1
|
Darrault F, Dannhoff G, Chauvel M, Delmaire T, Louchez S, Poupon C, Uszynski I, Destrieux C, Maldonado IL, Andersson F. A road map to manual segmentation of cerebral structures. J Anat 2025; 246:819-828. [PMID: 39465613 PMCID: PMC11996699 DOI: 10.1111/joa.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Manual segmentation is an essential tool in the researcher's technical arsenal. It is a frequent practice necessary for image analysis in many protocols, especially in neuroimaging and comparative brain anatomy. In the framework of emergence of studies focusing on alternative animal models, manual segmentation procedures play a critical role. Nevertheless, this critical task is often assigned to students, a process that, unfortunately, tends to be time-consuming and repetitive. Well-conducted and well-described segmentation procedures can potentially guide novice and even expert operators and enhance research works' internal and external validity, making it possible to harmonize studies and facilitate data sharing. Furthermore, recent advances in neuroimaging, such as ex vivo imaging or ultra-high-field MRI, enable new acquisition modalities and the identification of minute structures that are barely visible with typical approaches. In this context of increasingly detailed and multimodal brain studies, reflecting on methodology is relevant and necessary. Because it is crucial to implement good practices in manual segmentation per se but also in the description of the segmentation procedures in research papers, we propose a general roadmap for optimizing the technique, its process and the reporting of manual segmentation. For each of them, the relevant elements of the literature have been collected and cited. The article is accompanied by a checklist that the reader can use to verify that the critical steps are being followed.
Collapse
Affiliation(s)
- Fanny Darrault
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032ToursFrance
| | - Guillaume Dannhoff
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032ToursFrance
- Centre Hospitalier Régional Universitaire de StrasbourgStrasbourgFrance
| | - Maëlig Chauvel
- BAOBAB, NeuroSpinParis‐Saclay University, CNRS, CEAGif‐sur‐YvetteFrance
| | - Théo Delmaire
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032ToursFrance
| | - Simon Louchez
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032ToursFrance
| | - Cyril Poupon
- BAOBAB, NeuroSpinParis‐Saclay University, CNRS, CEAGif‐sur‐YvetteFrance
| | - Ivy Uszynski
- BAOBAB, NeuroSpinParis‐Saclay University, CNRS, CEAGif‐sur‐YvetteFrance
| | - Christophe Destrieux
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032ToursFrance
- CHRU de ToursToursFrance
| | - Igor Lima Maldonado
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032ToursFrance
- CHRU de ToursToursFrance
| | - Frédéric Andersson
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032ToursFrance
| |
Collapse
|
2
|
Brown A, Gervais NJ, Gravelsins L, Zhao S, Duchesne A, Rieck J, Mouzenian A, Calvo N, Mazloum‐Farzaghi N, Olsen R, Barense M, Shao Z, Bernardini M, Jacobson M, Rajah MN, Grady C, Einstein G. Effects of Early Midlife Ovarian Removal on Medial Temporal Lobe Gray Matter Volume and Recognition Memory. Hippocampus 2025; 35:e70012. [PMID: 40156318 PMCID: PMC11953763 DOI: 10.1002/hipo.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/03/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
Early midlife bilateral salpingo-oophorectomy (BSO) is associated with greater Alzheimer's disease risk compared to spontaneous/natural menopause. Previously, we found that participants with BSO had lower volume in the hippocampal dentate gyrus and cornu ammonis 2/3 composite subfield (DG-CA2/3). We sought to extend those hippocampal subfield findings by assessing whether BSO affected volumes along the anteroposterior hippocampal axis, anterolateral entorhinal cortex, and perirhinal cortex subregions (Brodmann area (BA) 35 and 36). We also correlated volumes with key demographic and wellbeing-related factors (age, depressive mood, education), hormone therapy characteristics, and recognition memory performance. Early midlife participants with BSO (with and without 17β-estradiol therapy (ET)) and age-matched control participants with intact ovaries (AMC) completed high-resolution T2-weighted structural magnetic resonance imaging (MRI). Medial temporal lobe volumes and Remember-Know task recognition memory performance were compared between groups-BSO (n = 23), BSO + ET (n = 28), AMC (n = 34) using univariate analyses. Multivariate Partial Least Squares (PLS) analyses were used to examine how volumes related to demographic and wellbeing-related factors, as well as hormone therapy characteristics. Relative to BSO + ET, BSO had lower posterior hippocampal and DG-CA2/3 volumes but greater perirhinal BA 36 volumes. Compared to age, depressive mood, and education, ET was the strongest positive predictor of hippocampal volumes and negative predictor of perirhinal BA 36 volumes. For BSO + ET, hippocampal volumes were negatively related to ET duration and positively related to concurrent progestogen therapy. Relative to AMC, BSO had greater anterolateral entorhinal cortex and perirhinal BA 35 and BA 36 volumes. BSO groups (with and without ET) relied more on familiarity than recollection for successful recognition memory. BSO and ET may have distinct effects on medial temporal lobe volumes, with potential implications for memory processes affected by Alzheimer's disease risk.
