1
|
Maximov II, Westlye LT. Comparison of different neurite density metrics with brain asymmetry evaluation. Z Med Phys 2025; 35:177-192. [PMID: 37562999 DOI: 10.1016/j.zemedi.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.
Collapse
Affiliation(s)
- Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jensen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Schilliger Z, Pavan T, Alemán-Gómez Y, Steullet P, Céléreau E, Binz PA, Celen Z, Piguet C, Merglen A, Hagmann P, Do K, Conus P, Jelescu I, Klauser P, Dwir D. Sex-differences in brain multimodal estimates of white matter microstructure during early adolescence: Sex-specific associations with biological factors. Brain Behav Immun 2025; 126:98-110. [PMID: 39921149 DOI: 10.1016/j.bbi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/21/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Adolescence is marked by significant maturation of brain white matter microstructure, with evidence for sex-specific maturational trajectory. Most studies have examined conventional diffusion tensor imaging (DTI) metrics, which lack specificity to the underlying tissue modifications. In this study, we characterized sex-differences in white matter microstructure cross-sectionally using DTI, advanced diffusion spectrum imaging (DSI) and diffusion kurtosis imaging (DKI), as well as the white matter tract integrity-Watson (WMTI-W) biophysical model. We also aimed to explore the effect of age and biological systems undergoing sex-specific changes during adolescence, namely pubertal hormones, hypothalamic-pituitary-adrenal (HPA)-axis function, and glutathione-redox cycle homeostasis. The results indicate widespread sex-differences in all the white matter derived metrics, suggesting more advanced maturation in females compared to males as well as distinct tissue modifications underlying white matter maturation between males and females during this narrow developmental period. Additionally, the three biological factors explored appeared to be associated with indices of white matter maturation in females specifically, emphasizing this period as critical in female white matter development and sensitivity to environmental factors.
Collapse
Affiliation(s)
- Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tommaso Pavan
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Edgar Céléreau
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Alain Binz
- Division of General Pediatrics, Geneva University Hospitals & Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Zeynep Celen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arnaud Merglen
- Service of Clinical Chemistry, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Gondová A, Neumane S, Arichi T, Dubois J. Early Development and Co-Evolution of Microstructural and Functional Brain Connectomes: A Multi-Modal MRI Study in Preterm and Full-Term Infants. Hum Brain Mapp 2025; 46:e70186. [PMID: 40099852 PMCID: PMC11915347 DOI: 10.1002/hbm.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
Functional networks characterized by coherent neural activity across distributed brain regions have been observed to emerge early in neurodevelopment. Synchronized maturation across regions that relate to functional connectivity (FC) could be partially reflected in the developmental changes in underlying microstructure. Nevertheless, covariation of regional microstructural properties, termed "microstructural connectivity" (MC), and its relationship to the emergence of functional specialization during the early neurodevelopmental period remain poorly understood. We investigated the evolution of MC and FC postnatally across a set of cortical and subcortical regions, focusing on 45 preterm infants scanned longitudinally, and compared to 45 matched full-term neonates as part of the developing Human Connectome Project (dHCP) using direct comparisons of grey-matter connectivity strengths as well as network-based analyses. Our findings revealed a global strengthening of both MC and FC with age, with connection-specific variability influenced by the connection maturational stage. Prematurity at term-equivalent age was associated with significant connectivity disruptions, particularly in FC. During the preterm period, direct comparisons of MC and FC strength showed a positive linear relationship, which seemed to weaken with development. On the other hand, overlaps between MC- and FC-derived networks (estimated with Mutual Information) increased with age, suggesting a potential convergence towards a shared underlying network structure that may support the co-evolution of microstructural and functional systems. Our study offers novel insights into the dynamic interplay between microstructural and functional brain development and highlights the potential of MC as a complementary descriptor for characterizing brain network development and alterations due to perinatal insults such as premature birth.
Collapse
Affiliation(s)
- Andrea Gondová
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| | - Sara Neumane
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Tomoki Arichi
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Paediatric Neurosciences, Evelina London Children's HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Jessica Dubois
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| |
Collapse
|
4
|
Mohyee RA, Elliott BL, Pike MR, Smith E, Kring AM, Olson IR, Breen EC, Cohn BA, Cirillo PM, Krigbaum NY, Olino TM, D’Esposito M, Cogan AB, Patwardan BP, Ellman LM. Decreased hippocampal neurite density in late middle-aged adults following prenatal exposure to higher levels of maternal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.01.616156. [PMID: 40196686 PMCID: PMC11974695 DOI: 10.1101/2024.10.01.616156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
In animal models, exposure to heightened maternal inflammation in utero is associated with altered offspring hippocampal development, including reduced dendritic arborization and density. However, the effects of prenatal maternal inflammation (PNMI) on offspring hippocampal microstructure in humans remains unclear. Here, we examined the relationship between exposure to PNMI and neurite density in the hippocampus and its subfields among offspring during late middle age. Participants included 72 mother-offspring dyads from the Child Health and Development Studies (CHDS) cohort. Data for four inflammatory biomarkers (IL-6, IL-8, IL-1 receptor antagonist [IL-1RA], and soluble TNF receptor-II [sTNF-RII]) were available from first and second trimester maternal sera. Neurite density in the offspring hippocampus and its subfields was estimated using microstructural modeling of offsprings' diffusion-weighted Magnetic Resonance Imaging data (mean age of offspring at imaging = 59 years; 51% male). We estimated the relationship between each biomarker and region-of-interest's neurite density. Higher first trimester maternal IL-1RA and IL-6 levels were associated with lower offspring hippocampal neurite density. These relationships were specific to the CA3, CA4, dentate gyrus, and subiculum subfields. In addition, higher second trimester IL-6 was associated with lower subiculum neurite density. Our findings reveal that exposure to heightened prenatal levels of maternal inflammation is linked to altered offspring hippocampal microstructure in late middle age, which could have implications for memory decreases during this period and may be relevant for understanding risk of aging-related cognitive changes.
Collapse
Affiliation(s)
| | | | | | - Emma Smith
- Department of Psychology & Neuroscience, Temple University
| | - Ann M. Kring
- Department of Psychology, University of California, Berkeley
| | | | - Elizabeth C. Breen
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute
| | | | | | | | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley
| | - Ashby B. Cogan
- Department of Psychology, University of California, Berkeley
| | | | | |
Collapse
|
5
|
Coors A, Boenniger MM, Santos MLS, Lohner V, Koch A, Ettinger U, Aziz NA, Breteler MMB. Associations of Plasma Neurofilament Light Levels With Brain Microstructure and Macrostructure and Cognition in the Community-Based Rhineland Study. Neurology 2025; 104:e210278. [PMID: 39977717 DOI: 10.1212/wnl.0000000000210278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/19/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Plasma neurofilament light chain (NfL) level is a sensitive yet aspecific marker of neurodegeneration. Its neuroanatomical and functional correlates in the general population are not fully elucidated. We thus assessed how brain's macrostructures and microstructures and cognitive function are related to plasma NfL levels in cognitively unimpaired adults over a wide age range. METHODS Our analyses were based on cross-sectional data from the Rhineland Study, a community-based prospective cohort study. This study includes people from the age of 30 onwards who live in 2 geographically defined areas in Bonn, Germany, and have sufficient command of the German language. Plasma NfL levels were measured using the Simoa platform and then log-transformed and adjusted for plate position, batch number, and Analyzer (HD-1 or HD-X). Brain imaging data were collected on a 3 Tesla scanner and included volumetric measures, metrics of the diffusion tensor and the neurite orientation dispersion and density imaging model, and white matter hyperintensity load. Memory performance, processing speed, and executive function were assessed using traditional cognitive tasks and an eye movement battery. We used multivariable regression models to assess the relations between brain structure and plasma NfL levels and between plasma NfL levels and cognitive performance. RESULTS The study sample consisted of 5,589 participants aged 30-95 years (mean age 55 ± 13.7 years, 56.1% women) without neurodegenerative diseases. Higher plasma NfL levels were associated with lower isotropic volume fraction (-0.030; 95% CI -0.051 to -0.010; pFDR = 0.011), lower neurite density index (ß = -0.031; 95% CI -0.053 to -0.008; pFDR = 0.014), and higher axial diffusivity (ß = 0.037; 95% CI 0.013-0.062; p = 0.005; pFDR = 0.011). The strongest association was with the orientation dispersion index (ß = -0.063; 95% CI -0.085 to -0.041; pFDR < 0.001). Furthermore, higher plasma NfL levels tended to be associated with a lower processing speed domain score (ß = -0.046; 95% CI -0.084 to -0.009; p = 0.014; pFDR = 0.056) and longer prosaccade latency (ß = 0.039; 95% CI 0.000-0.078; p = 0.049; pFDR = 0.480). DISCUSSION Higher plasma NfL levels mainly reflect worse white matter microstructural integrity, especially lower axonal density, in a relatively healthy, community-based sample. This suggests that plasma NfL levels allow for early detection of subtle differences in brain microstructure.
Collapse
Affiliation(s)
- Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Meta Miriam Boenniger
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department I for Internal Medicine, University of Cologne and University Hospital Cologne, Germany
| | - Marina L S Santos
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Valerie Lohner
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alexandra Koch
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Germany; and
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| |
Collapse
|
6
|
Sandgaard A, Jespersen S. Predicting Mesoscopic Larmor Frequency Shifts in White Matter With Diffusion MRI-A Monte Carlo Study in Axonal Phantoms. NMR IN BIOMEDICINE 2025; 38:e70004. [PMID: 39933490 PMCID: PMC11813543 DOI: 10.1002/nbm.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Magnetic susceptibility MRI offers potential insights into the chemical composition and microstructural organization of tissue. However, estimating magnetic susceptibility in white matter is challenging due to anisotropic subvoxel Larmor frequency shifts caused by axonal microstructure relative to the B0 field orientation. Recent biophysical models have analytically described how axonal microstructure influences the Larmor frequency shifts, relating these shifts to a mesoscopically averaged magnetic field that depends on the axons' fiber orientation distribution function (fODF), typically estimated using diffusion MRI. This study is aimed at validating the use of MRI to estimate mesoscopic magnetic fields and determining whether diffusion MRI can faithfully estimate the orientation dependence of the Larmor frequency shift in realistic axonal microstructure. To achieve this, we developed a framework for performing Monte Carlo simulations of MRI signals in mesoscopically sized white matter axon substrates segmented with electron microscopy. Our simulations demonstrated that with careful experimental design, it is feasible to estimate mesoscopic magnetic fields. Additionally, the fODF estimated by the standard model of diffusion in white matter could predict the orientation dependence of the mesoscopic Larmor frequency shift. We also found that incorporating the intra-axonal axial kurtosis into the standard model could explain a significant amount of signal variance, thereby improving the estimation of the Larmor frequency shift. This factor should not be neglected when fitting the standard model.
