1
|
Wang J, Zhou J, Zhu J, Sheng J, Jiang R, Zhang X. Brain remodeling in stroke patients: A comprehensive review of mechanistic and neuroimaging studies. Behav Brain Res 2025; 486:115548. [PMID: 40122286 DOI: 10.1016/j.bbr.2025.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Stroke-induced brain remodeling involves a complex interplay of neurovascular components, including endothelial cells, microglia, astrocytes, and pericytes, which collectively contribute to the restoration of brain function. These processes are crucial for repairing the blood-brain barrier, regulating inflammation, and promoting neurogenesis. This review examines the mechanisms underlying brain remodeling and the role of advanced neuroimaging techniques-such as functional MRI (fMRI), positron emission tomography (PET), functional near-infrared spectroscopy (fNIRS), and functional ultrasound (fUS)-in assessing these changes. We also discuss various therapeutic approaches aimed at enhancing brain remodeling, including pharmacological agents, stem cell therapy, and rehabilitation strategies that target neurovascular repair and functional recovery. Despite significant progress, challenges remain in translating imaging insights into effective treatments. Future research should focus on integrating multiple imaging modalities to provide a comprehensive view of neurovascular changes and refining therapeutic interventions to optimize recovery and functional outcomes in stroke patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Jian Zhou
- Department of Radiology, No. 945 Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army, Yaan, Sichuan 625000, China.
| | - Jing Zhu
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Jinping Sheng
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Rui Jiang
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| | - Xiao Zhang
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| |
Collapse
|
2
|
Klaassen AL, Michel C, Stüble M, Scholkmann F, Kaess M, Kindler J. Insights into psychosis risk: Unveiling impaired reinforcement learning through a behavioral and functional near-infrared spectroscopy-based optical neuroimaging study. J Psychiatr Res 2025; 184:187-197. [PMID: 40054235 DOI: 10.1016/j.jpsychires.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Reward processing is crucial for learning, motivation and decision-making, and can be disturbed in the development of psychosis. Previous research has linked cognitive impairment and abnormalities in brain function to the clinical high risk state of psychosis (CHR-P). However, the extent to which processes of cognitive flexibility in response to reward feedback are impaired in CHR-P compared to healthy control (HC) individuals is largely unknown. METHODS To address this knowledge gap, we conducted a probabilistic reward task in 59 people with CHR-P (age: 18.89 ± 0.66 years, 54% female) from the Bern Early Recognition and Intervention Center, and 24 HC (age: 19.37 ± 1.20 years, 50% female). In addition, we recorded the prefrontal neurovascular response of the subjects using functional near-infrared spectroscopy (fNIRS) neuroimaging during task performance. RESULTS Behavioral results of the probabilistic reward task showed that CHR-P subjects had a significantly lower propensity for reward feedback compared to HC subjects, especially in the later course of the task (p = 0.018, Cohen's d = 0.58). When comparing the fNIRS measurements, we found a significantly lower task-induced increase in total hemoglobin concentration ([tHb]) in CHR-P subjects compared to HC subjects (p = 0.049). CONCLUSIONS Our findings indicate impaired reward feedback processing in CHR-P subjects, suggesting reduced sensitivity to reward. This is reflected in decreased task-induced response in cerebrovascular [tHb], indicating lower task-relevant prefrontal activities compared to HC subjects. These findings suggest that impaired processing of reward feedback may contribute to reward learning deficits and inflexible cognition in CHR-P subjects.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Anesthesiology & Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Miriam Stüble
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Felix Scholkmann
- Scholkmann Data Analysis Services, Scientific Consulting and Physical Engineering, Zurich, Switzerland; Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; University Hospital Heidelberg, Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Child and Adolescent Psychiatry, Psychiatry Baselland, Liestal, Switzerland.
| |
Collapse
|
3
|
Emani VS, Ozturk C, Singh M, Long C, Duffy S, Sen DG, Roche ET, Baker WB. Finite Element Modeling of Abdominal Near-Infrared Spectroscopy for Infant Splanchnic Oximetry. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70035. [PMID: 40235164 PMCID: PMC12000716 DOI: 10.1002/cnm.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025]
Abstract
Abdominal near-infrared spectroscopy (NIRS) holds promise for early detection of necrotizing enterocolitis and other infant pathologies prior to irreversible injury, but the optimal NIRS sensor design is not well defined. In this study, we develop and demonstrate a computational method to evaluate NIRS sensor designs for infant splanchnic oximetry. We used a finite element (FE) approach to simulate near-infrared light transport through a 3D model of the infant abdomen constructed from computed tomography (CT) images. The simulations enable the measurement of the contrast-to-noise ratio (CNR) for splanchnic oximetry, given a specific NIRS sensor design. A key design criterion is the sensor's source-detector distance (SDD). We calculated the CNR as a function of SDD for two sensor positions near the umbilicus. Contrast-to-noise was maximal at SDDs between 4 and 5 cm, and comparable between sensor positions. Sensitivity to intestinal tissue also exceeded sensitivity to superficial adipose tissue in the 4-5 cm range. FE modeling of abdominal NIRS signals provides a means for rapid and thorough evaluation of sensor designs for infant splanchnic oximetry. By informing optimal NIRS sensor design, the computational methods presented here can improve the reliability and applicability of infant splanchnic oximetry.
Collapse
Affiliation(s)
- Vishnu S. Emani
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Mechanical EngineeringUniversity of SouthamptonSouthamptonUK
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Carly Long
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Summer Duffy
- Division of Pediatric Cardiac SurgeryJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Wesley B. Baker
- Division of Neurology, Department of PediatricsChildren's Hospital of Philadelphia and University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Gjonaj E, Formica C, Cartella E, Muscarà N, Marino S, Quartarone A, De Salvo S. The Role of Near-Infrared Spectroscopy (NIRS) in Neurological and Neurodegenerative Diseases as Support to Clinical Practice: An Overview of the Literature. Diagnostics (Basel) 2025; 15:869. [PMID: 40218219 PMCID: PMC11988768 DOI: 10.3390/diagnostics15070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Near-Infrared Spectroscopy (NIRS) is a non-invasive technique that measures the oxygenation variations of brain tissue in response to different stimuli. It has many advantages such as being easy to use, portable, and non-invasive. Several studies over the years have demonstrated the usefulness of NIRS in neurological and neurodegenerative diseases. NIRS remains relatively underutilized in clinical practice. The aim of this brief review was to describe the use of NIRS in neurological and neurodegenerative diseases and how its use can modify clinical, therapeutic, and rehabilitative approaches. A total of 54 relevant articles were selected from the PUBMED research database related to the diagnostic and prognostic role of fNIRS in the main neurological and neurodegenerative diseases; significant outcomes have been reported in a descriptive form with careful considerations. In addition, we excluded studies using fNIRS in co-registration with other neurophysiological techniques. The use of NIRS should be applied even in the field of neurological and neurodegenerative diseases; in dementia, NIRS can aid in differential diagnosis and predict possible evolutions from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) stage; in stroke, it plays an important role especially in the post-acute phase, giving information about the patient's chances of recovery; in Parkinson's Disease (PD), the results showed the important role of cognitive aspects; in epilepsy, NIRS can localize the epileptic focus or potentially predict seizure onset.
Collapse
Affiliation(s)
- Elvira Gjonaj
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (E.G.); (N.M.); (S.M.); (A.Q.); (S.D.S.)
| | - Caterina Formica
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (E.G.); (N.M.); (S.M.); (A.Q.); (S.D.S.)
| | | | - Nunzio Muscarà
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (E.G.); (N.M.); (S.M.); (A.Q.); (S.D.S.)
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (E.G.); (N.M.); (S.M.); (A.Q.); (S.D.S.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (E.G.); (N.M.); (S.M.); (A.Q.); (S.D.S.)
| | - Simona De Salvo
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (E.G.); (N.M.); (S.M.); (A.Q.); (S.D.S.)
| |
Collapse
|
5
|
Wei L, Zhao Y, Liu F, Chen Y, Xu Y, Li Z, Zhu C. Transcranial brain atlas based on photon measurement density function in a triple-parameter standard channel space. Neuroimage 2025; 307:121026. [PMID: 39814088 DOI: 10.1016/j.neuroimage.2025.121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a widely-used transcranial brain imaging technique in neuroscience research. Nevertheless, the lack of anatomical information from recordings poses challenges for designing appropriate optode montages and for localizing fNIRS signals to underlying anatomical regions. The photon measurement density function (PMDF) is often employed to address these issues, as it accurately measures the sensitivity of an fNIRS channel to perturbations of absorption coefficients at any brain location. However, existing PMDF-based localization methods have two limitations: (1) limited channel space, and (2) estimation based on a single standard head model, which usually differ anatomically from individuals. To overcome these limitations, this study proposes a continuous standard channel space for fNIRS and constructs a PMDF-based transcranial brain atlas (PMDF-TBA) by calculating PMDFs using MRI data from 48 adults. The PMDF-TBA contains group-averaged sensitivities of channels to gray matter and brain regions as defined in 3 atlases: Brodmann, AAL2, and LPBA40. We evaluated the prediction ability of PMDF-TBA for sensitivity of unseen individuals. The results show that it outperformed PMDFs based on single standard head models, making PMDF-TBA a more generalizable fNIRS spatial localization tool. Therefore, in the absence of individual sMRI data, PMDF-TBA can optimize optode montage design, enhance channel sensitivity in target brain regions, and assist in source localization for fNIRS data, thereby facilitating the application of fNIRS in neuroscience research.