Collapse
Affiliation(s)
- Alana Brown
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
| | - Nicole J. Gervais
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - Laura Gravelsins
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
| | - Sophia Zhao
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
| | - Annie Duchesne
- Department of PsychologyUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
- Department of PsychologyUniversity of Northern British ColumbiaPrince GeorgeBritish ColumbiaCanada
| | - Jenny Rieck
- Baycrest Academy for Research and Education, Baycrest Health SciencesTorontoOntarioCanada
| | - Anna Mouzenian
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
| | - Noelia Calvo
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
| | - Negar Mazloum‐Farzaghi
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Baycrest Academy for Research and Education, Baycrest Health SciencesTorontoOntarioCanada
| | - Rosanna Olsen
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Baycrest Academy for Research and Education, Baycrest Health SciencesTorontoOntarioCanada
| | - Morgan Barense
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
| | - Zhuo Shao
- Genetics Program, North York General HospitalTorontoOntarioCanada
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - Marcus Bernardini
- Division of Gynecologic OncologyPrincess Margaret HospitalTorontoOntarioCanada
| | - Michelle Jacobson
- Department of GynecologyWomen's College HospitalTorontoOntarioCanada
| | - M. Natasha Rajah
- Department of PsychologyToronto Metropolitan UniversityTorontoOntarioCanada
| | - Cheryl Grady
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Baycrest Academy for Research and Education, Baycrest Health SciencesTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Gillian Einstein
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Baycrest Academy for Research and Education, Baycrest Health SciencesTorontoOntarioCanada
- Tema Genus, Linköping UniversityLinköpingSweden
| |
Collapse
|
3
|
Witkowski PP, Rondot LJH, Kurth-Nelson Z, Garvert MM, Dolan RJ, Behrens TEJ, Boorman E. Neural mechanisms of credit assignment for delayed outcomes during contingent learning. eLife 2025; 13:RP101841. [PMID: 40231604 PMCID: PMC11999693 DOI: 10.7554/elife.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a 'pending' state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.
Collapse
Affiliation(s)
- Phillip P Witkowski
- Center for Mind and Brain, University of California DavisDavisUnited States
- Department of Psychology, University of California DavisDavisUnited States
- National Institute on Drug Abuse Intramural Research Program, National Institutes of HealthBaltimoreUnited States
| | - Lindsay JH Rondot
- Center for Mind and Brain, University of California DavisDavisUnited States
- Department of Psychology, University of California DavisDavisUnited States
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College LondonLondonUnited Kingdom
| | - Mona M Garvert
- Faculty of Human Sciences, Julius-Maximilians-Universität WürzburgWürzburgGermany
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College LondonLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Timothy EJ Behrens
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe HospitalOxfordUnited Kingdom
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Erie Boorman
- Center for Mind and Brain, University of California DavisDavisUnited States
- Department of Psychology, University of California DavisDavisUnited States
| |
Collapse
|
4
|
B N A, Li K, Honnorat N, Rashid T, Wang D, Li J, Fadaee E, Charisis S, Walker JM, Richardson TE, Wolk DA, Fox PT, Cavazos JE, Seshadri S, Wisse LEM, Habes M. Convolutional Neural Networks for the segmentation of hippocampal structures in postmortem MRI scans. J Neurosci Methods 2025; 415:110359. [PMID: 39755177 DOI: 10.1016/j.jneumeth.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming. NEW METHOD In this study, we explore the use of fully automated methods relying on state-of-the-art Deep Learning approaches to produce these annotations. More specifically, we propose a new segmentation framework made of a set of encoder-decoder blocks embedding self-attention mechanisms and atrous spatial pyramidal pooling to produce better maps of the hippocampus and identify four hippocampal regions: the dentate gyrus, the hippocampal head, the hippocampal body, and the hippocampal tail. RESULTS Trained using slices extracted from 15 postmortem T1-weighted, T2-weighted, and susceptibility-weighted MRI scans, our new approach produces hippocampus parcellations that are better aligned with the manually delineated parcellations provided by neuroradiologists. COMPARISON WITH EXISTING METHODS Four standard deep learning segmentation architectures: UNet, Double UNet, Attention UNet, and Multi-resolution UNet have been utilized for the qualitative and quantitative comparison of the proposed hippocampal region segmentation model. CONCLUSIONS Postmortem MRI serves as a highly valuable neuroimaging technique for examining the effects of neurodegenerative diseases on the intricate structures within the hippocampus. This study opens the way to large sample-size postmortem studies of the hippocampal substructures.
