768743 DOI: 10.1080/19490976.2023.2283911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woo Ri Chae
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Hae Ung Lee
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
| | - Han-Gyu Bae
- Department of Cellular & Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sven Pettersson
- National Neuroscience Institute, Tan Tock Seng Hospital, Singapore Health Services, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Weiping Han
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sangyong Jung
- Lab of Metabolic Medicine, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
38
|
Szulc-Lerch K, Yeung J, de Guzman AE, Egan S, Yee Y, Fernandes D, Lerch JP, Mabbott DJ, Nieman BJ. Exercise promotes growth and rescues volume deficits in the hippocampus after cranial radiation in young mice. NMR IN BIOMEDICINE 2023; 36:e5015. [PMID: 37548099 DOI: 10.1002/nbm.5015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Human and animal studies suggest that exercise promotes healthy brain development and function, including promoting hippocampal growth. Childhood cancer survivors that have received cranial radiotherapy exhibit hippocampal volume deficits and are at risk of impaired cognitive function, thus they may benefit from regular exercise. While morphological changes induced by exercise have been characterized using magnetic resonance imaging (MRI) in humans and animal models, evaluation of changes across the brain through development and following cranial radiation is lacking. In this study, we used high-resolution longitudinal MRI through development to evaluate the effects of exercise in a pediatric mouse model of cranial radiation. Female mice received whole-brain radiation (7 Gy) or sham radiation (0 Gy) at an infant equivalent age (P16). One week after irradiation, mice were housed in either a regular cage or a cage equipped with a running wheel. In vivo MRI was performed prior to irradiation, and at three subsequent timepoints to evaluate the effects of radiation and exercise. We used a linear mixed-effects model to assess volumetric and cortical thickness changes. Exercise caused substantial increases in the volumes of certain brain regions, notably the hippocampus in both irradiated and nonirradiated mice. Volume increases exceeded the deficits induced by cranial irradiation. The effect of exercise and irradiation on subregional hippocampal volumes was also characterized. In addition, we characterized cortical thickness changes across development and found that it peaked between P23 and P43, depending on the region. Exercise also induced regional alterations in cortical thickness after 3 weeks of voluntary exercise, while irradiation did not substantially alter cortical thickness. Our results show that exercise has the potential to alter neuroanatomical outcomes in both irradiated and nonirradiated mice. This supports ongoing research exploring exercise as a strategy for improving neurocognitive development for children, particularly those treated with cranial radiotherapy.
Collapse
Affiliation(s)
- Kamila Szulc-Lerch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Shannon Egan
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Darren Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Donald J Mabbott
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
39
|
Mueller SM, McFarland White K, Fass SB, Chen S, Shi Z, Ge X, Engelbach JA, Gaines SH, Bice AR, Vasek MJ, Garbow JR, Culver JP, Martinez-Lozada Z, Cohen-Salmon M, Dougherty JD, Sapkota D. Evaluation of gliovascular functions of AQP4 readthrough isoforms. Front Cell Neurosci 2023; 17:1272391. [PMID: 38077948 PMCID: PMC10701521 DOI: 10.3389/fncel.2023.1272391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 12/20/2023] Open
Abstract
Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to WT and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. An increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two was unchanged. However, at 100% readthrough, AQP4x localization and the formation of higher order complexes were disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for an increased proportion of endothelial cells with budding vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.