Collapse
Affiliation(s)
- Lijiang Wei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yang Zhao
- Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Farui Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yuanyuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yilong Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zheng Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
Chen L, Meng F, Huo C, Shao G, Pan G, Zhang X, Zhang S, Li Z. Effects of tactile feedback in post-stroke hand rehabilitation on functional connectivity and cortical activation: an fNIRS study. BIOMEDICAL OPTICS EXPRESS 2025; 16:643-656. [PMID: 39958859 PMCID: PMC11828458 DOI: 10.1364/boe.541820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 02/18/2025]
Abstract
Stroke-induced hand motor impairments have a significant impact on the daily lives of patients. Motor rehabilitation with tactile feedback (TF) shows promise as an effective rehabilitation intervention; however, its neural mechanisms are still not fully understood. The main objective of this study was to examine the effect of tactile feedback on brain functional responses during a single hand movement session in post-stroke patients, using functional near-infrared spectroscopy (fNIRS). The changes in oxy- and deoxy-hemoglobin concentrations were recorded from the bilateral prefrontal, motor, and occipital areas in 13 post-stroke patients in the subacute recovery phase and 15 healthy controls during a hand-grasping task with TF and no-TF. The cortical activation responses, functional connectivity, and brain functional network properties were calculated to explore the specific cortical response in post-stroke patients and healthy controls during the two grasping tasks. The results showed that post-stroke patients exhibited increased hemodynamic responses in the motor cortex during grasping tasks with TF. However, brain activation in the prefrontal cortex, left sensorimotor cortex, and right premotor area was significantly lower in post-stroke patients compared to healthy controls (p < 0.05). Additionally, post-stroke patients exhibited poorer overall brain network function, with significant reductions in both clustering coefficient (p = 0.0016), reflecting local information transfer efficiency, and transitivity (p = 0.0053), representing global network integration. A significant positive correlation was observed between the clustering coefficient and grip strength metrics (r = 0.592, p = 0.033), as well as between transitivity and grip strength (r = 0.590, p = 0.034) in post-stroke patients, indicating that greater impairments were associated with reduced overall brain functional network transmission efficiency. These findings indicated that TF can modulate brain activity in areas associated with motor learning and sensorimotor integration, providing evidence for its potential as a valuable tool in stroke rehabilitation.
Collapse
Affiliation(s)
- Lingling Chen
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
- Intelligent Rehabilitation Device and Detection Technology Engineering Research Centre of the Ministry of Education, Tianjin, China
| | - Fanyao Meng
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Guangjian Shao
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Guoxin Pan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xuemin Zhang
- Department of Intensive Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Simin Zhang
- Department of Intensive Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
7
|
Wei L, Chen Y, Chen X, Baeken C, Wu GR. Cardiac vagal activity changes moderated the association of cognitive and cerebral hemodynamic variations in the prefrontal cortex. Neuroimage 2024; 297:120725. [PMID: 38977040 DOI: 10.1016/j.neuroimage.2024.120725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/18/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024] Open
Abstract
Phasic cardiac vagal activity (CVA), reflecting ongoing, moment-to-moment psychophysiological adaptations to environmental changes, can serve as a predictor of individual difference in executive function, particularly executive performance. However, the relationship between phasic CVA and executive function demands requires further validation because of previous inconsistent findings. Moreover, it remains unclear what types of phasic changes of CVA may be adaptive in response to heightened executive demands. This study used the standard N-back task to induce different levels of working memory (WM) load and combined functional Near-Infrared Spectroscopy (fNIRS) with a multipurpose polygraph to investigate the variations of CVA and its interactions with cognitive and prefrontal responses as executive demands increased in fifty-two healthy young subjects. Our results showed phasic decreases in CVA as WM load increased (t (51) = -3.758, p < 0.001, Cohen's d = 0.526). Furthermore, phasic changes of CVA elicited by increased executive demands moderated the association of cognitive and cerebral hemodynamic variations in the prefrontal cortex (B = 0.038, SE = 0.014, p < 0.05). Specifically, as executive demands increased, individuals with larger phasic CVA withdrawal showed a positive relationship between cognitive and hemodynamic variations in the prefrontal cortex (β = 0.281, p = 0.031). No such significant relationship was observed in individuals with smaller phasic CVA withdrawal. The current findings demonstrate a decrease in CVA with increasing executive demands and provide empirical support for the notion that a larger phasic CVA withdrawal can be considered adaptive in situations requiring high executive function demands.
Collapse
Affiliation(s)
- Luqing Wei
- School of Psychology, Jiangxi Normal University, Nanchang, PR China.
| | - Yuchun Chen
- School of Psychology, Jiangxi Normal University, Nanchang, PR China
| | - Xiuwen Chen
- Huizhou Second People's Hospital, Huizhou, PR China
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, PR China.
| |
Collapse
|
8
|
Lee SH, Paik SH, Kang SY, Phillips Z, Kim JB, Kim BJ, Kim BM. Convolutional neural networks can detect orthostatic hypotension in Parkinson's disease using resting-state functional near-infrared spectroscopy data. JOURNAL OF BIOPHOTONICS 2024:e202400138. [PMID: 38952169 DOI: 10.1002/jbio.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Neurological disorders such as Parkinson's disease (PD) often adversely affect the vascular system, leading to alterations in blood flow patterns. Functional near-infrared spectroscopy (fNIRS) is used to monitor hemodynamic changes via signal measurement. This study investigated the potential of using resting-state fNIRS data through a convolutional neural network (CNN) to evaluate PD with orthostatic hypotension. The CNN demonstrated significant efficacy in analyzing fNIRS data, and it outperformed the other machine learning methods. The results indicate that judicious input data selection can enhance accuracy by over 85%, while including the correlation matrix as an input further improves the accuracy to more than 90%. This study underscores the promising role of CNN-based fNIRS data analysis in the diagnosis and management of the PD. This approach enhances diagnostic accuracy, particularly in resting-state conditions, and can reduce the discomfort and risks associated with current diagnostic methods, such as the head-up tilt test.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Global Health Technology Research Center, Korea University, Seoul, Republic of Korea
| | | | - Shin-Young Kang
- Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Zephaniah Phillips
- Global Health Technology Research Center, Korea University, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Jo Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Beop-Min Kim
- Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Zinos A, Wagner JC, Beardsley SA, Chen WL, Conant L, Malloy M, Heffernan J, Quirk B, Prost R, Maheshwari M, Sugar J, Whelan HT. Spatial correspondence of cortical activity measured with whole head fNIRS and fMRI: Toward clinical use within subject. Neuroimage 2024; 290:120569. [PMID: 38461959 DOI: 10.1016/j.neuroimage.2024.120569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.
Collapse
Affiliation(s)
- Anthony Zinos
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie C Wagner
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Wei-Liang Chen
- Center for Neuroscience Research, Children's National Medical Center, George Washington University, Washington DC, USA
| | - Lisa Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marsha Malloy
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Children's Wisconsin, Milwaukee, WI, USA
| | - Joseph Heffernan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brendan Quirk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Prost
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mohit Maheshwari
- Department of Radiology, Children's Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Sugar
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harry T Whelan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Qin Y, Li B, Wang W, Shi X, Peng C, Lu Y. Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism. Neuroscience 2024; 542:59-68. [PMID: 38369007 DOI: 10.1016/j.neuroscience.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Brain Computer Interface (BCI) is a highly promising human-computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial-temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development.
Collapse
Affiliation(s)
- Yuxin Qin
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Baojiang Li
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Wenlong Wang
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Xingbin Shi
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Cheng Peng
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| | - Yifan Lu
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China
| |
Collapse
|
11
|
Zhang Y, Li J. Identification of individuals using functional near-infrared spectroscopy based on a one-dimensional convolutional neural network. JOURNAL OF BIOPHOTONICS 2024; 17:e202300453. [PMID: 38282446 DOI: 10.1002/jbio.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
In recent years, the application of functional near-infrared spectroscopy (fNIRS) and deep learning techniques has emerged as a promising method for personal identification. In this study, we innovatively utilized a deep learning framework and fNIRS data for personal identification. The framework is a one-dimensional convolutional neural network (Conv1D) trained on resting-state fNIRS signals collected from the frontal cortex of adults. In data preprocessing, we employed a sliding window-based data augmentation technique and high-pass filter, which could result in the highest identification accuracy through multiple experiments. Based on a data set consisting of 56 adult participants, the identification accuracy of 90.36% is achieved for training data with a window size of approximately 4.62 s; with the increase in training data window size, the identification accuracy can reach (97.65 ± 2.35)%. Our results suggest that deep learning is valuable for fNIRS-based personal identification, with potential applications in security, biometrics, and healthcare.
Collapse
Affiliation(s)
- Yichen Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Jun Li
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Shin JH, Kang MJ, Lee SA. Wearable functional near-infrared spectroscopy for measuring dissociable activation dynamics of prefrontal cortex subregions during working memory. Hum Brain Mapp 2024; 45:e26619. [PMID: 38339822 PMCID: PMC10858338 DOI: 10.1002/hbm.26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The prefrontal cortex (PFC) has been extensively studied in relation to various cognitive abilities, including executive function, attention, and memory. Nevertheless, there is a gap in our scientific knowledge regarding the functionally dissociable neural dynamics across the PFC during a cognitive task and their individual differences in performance. Here, we explored this possibility using a delayed match-to-sample (DMTS) working memory (WM) task using NIRSIT, a high-density, wireless, wearable functional near-infrared spectroscopy (fNIRS) system. First, upon presentation of the sample stimulus, we observed an immediate signal increase in the ventral (orbitofrontal) region of the anterior PFC, followed by activity in the dorsolateral PFC. After the DMTS test stimulus appeared, the orbitofrontal cortex activated once again, while the rest of the PFC showed overall disengagement. Individuals with higher accuracy showed earlier and sustained activation of the PFC across the trial. Furthermore, higher network efficiency and functional connectivity in the PFC were correlated with individual WM performance. Our study sheds new light on the dynamics of PFC subregional activity during a cognitive task and its potential applicability in explaining individual differences in experimental, educational, or clinical populations. PRACTITIONER POINTS: Wearable functional near-infrared spectroscopy (fNIRS) captured dissociable temporal dynamics across prefrontal subregions during a delayed match-to-sample task. Anterior regions of the orbitofrontal cortex (OFC) activated first during the delay period, followed by the dorsolateral prefrontal cortex (PFC). PFC disengaged overall after the delay, but the OFC reactivated to the test stimulus. Earlier and sustained activation of PFC was associated with better accuracy. Functional connectivity and network efficiency also varied with task performance.