Collapse
Affiliation(s)
- Anoop B N
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Information and Communication Technology, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnaaka, 576104, India
| | - Karl Li
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Honnorat
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Di Wang
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jinqi Li
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elyas Fadaee
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sokratis Charisis
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jamie M Walker
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - José E Cavazos
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Laura E M Wisse
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Xu D, Ren Q, Liu Q, Liu M, Gong H, Liu Y, Yin Z, Zeng Z, Xia S, Zhang Y, Li J, Gao Q, Wang J, Li X. Hippocampal Glutamate Levels and Their Correlation With Subregion Volume in School-Aged Children With MRI-Negative Epilepsy: A Preliminary Study. J Magn Reson Imaging 2025; 61:1258-1268. [PMID: 38970314 DOI: 10.1002/jmri.29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Abnormal levels of glutamate constitute a key pathophysiologic mechanism in epilepsy. The use of glutamate chemical exchange saturation transfer (GluCEST) imaging to measure glutamate levels in pediatric epilepsy is rarely reported in research. PURPOSE To investigate hippocampal glutamate level variations in pediatric epilepsy and the correlation between glutamate and hippocampal subregional volumes. STUDY TYPE Cross-sectional, prospective. SUBJECTS A total of 38 school-aged pediatric epilepsy patients with structurally normal MRI as determined by at least two independent radiologists (60% males; 8.7 ± 2.5 years; including 20 cases of focal pediatric epilepsy [FE] and 18 cases of generalized pediatric epilepsy [GE]) and 17 healthy controls (HC) (41% males; 9.0 ± 2.5 years). FIELD STRENGTH/SEQUENCE 3.0 T; 3D magnetization prepared rapid gradient echo (MPRAGE) and 2D turbo spin echo GluCEST sequences. ASSESSMENT The relative concentration of glutamate was calculated through pixel-wise magnetization transfer ratio asymmetry (MTRasym) analysis of the GluCEST data. Hippocampal subfield volumes were computed from MPRAGE data using FreeSurfer. STATISTICAL TESTS This study used t tests, one-way analysis of variance, Kruskal-Wallis tests, and Pearson correlation analysis. P < 0.05 was considered statistically significant. RESULTS The MTRasym values of both the left and right hippocampi were significantly elevated in GE (left: 2.51 ± 0.23 [GE] vs. 2.31 ± 0.12 [HCs], right: 2.50 ± 0.22 [GE] vs. 2.27 ± 0.22 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly elevated in FE (2.49 ± 0.28 [ipsilateral] vs. 2.29 ± 0.16 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly increased compared to the contralateral hippocampus in FE (2.49 ± 0.28 [ipsilateral] vs. 2.35 ± 0.34 [contralateral]). No significant differences in hippocampal volume were found between different groups (left hippocampus, P = 0.87; right hippocampus, P = 0.87). DATA CONCLUSION GluCEST imaging have potential for the noninvasive measurement of glutamate levels in the brains of children with epilepsy. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Donghao Xu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qingfa Ren
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Zhijie Yin
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhen Zeng
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shuyuan Xia
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanyan Zhang
- Department of Pediatric Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Jie Li
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quansheng Gao
- Environmental & Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
6
|
Puhlmann LM, Vrtička P, Linz R, Valk SL, Papassotiriou I, Chrousos GP, Engert V, Singer T. Serum BDNF Increase After 9-Month Contemplative Mental Training Is Associated With Decreased Cortisol Secretion and Increased Dentate Gyrus Volume: Evidence From a Randomized Clinical Trial. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100414. [PMID: 39896238 PMCID: PMC11786774 DOI: 10.1016/j.bpsgos.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