Collapse
Affiliation(s)
- Shayna M. Mueller
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kelli McFarland White
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Stuart B. Fass
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Siyu Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Zhan Shi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - John A. Engelbach
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Seana H. Gaines
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Annie R. Bice
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael J. Vasek
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Joel R. Garbow
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Joseph P. Culver
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Physics, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, United States
- Imaging Science PhD Program, Washington University in St. Louis, Saint Louis, MO, United States
| | - Zila Martinez-Lozada
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, The National Centre for Scientific Research (CNRS), National Institute of Health and Medical Research (INSERM), Université PSL, Paris, France
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Darshan Sapkota
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, United States
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
40
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
41
|
Saleh MAA, Gülave B, Campagne O, Stewart CF, Elassaiss-Schaap J, de Lange ECM. Using the LeiCNS-PK3.0 Physiologically-Based Pharmacokinetic Model to Predict Brain Extracellular Fluid Pharmacokinetics in Mice. Pharm Res 2023; 40:2555-2566. [PMID: 37442882 PMCID: PMC10733198 DOI: 10.1007/s11095-023-03554-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
INTRODUCTION The unbound brain extracelullar fluid (brainECF) to plasma steady state partition coefficient, Kp,uu,BBB, values provide steady-state information on the extent of blood-brain barrier (BBB) transport equilibration, but not on pharmacokinetic (PK) profiles seen by the brain targets. Mouse models are frequently used to study brain PK, but this information cannot directly be used to inform on human brain PK, given the different CNS physiology of mouse and human. Physiologically based PK (PBPK) models are useful to translate PK information across species. AIM Use the LeiCNS-PK3.0 PBPK model, to predict brain extracellular fluid PK in mice. METHODS Information on mouse brain physiology was collected from literature. All available connected data on unbound plasma, brainECF PK of 10 drugs (cyclophosphamide, quinidine, erlotonib, phenobarbital, colchicine, ribociclib, topotecan, cefradroxil, prexasertib, and methotrexate) from different mouse strains were used. Dosing regimen dependent plasma PK was modelled, and Kpuu,BBB values were estimated, and provided as input into the LeiCNS-PK3.0 model to result in prediction of PK profiles in brainECF. RESULTS Overall, the model gave an adequate prediction of the brainECF PK profile for 7 out of the 10 drugs. For 7 drugs, the predicted versus observed brainECF data was within two-fold error limit and the other 2 drugs were within five-fold error limit. CONCLUSION The current version of the mouse LeiCNS-PK3.0 model seems to reasonably predict available information on brainECF from healthy mice for most drugs. This brings the translation between mouse and human brain PK one step further.
Collapse
Affiliation(s)
- Mohammed A A Saleh
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, USA
| | | | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Gorlaeus laboratorium, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
42
|
Goodman SJ, Luperchio TR, Ellegood J, Chater-Diehl E, Lerch JP, Bjornsson HT, Weksberg R. Peripheral blood DNA methylation and neuroanatomical responses to HDACi treatment that rescues neurological deficits in a Kabuki syndrome mouse model. Clin Epigenetics 2023; 15:172. [PMID: 37884963 PMCID: PMC10605417 DOI: 10.1186/s13148-023-01582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d+/βGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d+/βGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a "primary tissue" with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. METHODS Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. RESULTS We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. CONCLUSIONS As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Teresa Romeo Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspitali University Hospital, Reykjavík, Iceland
| | - Rosanna Weksberg
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
43
|
Swain A, Soni ND, Wilson N, Juul H, Benyard B, Haris M, Kumar D, Nanga RPR, Detre J, Lee VM, Reddy R. Early-stage mapping of macromolecular content in APP NL-F mouse model of Alzheimer's disease using nuclear Overhauser effect MRI. Front Aging Neurosci 2023; 15:1266859. [PMID: 37876875 PMCID: PMC10590923 DOI: 10.3389/fnagi.2023.1266859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Non-invasive methods of detecting early-stage Alzheimer's disease (AD) can provide valuable insight into disease pathology, improving the diagnosis and treatment of AD. Nuclear Overhauser enhancement (NOE) MRI is a technique that provides image contrast sensitive to lipid and protein content in the brain. These macromolecules have been shown to be altered in Alzheimer's pathology, with early disruptions in cell membrane integrity and signaling pathways leading to the buildup of amyloid-beta plaques and neurofibrillary tangles. We used template-based analyzes of NOE MRI data and the characteristic Z-spectrum, with parameters optimized for increase specificity to NOE, to detect changes in lipids and proteins in an AD mouse model that recapitulates features of human AD. We find changes in NOE contrast in the hippocampus, hypothalamus, entorhinal cortex, and fimbria, with these changes likely attributed to disruptions in the phospholipid bilayer of cell membranes in both gray and white matter regions. This study suggests that NOE MRI may be a useful tool for monitoring early-stage changes in lipid-mediated metabolism in AD and other disorders with high spatial resolution.