Collapse
Affiliation(s)
- Jung Han Shin
- Program of Brain and Cognitive EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
- Department of Brain and Cognitive SciencesSeoul National UniversitySeoulSouth Korea
| | - Min Jun Kang
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive SciencesSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
13
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Leadley G, Austin T, Bale G. Review of measurements and imaging of cytochrome-c-oxidase in humans using near-infrared spectroscopy: an update. BIOMEDICAL OPTICS EXPRESS 2024; 15:162-184. [PMID: 38223181 PMCID: PMC10783912 DOI: 10.1364/boe.501915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
15
|
Zhou X, Xia Y, Uchitel J, Collins-Jones L, Yang S, Loureiro R, Cooper RJ, Zhao H. Review of recent advances in frequency-domain near-infrared spectroscopy technologies [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:3234-3258. [PMID: 37497520 PMCID: PMC10368025 DOI: 10.1364/boe.484044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Over the past several decades, near-infrared spectroscopy (NIRS) has become a popular research and clinical tool for non-invasively measuring the oxygenation of biological tissues, with particular emphasis on applications to the human brain. In most cases, NIRS studies are performed using continuous-wave NIRS (CW-NIRS), which can only provide information on relative changes in chromophore concentrations, such as oxygenated and deoxygenated hemoglobin, as well as estimates of tissue oxygen saturation. Another type of NIRS known as frequency-domain NIRS (FD-NIRS) has significant advantages: it can directly measure optical pathlength and thus quantify the scattering and absorption coefficients of sampled tissues and provide direct measurements of absolute chromophore concentrations. This review describes the current status of FD-NIRS technologies, their performance, their advantages, and their limitations as compared to other NIRS methods. Significant landmarks of technological progress include the development of both benchtop and portable/wearable FD-NIRS technologies, sensitive front-end photonic components, and high-frequency phase measurements. Clinical applications of FD-NIRS technologies are discussed to provide context on current applications and needed areas of improvement. The review concludes by providing a roadmap toward the next generation of fully wearable, low-cost FD-NIRS systems.
Collapse
Affiliation(s)
- Xinkai Zhou
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
| | - Yunjia Xia
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Julie Uchitel
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Liam Collins-Jones
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Shufan Yang
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- School of Computing, Engineering & Build Environment, Edinburgh Napier University, Edinburgh, UK
| | - Rui Loureiro
- Aspire CREATe, Department of Orthopaedics & Musculoskeletal Science, UCL, London, HA7 4LP, UK
| | - Robert J. Cooper
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| | - Hubin Zhao
- HUB of Intelligent Neuro-engineering (HUBIN), Aspire CREATe, IOMS, Division of Surgery and Interventional Science, University College London (UCL), London, HA7 4LP, UK
- DOT-HUB, Department of Medical Physics & Biomedical Engineering, UCL, London, WC1E 6BT, UK
| |
Collapse
|
16
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
17
|
Huo C, Xu G, Xie H, Zhao H, Zhang X, Li W, Zhang S, Huo J, Li H, Sun A, Li Z. Effect of High-Frequency rTMS Combined with Bilateral Arm Training on Brain Functional Network in Patients with Chronic Stroke: An fNIRS study. Brain Res 2023; 1809:148357. [PMID: 37011721 DOI: 10.1016/j.brainres.2023.148357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Neurological evidence for the combinational intervention coupling rTMS with motor training for stroke rehabilitation remains limited. This study aimed to investigate the effects of rTMS combined with bilateral arm training (BAT) on the brain functional reorganization in patients with chronic stroke via functional near-infrared spectroscopy (fNIRS). METHODS Fifteen stroke patients and fifteen age-matched healthy participants were enrolled and underwent single BAT session (s-BAT) and BAT immediately after 5-Hz rTMS over the ipsilesional M1 (rTMS-BAT), measured cerebral haemodynamics by fNIRS. Functional connectivity (FC), the clustering coefficient (Ccoef), and local efficiency (Eloc) were applied to evaluate the functional response to the training paradigms. RESULTS The differences in FC responses to the two training paradigms were more pronounced in stroke patients than in healthy controls. In the resting state, stroke patients exhibited significantly lower FC than controls in both hemispheres. rTMS-BAT induced no significant difference in FC between groups. Compared to the resting state, rTMS-BAT induced significant decreases in Ccoef and Eloc of the contralesional M1 and significant increases in Eloc of the ipsilesional M1 in stroke patients. Additionally, these above two network metrics of the ipsilesional motor area were significantly positively correlated with the motor function of stroke patients. CONCLUSIONS These results suggest that the rTMS-BAT paradigm had additional effects on task-dependent brain functional reorganization. The engagement of the ipsilesional motor area in the functional network was associated with the motor impairment severity of stroke patients. fNIRS-based assessments may provide information about the neural mechanisms underlying combination interventions for stroke rehabilitation.
Collapse
|
18
|
Huo C, Xu G, Sun A, Xie H, Hu X, Li W, Li Z, Fan Y. Cortical response induced by task-oriented training of the upper limb in subacute stroke patients as assessed by functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200228. [PMID: 36222197 DOI: 10.1002/jbio.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Despite the popularity of task-oriented training for stroke, the cortical reorganization associated with this type of therapy remains to be fully elucidated due to the lack of dynamic assessment tools. A good tolerance for motion artifacts makes functional near-infrared spectroscopy (fNIRS) suitable for investigating task-induced cortical responses in stroke patients. Here, patients were randomly assigned to receive task oriented (n = 25) or cyclic rotary training (n = 25) with simultaneous cortical activation and effective connectivity network analysis between prefrontal and motor cortices (PFC/MC). Compared with cyclic rotary training, task-oriented training induced significantly increased activation in both hemispheres and enhanced influence of PFC on MC. In addition, significantly decreased activation lateralization and increased betweenness centrality of the contralesional MC suggested widespread involvement of the contralesional hemisphere during task-oriented training. This study verifies the feasibility of fNIRS combined with motor paradigms for assessing neural responses associated with stroke rehabilitation in real time.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Aiping Sun
- Department of Neurological Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hui Xie
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Wenhao Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
19
|
Bonilauri A, Sangiuliano Intra F, Baglio F, Baselli G. Impact of Anatomical Variability on Sensitivity Profile in fNIRS-MRI Integration. SENSORS (BASEL, SWITZERLAND) 2023; 23:2089. [PMID: 36850685 PMCID: PMC9962997 DOI: 10.3390/s23042089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is an important non-invasive technique used to monitor cortical activity. However, a varying sensitivity of surface channels vs. cortical structures may suggest integrating the fNIRS with the subject-specific anatomy (SSA) obtained from routine MRI. Actual processing tools permit the computation of the SSA forward problem (i.e., cortex to channel sensitivity) and next, a regularized solution of the inverse problem to map the fNIRS signals onto the cortex. The focus of this study is on the analysis of the forward problem to quantify the effect of inter-subject variability. Thirteen young adults (six males, seven females, age 29.3 ± 4.3) underwent both an MRI scan and a motor grasping task with a continuous wave fNIRS system of 102 measurement channels with optodes placed according to a 10/5 system. The fNIRS sensitivity profile was estimated using Monte Carlo simulations on each SSA and on three major atlases (i.e., Colin27, ICBM152 and FSAverage) for comparison. In each SSA, the average sensitivity curves were obtained by aligning the 102 channels and segmenting them by depth quartiles. The first quartile (depth < 11.8 (0.7) mm, median (IQR)) covered 0.391 (0.087)% of the total sensitivity profile, while the second one (depth < 13.6 (0.7) mm) covered 0.292 (0.009)%, hence indicating that about 70% of the signal was from the gyri. The sensitivity bell-shape was broad in the source-detector direction (20.953 (5.379) mm FWHM, first depth quartile) and steeper in the transversal one (6.082 (2.086) mm). The sensitivity of channels vs. different cortical areas based on SSA were analyzed finding high dispersions among subjects and large differences with atlas-based evaluations. Moreover, the inverse cortical mapping for the grasping task showed differences between SSA and atlas based solutions. In conclusion, integration with MRI SSA can significantly improve fNIRS interpretation.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | | | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
20
|
Pu L, Liu T, Tang WC, Song C, Jin M, Ren L, Li T, Liang Z. Greater prefrontal activation during sitting toe tapping predicts severer freezing of gait in Parkinson's disease: an fNIRS study. Cereb Cortex 2023; 33:959-968. [PMID: 35348637 DOI: 10.1093/cercor/bhac114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Previous studies have revealed that, compared with Parkinson's disease (PD) patients without freezing of gait (FoG), the ones with FoG showed greater prefrontal activation while doing lower-limb movements involving standing, walking and turning, which require both locomotor and balance control. However, the relation between FoG and pure locomotor control as well as its underlying mechanism remain unclear. METHODS A total of 56 PD subjects were recruited and allocated to PD-FoG and PD-noFoG subgroups, and 34 age-matched heathy adults were included as heathy control (HC). Functional near-infrared spectroscopy was used to measure their prefrontal activation in a sitting lower-limb movement task, wherein subjects were asked to sit and tap their right toes as big and as fast as possible. RESULTS Result of one-way ANOVA (Group: PD-FoG vs. PD-noFoG vs. HC) revealed greater activation in the right prefrontal cortex in the PD-FoG group than in the other 2 groups. Linear mixed-effects model showed consistent result. Furthermore, the right prefrontal activation positively correlated with the severity of FoG symptoms in PD-FoG patients. CONCLUSION These findings suggested that PD patients with FoG require additional cognitive resources to compensate their damaged automaticity in locomotor control, which is more pronounced in severe FoG patients than milder ones.