Collapse
Affiliation(s)
- Anders Dyhr Sandgaard
- Center of Functionally Integrative Neuroscience, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Physics and AstronomyAarhus UniversityAarhusDenmark
| |
Collapse
|
7
|
Schilling KG, Palombo M, Witt AA, O'Grady KP, Pizzolato M, Landman BA, Smith SA. Characterization of neurite and soma organization in the brain and spinal cord with diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638936. [PMID: 40027805 PMCID: PMC11870568 DOI: 10.1101/2025.02.19.638936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The central nervous system (CNS), comprised of both the brain and spinal cord, and is a complex network of white and gray matter responsible for sensory, motor, and cognitive functions. Advanced diffusion MRI (dMRI) techniques offer a promising mechanism to non-invasively characterize CNS architecture, however, most studies focus on the brain or spinal cord in isolation. Here, we implemented a clinically feasible dMRI protocol on a 3T scanner to simultaneously characterize neurite and soma microstructure of both the brain and spinal cord. The protocol enabled the use of Diffusion Tensor Imaging (DTI), Standard Model Imaging (SMI), and Soma and Neurite Density Imaging (SANDI), representing the first time SMI and SANDI have been evaluated in the cord, and in the cord and brain simultaneously. Our results demonstrate high image quality even at high diffusion weightings, reproducibility of SMI and SANDI derived metrics similar to those of DTI with few exceptions, and biologically feasible contrasts between and within white and gray matter regions. Reproducibility and contrasts were decreased in the cord compared to that of the brain, revealing challenges due to partial volume effects and image preprocessing. This study establishes a harmonized approach for brain and cord microstructural imaging, and the opportunity to study CNS pathologies and biomarkers of structural integrity across the neuroaxis.
Collapse
|
8
|
Hakhu S, Hu LS, Beeman S, Sadleir RJ. Comparison of modelled diffusion-derived electrical conductivities found using magnetic resonance imaging. FRONTIERS IN RADIOLOGY 2025; 5:1492479. [PMID: 39917284 PMCID: PMC11794185 DOI: 10.3389/fradi.2025.1492479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025]
Abstract
Introduction Magnetic resonance-based electrical conductivity imaging offers a promising new contrast mechanism to enhance disease diagnosis. Conductivity tensor imaging (CTI) combines data from MR diffusion microstructure imaging to reconstruct electrodeless low-frequency conductivity images. However, different microstructure imaging methods rely on varying diffusion models and parameters, leading to divergent tissue conductivity estimates. This study investigates the variability in conductivity predictions across different microstructure models and evaluates their alignment with experimental observations. Methods We used publicly available diffusion databases from neurotypical adults to extract microstructure parameters for three diffusion-based brain models: Neurite Orientation Dispersion and Density Imaging (NODDI), Soma and Neurite Density Imaging (SANDI), and Spherical Mean technique (SMT) conductivity predictions were calculated for gray matter (GM) and white matter (WM) tissues using each model. Comparative analyses were performed to assess the range of predicted conductivities and the consistency between bilateral tissue conductivities for each method. Results Significant variability in conductivity estimates was observed across the three models. Each method predicted distinct conductivity values for GM and WM tissues, with notable differences in the range of conductivities observed for specific tissue examples. Despite the variability, many WM and GM tissues exhibited symmetric bilateral conductivities within each microstructure model. SMT yielded conductivity estimates closer to values reported in experimental studies, while none of the methods aligned with spectroscopic models of tissue conductivity. Discussion and conclusion Our findings highlight substantial discrepancies in tissue conductivity estimates generated by different diffusion models, underscoring the challenge of selecting an appropriate model for low-frequency electrical conductivity imaging. SMT demonstrated better alignment with experimental results. However other microstructure models may produce better tissue discrimination.
Collapse
Affiliation(s)
- Sasha Hakhu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Scott Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Rosalind J. Sadleir
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
9
|
Kumar R, Waisberg E, Ong J, Paladugu P, Amiri D, Saintyl J, Yelamanchi J, Nahouraii R, Jagadeesan R, Tavakkoli A. Artificial Intelligence-Based Methodologies for Early Diagnostic Precision and Personalized Therapeutic Strategies in Neuro-Ophthalmic and Neurodegenerative Pathologies. Brain Sci 2024; 14:1266. [PMID: 39766465 PMCID: PMC11674895 DOI: 10.3390/brainsci14121266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Advancements in neuroimaging, particularly diffusion magnetic resonance imaging (MRI) techniques and molecular imaging with positron emission tomography (PET), have significantly enhanced the early detection of biomarkers in neurodegenerative and neuro-ophthalmic disorders. These include Alzheimer's disease, Parkinson's disease, multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. This review highlights the transformative role of advanced diffusion MRI techniques-Neurite Orientation Dispersion and Density Imaging and Diffusion Kurtosis Imaging-in identifying subtle microstructural changes in the brain and visual pathways that precede clinical symptoms. When integrated with artificial intelligence (AI) algorithms, these techniques achieve unprecedented diagnostic precision, facilitating early detection of neurodegeneration and inflammation. Additionally, next-generation PET tracers targeting misfolded proteins, such as tau and alpha-synuclein, along with inflammatory markers, enhance the visualization and quantification of pathological processes in vivo. Deep learning models, including convolutional neural networks and multimodal transformers, further improve diagnostic accuracy by integrating multimodal imaging data and predicting disease progression. Despite challenges such as technical variability, data privacy concerns, and regulatory barriers, the potential of AI-enhanced neuroimaging to revolutionize early diagnosis and personalized treatment in neurodegenerative and neuro-ophthalmic disorders is immense. This review underscores the importance of ongoing efforts to validate, standardize, and implement these technologies to maximize their clinical impact.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA; (R.K.); (J.S.)
| | - Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK;
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St, Ann Arbor, MI 48105, USA
| | - Phani Paladugu
- Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St, Philadelphia, PA 19107, USA;
- Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Dylan Amiri
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33146, USA;
- Mecklenburg Neurology Group, 3541 Randolph Rd #301, Charlotte, NC 28211, USA;
| | - Jeremy Saintyl
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA; (R.K.); (J.S.)
| | - Jahnavi Yelamanchi
- Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA;
| | - Robert Nahouraii
- Mecklenburg Neurology Group, 3541 Randolph Rd #301, Charlotte, NC 28211, USA;
| | - Ram Jagadeesan
- Whiting School of Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA;
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV 89557, USA;
| |
Collapse
|
10
|
Le Grand Q, Tsuchida A, Koch A, Imtiaz MA, Aziz NA, Vigneron C, Zago L, Lathrop M, Dubrac A, Couffinhal T, Crivello F, Matthews PM, Mishra A, Breteler MMB, Tzourio C, Debette S. Diffusion imaging genomics provides novel insight into early mechanisms of cerebral small vessel disease. Mol Psychiatry 2024; 29:3567-3579. [PMID: 38811690 PMCID: PMC11541005 DOI: 10.1038/s41380-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Genetic risk loci for white matter hyperintensities (WMH), the most common MRI-marker of cSVD in older age, were recently shown to be significantly associated with white matter (WM) microstructure on diffusion tensor imaging (signal-based) in young adults. To provide new insights into these early changes in WM microstructure and their relation with cSVD, we sought to explore the genetic underpinnings of cutting-edge tissue-based diffusion imaging markers across the adult lifespan. We conducted a genome-wide association study of neurite orientation dispersion and density imaging (NODDI) markers in young adults (i-Share study: N = 1 758, (mean[range]) 22.1[18-35] years), with follow-up in young middle-aged (Rhineland Study: N = 714, 35.2[30-40] years) and late middle-aged to older individuals (UK Biobank: N = 33 224, 64.3[45-82] years). We identified 21 loci associated with NODDI markers across brain regions in young adults. The most robust association, replicated in both follow-up cohorts, was with Neurite Density Index (NDI) at chr5q14.3, a known WMH locus in VCAN. Two additional loci were replicated in UK Biobank, at chr17q21.2 with NDI, and chr19q13.12 with Orientation Dispersion Index (ODI). Transcriptome-wide association studies showed associations of STAT3 expression in arterial and adipose tissue (chr17q21.2) with NDI, and of several genes at chr19q13.12 with ODI. Genetic susceptibility to larger WMH volume, but not to vascular risk factors, was significantly associated with decreased NDI in young adults, especially in regions known to harbor WMH in older age. Individually, seven of 25 known WMH risk loci were associated with NDI in young adults. In conclusion, we identified multiple novel genetic risk loci associated with NODDI markers, particularly NDI, in early adulthood. These point to possible early-life mechanisms underlying cSVD and to processes involving remyelination, neurodevelopment and neurodegeneration, with a potential for novel approaches to prevention.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ami Tsuchida
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Alexandra Koch
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Chloé Vigneron
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Laure Zago
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, H3A 0G1, Canada
| | - Alexandre Dubrac
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
- Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600, Pessac, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Paul M Matthews
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College, London, UK
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Medical Informatics, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France.