Collapse
Affiliation(s)
- Anshuman Swain
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Narayan D. Soni
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Neil Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Halvor Juul
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Blake Benyard
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dushyant Kumar
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Virginia M. Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
44
|
González LM, Bourissai A, Lessard-Beaudoin M, Lebel R, Tremblay L, Lepage M, Graham RK. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol Neurobiol 2023; 60:5624-5641. [PMID: 37329383 DOI: 10.1007/s12035-023-03401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age. Our results demonstrate that APOE4 mice treated with the control diet show recognition memory deficits, abnormal olfactory habituation, and discrimination abilities and an increase in IBA-1 immunoreactivity in the olfactory bulb. These phenotypes were not present in APOE4 mice treated with a DHA diet. Alterations in some brain regions' weights and/or volumes were observed in the APOPE4 mice and may be due to caspase activation and/or neuroinflammatory events. These results suggest that the consumption of a diet rich in DHA may provide some benefit to E4 carriers but may not alleviate all symptoms.
Collapse
Affiliation(s)
- Laura Martínez González
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Adam Bourissai
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mélissa Lessard-Beaudoin
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Réjean Lebel
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Rona K Graham
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
45
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554334. [PMID: 37662398 PMCID: PMC10473765 DOI: 10.1101/2023.08.23.554334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-biased brain development in mammals, there have been no attempts to formally compare mouse and human sex differences across the whole brain to ascertain how well they translate. Addressing this question would shed critical light on use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use cross-species structural magnetic resonance imaging to carry out the first comparative neuroimaging study of sex-biased neuroanatomical organization of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous brain regions (r=0.30; e.g.: M>F amygdala, hippocampus, bed nucleus of the stria terminalis, and hypothalamus and F>M anterior cingulate, somatosensory, and primary auditory cortices). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-biased brain development in mice to brain regions that best echo sex-biased brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
S S, Mohan D, Francis SM, Ramachandran A, Jacob J, Thomas VI. A dual functional asymmetric plasmonic silver nanostructure for temperature and magnetic field sensing. Phys Chem Chem Phys 2023; 25:21981-21992. [PMID: 37555236 DOI: 10.1039/d3cp01748f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Many diverse technological applications, such as soft robotics and flexible electronics, demand the development of intelligent sensors that can simultaneously detect different physical parameters. Taking advantage of plasmonic structures, which can experience minute variations in physical parameters upon close contact, herein, a dual channel based silver nanostructure of concentric square rings and disks on an SiO2 substrate is proposed for the synchronized detection of magnetic field (H) and temperature (T). The thermometric polydimethylsiloxane (PDMS) and ferromagnetic Fe3O4 were placed in two channels of the nanostructure, forming the sensor. The structure modeling and electromagnetic study were carried out using the finite element method (FEM). The simultaneous detection of H and T was realized through the sensing matrix, which solved the problem of cross-sensitivity caused by a variation in temperature. Furthermore, the impact of structural asymmetry on the performance of the sensor was studied by tuning its geometrical parameters, such as disk length and ring length, separately and together. Asymmetry and the channel size significantly enhanced the performance, where disk optimization increased the temperature and magnetic field sensitivity by about 760 and 8319 times using 70% and 80% asymmetric systems, respectively. Also, the smallest ΔW (5 nm) provided a sufficiently high channel separation factor of about 7.47 μm during multi-parameter sensing. In addition, asymmetric sensing toward a single parameter was tested by placing PDMS/Fe3O4 on both channels. Multiple peaks were displayed with high sensitivity and CH-factor, making the detection more specific. Thus, the system possessing a combination of narrow channels and unique channel asymmetry exhibited excellent multi- and single-sensing for the detection of temperature and magnetic field.
Collapse
Affiliation(s)
- Simitha S
- Department of Chemistry, CMS College, Kottayam-686001, Kerala, India.
| | - Devika Mohan
- Department of Chemistry, CMS College, Kottayam-686001, Kerala, India.
- Department of Physics, Assumption College, Changanacherry, Kottayam-686101, Kerala, India.
| | - Shinto M Francis
- Department of Physics, Assumption College, Changanacherry, Kottayam-686101, Kerala, India.
| | - Ajith Ramachandran
- Department of Physics, Christ College, Irinjalakuda-680125, Kerala, India
| | - Jesly Jacob
- Department of Physics, Assumption College, Changanacherry, Kottayam-686101, Kerala, India.
| | - Vibin Ipe Thomas
- Department of Chemistry, CMS College, Kottayam-686001, Kerala, India.
| |
Collapse
|
47
|
Schregel K, Heinz L, Hunger J, Pan C, Bode J, Fischer M, Sturm V, Venkataramani V, Karimian-Jazi K, Agardy DA, Streibel Y, Zerelles R, Wick W, Heiland S, Bunse T, Tews B, Platten M, Winkler F, Bendszus M, Breckwoldt MO. A Cellular Ground Truth to Develop MRI Signatures in Glioma Models by Correlative Light Sheet Microscopy and Atlas-Based Coregistration. J Neurosci 2023; 43:5574-5587. [PMID: 37429718 PMCID: PMC10376935 DOI: 10.1523/jneurosci.1470-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.