Collapse
Affiliation(s)
- Lanlan Pu
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Tao Liu
- School of Health, Fujian Medical University, Xuefubei Road, Fuzhou 350122, Fujian, China.,School of Management, Shanghai University, Shangda Road, Shanghai 200444, China.,School of Management, Zhejiang University, Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine 92697, CA, USA
| | - Chunli Song
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Mingyan Jin
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, Liaoning, China
| | - Lu Ren
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Tao Li
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Zhanhua Liang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| |
Collapse
|
21
|
EEG in Neurorehabilitation: A Bibliometric Analysis and Content Review. Neurol Int 2022; 14:1046-1061. [PMID: 36548189 PMCID: PMC9782188 DOI: 10.3390/neurolint14040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND There is increasing interest in the role of EEG in neurorehabilitation. We primarily aimed to identify the knowledge base through highly influential studies. Our secondary aims were to imprint the relevant thematic hotspots, research trends, and social networks within the scientific community. METHODS We performed an electronic search in Scopus, looking for studies reporting on rehabilitation in patients with neurological disabilities. We used the most influential papers to outline the knowledge base and carried out a word co-occurrence analysis to identify the research hotspots. We also used depicted collaboration networks between universities, authors, and countries after analyzing the cocitations. The results were presented in summary tables, plots, and maps. Finally, a content review based on the top-20 most cited articles completed our study. RESULTS Our current bibliometric study was based on 874 records from 420 sources. There was vivid research interest in EEG use for neurorehabilitation, with an annual growth rate as high as 14.3%. The most influential paper was the study titled "Brain-computer interfaces, a review" by L.F. Nicolas-Alfonso and J. Gomez-Gill, with 997 citations, followed by "Brain-computer interfaces in neurological rehabilitation" by J. Daly and J.R. Wolpaw (708 citations). The US, Italy, and Germany were among the most productive countries. The research hotspots shifted with time from the use of functional magnetic imaging to EEG-based brain-machine interface, motor imagery, and deep learning. CONCLUSIONS EEG constitutes the most significant input in brain-computer interfaces (BCIs) and can be successfully used in the neurorehabilitation of patients with stroke symptoms, amyotrophic lateral sclerosis, and traumatic brain and spinal injuries. EEG-based BCI facilitates the training, communication, and control of wheelchair and exoskeletons. However, research is limited to specific scientific groups from developed countries. Evidence is expected to change with the broader availability of BCI and improvement in EEG-filtering algorithms.
Collapse
|
22
|
Bonilauri A, Sangiuliano Intra F, Rossetto F, Borgnis F, Baselli G, Baglio F. Whole-Head Functional Near-Infrared Spectroscopy as an Ecological Monitoring Tool for Assessing Cortical Activity in Parkinson's Disease Patients at Different Stages. Int J Mol Sci 2022; 23:14897. [PMID: 36499223 PMCID: PMC9736501 DOI: 10.3390/ijms232314897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly employed as an ecological neuroimaging technique in assessing age-related chronic neurological disorders, such as Parkinson's disease (PD), mainly providing a cross-sectional characterization of clinical phenotypes in ecological settings. Current fNIRS studies in PD have investigated the effects of motor and non-motor impairment on cortical activity during gait and postural stability tasks, but no study has employed fNIRS as an ecological neuroimaging tool to assess PD at different stages. Therefore, in this work, we sought to investigate the cortical activity of PD patients during a motor grasping task and its relationship with both the staging of the pathology and its clinical variables. This study considered 39 PD patients (age 69.0 ± 7.64, 38 right-handed), subdivided into two groups at different stages by the Hoehn and Yahr (HY) scale: early PD (ePD; N = 13, HY = [1; 1.5]) and moderate PD (mPD; N = 26, HY = [2; 2.5; 3]). We employed a whole-head fNIRS system with 102 measurement channels to monitor brain activity. Group-level activation maps and region of interest (ROI) analysis were computed for ePD, mPD, and ePD vs. mPD contrasts. A ROI-based correlation analysis was also performed with respect to contrasted subject-level fNIRS data, focusing on age, a Cognitive Reserve Index questionnaire (CRIQ), disease duration, the Unified Parkinson's Disease Rating Scale (UPDRS), and performances in the Stroop Color and Word (SCW) test. We observed group differences in age, disease duration, and the UPDRS, while no significant differences were found for CRIQ or SCW scores. Group-level activation maps revealed that the ePD group presented higher activation in motor and occipital areas than the mPD group, while the inverse trend was found in frontal areas. Significant correlations with CRIQ, disease duration, the UPDRS, and the SCW were mostly found in non-motor areas. The results are in line with current fNIRS and functional and anatomical MRI scientific literature suggesting that non-motor areas-primarily the prefrontal cortex area-provide a compensation mechanism for PD motor impairment. fNIRS may serve as a viable support for the longitudinal assessment of therapeutic and rehabilitation procedures, and define new prodromal, low-cost, and ecological biomarkers of disease progression.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
- Faculty of Education, Free University of Bolzano-Bozen, 39042 Brixen, Italy
| | - Federica Rossetto
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Francesca Borgnis
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy
| |
Collapse
|
23
|
Perrey S. Evaluating brain functioning with NIRS in sports: Cerebral oxygenation and cortical activation are two sides of the same coin. FRONTIERS IN NEUROERGONOMICS 2022; 3:1022924. [PMID: 38235450 PMCID: PMC10790938 DOI: 10.3389/fnrgo.2022.1022924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2024]
Affiliation(s)
- Stéphane Perrey
- EuroMov Digital Heath in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
24
|
Daniel PM, Schälte G, Grözinger M. Cerebral oxygen saturation in the prefrontal cortex during electroconvulsive therapy and its relation with the postictal reorientation time. J Psychiatr Res 2022; 155:10-16. [PMID: 35969960 DOI: 10.1016/j.jpsychires.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 10/31/2022]
Abstract
The therapeutic effect of Electroconvulsive Therapy (ECT) has been attributed to generalised seizure. Although patients are well oxygenated prior to and during treatment, critics have associated ECT with brain tissue hypoxemia. In this study, the regional oxygen saturation (rSO2) was measured continuously during ECT in the prefrontal cortex (PFC) of both hemispheres using 2-channel Near Infrared Spectroscopy (NIRS). Additionally, the postictal reorientation time (PRT) was determined and related to the rSO2 course. We evaluated 72 ECT treatments in 22 adult patients who were treated for a therapy-resistant depressive syndrome. The therapy was performed according to our standard clinical procedures deploying right unilateral (RUL) and left anterior versus right temporal (LART) electrode placements. According to our results, the rSO2 courses showed an increase during hyperventilation, a sharp drop immediately after the stimulus, and a long recovery period with values far exceeding the baseline. In 55,6% of treatments the rSO2 course stayed above the baseline. In the others, the drop fell below it for an average of 12.6 s. According to a cardio surgical standard no signs of hypoxemia occurred during ECT treatments. The rSO2 drop at seizure onset was the only parameter of the oxygen course related to the PRT in the multivariate analysis and might therefore be a characteristic feature of the seizure. It could reflect its physiological intensity and thereby be involved in the mechanism of action of ECT. NIRS seems to be an interesting non-invasive tool for monitoring and studying ECT.
Collapse
Affiliation(s)
- Pascal Michael Daniel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Gereon Schälte
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
25
|
Eastmond C, Subedi A, De S, Intes X. Deep learning in fNIRS: a review. NEUROPHOTONICS 2022; 9:041411. [PMID: 35874933 PMCID: PMC9301871 DOI: 10.1117/1.nph.9.4.041411] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023]
Abstract
Significance: Optical neuroimaging has become a well-established clinical and research tool to monitor cortical activations in the human brain. It is notable that outcomes of functional near-infrared spectroscopy (fNIRS) studies depend heavily on the data processing pipeline and classification model employed. Recently, deep learning (DL) methodologies have demonstrated fast and accurate performances in data processing and classification tasks across many biomedical fields. Aim: We aim to review the emerging DL applications in fNIRS studies. Approach: We first introduce some of the commonly used DL techniques. Then, the review summarizes current DL work in some of the most active areas of this field, including brain-computer interface, neuro-impairment diagnosis, and neuroscience discovery. Results: Of the 63 papers considered in this review, 32 report a comparative study of DL techniques to traditional machine learning techniques where 26 have been shown outperforming the latter in terms of the classification accuracy. In addition, eight studies also utilize DL to reduce the amount of preprocessing typically done with fNIRS data or increase the amount of data via data augmentation. Conclusions: The application of DL techniques to fNIRS studies has shown to mitigate many of the hurdles present in fNIRS studies such as lengthy data preprocessing or small sample sizes while achieving comparable or improved classification accuracy.
Collapse
Affiliation(s)
- Condell Eastmond
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Aseem Subedi
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Suvranu De
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic, Department of Biomedical Engineering, Troy, New York, United States
| |
Collapse
|
26
|
Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion. Int J Mol Sci 2022; 23:ijms231810318. [PMID: 36142225 PMCID: PMC9499323 DOI: 10.3390/ijms231810318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (μa) at 830 nm, and reduced scattering coefficient (μs’) at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and μa at both 690 and 830 nm were found on day 3; and increases in μs’ at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.
Collapse
|
27
|
Ma H, Zhai Y, Xu Z, Fan S, Wu X, Xu J, Wu S, Ma C. Increased cerebral cortex activation in stroke patients during electrical stimulation of cerebellar fastigial nucleus with functional near-infrared spectroscopy. Front Neurosci 2022; 16:895237. [PMID: 36061594 PMCID: PMC9433974 DOI: 10.3389/fnins.2022.895237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Electrical stimulation of the cerebellar fastigial nucleus (FNS) has been shown to protect animals against cerebral ischemic injury. However, the changes in cortical activation as a response to FNS have not been illustrated in humans. Objective This study aims to detect functional connectivity changes in the brain of stroke patients, and investigate the cortical activation caused by FNS through measuring the oxygenated hemoglobin concentration (HBO) in the cerebral cortex of stroke patients and healthy controls (HCs). Methods This study recruited 20 patients with stroke and 20 HCs with all the following factors matched: age, gender and BMI. The experiment session was made up of the pre-task baseline, FNS task period, and post-task baseline. FNS task period contains 5 blocks, each block encompassing the resting state (30 s) and the FNS state (30 s). HBO signals were acquired by functional near-infrared spectroscopy (fNIRS) from the Prefrontal Cortex (PFC), the Motor Cortex (MC) and the Occipital Cortex (OC) throughout the experiment. The Pearson correlation coefficient was used to calculate the resting-state functional connectivity strength between the two groups, and the general linear model (GLM) was used to calculate the activation of 39 fNIRS channels during FNS in stroke patients and HCs, respectively. Results The coupling strength of stroke patients were significantly decreased in the following regions: right MC and left MC (t = 4.65, p = 0.0007), right MC and left OC (t = 2.93, p = 0.04), left MC and left OC (t = 2.81, p = 0.04). In stroke patients, the changes in cerebral oxygenated hemoglobin (ΔHBO) among 12 channels (CH) in the bilateral PFC and bilateral MC regions were significantly increased during the FNS state (FDR corrected p < 0.05) compared with the resting state. In HCs, only 1 channel was increased (FDR corrected p < 0.05) in the left PFC during FNS. Conclusion By using the FNS and fNIRS techniques, the characteristics of functional connectivity were found to decrease in stroke patients. It was also noticed that FNS activates the PFC and MC regions. These findings may help to guide functional rehabilitation in stroke patients.