Background In this study, we investigated whether mindfulness- and meditation-based mental training that improves stress regulation can upregulate BDNF (brain-derived neurotrophic factor), an important promoter of hippocampal neuroplasticity, and examined cortisol reduction as a mediating pathway. Methods In a randomized clinical trial, 332 healthy adults were randomly assigned to one of the 3 training cohorts or a passive control cohort. Training participants completed up to three 3-month-long modules targeting attention-based mindfulness, socio-affective skills, or socio-cognitive skills. We examined change in serum BDNF levels after each 3-month training interval; evaluated whether training effects were linked to reduced cortisol release in the long-term, diurnally, and when acutely stress-induced; and explored associations with hippocampal volume changes. Results In the combined training cohorts, BDNF increased significantly and cumulatively after 3-, 6-, and 9-month training relative to the pretraining baseline (3 month: t 516 = 3.57 [estimated increase: 1353 pg/mL], 6 month: t 516 = 3.45 [1557 pg/mL], 9 month: t 516 = 3.45 [2276 pg/mL]; all ps < .001). After 9 months, training cohort BDNF was not higher than control cohort BDNF, which displayed unexplained variance. However, moderated mediation analysis showed that only training effects, and not control cohort BDNF change, were partially mediated by simultaneously reduced long-term cortisol release (3-month averages) measured in hair (15.1% mediation, p = .021). Individually greater BDNF increase after training correlated with more reduced long-term and stress-induced cortisol release. Moreover, greater BDNF increase after 9 months of training correlated with dentate gyrus volume increase (t 108 = 2.09, p = .039). Conclusions Longitudinal contemplative training may promote a neurobiological pathway from stress reduction to increased BDNF levels to enhanced hippocampal volume. However, single serum BDNF measurements can be unreliable for assessing long-term neurotrophic effects in healthy adults. Future studies should investigate nonspecific BDNF measurement effects before considering application in preventive health care.
Collapse
Affiliation(s)
- Lara M.C. Puhlmann
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Pascal Vrtička
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Roman Linz
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, Aghia Sophia Children’s Hospital, Athens, Greece
| | - George P. Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Veronika Engert
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying Mental Health, Halle-Jena-Magdeburg, Jena, Germany
| | - Tania Singer
- Social Neuroscience Laboratory, Max Planck Society, Berlin, Germany
| |
Collapse
|
7
|
Sadeghpour N, Lim SA, Wuestefeld A, Denning AE, Ittyerah R, Trotman W, Chung E, Sadaghiani S, Prabhakaran K, Bedard ML, Ohm DT, Artacho-Pérula E, Iñiguez de Onzoño Martin MM, Muñoz M, Molina Romero FJ, Delgado González JC, Jiménez MDMA, Rabal MDPM, Insausti Serrano AM, González NV, Sánchez SC, de la Rosa Prieto C, Insausti R, McMillan C, Lee EB, Detre JA, Das SR, Xie L, Tisdall MD, Irwin DJ, Wolk DA, Yushkevich PA, Wisse LEM. Developing an anatomically valid segmentation protocol for anterior regions of the medial temporal lobe for neurodegenerative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637506. [PMID: 39990318 PMCID: PMC11844510 DOI: 10.1101/2025.02.11.637506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background The anterior portion of the medial temporal lobe (MTL) is one of the first regions targeted by pathology in sporadic Alzheimer's disease (AD) and Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) indicating a potential for metrics from this region to serve as imaging biomarkers. Leveraging a unique post-mortem dataset of histology and magnetic resonance imaging (MRI) scans we aimed to 1) develop an anatomically valid segmentation protocol for anterior entorhinal cortex (ERC), Brodmann Area (BA) 35, and BA36 for in vivo 3 tesla (T) MRI and 2) incorporate this protocol in an automated approach. Methods We included 20 cases (61-97 years old, 50% females) with and without neurodegenerative diseases (11 vs. 9 cases) to ensure generalizability of the developed protocol. Digitized MTL Nissl-stained coronal histology sections from these cases were annotated and registered to same-subject post-mortem MRI. The protocol was developed by determining the location of histological borders of the MTL cortices in relation to anatomical landmarks. Subsequently the protocol was applied to 15 cases twice, with a 2-week interval, to assess intra-rater reliability with the Dice Similarity Index (DSI). Thereafter it was implemented in our in-house Automatic Segmentation of Hippocampal Subfields (ASHS)-T1 approach and evaluated with DSIs. Results The anterior histological border distances of ERC, BA35 and BA36 were evaluated with respect to various anatomical landmarks and the distance relative to the beginning of the hippocampus was chosen. To formulate segmentation rules, we examined the histological sections for the location of borders in relationship to anatomical landmarks in the coronal sections. The DSI for the anterior MTL cortices for the intra-rater reliability was 0.85-0.88 and for the ASHS-T1 against the manual segmentation was 0.62-0.65. Discussion We developed a reliable segmentation protocol and incorporated it in an automated approach. Given the vulnerability of the anterior MTL cortices to tau deposition in AD and LATE, the updated approach is expected to improve imaging biomarkers for these diseases.