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France.
| |
Collapse
|
11
|
Willis HE, Caron B, Cavanaugh MR, Starling L, Ajina S, Pestilli F, Tamietto M, Huxlin KR, Watkins KE, Bridge H. Rehabilitating homonymous visual field deficits: white matter markers of recovery-stage 2 registered report. Brain Commun 2024; 6:fcae323. [PMID: 39429244 PMCID: PMC11487913 DOI: 10.1093/braincomms/fcae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Damage to the primary visual cortex or its afferent white matter tracts results in loss of vision in the contralateral visual field that can present as homonymous visual field deficits. Evidence suggests that visual training in the blind field can partially reverse blindness at trained locations. However, the efficacy of visual training is highly variable across participants, and the reasons for this are poorly understood. It is likely that variance in residual neural circuitry following the insult may underlie the variation among patients. Many stroke survivors with visual field deficits retain residual visual processing in their blind field despite a lack of awareness. Previous research indicates that intact structural and functional connections between the dorsal lateral geniculate nucleus and the human extrastriate visual motion-processing area hMT+ are necessary for blindsight to occur. We therefore hypothesized that changes in this white matter pathway may underlie improvements resulting from motion discrimination training. Eighteen stroke survivors with long-standing, unilateral, homonymous field defects from retro-geniculate brain lesions completed 6 months of visual training at home. This involved performing daily sessions of a motion discrimination task, at two non-overlapping locations in the blind field, at least 5 days per week. Motion discrimination and integration thresholds, Humphrey perimetry and structural and diffusion-weighted MRI were collected pre- and post-training. Changes in fractional anisotropy (FA) were analysed in visual tracts connecting the ipsilesional dorsal lateral geniculate nucleus and hMT+, and the ipsilesional dorsal lateral geniculate nucleus and primary visual cortex. The (non-visual) tract connecting the ventral posterior lateral nucleus of the thalamus and the primary somatosensory cortex was analysed as a control. Changes in white matter integrity were correlated with improvements in motion discrimination and Humphrey perimetry. We found that the magnitude of behavioural improvement was not directly related to changes in FA in the pathway between the dorsal lateral geniculate nucleus and hMT+ or dorsal lateral geniculate nucleus and primary visual cortex. Baseline FA in either tract also failed to predict improvements in training. However, an exploratory analysis showed a significant increase in FA in the distal part of the tract connecting the dorsal lateral geniculate nucleus and hMT+, suggesting that 6 months of visual training in chronic, retro-geniculate strokes may enhance white matter microstructural integrity of residual geniculo-extrastriate pathways.
Collapse
Affiliation(s)
- Hanna E Willis
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Bradley Caron
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712-1043, USA
| | - Matthew R Cavanaugh
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
| | - Lucy Starling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Sara Ajina
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, UCL, Queen Square, London WC1N 3BG, UK
| | - Franco Pestilli
- Department of Psychology, Department of Neuroscience, Center for Perceptual Systems, Center for Learning and Memory, The University of Texas at Austin, Austin, TX, USA
| | - Marco Tamietto
- Department of Medical and Clinical Psychology, Tilburg University, Warandelaan 2, 5037 AB Tilburg, Netherlands
- Department of Psychology, University of Torino, Torino 10123, Italy
| | - Krystel R Huxlin
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
12
|
Chung S, Bacon T, Rath JF, Alivar A, Coelho S, Amorapanth P, Fieremans E, Novikov DS, Flanagan SR, Bacon JH, Lui YW. Callosal Interhemispheric Communication in Mild Traumatic Brain Injury: A Mediation Analysis on WM Microstructure Effects. AJNR Am J Neuroradiol 2024; 45:788-794. [PMID: 38637026 PMCID: PMC11288603 DOI: 10.3174/ajnr.a8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND PURPOSE Because the corpus callosum connects the left and right hemispheres and a variety of WM bundles across the brain in complex ways, damage to the neighboring WM microstructure may specifically disrupt interhemispheric communication through the corpus callosum following mild traumatic brain injury. Here we use a mediation framework to investigate how callosal interhemispheric communication is affected by WM microstructure in mild traumatic brain injury. MATERIALS AND METHODS Multishell diffusion MR imaging was performed on 23 patients with mild traumatic brain injury within 1 month of injury and 17 healthy controls, deriving 11 diffusion metrics, including DTI, diffusional kurtosis imaging, and compartment-specific standard model parameters. Interhemispheric processing speed was assessed using the interhemispheric speed of processing task (IHSPT) by measuring the latency between word presentation to the 2 hemivisual fields and oral word articulation. Mediation analysis was performed to assess the indirect effect of neighboring WM microstructures on the relationship between the corpus callosum and IHSPT performance. In addition, we conducted a univariate correlation analysis to investigate the direct association between callosal microstructures and IHSPT performance as well as a multivariate regression analysis to jointly evaluate both callosal and neighboring WM microstructures in association with IHSPT scores for each group. RESULTS Several significant mediators in the relationships between callosal microstructure and IHSPT performance were found in healthy controls. However, patients with mild traumatic brain injury appeared to lose such normal associations when microstructural changes occurred compared with healthy controls. CONCLUSIONS This study investigates the effects of neighboring WM microstructure on callosal interhemispheric communication in healthy controls and patients with mild traumatic brain injury, highlighting that neighboring noncallosal WM microstructures are involved in callosal interhemispheric communication and information transfer. Further longitudinal studies may provide insight into the temporal dynamics of interhemispheric recovery following mild traumatic brain injury.
Collapse
Affiliation(s)
- Sohae Chung
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Tamar Bacon
- Department of Neurology (T.B., J.H.B.), NY University Grossman School of Medicine, New York, New York
| | - Joseph F Rath
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Alaleh Alivar
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Santiago Coelho
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Prin Amorapanth
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Els Fieremans
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Dmitry S Novikov
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Steven R Flanagan
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Joshua H Bacon
- Department of Neurology (T.B., J.H.B.), NY University Grossman School of Medicine, New York, New York
| | - Yvonne W Lui
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| |
Collapse
|
13
|
Dhiman S, Hickey RE, Thorn KE, Moss HG, McKinnon ET, Adisetiyo V, Ades-Aron B, Jensen JH, Benitez A. PyDesigner v1.0: A Pythonic Implementation of the DESIGNER Pipeline for Diffusion Magnetic Resonance Imaging. J Vis Exp 2024:10.3791/66397. [PMID: 38829110 PMCID: PMC11378319 DOI: 10.3791/66397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
PyDesigner is a Python-based software package based on the original Diffusion parameter EStImation with Gibbs and NoisE Removal (DESIGNER) pipeline (Dv1) for dMRI preprocessing and tensor estimation. This software is openly provided for non-commercial research and may not be used for clinical care. PyDesigner combines tools from FSL and MRtrix3 to perform denoising, Gibbs ringing correction, eddy current motion correction, brain masking, image smoothing, and Rician bias correction to optimize the estimation of multiple diffusion measures. It can be used across platforms on Windows, Mac, and Linux to accurately derive commonly used metrics from DKI, DTI, WMTI, FBI, and FBWM datasets as well as tractography ODFs and .fib files. It is also file-format agnostic, accepting inputs in the form of .nii, .nii.gz, .mif, and dicom format. User-friendly and easy to install, this software also outputs quality control metrics illustrating signal-to-noise ratio graphs, outlier voxels, and head motion to evaluate data integrity. Additionally, this dMRI processing pipeline supports multiple echo-time dataset processing and features pipeline customization, allowing the user to specify which processes are employed and which outputs are produced to meet a variety of user needs.
Collapse
Affiliation(s)
| | - Reyna E Hickey
- Department of Neurology, Medical University of South Carolina
| | - Kathryn E Thorn
- Department of Neurology, Medical University of South Carolina
| | - Hunter G Moss
- Department of Neuroscience, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina
| | - Emilie T McKinnon
- Department of Neuroscience, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina
| | - Vitria Adisetiyo
- Department of Neuroscience, Medical University of South Carolina
| | - Benjamin Ades-Aron
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina; Department of Radiology and Radiological Science, Medical University of South Carolina;
| | - Andreana Benitez
- Department of Neurology, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina;
| |
Collapse
|
14
|
Shen Y, Zhao X, Wang K, Sun Y, Zhang X, Wang C, Yang Z, Feng Z, Zhang X. Exploring White Matter Abnormalities in Young Children with Autism Spectrum Disorder: Integrating Multi-shell Diffusion Data and Machine Learning Analysis. Acad Radiol 2024; 31:2074-2084. [PMID: 38185571 DOI: 10.1016/j.acra.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
RATIONALE AND OBJECTIVES This study employed tract-based spatial statistics (TBSS) to investigate abnormalities in the white matter microstructure among children with autism spectrum disorder (ASD). Additionally, an eXtreme Gradient Boosting (XGBoost) model was developed to effectively classify individuals with ASD and typical developing children (TDC). METHODS AND MATERIALS Multi-shell diffusion weighted images were acquired from 62 children with ASD and 44 TDC. Using the Pydesigner procedure, diffusion tensor (DT), diffusion kurtosis (DK), and white matter tract integrity (WMTI) metrics were computed. Subsequently, TBSS analysis was applied to discern differences in these diffusion parameters between ASD and TDC groups. The XGBoost model was then trained using metrics showing significant differences, and Shapley Additive explanations (SHAP) values were computed to assess the feature importance in the model's predictions. RESULTS TBSS analysis revealed a significant reduction in axonal diffusivity (AD) in the left posterior corona radiata and the right superior corona radiata. Among the DK indicators, mean kurtosis, axial kurtosis, and kurtosis fractional anisotropy were notably increased in children with ASD, with no significant difference in radial kurtosis. WMTI metrics such as axonal water fraction, axonal diffusivity of the extra-axonal space (EAS_AD), tortuosity of the extra-axonal space (EAS_TORT), and diffusivity of intra-axonal space (IAS_Da) were significantly increased, primarily in the corpus callosum and fornix. Notably, there was no significant difference in radial diffusivity of the extra-axial space (EAS_RD). The XGBoost model demonstrated excellent classification ability, and the SHAP analysis identified EAS_TORT as the feature with the highest importance in the model's predictions. CONCLUSION This study utilized TBSS analyses with multi-shell diffusion data to examine white matter abnormalities in pediatric autism. Additionally, the developed XGBoost model showed outstanding performance in classifying ASD and TDC. The ranking of SHAP values based on the XGBoost model underscored the significance of features in influencing model predictions.
Collapse
Affiliation(s)
- Yanyong Shen
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, 100000, PR China (K.W.)
| | - Yongbing Sun
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, 450000, China (Y.S.)
| | - Xiaoxue Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Changhao Wang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Zhexuan Yang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Zhanqi Feng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.).
| |
Collapse
|
15
|
Hu B, Younes L, Bu X, Liu CF, Ratnanather JT, Paulsen J, Georgiou-Karistianis N, Miller MI, Ross C, Faria AV. Mixed longitudinal and cross-sectional analyses of deep gray matter and white matter using diffusion weighted images in premanifest and manifest Huntington's disease. Neuroimage Clin 2023; 39:103493. [PMID: 37582307 PMCID: PMC10448214 DOI: 10.1016/j.nicl.2023.103493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/29/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Changes in the brain of patients with Huntington's disease (HD) begin years before clinical onset, so it remains critical to identify biomarkers to track these early changes. Metrics derived from tensor modeling of diffusion-weighted MRIs (DTI), that indicate the microscopic brain structure, can add important information to regional volumetric measurements. This study uses two large-scale longitudinal, multicenter datasets, PREDICT-HD and IMAGE-HD, to trace changes in DTI of HD participants with a broad range of CAP scores (a product of CAG repeat expansion and age), including those with pre-manifest disease (i.e., prior to clinical onset). Utilizing a fully automated data-driven approach to study the whole brain divided in regions of interest, we traced changes in DTI metrics (diffusivity and fractional anisotropy) versus CAP scores, using sigmoidal and linear regression models. We identified points of inflection in the sigmoidal regression using change-point analysis. The deep gray matter showed more evident and earlier changes in DTI metrics over CAP scores, compared to the deep white matter. In the deep white matter, these changes were more evident and occurred earlier in superior and posterior areas, compared to anterior and inferior areas. The curves of mean diffusivity vs. age of HD participants within a fixed CAP score were different from those of controls, indicating that the disease has an additional effect to age on the microscopic brain structure. These results show the regional and temporal vulnerability of the white matter and deep gray matter in HD, with potential implications for experimental therapeutics.