Collapse
|
28
|
Mainard N, Tsiakaka O, Li S, Denoulet J, Messaoudene K, Vialle R, Feruglio S. Intraoperative Optical Monitoring of Spinal Cord Hemodynamics Using Multiwavelength Imaging System. SENSORS (BASEL, SWITZERLAND) 2022; 22:3840. [PMID: 35632249 PMCID: PMC9146887 DOI: 10.3390/s22103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022]
Abstract
The spinal cord is a major structure of the central nervous system allowing, among other things, the transmission of afferent sensory and efferent motor information. During spinal surgery, such as scoliosis correction, this structure can be damaged, resulting in major neurological damage to the patient. To date, there is no direct way to monitor the oxygenation of the spinal cord intraoperatively to reflect its vitality. This is essential information that would allow surgeons to adapt their procedure in case of ischemic suffering of the spinal cord. We report the development of a specific device to monitor the functional status of biological tissues with high resolution. The device, operating with multiple wavelengths, uses Near-InfraRed Spectroscopy (NIRS) in combination with other additional sensors, including ElectroNeuroGraphy (ENG). In this paper, we focused primarily on aspects of the PhotoPlethysmoGram (PPG), emanating from four different light sources to show in real time and record biological signals from the spinal cord in transmission and reflection modes. This multispectral system was successfully tested in in vivo experiments on the spinal cord of a pig for specific medical applications.
Collapse
Affiliation(s)
- Nicolas Mainard
- Department of Pediatric Surgery, Jeanne-de-Flandre Hospital, CHU Lille, Avenue Eugène-Avinée, 59000 Lille, France
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Olivier Tsiakaka
- CERVO, Biomedical Microsystems Laboratory, Université Laval, Quebec, QC G1V 0A6, Canada;
| | - Songlin Li
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Julien Denoulet
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Karim Messaoudene
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| | - Raphael Vialle
- Clinical Research Group “RIC” Robotics and Surgical Innovations, GRC-33 Sorbonne University, 26 Avenue du Dr. Arnold Netter, 75012 Paris, France;
| | - Sylvain Feruglio
- Laboratoire D’Informatique de Paris 6 (LIP6), CNRS UMR7606, Sorbonne Université, 4 Place Jussieu, CEDEX 05, 75252 Paris, France; (S.L.); (J.D.); (K.M.); (S.F.)
| |
Collapse
|
29
|
Llana T, Fernandez-Baizan C, Mendez-Lopez M, Fidalgo C, Mendez M. Functional near-infrared spectroscopy in the neuropsychological assessment of spatial memory: A systematic review. Acta Psychol (Amst) 2022; 224:103525. [PMID: 35123299 DOI: 10.1016/j.actpsy.2022.103525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical imaging technique that employs near-infrared light to measure cortical brain oxygenation. The use of fNIRS has increased exponentially in recent years. Spatial memory is defined as the ability to learn and use spatial information. This neuropsychological process is constantly used in our daily lives and can be measured by fNIRS but no research has reviewed whether this technique can be useful in the neuropsychological assessment of spatial memory. This study aimed to review empirical work on the use of fNIRS in the neuropsychological assessment of human spatial memory. We used four databases: PubMed, PsycINFO, Scopus and Web of Science, and a total of 18 articles were found to be eligible. Most of the articles assessed spatial or visuospatial working memory with a predominance in computer-based tasks, used fNIRS equipment of 16 channels and mainly measured the prefrontal cortex (PFC). The studies analysed found linear or quadratic relationships between working memory load and PFC activity, greater activation of PFC activity and worse behavioural results in healthy older people in comparison with healthy adults, and hyperactivation of PFC as a form of compensation in clinical samples. We conclude that fNIRS is compatible with the standard neuropsychological assessment of spatial memory, making it possible to complement behavioural results with data of cortical functional activity.
Collapse
Affiliation(s)
- Tania Llana
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain
| | - Cristina Fernandez-Baizan
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain
| | - Camino Fidalgo
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Aragón, Spain; IIS Aragón, San Juan Bosco, 13, 50009 Zaragoza, Aragón, Spain
| | - Marta Mendez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
30
|
Zhao F, Levoni P, Frabasile L, Qi H, Lacerenza M, Lanka P, Torricelli A, Pifferi A, Cubeddu R, Spinelli L. Reproducibility of identical solid phantoms. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:074713. [PMID: 35112513 PMCID: PMC8809200 DOI: 10.1117/1.jbo.27.7.074713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Tissue-like solid phantoms with identical optical properties, known within tolerant uncertainty, are of crucial importance in diffuse optics for instrumentation assessment, interlaboratory comparison studies, industrial standards, and multicentric clinical trials. AIM The reproducibility in fabrication of homogeneous solid phantoms is focused based on spectra measurements by instrument comparisons grounded on the time-resolved diffuse optics. APPROACH Epoxy-resin and silicone phantoms are considered as matrices and both employ three different instruments for time-resolved diffuse spectroscopy within the spectral range of 540 to 1100 nm. In particular, we fabricated two batches of five phantoms each in epoxy resin and silicone. Then, we evaluated the intra- and interbatch variability with respect to the instrument precision, by considering the coefficient of variation (CV) of absorption and reduced scattering coefficients. RESULTS We observed a similar precision for the three instruments, within 2% for repeated measurements on the same phantom. For epoxy-resin phantoms, the intra- and the interbatch variability reached the instrument precision limit, demonstrating a very good phantom reproducibility. For the silicone phantoms, we observed larger values for intra- and interbatch variability. In particular, at worst, for reduced scattering coefficient interbatch CV was about 5%. CONCLUSIONS Results suggest that the fabrication of solid phantoms, especially considering epoxy-resin matrix, is highly reproducible, even if they come from different batch fabrications and are measured using different instruments.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Harbin Institute of Technology, School of Energy Science and Engineering, Harbin, China
| | - Pietro Levoni
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Hong Qi
- Harbin Institute of Technology, School of Energy Science and Engineering, Harbin, China
| | | | - Pranav Lanka
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Instituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Instituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Rinaldo Cubeddu
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Lorenzo Spinelli
- Instituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| |
Collapse
|
31
|
Ruesch A, McKnight JC, Fahlman A, Shinn-Cunningham BG, Kainerstorfer JM. Near-Infrared Spectroscopy as a Tool for Marine Mammal Research and Care. Front Physiol 2022; 12:816701. [PMID: 35111080 PMCID: PMC8801602 DOI: 10.3389/fphys.2021.816701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Developments in wearable human medical and sports health trackers has offered new solutions to challenges encountered by eco-physiologists attempting to measure physiological attributes in freely moving animals. Near-infrared spectroscopy (NIRS) is one such solution that has potential as a powerful physio-logging tool to assess physiology in freely moving animals. NIRS is a non-invasive optics-based technology, that uses non-ionizing radiation to illuminate biological tissue and measures changes in oxygenated and deoxygenated hemoglobin concentrations inside tissues such as skin, muscle, and the brain. The overall footprint of the device is small enough to be deployed in wearable physio-logging devices. We show that changes in hemoglobin concentration can be recorded from bottlenose dolphins and gray seals with signal quality comparable to that achieved in human recordings. We further discuss functionality, benefits, and limitations of NIRS as a standard tool for animal care and wildlife tracking for the marine mammal research community.
Collapse
Affiliation(s)
- Alexander Ruesch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - J. Chris McKnight
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
- Kolmården Wildlife Park, Kolmården, Sweden
| | - Barbara G. Shinn-Cunningham
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jana M. Kainerstorfer
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Kim M, Lee S, Dan I, Tak S. A deep convolutional neural network for estimating hemodynamic response function with reduction of motion artifacts in fNIRS. J Neural Eng 2022; 19. [PMID: 35038682 DOI: 10.1088/1741-2552/ac4bfc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for monitoring hemoglobin concentration changes in a non-invasive manner. However, subject movements are often significant sources of artifacts. While several methods have been developed for suppressing this confounding noise, the conventional techniques have limitations on optimal selections of model parameters across participants or brain regions. To address this shortcoming, we aim to propose a method based on a deep convolutional neural network (CNN). APPROACH The U-net is employed as a CNN architecture. Specifically, large-scale training and testing data are generated by combining variants of hemodynamic response function (HRF) with experimental measurements of motion noises. The neural network is then trained to reconstruct hemodynamic response coupled to neuronal activity with a reduction of motion artifacts. MAIN RESULTS Using extensive analysis, we show that the proposed method estimates the task-related HRF more accurately than the existing methods of wavelet decomposition and autoregressive models. Specifically, the mean squared error and variance of HRF estimates, based on the CNN, are the smallest among all methods considered in this study. These results are more prominent when the semi-simulated data contains variants of shapes and amplitudes of HRF. SIGNIFICANCE The proposed CNN method allows for accurately estimating amplitude and shape of HRF with significant reduction of motion artifacts. This method may have a great potential for monitoring HRF changes in real-life settings that involve excessive motion artifacts.