Collapse
Affiliation(s)
- Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lennart Heinz
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jessica Hunger
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chenchen Pan
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Yannik Streibel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Roland Zerelles
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Mueller SM, White KM, Fass SB, Chen S, Shi Z, Ge X, Engelbach JA, Gaines SH, Bice AR, Vasek MJ, Garbow JR, Culver JP, Zila Martinez-Lozada, Cohen-Salmon M, Dougherty JD, Sapkota D. Evaluation of gliovascular functions of Aqp4 readthrough isoforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.549379. [PMID: 37546949 PMCID: PMC10401933 DOI: 10.1101/2023.07.21.549379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Aquaporin-4 (AQP4) is a water channel protein that links astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, that preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel mouse AQP4 line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wildtype (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to wildtype, and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. Increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two were unchanged. However, at 100% readthrough, AQP4x localization and formation of higher-order complexes was disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for increased endothelial cell vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.
Collapse
Affiliation(s)
- Shayna M. Mueller
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kelli McFarland White
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Stuart B. Fass
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Siyu Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Zhan Shi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John A. Engelbach
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Seana H Gaines
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael J. Vasek
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joel R. Garbow
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph P. Culver
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Physics, Washington University in St. Louis, Saint Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Imaging Science PhD Program, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Zila Martinez-Lozada
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Darshan Sapkota
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
49
|
Tillotson R, Yan K, Ruston J, DeYoung T, Córdova A, Turcotte-Cardin V, Yee Y, Taylor C, Visuvanathan S, Babbs C, Ivakine EA, Sled JG, Nieman BJ, Picketts DJ, Justice MJ. A new mouse model of ATR-X syndrome carrying a common patient mutation exhibits neurological and morphological defects. Hum Mol Genet 2023; 32:2485-2501. [PMID: 37171606 PMCID: PMC10360390 DOI: 10.1093/hmg/ddad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way, Oxford OX3 9DS, UK
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Julie Ruston
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Alex Córdova
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Valérie Turcotte-Cardin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Christine Taylor
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Shagana Visuvanathan
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Christian Babbs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way, Oxford OX3 9DS, UK
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Translational Medicine Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Translational Medicine Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
50
|
Korff A, Yang X, O’Donovan K, Gonzalez A, Teubner BJ, Nakamura H, Messing J, Yang F, Carisey AF, Wang YD, Patni T, Sheppard H, Zakharenko SS, Chook YM, Taylor JP, Kim HJ. A murine model of hnRNPH2-related neurodevelopmental disorder reveals a mechanism for genetic compensation by Hnrnph1. J Clin Invest 2023; 133:e160309. [PMID: 37463454 PMCID: PMC10348767 DOI: 10.1172/jci160309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/24/2023] [Indexed: 07/20/2023] Open
Abstract
Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapβ2 and resulted in modest cytoplasmic accumulation of hnRNPH2. We generated 2 knockin mouse models with human-equivalent mutations in Hnrnph2 as well as Hnrnph2-KO mice. Knockin mice recapitulated clinical features of the human disorder, including reduced survival in male mice, impaired motor and cognitive functions, and increased susceptibility to audiogenic seizures. In contrast, 2 independent lines of Hnrnph2-KO mice showed no detectable phenotypes. Notably, KO mice had upregulated expression of Hnrnph1, a paralog of Hnrnph2, whereas knockin mice failed to upregulate Hnrnph1. Thus, genetic compensation by Hnrnph1 may counteract the loss of hnRNPH2. These findings suggest that HNRNPH2-related disorder may be driven by a toxic gain of function or a complex loss of HNRNPH2 function with impaired compensation by HNRNPH1. The knockin mice described here are an important resource for preclinical studies to assess the therapeutic benefit of gene replacement or knockdown of mutant hnRNPH2.
Collapse
Affiliation(s)
- Ane Korff
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Xiaojing Yang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kevin O’Donovan
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Abner Gonzalez
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Haruko Nakamura
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Fen Yang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|