Collapse
Affiliation(s)
- Beini Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Xuan Bu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chin-Fu Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Paulsen
- Department of Psychiatry, Neurology, Psychological Brain Sciences, University of Iowa, USA; Department Neurology, University of Wisconsin-Madison, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute of Brain and Mental Health, Monash University, Australia
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher Ross
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Alsameen MH, Gong Z, Qian W, Kiely M, Triebswetter C, Bergeron CM, Cortina LE, Faulkner ME, Laporte JP, Bouhrara M. C-NODDI: a constrained NODDI model for axonal density and orientation determinations in cerebral white matter. Front Neurol 2023; 14:1205426. [PMID: 37602266 PMCID: PMC10435293 DOI: 10.3389/fneur.2023.1205426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose Neurite orientation dispersion and density imaging (NODDI) provides measures of neurite density and dispersion through computation of the neurite density index (NDI) and the orientation dispersion index (ODI). However, NODDI overestimates the cerebrospinal fluid water fraction in white matter (WM) and provides physiologically unrealistic high NDI values. Furthermore, derived NDI values are echo-time (TE)-dependent. In this work, we propose a modification of NODDI, named constrained NODDI (C-NODDI), for NDI and ODI mapping in WM. Methods Using NODDI and C-NODDI, we investigated age-related alterations in WM in a cohort of 58 cognitively unimpaired adults. Further, NDI values derived using NODDI or C-NODDI were correlated with the neurofilament light chain (NfL) concentration levels, a plasma biomarker of axonal degeneration. Finally, we investigated the TE dependence of NODDI or C-NODDI derived NDI and ODI. Results ODI derived values using both approaches were virtually identical, exhibiting constant trends with age. Further, our results indicated a quadratic relationship between NDI and age suggesting that axonal maturation continues until middle age followed by a decrease. This quadratic association was notably significant in several WM regions using C-NODDI, while limited to a few regions using NODDI. Further, C-NODDI-NDI values exhibited a stronger correlation with NfL concentration levels as compared to NODDI-NDI, with lower NDI values corresponding to higher levels of NfL. Finally, we confirmed the previous finding that NDI estimation using NODDI was dependent on TE, while NDI derived values using C-NODDI exhibited lower sensitivity to TE in WM. Conclusion C-NODDI provides a complementary method to NODDI for determination of NDI in white matter.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
17
|
Mark IT, Wren-Jarvis J, Xiao J, Cai LT, Parekh S, Bourla I, Lazerwitz MC, Rowe MA, Marco EJ, Mukherjee P. Neurite orientation dispersion and density imaging of white matter microstructure in sensory processing dysfunction with versus without comorbid ADHD. Front Neurosci 2023; 17:1136424. [PMID: 37492404 PMCID: PMC10363610 DOI: 10.3389/fnins.2023.1136424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Sensory Processing Dysfunction (SPD) is common yet understudied, affecting up to one in six children with 40% experiencing co-occurring challenges with attention. The neural architecture of SPD with Attention Deficit and Hyperactivity Disorder (ADHD) (SPD+ADHD) versus SPD without ADHD (SPD-ADHD) has yet to be explored in diffusion tensor imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI) has yet to be examined. Methods The present study computed DTI and NODDI biophysical model parameter maps of one hundred children with SPD. Global, regional and voxel-level white matter tract measures were analyzed and compared between SPD+ADHD and SPD-ADHD groups. Results SPD+ADHD children had global WM Fractional Anisotropy (FA) and Neurite Density Index (NDI) that trended lower than SPD-ADHD children, primarily in boys only. Data-driven voxelwise and WM tract-based analysis revealed statistically significant decreases of NDI in boys with SPD+ADHD compared to those with SPD-ADHD, primarily in projection tracts of the internal capsule and commissural fibers of the splenium of the corpus callosum. Conclusion We conclude that WM microstructure is more delayed/disrupted in boys with SPD+ADHD compared to SPD-ADHD, with NODDI showing a larger effect than DTI. This may represent the combined WM pathology of SPD and ADHD, or it may result from a greater degree of SPD WM pathology causing the development of ADHD.
Collapse
Affiliation(s)
- Ian T. Mark
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
| | - Jamie Wren-Jarvis
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
| | - Jaclyn Xiao
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
| | - Lanya T. Cai
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
| | - Shalin Parekh
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
| | - Ioanna Bourla
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
| | - Maia C. Lazerwitz
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
- Cortica Healthcare, San Rafael, CA, United States
| | - Mikaela A. Rowe
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
- Cortica Healthcare, San Rafael, CA, United States
| | | | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Sun J, Xu S, Tian D, Duan Y, Xu X, Lv S, Cao G, Shi FD, Chard D, Barkhof F, Zhuo Z, Zhang X, Liu Y. Periventricular gradients in NAWM abnormalities differ in MS, NMOSD and MOGAD. Mult Scler Relat Disord 2023; 75:104732. [PMID: 37167759 DOI: 10.1016/j.msard.2023.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Jun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Siyao Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Decai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Shan Lv
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Guanmei Cao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Fu-Dong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Declan Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, United Kingdom
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam 1007 MB, the Netherlands; Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, United Kingdom
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
19
|
Villalon-Reina JE, Nir TM, Nourollahimoghadam E, Dhinagar N, Jahanshad N, Thompson PM, Henriques RN. Evaluating Fiber Orientation Dispersion Measures Computed From Single-Shell Diffusion MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083769 DOI: 10.1109/embc40787.2023.10340067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Fiber orientation dispersion is one of the fundamental features that can be estimated from diffusion magnetic resonance imaging (dMRI) of the brain. Several approaches have been proposed to estimate dispersion from single- and multi-shell dMRI acquisitions. Here, we derive solutions to bring these proposed methods to a standard orientation dispersion index (ODI) with the goal of making them comparable across different dMRI acquisitions. To illustrate the utility of the measures in studying brain aging, we further examined the age-dependent trajectory of the different single- and multi-shell ODI estimates in the white matter across the lifespan.Clinical Relevance- This work computes metrics of brain microstructure that can be adapted for large neuroimaging initiatives that aim to study the brain's development and aging, and to identify deviations that may serve as biomarkers of brain disease.
Collapse
|
20
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Drobyshevsky A, Synowiec S, Goussakov I, Lu J, Gascoigne D, Aksenov DP, Yarnykh V. Temporal trajectories of normal myelination and axonal development assessed by quantitative macromolecular and diffusion MRI: Ultrastructural and immunochemical validation in a rabbit model. Neuroimage 2023; 270:119974. [PMID: 36848973 PMCID: PMC10103444 DOI: 10.1016/j.neuroimage.2023.119974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
INTRODUCTION Quantitative and non-invasive measures of brain myelination and maturation during development are of great importance to both clinical and translational research communities. While the metrics derived from diffusion tensor imaging, are sensitive to developmental changes and some pathologies, they remain difficult to relate to the actual microstructure of the brain tissue. The advent of advanced model-based microstructural metrics requires histological validation. The purpose of the study was to validate novel, model-based MRI techniques, such as macromolecular proton fraction mapping (MPF) and neurite orientation and dispersion indexing (NODDI), against histologically derived indexes of myelination and microstructural maturation at various stages of development. METHODS New Zealand White rabbit kits underwent serial in-vivo MRI examination at postnatal days 1, 5, 11, 18, and 25, and as adults. Multi-shell, diffusion-weighted experiments were processed to fit NODDI model to obtain estimates, intracellular volume fraction (ICVF) and orientation dispersion index (ODI). Macromolecular proton fraction (MPF) maps were obtained from three source (MT-, PD-, and T1-weighted) images. After MRI sessions, a subset of animals was euthanized and regional samples of gray and white matter were taken for western blot analysis, to determine myelin basic protein (MBP), and electron microscopy, to estimate axonal, myelin fractions and g-ratio. RESULTS MPF of white matter regions showed a period of fast growth between P5 and P11 in the internal capsule, with a later onset in the corpus callosum. This MPF trajectory was in agreement with levels of myelination in the corresponding brain region, as assessed by western blot and electron microscopy. In the cortex, the greatest increase of MPF occurred between P18 and P26. In contrast, myelin, according to MBP western blot, saw the largest hike between P5 and P11 in the sensorimotor cortex and between P11 and P18 in the frontal cortex, which then seemingly plateaued after P11 and P18 respectively. G-ratio by MRI markers decreased with age in the white matter. However, electron microscopy suggest a relatively stable g-ratio throughout development. CONCLUSION Developmental trajectories of MPF accurately reflected regional differences of myelination rate in different cortical regions and white matter tracts. MRI-derived estimation of g-ratio was inaccurate during early development, likely due to the overestimation of axonal volume fraction by NODDI due to the presence of a large proportion of unmyelinated axons.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA.
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Jing Lu
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - David Gascoigne
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Daniil P Aksenov
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
23
|
Piekarski DJ, Colich NL, Ho TC. The effects of puberty and sex on adolescent white matter development: A systematic review. Dev Cogn Neurosci 2023; 60:101214. [PMID: 36913887 PMCID: PMC10010971 DOI: 10.1016/j.dcn.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Adolescence, the transition between childhood and adulthood, is characterized by rapid brain development in white matter (WM) that is attributed in part to rising levels in adrenal and gonadal hormones. The extent to which pubertal hormones and related neuroendocrine processes explain sex differences in WM during this period is unclear. In this systematic review, we sought to examine whether there are consistent associations between hormonal changes and morphological and microstructural properties of WM across species and whether these effects are sex-specific. We identified 90 (75 human, 15 non-human) studies that met inclusion criteria for our analyses. While studies in human adolescents show notable heterogeneity, results broadly demonstrate that increases in gonadal hormones across pubertal development are associated with macro- and microstructural changes in WM tracts that are consistent with the sex differences found in non-human animals, particularly in the corpus callosum. We discuss limitations of the current state of the science and recommend important future directions for investigators in the field to consider in order to advance our understanding of the neuroscience of puberty and to promote forward and backward translation across model organisms.