Collapse
Affiliation(s)
- MinWoo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, Yangsan, 50612, Korea (the Republic of)
| | - Seonjin Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongwon-gu, Ochang-eup, Cheongju, 28119, Korea (the Republic of)
| | - Ippeita Dan
- Faculty of Science and Engineering, Chuo University, Tama Campus 742-1 Higashinakano Hachioji-shi, Tokyo, 192-0393, JAPAN
| | - Sungho Tak
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongwon-gu, Ochang-eup, Cheongju, 28119, Korea (the Republic of)
| |
Collapse
|
33
|
Yongyue Z, Yang S, Li Z, Rongjin Z, Shumin W. Functional Brain Imaging Based on the Neurovascular Unit for Evaluating Neural Networks after Strok. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2022. [DOI: 10.37015/audt.2022.210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Tsow F, Kumar A, Hosseini SMH, Bowden A. A low-cost, wearable, do-it-yourself functional near-infrared spectroscopy (DIY-fNIRS) headband. HARDWAREX 2021; 10:e00204. [PMID: 34734152 PMCID: PMC8562714 DOI: 10.1016/j.ohx.2021.e00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 05/27/2023]
Abstract
Neuromonitoring in naturalistic environments is of increasing interest for a variety of research fields including psychology, economics, and productivity. Among functional neuromonitoring modalities, functional near-infrared spectroscopy (fNIRS) is well regarded for its potential for miniaturization, good spatial and temporal resolutions, and resilience to motion artifacts. Historically, the large size and high cost of fNIRS systems have precluded widespread adoption of the technology. In this article, we describe the first open source, fully integrated wireless fNIRS headband system with a single LED-pair source and four detectors. With ease of operation and comfort in mind, the system is encased in a soft, lightweight cloth and silicone enclosure. Accompanying computer and smartphone data collection software have also been provided, and the hardware has been validated using classic fNIRS tasks. This wear-and-go design can easily be scaled to accommodate a larger number of fNIRS channels and opens the door to easily collecting fNIRS data during routine activities in naturalistic conditions.
Collapse
Affiliation(s)
- Francis Tsow
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Anupam Kumar
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - SM Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Audrey Bowden
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
35
|
Sato JR, Junior CEB, de Araújo ELM, de Souza Rodrigues J, Andrade SM. A guide for the use of fNIRS in microcephaly associated to congenital Zika virus infection. Sci Rep 2021; 11:19270. [PMID: 34588470 PMCID: PMC8481532 DOI: 10.1038/s41598-021-97450-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Congenital Zika Syndrome (CZS) is characterized by changes in cranial morphology associated with heterogeneous neurological manifestations and cognitive and behavioral impairments. In this syndrome, longitudinal neuroimaging could help clinicians to predict developmental trajectories of children and tailor treatment plans accordingly. However, regularly acquiring magnetic resonance imaging (MRI) has several shortcomings besides cost, particularly those associated with childrens' clinical presentation as sensitivity to environmental stimuli. The indirect monitoring of local neural activity by non-invasive functional near-infrared spectroscopy (fNIRS) technique can be a useful alternative for longitudinally accessing the brain function in children with CZS. In order to provide a common framework for advancing longitudinal neuroimaging assessment, we propose a principled guideline for fNIRS acquisition and analyses in children with neurodevelopmental disorders. Based on our experience on collecting fNIRS data in children with CZS we emphasize the methodological challenges, such as clinical characteristics of the sample, desensitization, movement artifacts and environment control, as well as suggestions for tackling such challenges. Finally, metrics based on fNIRS can be associated with established clinical metrics, thereby opening possibilities for exploring this tool as a long-term predictor when assessing the effectiveness of treatments aimed at children with severe neurodevelopmental disorders.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Claudinei Eduardo Biazoli Junior
- Center of Mathematics, Computing, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | - Elidianne Layanne Medeiros de Araújo
- Laboratory of Aging and Neuroscience Studies, Department of Physical Therapy, Health Sciences Center, Federal University of Paraíba, João Pessoa, PA, Brazil
| | | | - Suellen Marinho Andrade
- Laboratory of Aging and Neuroscience Studies, Department of Physical Therapy, Health Sciences Center, Federal University of Paraíba, João Pessoa, PA, Brazil.
| |
Collapse
|
36
|
Comparison of Whole-Head Functional Near-Infrared Spectroscopy With Functional Magnetic Resonance Imaging and Potential Application in Pediatric Neurology. Pediatr Neurol 2021; 122:68-75. [PMID: 34301451 DOI: 10.1016/j.pediatrneurol.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment. OBJECTIVE Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions. METHODS Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets. RESULTS The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity. CONCLUSION Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.
Collapse
|
37
|
Huo C, Xu G, Li W, Xie H, Zhang T, Liu Y, Li Z. A review on functional near-infrared spectroscopy and application in stroke rehabilitation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Koyanagi M, Yamada M, Higashi T, Mitsunaga W, Moriuchi T, Tsujihata M. The Usefulness of Functional Near-Infrared Spectroscopy for the Assessment of Post-Stroke Depression. Front Hum Neurosci 2021; 15:680847. [PMID: 34239431 PMCID: PMC8258375 DOI: 10.3389/fnhum.2021.680847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Post-stroke depression (PSD) is the most common mood disorder following stroke and is also the main factor that limits the recovery and rehabilitation of patients with stroke. The prevalence of PSD is ~30%. Since there is no gold standard for the diagnosis and evaluation of PSD, it is important to raise awareness of PSD and to establish methods for its evaluation, early diagnosis, and treatment. In the field of psychiatry, functional near-infrared spectroscopy (fNIRS) has been used as a diagnostic tool for the measurement of oxygenated hemoglobin (oxy-Hb). This study aimed to assess whether fNIRS could be applied in the diagnosis and evaluation of PSD. Methods: We recruited 45 patients with stroke, who were admitted to Nagasaki Kita Hospital between May 2015 and April 2019. The 17-item Hamilton Rating Scale for Depression (HAMD17), which is considered to be a useful screening and evaluation tool for PSD, was used for the assessment of patients after stroke; moreover, oxy-Hb was measured in the pre-frontal cortex. The subjects were divided into two groups: the depressed group (n = 13) and the non-depressed group (n = 32). We evaluated the correlation between the oxy-Hb integral values and HAMD17 scores. Results: We investigated the relationship between the oxy-Hb integral values and HAMD17 total scores, and found a negative correlation between them (ρ = −0.331, P < 0.005). There was a significant difference in the oxy-Hb integral values during the activation task period between the depressed and non-depressed groups (3.16 ± 2.7 and 1.71 ± 2.4, respectively; P = 0.040). The results indicated that the patients of the depressed group showed lower oxy-Hb integral values and lower activation in the frontal lobe in comparison with the patients of the non-depressed group. Conclusion: The present study highlights that the measurement of oxy-Hb by using fNIRS is a useful methodology for the diagnosis of PSD in patients after stroke.
Collapse
Affiliation(s)
- Masahiko Koyanagi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nagasaki Kita Hospital, Nagasaki, Japan
| | - Mai Yamada
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nagasaki Kita Hospital, Nagasaki, Japan
| | - Toshio Higashi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wataru Mitsunaga
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takefumi Moriuchi
- Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
39
|
Zhang F, Cheong D, Khan AF, Chen Y, Ding L, Yuan H. Correcting physiological noise in whole-head functional near-infrared spectroscopy. J Neurosci Methods 2021; 360:109262. [PMID: 34146592 DOI: 10.1016/j.jneumeth.2021.109262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) has been increasingly employed to monitor cerebral hemodynamics in normal and diseased conditions. However, fNIRS suffers from its susceptibility to superficial activity and systemic physiological noise. The objective of the study was to establish a noise reduction method for fNIRS in a whole-head montage. NEW METHOD We have developed an automated denoising method for whole-head fNIRS. A high-density montage consisting of 109 long-separation channels and 8 short-separation channels was used for recording. Auxiliary sensors were also used to measure motion, respiration and pulse simultaneously. The method incorporates principal component analysis and general linear model to identify and remove a globally uniform superficial component. Our denoising method was evaluated in experimental data acquired from a group of healthy human subjects during a visually cued motor task and further compared with a minimal preprocessing method and three established denoising methods in the literature. Quantitative metrics including contrast-to-noise ratio, within-subject standard deviation and adjusted coefficient of determination were evaluated. RESULTS After denoising, whole-head topography of fNIRS revealed focal activations concurrently in the primary motor and visual areas. COMPARISON WITH EXISTING METHODS Analysis showed that our method improves upon the four established preprocessing methods in the literature. CONCLUSIONS An automatic, effective and robust preprocessing pipeline was established for removing physiological noise in whole-head fNIRS recordings. Our method can enable fNIRS as a reliable tool in monitoring large-scale, network-level brain activities for clinical uses.
Collapse
Affiliation(s)
- Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Daniel Cheong
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Ali F Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yuxuan Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
40
|
Grässler B, Herold F, Dordevic M, Gujar TA, Darius S, Böckelmann I, Müller NG, Hökelmann A. Multimodal measurement approach to identify individuals with mild cognitive impairment: study protocol for a cross-sectional trial. BMJ Open 2021; 11:e046879. [PMID: 34035103 PMCID: PMC8154928 DOI: 10.1136/bmjopen-2020-046879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The diagnosis of mild cognitive impairment (MCI), that is, the transitory phase between normal age-related cognitive decline and dementia, remains a challenging task. It was observed that a multimodal approach (simultaneous analysis of several complementary modalities) can improve the classification accuracy. We will combine three noninvasive measurement modalities: functional near-infrared spectroscopy (fNIRS), electroencephalography and heart rate variability via ECG. Our aim is to explore neurophysiological correlates of cognitive performance and whether our multimodal approach can aid in early identification of individuals with MCI. METHODS AND ANALYSIS This study will be a cross-sectional with patients with MCI and healthy controls (HC). The neurophysiological signals will be measured during rest and while performing cognitive tasks: (1) Stroop, (2) N-back and (3) verbal fluency test (VFT). Main aims of statistical analysis are to (1) determine the differences in neurophysiological responses of HC and MCI, (2) investigate relationships between measures of cognitive performance and neurophysiological responses and (3) investigate whether the classification accuracy can be improved by using our multimodal approach. To meet these targets, statistical analysis will include machine learning approaches.This is, to the best of our knowledge, the first study that applies simultaneously these three modalities in MCI and HC. We hypothesise that the multimodal approach improves the classification accuracy between HC and MCI as compared with a unimodal approach. If our hypothesis is verified, this study paves the way for additional research on multimodal approaches for dementia research and fosters the exploration of new biomarkers for an early detection of nonphysiological age-related cognitive decline. ETHICS AND DISSEMINATION Ethics approval was obtained from the local Ethics Committee (reference: 83/19). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly. TRIAL REGISTRATION NUMBER ClinicalTrials.gov, NCT04427436, registered on 10 June 2020, https://clinicaltrials.gov/ct2/show/study/NCT04427436.