Collapse
Affiliation(s)
| | | | - Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, United States.
| |
Collapse
|
24
|
Kraguljac NV, Guerreri M, Strickland MJ, Zhang H. Neurite Orientation Dispersion and Density Imaging in Psychiatric Disorders: A Systematic Literature Review and a Technical Note. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:10-21. [PMID: 36712566 PMCID: PMC9874146 DOI: 10.1016/j.bpsgos.2021.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Abstract
While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michele Guerreri
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Molly Jordan Strickland
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
25
|
Schilling KG, Palombo M, O'Grady KP, Combes AJE, Anderson AW, Landman BA, Smith SA. Minimal number of sampling directions for robust measures of the spherical mean diffusion weighted signal: Effects of sampling directions, b-value, signal-to-noise ratio, hardware, and fitting strategy. Magn Reson Imaging 2022; 94:25-35. [PMID: 35931321 PMCID: PMC9904413 DOI: 10.1016/j.mri.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Several recent multi-compartment diffusion MRI investigations and modeling strategies have utilized the orientationally-averaged, or spherical mean, diffusion-weighted signal to study tissue microstructure of the central nervous system. Most experimental designs sample a large number of diffusion weighted directions in order to calculate the spherical mean signal, however, sampling a subset of these directions may increase scanning efficiency and enable either a decrease in scan time or the ability to sample more diffusion weightings. Here, we aim to determine the minimum number of gradient directions needed for a robust measurement of the spherical mean signal. We used computer simulations to characterize the variation of the measured spherical mean signal as a function of the number of gradient directions, while also investigating the effects of diffusion weighting (b-value), signal-to-noise ratio (SNR), available hardware, and spherical mean fitting strategy. We then utilize empirically acquired data in the brain and spinal cord to validate simulations, showing experimental results are in good agreement with simulations. We summarize these results by providing an intuitive lookup table to facilitate the determination of the minimal number of sampling directions needed for robust spherical mean measurements, and give recommendations based on SNR and experimental conditions.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, United States.
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Kristin P O'Grady
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anna J E Combes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Adam W Anderson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
26
|
Kline JE, Dudley J, Illapani VSP, Li H, Kline-Fath B, Tkach J, He L, Yuan W, Parikh NA. Diffuse excessive high signal intensity in the preterm brain on advanced MRI represents widespread neuropathology. Neuroimage 2022; 264:119727. [PMID: 36332850 PMCID: PMC9908008 DOI: 10.1016/j.neuroimage.2022.119727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Preterm brains commonly exhibit elevated signal intensity in the white matter on T2-weighted MRI at term-equivalent age. This signal, known as diffuse excessive high signal intensity (DEHSI) or diffuse white matter abnormality (DWMA) when quantitatively assessed, is associated with abnormal microstructure on diffusion tensor imaging. However, postmortem data are largely lacking and difficult to obtain, and the pathological significance of DEHSI remains in question. In a cohort of 202 infants born preterm at ≤32 weeks gestational age, we leveraged two newer diffusion MRI models - Constrained Spherical Deconvolution (CSD) and neurite orientation dispersion and density index (NODDI) - to better characterize the macro and microstructural properties of DWMA and inform the ongoing debate around the clinical significance of DWMA. With increasing DWMA volume, fiber density broadly decreased throughout the white matter and fiber cross-section decreased in the major sensorimotor tracts. Neurite orientation dispersion decreased in the centrum semiovale, corona radiata, and temporal lobe. These findings provide insight into DWMA's biological underpinnings and demonstrate that it is a serious pathology.
Collapse
Affiliation(s)
- Julia E Kline
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jon Dudley
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Venkata Sita Priyanka Illapani
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Hailong Li
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Beth Kline-Fath
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jean Tkach
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lili He
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Weihong Yuan
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
27
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
28
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
29
|
Chung S, Chen J, Li T, Wang Y, Lui YW. Investigating Brain White Matter in Football Players with and without Concussion Using a Biophysical Model from Multishell Diffusion MRI. AJNR Am J Neuroradiol 2022; 43:823-828. [PMID: 35589140 DOI: 10.3174/ajnr.a7522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There have been growing concerns around potential risks related to sports-related concussion and contact sport exposure to repetitive head impacts in young athletes. Here we investigate WM microstructural differences between collegiate football players with and without sports-related concussion. MATERIALS AND METHODS The study included 78 collegiate athletes (24 football players with sports-related concussion, 26 football players with repetitive head impacts, and 28 non-contact-sport control athletes), available through the Federal Interagency Traumatic Brain Injury Research registry. Diffusion metrics of diffusion tensor/kurtosis imaging and WM tract integrity were calculated. Tract-Based Spatial Statistics and post hoc ROI analyses were performed to test group differences. RESULTS Significantly increased axial kurtosis in those with sports-related concussion compared with controls was observed diffusely across the whole-brain WM, and some focal areas demonstrated significantly higher mean kurtosis and extra-axonal axial diffusivity in sports-related concussion. The extent of significantly different WM regions decreased across time points and remained present primarily in the corpus callosum. Similar differences in axial kurtosis were found between the repetitive head impact and control groups. Other significant differences were seen at unrestricted return-to-play with lower radial kurtosis and intra-axonal diffusivity in those with sports-related concussion compared with the controls, mainly restricted to the posterior callosum. CONCLUSIONS This study highlights the fact that there are differences in diffusion microstructure measures that are present not only between football players with sports-related injuries and controls, but that there are also measurable differences between football players with repetitive head impacts and controls. This work reinforces previous work showing that the corpus callosum is specifically implicated in sports-related concussion and also suggests this to be true for repetitive head impacts.
Collapse
Affiliation(s)
- S Chung
- From the Department of Radiology (S.C., Y.W.L.), Center for Advanced Imaging Innovation and Research .,Department of Radiology (S.C., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, New York
| | - J Chen
- Department of Electrical and Computer Engineering (J.C., T.L., Y.W.), New York University Tandon School of Engineering, Brooklyn, New York
| | - T Li
- Department of Electrical and Computer Engineering (J.C., T.L., Y.W.), New York University Tandon School of Engineering, Brooklyn, New York
| | - Y Wang
- Department of Electrical and Computer Engineering (J.C., T.L., Y.W.), New York University Tandon School of Engineering, Brooklyn, New York
| | - Y W Lui
- From the Department of Radiology (S.C., Y.W.L.), Center for Advanced Imaging Innovation and Research.,Department of Radiology (S.C., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
30
|
Oliveira R, Pelentritou A, Di Domenicantonio G, De Lucia M, Lutti A. In vivo Estimation of Axonal Morphology From Magnetic Resonance Imaging and Electroencephalography Data. Front Neurosci 2022; 16:874023. [PMID: 35527816 PMCID: PMC9070985 DOI: 10.3389/fnins.2022.874023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We present a novel approach that allows the estimation of morphological features of axonal fibers from data acquired in vivo in humans. This approach allows the assessment of white matter microscopic properties non-invasively with improved specificity. Theory The proposed approach is based on a biophysical model of Magnetic Resonance Imaging (MRI) data and of axonal conduction velocity estimates obtained with Electroencephalography (EEG). In a white matter tract of interest, these data depend on (1) the distribution of axonal radius [P(r)] and (2) the g-ratio of the individual axons that compose this tract [g(r)]. P(r) is assumed to follow a Gamma distribution with mode and scale parameters, M and θ, and g(r) is described by a power law with parameters α and β. Methods MRI and EEG data were recorded from 14 healthy volunteers. MRI data were collected with a 3T scanner. MRI-measured g-ratio maps were computed and sampled along the visual transcallosal tract. EEG data were recorded using a 128-lead system with a visual Poffenberg paradigm. The interhemispheric transfer time and axonal conduction velocity were computed from the EEG current density at the group level. Using the MRI and EEG measures and the proposed model, we estimated morphological properties of axons in the visual transcallosal tract. Results The estimated interhemispheric transfer time was 11.72 ± 2.87 ms, leading to an average conduction velocity across subjects of 13.22 ± 1.18 m/s. Out of the 4 free parameters of the proposed model, we estimated θ – the width of the right tail of the axonal radius distribution – and β – the scaling factor of the axonal g-ratio, a measure of fiber myelination. Across subjects, the parameter θ was 0.40 ± 0.07 μm and the parameter β was 0.67 ± 0.02 μm−α. Conclusion The estimates of axonal radius and myelination are consistent with histological findings, illustrating the feasibility of this approach. The proposed method allows the measurement of the distribution of axonal radius and myelination within a white matter tract, opening new avenues for the combined study of brain structure and function, and for in vivo histological studies of the human brain.
Collapse
|
31
|
Resolution and b value dependent Structural Connectome in ex vivo Mouse Brain. Neuroimage 2022; 255:119199. [PMID: 35417754 PMCID: PMC9195912 DOI: 10.1016/j.neuroimage.2022.119199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Diffusion magnetic resonance imaging has been widely used in both clinical and preclinical studies to characterize tissue microstructure and structural connectivity. The diffusion MRI protocol for the Human Connectome Project (HCP) has been developed and optimized to obtain high-quality, high-resolution diffusion MRI (dMRI) datasets. However, such efforts have not been fully explored in preclinical studies, especially for rodents. In this study, high quality dMRI datasets of mouse brains were acquired at 9.4T system from two vendors. In particular, we acquired a high-spatial resolution dMRI dataset (25 μm isotropic with 126 diffusion encoding directions), which we believe to be the highest spatial resolution yet obtained; and a high-angular resolution dMRI dataset (50 μm isotropic with 384 diffusion encoding directions), which we believe to be the highest angular resolution compared to the dMRI datasets at the microscopic resolution. We systematically investigated the effects of three important parameters that affect the final outcome of the connectome: b value (1000s/mm2 to 8000 s/mm2), angular resolution (10 to 126), and spatial resolution (25 μm to 200 μm). The stability of tractography and connectome increase with the angular resolution, where more than 50 angles is necessary to achieve consistent results. The connectome and quantitative parameters derived from graph theory exhibit a linear relationship to the b value (R2 > 0.99); a single-shell acquisition with b value of 3000 s/mm2 shows comparable results to the multi-shell high angular resolution dataset. The dice coefficient decreases and both false positive rate and false negative rate gradually increase with coarser spatial resolution. Our study provides guidelines and foundations for exploration of tradeoffs among acquisition parameters for the structural connectome in ex vivo mouse brain.
Collapse
|
32
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
33
|
Mendoza M, Shotbolt M, Faiq MA, Parra C, Chan KC. Advanced Diffusion MRI of the Visual System in Glaucoma: From Experimental Animal Models to Humans. BIOLOGY 2022; 11:454. [PMID: 35336827 PMCID: PMC8945790 DOI: 10.3390/biology11030454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a group of ophthalmologic conditions characterized by progressive retinal ganglion cell death, optic nerve degeneration, and irreversible vision loss. While intraocular pressure is the only clinically modifiable risk factor, glaucoma may continue to progress at controlled intraocular pressure, indicating other major factors in contributing to the disease mechanisms. Recent studies demonstrated the feasibility of advanced diffusion magnetic resonance imaging (dMRI) in visualizing the microstructural integrity of the visual system, opening new possibilities for non-invasive characterization of glaucomatous brain changes for guiding earlier and targeted intervention besides intraocular pressure lowering. In this review, we discuss dMRI methods currently used in visual system investigations, focusing on the eye, optic nerve, optic tract, subcortical visual brain nuclei, optic radiations, and visual cortex. We evaluate how conventional diffusion tensor imaging, higher-order diffusion kurtosis imaging, and other extended dMRI techniques can assess the neuronal and glial integrity of the visual system in both humans and experimental animal models of glaucoma, among other optic neuropathies or neurodegenerative diseases. We also compare the pros and cons of these methods against other imaging modalities. A growing body of dMRI research indicates that this modality holds promise in characterizing early glaucomatous changes in the visual system, determining the disease severity, and identifying potential neurotherapeutic targets, offering more options to slow glaucoma progression and to reduce the prevalence of this world's leading cause of irreversible but preventable blindness.
Collapse
Affiliation(s)
- Monica Mendoza
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Max Shotbolt
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Kevin C. Chan
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
- Department of Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
| |
Collapse
|
34
|
Cox SR, Deary IJ. Brain and cognitive ageing: The present, and some predictions (…about the future). AGING BRAIN 2022; 2:100032. [PMID: 36908875 PMCID: PMC9997131 DOI: 10.1016/j.nbas.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Experiencing decline in one's cognitive abilities is among the most feared aspects of growing old [53]. Age-related cognitive decline carries a huge personal, societal, and financial cost both in pathological ageing (such as dementias) and also within the non-clinical majority of the population. A projected 152 million people worldwide will suffer from dementia by 2050 [3]. The early stages of cognitive decline are much more prevalent than dementia, and can still impose serious limitations of performance on everyday activities, independence, and quality of life in older age [5], [60], [80]. Cognitive decline also predicts poorer health, adherence to medical regimens, and financial decision-making, and can herald dementia, illness, and death [6], [40]. Of course, when seeking to understand why some people experience more severe cognitive ageing than others, researchers have turned to the organ of thinking for clues about the nature, possible mechanisms, and determinants that might underpin more and less successful cognitive agers. However, that organ is relatively inaccessible, a limitation partly alleviated by advances in neuroimaging. Here we discuss lessons for cognitive and brain ageing that have come from neuroimaging research (especially structural brain imaging), what neuroimaging still has left to teach us, and our views on possible ways forward in this multidisciplinary field.
Collapse
Affiliation(s)
- Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Ian J. Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| |
Collapse
|
35
|
Li X, Li M, Wang M, Wu F, Liu H, Sun Q, Zhang Y, Liu C, Jin C, Yang J. Mapping white matter maturational processes and degrees on neonates by diffusion kurtosis imaging with multiparametric analysis. Hum Brain Mapp 2022; 43:799-815. [PMID: 34708903 PMCID: PMC8720196 DOI: 10.1002/hbm.25689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
White matter maturation has been characterized by diffusion tensor (DT) metrics. However, maturational processes and degrees are not fully investigated due to limitations of univariate approaches and limited specificity/sensitivity. Diffusion kurtosis imaging (DKI) provides kurtosis tensor (KT) and white matter tract integrity (WMTI) metrics, besides DT metrics. Therefore, we tried to investigate performances of DKI with the multiparametric analysis in characterizing white matter maturation. Developmental changes in metrics were investigated by using tract-based spatial statistics and the region of interest analysis on 50 neonates with postmenstrual age (PMA) from 37.43 to 43.57 weeks. Changes in metrics were combined into various patterns to reveal different maturational processes. Mahalanobis distance based on DT metrics (DM,DT ) and that combing DT and KT metrics (DM,DT-KT ) were computed, separately. Performances of DM,DT-KT and DM,DT were compared in revealing correlations with PMA and the neurobehavioral score. Compared with DT metrics, WMTI metrics demonstrated additional changing patterns. Furthermore, variations of DM,DT-KT across regions were in agreement with the maturational sequence. Additionally, DM,DT-KT demonstrated stronger negative correlations with PMA and the neurobehavioral score in more regions than DM,DT . Results suggest that DKI with the multiparametric analysis benefits the understanding of white matter maturational processes and degrees on neonates.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengxuan Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Wu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuli Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Mani M, Yang B, Bathla G, Magnotta V, Jacob M. Multi-band- and in-plane-accelerated diffusion MRI enabled by model-based deep learning in q-space and its extension to learning in the spherical harmonic domain. Magn Reson Med 2021; 87:1799-1815. [PMID: 34825729 DOI: 10.1002/mrm.29095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To propose a new method for the recovery of combined in-plane- and multi-band (MB)-accelerated diffusion MRI data. METHODS Combining MB acceleration with in-plane acceleration is crucial to improve the time efficiency of high (angular and spatial) resolution diffusion scans. However, as the MB factor and in-plane acceleration increase, the reconstruction becomes challenging due to the heavy aliasing. The new reconstruction utilizes an additional q-space prior to constrain the recovery, which is derived from the previously proposed qModeL framework. Specifically, the qModeL prior provides a pre-learned representation of the diffusion signal space to which the measured data belongs. We show that the pre-learned q-space prior along with a model-based iterative reconstruction that accommodate multi-band unaliasing, can efficiently reconstruct the in-plane- and MB-accelerated data. The power of joint reconstruction is maximally utilized by using an incoherent under-sampling pattern in the k-q domain. We tested the proposed method on single- and multi-shell data, with high/low angular resolution, high/low spatial resolution, healthy/abnormal tissues, and 3T/7T field strengths. Furthermore, the learning is extended to the spherical harmonic basis, to provide a rotational invariant learning framework. RESULTS The qModeL joint reconstruction is shown to simultaneously unalias and jointly recover DWIs with reasonable accuracy in all the cases studied. The reconstruction error from 18-fold accelerated multi-shell datasets was <3%. The microstructural maps derived from the accelerated acquisitions also exhibit reasonable accuracy for both healthy and abnormal tissues. The deep learning (DL)-enabled reconstructions are comparable to those derived using traditional methods. CONCLUSION qModeL enables the joint recovery of combined in-plane- and MB-accelerated dMRI utilizing DL.
Collapse
Affiliation(s)
- Merry Mani
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | - Girish Bathla
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Vincent Magnotta
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
37
|
De Luca A, Ianus A, Leemans A, Palombo M, Shemesh N, Zhang H, Alexander DC, Nilsson M, Froeling M, Biessels GJ, Zucchelli M, Frigo M, Albay E, Sedlar S, Alimi A, Deslauriers-Gauthier S, Deriche R, Fick R, Afzali M, Pieciak T, Bogusz F, Aja-Fernández S, Özarslan E, Jones DK, Chen H, Jin M, Zhang Z, Wang F, Nath V, Parvathaneni P, Morez J, Sijbers J, Jeurissen B, Fadnavis S, Endres S, Rokem A, Garyfallidis E, Sanchez I, Prchkovska V, Rodrigues P, Landman BA, Schilling KG. On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge. Neuroimage 2021; 240:118367. [PMID: 34237442 PMCID: PMC7615259 DOI: 10.1016/j.neuroimage.2021.118367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.
Collapse
Affiliation(s)
- Alberto De Luca
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geert-Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mauro Zucchelli
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Matteo Frigo
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Enes Albay
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France; Istanbul Technical University, Istanbul, Turkey
| | - Sara Sedlar
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | - Abib Alimi
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | | | - Rachid Deriche
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Sophia Antipolis, France
| | | | - Maryam Afzali
- Cardiff University Brain Research, Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Fabian Bogusz
- AGH University of Science and Technology, Kraków, Poland
| | | | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Derek K Jones
- Cardiff University Brain Research, Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Haoze Chen
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, Arlington, USA
| | - Zhijie Zhang
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | - Fengxiang Wang
- School of Instruments and Electronics, North University of China, Taiyuan, China
| | | | | | - Jan Morez
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- Imec-Vision lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Shreyas Fadnavis
- Intelligent Systems Engineering, Indiana University Bloomington, Indiana, USA
| | - Stefan Endres
- Leibniz Institute for Materials Engineering - IWT, Faculty of Production Engineering, University of Bremen, Bremen, Germany
| | - Ariel Rokem
- Department of Psychology and the eScience Institute, University of Washington, Seattle, WA USA
| | | | | | | | | | - Bennet A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, USA; Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
38
|
Borghesani V, Wang C, Watson C, Bouhali F, Caverzasi E, Battistella G, Bogley R, Yabut NA, Deleon J, Miller ZA, Hoeft F, Mandelli ML, Gorno-Tempini ML. Functional and morphological correlates of developmental dyslexia: A multimodal investigation of the ventral occipitotemporal cortex. J Neuroimaging 2021; 31:962-972. [PMID: 34115429 PMCID: PMC10832296 DOI: 10.1111/jon.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The ventral occipitotemporal cortex (vOT) is a region crucial for reading acquisition through selective tuning to printed words. Developmental dyslexia is a disorder of reading with underlying neurobiological bases often associated with atypical neural responses to printed words. Previous studies have discovered anomalous structural development and function of the vOT in individuals with dyslexia. However, it remains unclear if or how structural abnormalities relate to functional alterations. METHODS In this study, we acquired structural, functional (words and faces processing), and diffusion MRI data from 26 children with dyslexia (average age = 10.4 ± 2.0 years) and 14 age-matched typically developing readers (average age = 10.4 ± 1.6 years). Morphological indices of local gyrification, neurite density (i.e., dendritic arborization structure), and orientation dispersion (i.e., dendritic arborization orientation) were analyzed within the vOT region that showed preferential activation in typically developing readers for words (as compared to face stimuli). RESULTS The two cohorts diverged significantly in both functional and structural measures. Compared to typically developing controls, children with dyslexia did not show selectivity for words in the left vOT (contrast: words > false fonts). This lack of tuning to printed words was associated with greater neurite dispersion heterogeneity in the dyslexia cohort, but similar neurite density. These group differences were not present in the homologous contralateral area, the right vOT. CONCLUSIONS Our findings provide new insight into the neurobiology of the lack of vOT word tuning in dyslexia by linking behavior, alterations in functional activation, and neurite organization.