Collapse
Affiliation(s)
- Bernhard Grässler
- Institute of Sport Science, Faculty of Humanities, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Fabian Herold
- Department of Neuroprotection, German Centre for Neurodegenerative Diseases Site Magdeburg, Magdeburg, Germany
| | - Milos Dordevic
- Department of Neuroprotection, German Centre for Neurodegenerative Diseases Site Magdeburg, Magdeburg, Germany
| | - Tariq Ali Gujar
- Institute of Sport Science, Faculty of Humanities, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Darius
- Occupational Medicine, Otto von Guericke University Medical Faculty, Magdeburg, Germany
| | - Irina Böckelmann
- Occupational Medicine, Otto von Guericke University Medical Faculty, Magdeburg, Germany
| | - Notger G Müller
- Department of Neuroprotection, German Centre for Neurodegenerative Diseases Site Magdeburg, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University Medical Faculty, Magdeburg, Germany
| | - Anita Hökelmann
- Institute of Sport Science, Faculty of Humanities, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
41
|
Effects of urethane and isoflurane on the sensory evoked response and local blood flow in the early postnatal rat somatosensory cortex. Sci Rep 2021; 11:9567. [PMID: 33953244 PMCID: PMC8099888 DOI: 10.1038/s41598-021-88461-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Functional studies in the central nervous system are often conducted using anesthesia. While the dose-dependent effects of anesthesia on neuronal activity have been extensively characterized in adults, little is known about the effects of anesthesia on cortical activity and cerebral blood flow in the immature central nervous system. Substitution of electrophysiological recordings with the less-invasive technique of optical intrinsic signal imaging (OIS) in vivo allowed simultaneous recordings of sensory-evoked functional response and local blood flow changes in the neonatal rat barrel cortex. Using OIS we characterize the effects of two widely used anesthetics—urethane and isoflurane. We found that both anesthetics suppressed the sensory-evoked optical intrinsic signal in a dose-dependent manner. Dependence of the cortical response suppression matched the exponential decay model. At experimental levels of anesthesia, urethane affected the evoked cortical response less than isoflurane, which is in agreement with the results of electrophysiological recordings demonstrated by other authors. Changes in oxygenation and local blood flow also showed negative correlation with both anesthetics. The high similarity in immature patterns of activity recorded in different regions of the developing cortex suggested similar principles of development regardless of the cortical region. Therefore the indicated results should be taken into account during functional explorations in the entire developing cortex. Our results also point to urethane as the anesthetic of choice in non-survival experimental recordings in the developing brain as it produces less prominent impairment of cortical neuronal activity in neonatal animals.
Collapse
|
42
|
A randomized sham-controlled trial on the effect of continuous positive airway pressure treatment on gait control in severe obstructive sleep apnea patients. Sci Rep 2021; 11:9329. [PMID: 33927278 PMCID: PMC8085224 DOI: 10.1038/s41598-021-88642-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/09/2021] [Indexed: 11/21/2022] Open
Abstract
To determine the effect of continuous positive airway pressure (CPAP), the gold standard treatment for obstructive sleep apnea syndrome (OSAS), on gait control in severe OSAS patients. We conducted a randomized, double-blind, parallel-group, sham-controlled monocentric study in Grenoble Alpes University Hospital, France. Gait parameters were recorded under single and dual-task conditions using a visuo-verbal cognitive task (Stroop test), before and after the 8-week intervention period. Stride-time variability, a marker of gait control, was the primary study endpoint. Changes in the determinants of gait control were the main secondary outcomes. ClinicalTrials.gov Identifier: (NCT02345694). 24 patients [median (Q1; Q3)]: age: 59.5 (46.3; 66.8) years, 87.5% male, body mass index: 28.2 (24.7; 29.8) kg. m−2, apnea–hypopnea index: 51.6 (35.0; 61.4) events/h were randomized to be treated by effective CPAP (n = 12) or by sham-CPAP (n = 12). A complete case analysis was performed, using a mixed linear regression model. CPAP elicited no significant improvement in stride-time variability compared to sham-CPAP. No difference was found regarding the determinants of gait control. This study is the first RCT to investigate the effects of CPAP on gait control. Eight weeks of CPAP treatment did not improve gait control in severe non-obese OSAS patients. These results substantiate the complex OSAS-neurocognitive function relationship.
Collapse
|
43
|
Figeys M, Zeeman M, Kim ES. Effects of Transcranial Direct Current Stimulation (tDCS) on Cognitive Performance and Cerebral Oxygen Hemodynamics: A Systematic Review. Front Hum Neurosci 2021; 15:623315. [PMID: 33897392 PMCID: PMC8058208 DOI: 10.3389/fnhum.2021.623315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background: There is increasing evidence to support the efficacy of transcranial direct current stimulation (tDCS) applications in cognitive augmentation and rehabilitation. Neuromodulation achieved with tDCS may further regulate regional cerebral perfusion affiliated through the neurovascular unit; however, components of cerebral perfusion decrease across aging. A novel neuroimaging approach, functional near-infrared spectroscopy (fNIRS), can aid in quantifying these regional perfusional changes. To date, the interaction of the effects of tDCS on cognitive performance across the lifespan and obtained fNIRS hemodynamic responses remain unknown. Objective: This review aims to examine the effects of tDCS on cognitive performance and fNIRS hemodynamic responses within the context of cognitive aging. Methods: Six databases were searched for studies. Quality appraisal and data extraction were conducted by two independent reviewers. Meta-analysis was carried out to determine overall and subgroup effect sizes. Results: Eight studies met inclusion criteria. The overall effect size demonstrates that tDCS can alter cognitive performance and fNIRS signals, with aging being a potential intermediary in tDCS efficacy. Conclusion: From the studies included, the effects of tDCS on cognitive performance and fNIRS metrics are most prominent in young healthy adults and appear to become less robust with increasing age. Given the small number of studies included in this review further investigation is recommended.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael Zeeman
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Esther Sung Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Guerraty M, Bhargava A, Senarathna J, Mendelson AA, Pathak AP. Advances in translational imaging of the microcirculation. Microcirculation 2021; 28:e12683. [PMID: 33524206 PMCID: PMC8647298 DOI: 10.1111/micc.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The past few decades have seen an explosion in the development and use of methods for imaging the human microcirculation during health and disease. The confluence of innovative imaging technologies, affordable computing power, and economies of scale have ushered in a new era of "translational" imaging that permit us to peer into blood vessels of various organs in the human body. These imaging techniques include near-infrared spectroscopy (NIRS), positron emission tomography (PET), and magnetic resonance imaging (MRI) that are sensitive to microvascular-derived signals, as well as computed tomography (CT), optical imaging, and ultrasound (US) imaging that are capable of directly acquiring images at, or close to microvascular spatial resolution. Collectively, these imaging modalities enable us to characterize the morphological and functional changes in a tissue's microcirculation that are known to accompany the initiation and progression of numerous pathologies. Although there have been significant advances for imaging the microcirculation in preclinical models, this review focuses on developments in the assessment of the microcirculation in patients with optical imaging, NIRS, PET, US, MRI, and CT, to name a few. The goal of this review is to serve as a springboard for exploring the burgeoning role of translational imaging technologies for interrogating the structural and functional status of the microcirculation in humans, and highlight the breadth of current clinical applications. Making the human microcirculation "visible" in vivo to clinicians and researchers alike will facilitate bench-to-bedside discoveries and enhance the diagnosis and management of disease.
Collapse
Affiliation(s)
- Marie Guerraty
- Division of Cardiovascular Medicine, Department of
Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asher A. Mendelson
- Department of Medicine, Section of Critical Care, Rady
Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA
- Department of Electrical Engineering, Johns Hopkins
University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Wu ST, Rubianes Silva JAI, Novi SL, de Souza NGSR, Forero EJ, Mesquita RC. Accurate Image-guided (Re)Placement of NIRS Probes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105844. [PMID: 33267972 DOI: 10.1016/j.cmpb.2020.105844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/11/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Functional near-infrared spectroscopy (fNIRS) has become an attractive choice to neuroscience because of its high temporal resolution, ease of use, non-invasiveness, and affordability. With the advent of wearable fNIRS technology, on-the-spot studies of brain function have become viable. However, the lack of within-subject reproducibility is one of the barriers to the full acceptability of fNIRS. To support the validation of the claim that within-subject reproducibility of fNIRS could benefit from accurate anatomical information, we present in this paper a method to develop an image-based system that improves the placement of the sensors on the scalp at interactive rates. METHODS The proposed solution consists of an electromagnetic digitizer and an interactive visualization system that allows monitoring the movements of the digitizer on a real head with respect to the underlying cerebral cortical structures. GPU-based volume raycasting rendering is applied to unveil these structures from the corresponding magnetic resonance imaging volume. Scalp and cortical surface are estimated from the scanned volume to improve depth perception. An alignment algorithm between the real and scanned heads is devised to visually feedback the position of the stylus of the digitizer. Off-screen rendering of the depthmaps of the visible surfaces makes spatial positioning of a 2D interaction pointer possible. RESULTS We evaluated the alignment accuracy using four to eight anatomical landmarks and found seven to be a good compromise between precision and efficiency. Next, we evaluated reproducibility in positioning five arbitrarily chosen points on three volunteers by four operators over five sessions. In every session, seven anatomical landmarks were applied in the alignment of the real and the scanned head. For the same volunteer, one-way analysis of variance (ANOVA) revealed no significant differences within the five points digitized by the same operator over five sessions (α = 0.05). In addition, preliminary study of motor cortex activation by right-hand finger tapping showed the potential of our approach to increase functional fNIRS reproducibility. CONCLUSIONS Results of experiments suggest that the enhancement of the visualization of the location of the probes on the scalp, relative to the underlying cortical structures, improves reproducibility of fNIRS measurements. As further work, we plan to study the fNIRS reproducibility in other cortical regions and in clinical settings using the proposed system.