Collapse
Affiliation(s)
- Valentina Borghesani
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Cheng Wang
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Christa Watson
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Florence Bouhali
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Eduardo Caverzasi
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Giovanni Battistella
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Rian Bogley
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Nicole A Yabut
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Jessica Deleon
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Zachary A Miller
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Department of Psychological Sciences, University of Connecticut, Mansfield, Connecticut, USA
- Brain Imaging Research Center, University of Connecticut, Mansfield, Connecticut, USA
| | - Maria Luisa Mandelli
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, San Francisco, California, USA
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
39
|
Tsuchida A, Laurent A, Crivello F, Petit L, Pepe A, Beguedou N, Debette S, Tzourio C, Mazoyer B. Age-Related Variations in Regional White Matter Volumetry and Microstructure During the Post-adolescence Period: A Cross-Sectional Study of a Cohort of 1,713 University Students. Front Syst Neurosci 2021; 15:692152. [PMID: 34413727 PMCID: PMC8369154 DOI: 10.3389/fnsys.2021.692152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Human brain white matter undergoes a protracted maturation that continues well into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow detailed characterizations of the microstructural architecture of white matter, and they are increasingly utilized to study white matter changes during development and aging. However, relatively little is known about the late maturational changes in the microstructural architecture of white matter during post-adolescence. Here we report on regional changes in white matter volume and microstructure in young adults undergoing university-level education. As part of the MRi-Share multi-modal brain MRI database, multi-shell, high angular resolution DWI data were acquired in a unique sample of 1,713 university students aged 18-26. We assessed the age and sex dependence of diffusion metrics derived from diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) in the white matter regions as defined in the John Hopkins University (JHU) white matter labels atlas. We demonstrate that while regional white matter volume is relatively stable over the age range of our sample, the white matter microstructural properties show clear age-related variations. Globally, it is characterized by a robust increase in neurite density index (NDI), and to a lesser extent, orientation dispersion index (ODI). These changes are accompanied by a decrease in diffusivity. In contrast, there is minimal age-related variation in fractional anisotropy. There are regional variations in these microstructural changes: some tracts, most notably cingulum bundles, show a strong age-related increase in NDI coupled with decreases in radial and mean diffusivity, while others, mainly cortico-spinal projection tracts, primarily show an ODI increase and axial diffusivity decrease. These age-related variations are not different between males and females, but males show higher NDI and ODI and lower diffusivity than females across many tracts. These findings emphasize the complexity of changes in white matter structure occurring in this critical period of late maturation in early adulthood.
Collapse
Affiliation(s)
- Ami Tsuchida
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CEA, Bordeaux, France
| | - Alexandre Laurent
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CEA, Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CEA, Bordeaux, France
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CEA, Bordeaux, France
| | - Antonietta Pepe
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CEA, Bordeaux, France
| | - Naka Beguedou
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CEA, Bordeaux, France
| | - Stephanie Debette
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire, Bordeaux, France
| | - Christophe Tzourio
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CEA, Bordeaux, France.,Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire, Bordeaux, France
| |
Collapse
|
40
|
Huber E, Mezer A, Yeatman JD. Neurobiological underpinnings of rapid white matter plasticity during intensive reading instruction. Neuroimage 2021; 243:118453. [PMID: 34358657 DOI: 10.1016/j.neuroimage.2021.118453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
Diffusion MRI is a powerful tool for imaging brain structure, but it is challenging to discern the biological underpinnings of plasticity inferred from these and other non-invasive MR measurements. Biophysical modeling of the diffusion signal aims to render a more biologically rich image of tissue microstructure, but the application of these models comes with important caveats. A separate approach for gaining biological specificity has been to seek converging evidence from multi-modal datasets. Here we use metrics derived from diffusion kurtosis imaging (DKI) and the white matter tract integrity (WMTI) model along with quantitative MRI measurements of T1 relaxation to characterize changes throughout the white matter during an 8-week, intensive reading intervention (160 total hours of instruction). Behavioral measures, multi-shell diffusion MRI data, and quantitative T1 data were collected at regular intervals during the intervention in a group of 33 children with reading difficulties (7-12 years old), and over the same period in an age-matched non-intervention control group. Throughout the white matter, mean 'extra-axonal' diffusivity was inversely related to intervention time. In contrast, model estimated axonal water fraction (AWF), overall diffusion kurtosis, and T1 relaxation time showed no significant change over the intervention period. Both diffusion and quantitative T1 based metrics were correlated with pre-intervention reading performance, albeit with distinct anatomical distributions. These results are consistent with the view that rapid changes in diffusion properties reflect phenomena other than widespread changes in myelin density. We discuss this result in light of recent work highlighting non-axonal factors in experience-dependent plasticity and learning.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Aviv Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA; Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA 95305, USA
| |
Collapse
|
41
|
Oliviero S, Del Gratta C. Impact of the acquisition protocol on the sensitivity to demyelination and axonal loss of clinically feasible DWI techniques: a simulation study. MAGMA (NEW YORK, N.Y.) 2021; 34:523-543. [PMID: 33417079 DOI: 10.1007/s10334-020-00899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To evaluate: (a) the specific effect that the demyelination and axonal loss have on the DW signal, and (b) the impact of the sequence parameters on the sensitivity to damage of two clinically feasible DWI techniques, i.e. DKI and NODDI. METHODS We performed a Monte Carlo simulation of water diffusion inside a novel synthetic model of white matter in the presence of axonal loss and demyelination, with three compartments with permeable boundaries between them. We compared DKI and NODDI in their ability to detect and assess the damage, using several acquisition protocols. We used the F test statistic as an index of the sensitivity for each DWI parameter to axonal loss and demyelination, respectively. RESULTS DKI parameters significantly changed with increasing axonal loss, but, in most cases, not with demyelination; all the NODDI parameters showed sensitivity to both the damage processes (at p < 0.01). However, the acquisition protocol strongly affected the sensitivity to damage of both the DKI and NODDI parameters and, especially for NODDI, the parameter absolute values also. DISCUSSION This work is expected to impact future choices for investigating white matter microstructure in focusing on specific stages of the disease, and for selecting the appropriate experimental framework to obtain optimal data quality given the purpose of the experiment.
Collapse
Affiliation(s)
- Stefania Oliviero
- Department Neurosciences, Imaging, and Clinical Sciences, Institute for Advanced Biomedical Technologies, ITAB, Gabriele D'Annunzio University, Chieti, Italy.
| | - Cosimo Del Gratta
- Department Neurosciences, Imaging, and Clinical Sciences, Institute for Advanced Biomedical Technologies, ITAB, Gabriele D'Annunzio University, Chieti, Italy
| |
Collapse
|
42
|
Mani M, Magnotta VA, Jacob M. qModeL: A plug-and-play model-based reconstruction for highly accelerated multi-shot diffusion MRI using learned priors. Magn Reson Med 2021; 86:835-851. [PMID: 33759240 PMCID: PMC8076086 DOI: 10.1002/mrm.28756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
PURPOSE To introduce a joint reconstruction method for highly undersampled multi-shot diffusion weighted (msDW) scans. METHODS Multi-shot EPI methods enable higher spatial resolution for diffusion MRI, but at the expense of long scan-time. Highly accelerated msDW scans are needed to enable their utilization in advanced microstructure studies, which require high q-space coverage. Previously, joint k-q undersampling methods coupled with compressed sensing were shown to enable very high acceleration factors. However, the reconstruction of this data using sparsity priors is challenging and is not suited for multi-shell data. We propose a new reconstruction that recovers images from the combined k-q data jointly. The proposed qModeL reconstruction brings together the advantages of model-based iterative reconstruction and machine learning, extending the idea of plug-and-play algorithms. Specifically, qModeL works by prelearning the signal manifold corresponding to the diffusion measurement space using deep learning. The prelearned manifold prior is incorporated into a model-based reconstruction to provide a voxel-wise regularization along the q-dimension during the joint recovery. Notably, the learning does not require in vivo training data and is derived exclusively from biophysical modeling. Additionally, a plug-and-play total variation denoising provides regularization along the spatial dimension. The proposed framework is tested on k-q undersampled single-shell and multi-shell msDW acquisition at various acceleration factors. RESULTS The qModeL joint reconstruction is shown to recover DWIs from 8-fold accelerated msDW acquisitions with error less than 5% for both single-shell and multi-shell data. Advanced microstructural analysis performed using the undersampled reconstruction also report reasonable accuracy. CONCLUSION qModeL enables the joint recovery of highly accelerated multi-shot dMRI utilizing learning-based priors. The bio-physically driven approach enables the use of accelerated multi-shot imaging for multi-shell sampling and advanced microstructure studies.
Collapse
Affiliation(s)
- Merry Mani
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | | | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| |
Collapse
|
43
|
Fritz FJ, Poser BA, Roebroeck A. MESMERISED: Super-accelerating T 1 relaxometry and diffusion MRI with STEAM at 7 T for quantitative multi-contrast and diffusion imaging. Neuroimage 2021; 239:118285. [PMID: 34147632 DOI: 10.1016/j.neuroimage.2021.118285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
There is an increasing interest in quantitative imaging of T1, T2 and diffusion contrast in the brain due to greater robustness against bias fields and artifacts, as well as better biophysical interpretability in terms of microstructure. However, acquisition time constraints are a challenge, particularly when multiple quantitative contrasts are desired and when extensive sampling of diffusion directions, high b-values or long diffusion times are needed for multi-compartment microstructure modeling. Although ultra-high fields of 7 T and above have desirable properties for many MR modalities, the shortening T2 and the high specific absorption rate (SAR) of inversion and refocusing pulses bring great challenges to quantitative T1, T2 and diffusion imaging. Here, we present the MESMERISED sequence (Multiplexed Echo Shifted Multiband Excited and Recalled Imaging of STEAM Encoded Diffusion). MESMERISED removes the dead time in Stimulated Echo Acquisition Mode (STEAM) imaging by an echo-shifting mechanism. The echo-shift (ES) factor is independent of multiband (MB) acceleration and allows for very high multiplicative (ESxMB) acceleration factors, particularly under moderate and long mixing times. This results in super-acceleration and high time efficiency at 7 T for quantitative T1 and diffusion imaging, while also retaining the capacity to perform quantitative T2 and B1 mapping. We demonstrate the super-acceleration of MESMERISED for whole-brain T1 relaxometry with total acceleration factors up to 36 at 1.8 mm isotropic resolution, and up to 54 at 1.25 mm resolution qT1 imaging, corresponding to a 6x and 9x speedup, respectively, compared to MB-only accelerated acquisitions. We then demonstrate highly efficient diffusion MRI with high b-values and long diffusion times in two separate cases. First, we show that super-accelerated multi-shell diffusion acquisitions with 370 whole-brain diffusion volumes over 8 b-value shells up to b = 7000 s/mm2 can be generated at 2 mm isotropic in under 8 minutes, a data rate of almost a volume per second, or at 1.8 mm isotropic in under 11 minutes, achieving up to 3.4x speedup compared to MB-only. A comparison of b = 7000 s/mm2 MESMERISED against standard MB pulsed gradient spin echo (PGSE) diffusion imaging shows 70% higher SNR efficiency and greater effectiveness in supporting complex diffusion signal modeling. Second, we demonstrate time-efficient sampling of different diffusion times with 1.8 mm isotropic diffusion data acquired at four diffusion times up to 290 ms, which supports both Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI) at each diffusion time. Finally, we demonstrate how adding quantitative T2 and B1+ mapping to super-accelerated qT1 and diffusion imaging enables efficient quantitative multi-contrast mapping with the same MESMERISED sequence and the same readout train. MESMERISED extends possibilities to efficiently probe T1, T2 and diffusion contrast for multi-component modeling of tissue microstructure.
Collapse
Affiliation(s)
- F J Fritz
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Institut für Systemische Neurowissenschaften, Zentrum für Experimentelle Medizin, Universitätklinikum Hamburg-Eppendorf (UKE), Hamburg, Deutschland
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
44
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
45
|
Prasad JD, van de Looij Y, Gunn KC, Ranchhod SM, White PB, Berry MJ, Bennet L, Sizonenko SV, Gunn AJ, Dean JM. Long-term coordinated microstructural disruptions of the developing neocortex and subcortical white matter after early postnatal systemic inflammation. Brain Behav Immun 2021; 94:338-356. [PMID: 33307171 DOI: 10.1016/j.bbi.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Severe postnatal systemic infection is highly associated with persistent disturbances in brain development and neurobehavioral outcomes in survivors of preterm birth. However, the contribution of less severe but prolonged postnatal infection and inflammation to such disturbances is unclear. Further, the ability of modern imaging techniques to detect the underlying changes in cellular microstructure of the brain in these infants remains to be validated. We used high-field ex-vivo MRI, neurohistopathology, and behavioral tests in newborn rats to demonstrate that prolonged postnatal systemic inflammation causes subtle, persisting disturbances in brain development, with neurodevelopmental delays and mild motor impairments. Diffusion-tensor MRI and neurite orientation dispersion and density imaging (NODDI) revealed delayed maturation of neocortical and subcortical white matter microstructure. Analysis of pyramidal neurons showed that the cortical deficits involved impaired dendritic arborization and spine formation. Analysis of oligodendrocytes showed that the white matter deficits involved impaired oligodendrocyte maturation and axonal myelination. These findings indicate that prolonged postnatal inflammation, without severe infection, may critically contribute to the diffuse spectrum of brain pathology and subtle long-term disability in preterm infants, with a cellular mechanism involving oligodendrocyte and neuronal dysmaturation. NODDI may be useful for clinical detection of these microstructural deficits.
Collapse
Affiliation(s)
- Jaya D Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology, Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | - Katherine C Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sonya M Ranchhod
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Petra B White
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Mary J Berry
- The Department of Pediatrics and Health Care, University of Otago, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
46
|
Detecting microstructural white matter abnormalities of frontal pathways in children with ADHD using advanced diffusion models. Brain Imaging Behav 2021; 14:981-997. [PMID: 31041662 DOI: 10.1007/s11682-019-00108-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies using diffusion tensor imaging (DTI) have documented alterations in the attention and executive system in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). While abnormalities in the frontal lobe have also been reported, the associated white matter fiber bundles have not been investigated comprehensively due to the complexity in tracing them through fiber crossings. Furthermore, most studies have used a non-specific DTI model to understand white matter abnormalities. We present results from a first study that uses a multi-shell diffusion MRI (dMRI) data set coupled with an advanced multi-fiber tractography algorithm to probe microstructural measures related to axonal/cellular density and volume of fronto-striato-thalamic pathways in children with ADHD (N = 30) and healthy controls (N = 28). Head motion was firstly examined as a priority in order to assure that no group difference existed. We investigated 45 different white matter fiber bundles in the brain. After correcting for multiple comparisons, we found lower axonal/cellular packing density and volume in ADHD children in 8 of the 45 fiber bundles, primarily in the right hemisphere as follows: 1) Superior longitudinal fasciculus-II (SLF-II) (right), 2) Thalamus to precentral gyrus (right), 3) Thalamus to superior-frontal gyrus (right), 4) Caudate to medial orbitofrontal gyrus (right), 5) Caudate to precentral gyrus (right), 6) Thalamus to paracentral gyrus (left), 7) Caudate to caudal middlefrontal gyrus (left), and 8) Cingulum (bilateral). Our results demonstrate reduced axonal/cellular density and volume in certain frontal lobe white matter fiber tracts, which sub-serve the attention function and executive control systems. Further, our work shows specific microstructural abnormalities in the striato-thalamo-cortical connections, which have not been previously reported in children with ADHD.
Collapse
|
47
|
Lu PJ, Barakovic M, Weigel M, Rahmanzadeh R, Galbusera R, Schiavi S, Daducci A, La Rosa F, Bach Cuadra M, Sandkühler R, Kuhle J, Kappos L, Cattin P, Granziera C. GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation. Front Neurosci 2021; 15:647535. [PMID: 33889069 PMCID: PMC8055933 DOI: 10.3389/fnins.2021.647535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Conventional magnetic resonance imaging (cMRI) in multiple sclerosis (MS) patients provides measures of focal brain damage and activity, which are fundamental for disease diagnosis, prognosis, and the evaluation of response to therapy. However, cMRI is insensitive to the damage to the microenvironment of the brain tissue and the heterogeneity of MS lesions. In contrast, the damaged tissue can be characterized by mathematical models on multishell diffusion imaging data, which measure different compartmental water diffusion. In this work, we obtained 12 diffusion measures from eight diffusion models, and we applied a deep-learning attention-based convolutional neural network (CNN) (GAMER-MRI) to select the most discriminating measures in the classification of MS lesions and the perilesional tissue by attention weights. Furthermore, we provided clinical and biological validation of the chosen metrics-and of their most discriminative combinations-by correlating their respective mean values in MS patients with the corresponding Expanded Disability Status Scale (EDSS) and the serum level of neurofilament light chain (sNfL), which are measures of disability and neuroaxonal damage. Our results show that the neurite density index from neurite orientation and dispersion density imaging (NODDI), the measures of the intra-axonal and isotropic compartments from microstructural Bayesian approach, and the measure of the intra-axonal compartment from the spherical mean technique NODDI were the most discriminating (respective attention weights were 0.12, 0.12, 0.15, and 0.13). In addition, the combination of the neurite density index from NODDI and the measures for the intra-axonal and isotropic compartments from the microstructural Bayesian approach exhibited a stronger correlation with EDSS and sNfL than the individual measures. This work demonstrates that the proposed method might be useful to select the microstructural measures that are most discriminative of focal tissue damage and that may also be combined to a unique contrast to achieve stronger correlations to clinical disability and neuroaxonal damage.
Collapse
Affiliation(s)
- Po-Jui Lu
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Reza Rahmanzadeh
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Robin Sandkühler
- Center for Medical Image Analysis and Navigation, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Philippe Cattin
- Center for Medical Image Analysis and Navigation, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
48
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
49
|
Zhao X, Shi J, Dai F, Wei L, Zhang B, Yu X, Wang C, Zhu W, Wang H. Brain Development From Newborn to Adolescence: Evaluation by Neurite Orientation Dispersion and Density Imaging. Front Hum Neurosci 2021; 15:616132. [PMID: 33790750 PMCID: PMC8005551 DOI: 10.3389/fnhum.2021.616132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/22/2021] [Indexed: 11/15/2022] Open
Abstract
Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limited to a relatively small age range and mainly based on the manually operated region of interest analysis. Therefore, this study applied NODDI to investigate brain development in a large sample size of 214 subjects ranging in ages from 0 to 14. The whole brain was automatically segmented into 122 regions. The maturation trajectory of each region was characterized by the time course of diffusion metrics and further quantified using nonlinear regression. The NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index (ODI), increased with age. And these two metrics were superior to the DTI-derived metrics in SVM regression models of age. The NDI in white matter exhibited a more rapid growth than that in gray matter (including the cortex and deep nucleus). These diffusion indicators experienced conspicuous increases during early childhood and the growth speed slowed down in adolescence. Region-specific maturation patterns were described throughout the brain, including white matter, cortical and deep gray matter. These development patterns were evaluated and discussed on the basis of NODDI's model assumptions. To summarize, this study verified the high sensitivity of NODDI to age over a crucial developmental period from newborn to adolescence. Moreover, the existing knowledge of brain development has been complemented, suggesting that NODDI has a potential capability in the investigation of brain development.
Collapse
Affiliation(s)
- Xueying Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Dai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Boyu Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xuchen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Mohammadi S, Callaghan MF. Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. J Neurosci Methods 2021; 348:108990. [PMID: 33129894 PMCID: PMC7840525 DOI: 10.1016/j.jneumeth.2020.108990] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD This is the second review on the topic of g-ratio mapping using MRI. RESULTS This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|