Collapse
Affiliation(s)
- Shin-Ting Wu
- School of Computer and Electrical Engineering, University of Campinas, Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - José Angel Iván Rubianes Silva
- School of Computer and Electrical Engineering, University of Campinas, Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil
| | - Sergio Luiz Novi
- Institute of Physics, University of Campinas, R. Sérgio Buarque de Holanda 777, Campinas, SP 13083-859, Brazil
| | | | - Edwin Johan Forero
- Institute of Physics, University of Campinas, R. Sérgio Buarque de Holanda 777, Campinas, SP 13083-859, Brazil
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, R. Sérgio Buarque de Holanda 777, Campinas, SP 13083-859, Brazil
| |
Collapse
|
46
|
Facial and neural mechanisms during interactive disclosure of biographical information. Neuroimage 2021; 226:117572. [PMID: 33221448 PMCID: PMC7612862 DOI: 10.1016/j.neuroimage.2020.117572] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023] Open
Abstract
Pairs of participants mutually communicated (or not) biographical information to each other. By combining simultaneous eye-tracking, face-tracking and functional near-infrared spectroscopy, we examined how this mutual sharing of information modulates social signalling and brain activity. When biographical information was disclosed, participants directed more eye gaze to the face of the partner and presented more facial displays. We also found that spontaneous production and observation of facial displays was associated with activity in the left SMG and right dlPFC/IFG, respectively. Moreover, mutual information-sharing increased activity in bilateral TPJ and left dlPFC, as well as cross-brain synchrony between right TPJ and left dlPFC. This suggests that a complex long-range mechanism is recruited during information-sharing. These multimodal findings support the second-person neuroscience hypothesis, which postulates that communicative interactions activate additional neurocognitive mechanisms to those engaged in non-interactive situations. They further advance our understanding of which neurocognitive mechanisms underlie communicative interactions.
Collapse
|
47
|
Soekadar SR, Kohl SH, Mihara M, von Lühmann A. Optical brain imaging and its application to neurofeedback. Neuroimage Clin 2021; 30:102577. [PMID: 33545580 PMCID: PMC7868728 DOI: 10.1016/j.nicl.2021.102577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Besides passive recording of brain electric or magnetic activity, also non-ionizing electromagnetic or optical radiation can be used for real-time brain imaging. Here, changes in the radiation's absorption or scattering allow for continuous in vivo assessment of regional neurometabolic and neurovascular activity. Besides magnetic resonance imaging (MRI), over the last years, also functional near-infrared spectroscopy (fNIRS) was successfully established in real-time metabolic brain imaging. In contrast to MRI, fNIRS is portable and can be applied at bedside or in everyday life environments, e.g., to restore communication and movement. Here we provide a comprehensive overview of the history and state-of-the-art of real-time optical brain imaging with a special emphasis on its clinical use towards neurofeedback and brain-computer interface (BCI) applications. Besides pointing to the most critical challenges in clinical use, also novel approaches that combine real-time optical neuroimaging with other recording modalities (e.g. electro- or magnetoencephalography) are described, and their use in the context of neuroergonomics, neuroenhancement or neuroadaptive systems discussed.
Collapse
Affiliation(s)
- Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Dept. of Psychiatry and Psychotherapy, Neuroscience Research Center, Campus Charité Mitte (CCM), Charité - University Medicine of Berlin, Berlin, Germany.
| | - Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Kurashiki-City, Okayama, Japan
| | - Alexander von Lühmann
- Machine Learning Department, Computer Science, Technische Universität Berlin, Berlin, Germany; Neurophotonics Center, Biomedical Engineering, Boston University, Boston, USA
| |
Collapse
|
48
|
Mahmoudzadeh M, Wallois F, Tir M, Krystkowiak P, Lefranc M. Cortical hemodynamic mapping of subthalamic nucleus deep brain stimulation in Parkinsonian patients, using high-density functional near-infrared spectroscopy. PLoS One 2021; 16:e0245188. [PMID: 33493171 PMCID: PMC7833160 DOI: 10.1371/journal.pone.0245188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/23/2020] [Indexed: 12/02/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for idiopathic Parkinson's disease. Despite recent progress, the mechanisms responsible for the technique's effectiveness have yet to be fully elucidated. The purpose of the present study was to gain new insights into the interactions between STN-DBS and cortical network activity. We therefore combined high-resolution functional near-infrared spectroscopy with low-resolution electroencephalography in seven Parkinsonian patients on STN-DBS, and measured cortical haemodynamic changes at rest and during hand movement in the presence and absence of stimulation (the ON-stim and OFF-stim conditions, respectively) in the off-drug condition. The relative changes in oxyhaemoglobin [HbO], deoxyhaemoglobin [HbR], and total haemoglobin [HbT] levels were analyzed continuously. At rest, the [HbO], [HbR], and [HbT] over the bilateral sensorimotor (SM), premotor (PM) and dorsolateral prefrontal (DLPF) cortices decreased steadily throughout the duration of stimulation, relative to the OFF-stim condition. During hand movement in the OFF-stim condition, [HbO] increased and [HbR] decreased concomitantly over the contralateral SM cortex (as a result of neurovascular coupling), and [HbO], [HbR], and [HbT] increased concomitantly in the dorsolateral prefrontal cortex (DLPFC)-suggesting an increase in blood volume in this brain area. During hand movement with STN-DBS, the increase in [HbO] was over the contralateral SM and PM cortices was significantly lower than in the OFF-stim condition, as was the decrease in [HbO] and [HbT] in the DLPFC. Our results indicate that STN-DBS is associated with a reduction in blood volume over the SM, PM and DLPF cortices, regardless of whether or not the patient is performing a task. This particular effect on cortical networks might explain not only STN-DBS's clinical effectiveness but also some of the associated adverse effects.
Collapse
Affiliation(s)
| | | | - Mélissa Tir
- Neurosurgery Department, CHU Amiens-Picardie, Amiens, France
| | - Pierre Krystkowiak
- Neurology Department, CHU Amiens-Picardie, Amiens, France
- Laboratory of Functional Neurosciences, University of Picardie Jules Verne, Amiens, France
| | - Michel Lefranc
- Neurosurgery Department, CHU Amiens-Picardie, Amiens, France
| |
Collapse
|
49
|
Ren H, Jiang X, Xu K, Chen C, Yuan Y, Dai C, Chen W. A Review of Cerebral Hemodynamics During Sleep Using Near-Infrared Spectroscopy. Front Neurol 2020; 11:524009. [PMID: 33329295 PMCID: PMC7710901 DOI: 10.3389/fneur.2020.524009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Investigating cerebral hemodynamic changes during regular sleep cycles and sleep disorders is fundamental to understanding the nature of physiological and pathological mechanisms in the regulation of cerebral oxygenation during sleep. Although sleep neuroimaging methods have been studied and have been well-reviewed, they have limitations in terms of technique and experimental design. Neurologists are convinced that Near-infrared spectroscopy (NIRS) provides essential information and can be used to assist the assessment of cerebral hemodynamics, and numerous studies regarding sleep have been carried out based on NIRS. Thus, a brief historical overview of the sleep studies using NIRS will be helpful for the biomedical students, academicians, and engineers to better understand NIRS from various perspectives. In this study, the existing literature on sleep studies is reviewed, and an overview of the NIRS applications is synthesized and provided. The paper first reviews the application scenarios, as well as the patterns of fluctuation of NIRS, which includes the investigation in regular sleep and sleep-disordered breathing. Various factors such as different sleep stages, populations, and degrees of severity were considered. Furthermore, the experimental design and signal processing, as well as the regulation mechanisms involved in regular and pathological sleep, are investigated and discussed. The strengths and weaknesses of the existing NIRS applications are addressed and presented, which can direct further NIRS analysis and utilization.
Collapse
Affiliation(s)
- Haoran Ren
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Xinyu Jiang
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ke Xu
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chen Chen
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yafei Yuan
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chenyun Dai
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Wei Chen
- The Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| |
Collapse
|
50
|
Taylor N, Wyres M, Bollard M, Kneafsey R. Use of functional near-infrared spectroscopy to evaluate cognitive change when using healthcare simulation tools. BMJ SIMULATION & TECHNOLOGY ENHANCED LEARNING 2020; 6:360-364. [DOI: 10.1136/bmjstel-2019-000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 11/04/2022]
Abstract
BackgroundThe use of brain imaging techniques in healthcare simulation is relatively rare. However, the use of mobile, wireless technique, such as functional near-infrared spectroscopy (fNIRS), is becoming a useful tool for assessing the unique demands of simulation learning. For this study, this imaging technique was used to evaluate cognitive load during simulation learning events.MethodsThis study took place in relation to six simulation activities, paired for similarity, and evaluated comparative cognitive change between the three task pairs. The three paired tasks were: receiving a (1) face-to-face and (2) video patient handover; observing a simulated scene in (1) two dimensions and (2) 360° field of vision; and on a simulated patient (1) taking a pulse and (2) taking a pulse and respiratory rate simultaneously. The total number of participants was n=12.ResultsIn this study, fNIRS was sensitive to variations in task difficulty in common simulation tools and scenarios, showing an increase in oxygenated haemoglobin concentration and a decrease in deoxygenated haemoglobin concentration, as tasks increased in cognitive load.ConclusionOverall, findings confirmed the usefulness of neurohaemoglobin concentration markers as an evaluation tool of cognitive change in healthcare simulation. Study findings suggested that cognitive load increases in more complex cognitive tasks in simulation learning events. Task performance that increased in complexity therefore affected cognitive markers, with increase in mental effort required.
Collapse
|