Collapse
Affiliation(s)
- Niyousha Sadeghpour
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney A. Lim
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Amanda E. Denning
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winifred Trotman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eunice Chung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shokufeh Sadaghiani
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karthik Prabhakaran
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madigan L. Bedard
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel T. Ohm
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emilio Artacho-Pérula
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | | | - Monica Muñoz
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Francisco Javier Molina Romero
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - José Carlos Delgado González
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - María del Mar Arroyo Jiménez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Maria del Pilar Marcos Rabal
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Ana María Insausti Serrano
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Noemí Vilaseca González
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Sandra Cebada Sánchez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Carlos de la Rosa Prieto
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, University of Castilla-La Mancha and Institute for Biomedicine, Albacete, Spain
| | - Corey McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A. Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandhitsu R. Das
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Long Xie
- Department of Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ 08540, USA
| | - M. Dylan Tisdall
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David J. Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A. Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura EM. Wisse
- Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Zilioli A, Pancaldi B, Baumeister H, Busi G, Misirocchi F, Mutti C, Florindo I, Morelli N, Mohanty R, Berron D, Westman E, Spallazzi M. Unveiling the hippocampal subfield changes across the Alzheimer's disease continuum: a systematic review of neuroimaging studies. Brain Imaging Behav 2025; 19:253-267. [PMID: 39443362 DOI: 10.1007/s11682-024-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Studies exploring the hippocampal subfield atrophy in Alzheimer's disease (AD) have shown contradictory results. This review aims to disentangle such heterogeneity by investigating the dynamic changes of hippocampal subfields across the AD continuum. We systematically searched the PubMed and EMBASE databases for case-control studies. Selected studies included investigations of biomarker-based amyloid status and reported data on hippocampal subfield atrophy using advanced MRI techniques. Twelve studies were included. Despite high heterogeneity, a distinguishable pattern of vulnerability of hippocampal subfields can be recognized from the cognitively unimpaired phase to the dementia stage, shedding light on hippocampal changes with disease progression. Consistent findings revealed atrophy in the subiculum and presubiculum, along with a potential increase in volume in the cornu ammonis (CA) among the cognitively unimpaired group, a feature not observed in patients experiencing subjective cognitive decline. Atrophy in the subiculum, presubiculum, CA 1-4, and the dentate gyrus characterized the mild cognitive impairment stage, with a more pronounced severity in the progression to dementia.
Collapse
Affiliation(s)
- Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Beatrice Pancaldi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gabriele Busi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Carlotta Mutti
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Florindo
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| | - Nicola Morelli
- Department of Neurology, G. da Saliceto Hospital, Piacenza, Italy
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| |
Collapse
|
9
|
Witkowski PP, Rondot L, Kurth-Nelson Z, Garvert MM, Dolan RJ, Behrens TEJ, Boorman ED. Neural mechanisms of credit assignment for delayed outcomes during contingent learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606895. [PMID: 39149338 PMCID: PMC11326259 DOI: 10.1101/2024.08.06.606895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a "pending" state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.
Collapse
Affiliation(s)
- Phillip P. Witkowski
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618
- Department of Psychology, University of California Davis, Davis, CA, 95618
- National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Lindsay Rondot
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618
- Department of Psychology, University of California Davis, Davis, CA, 95618
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Google DeepMind, London, UK
| | - Mona M. Garvert
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Timothy E. J. Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Erie D. Boorman
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618
- Department of Psychology, University of California Davis, Davis, CA, 95618
| |
Collapse
|
10
|
Tu AS, Krohn NA, Cooper OC, Puthusseryppady V, McIntyre C, Chrastil ER. Do total hippocampus and hippocampal subfield volumes relate to navigation ability? A call towards methodological consistency. Cortex 2024; 181:233-257. [PMID: 39566126 DOI: 10.1016/j.cortex.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 11/22/2024]
Abstract
Despite the need for successful navigation, humans vary greatly in their ability to navigate, and these individual differences may relate to variation in brain structure. While prior research provides support for a correlation between hippocampal volume and navigation ability in both navigation experts and in older individuals, this relationship is under scrutiny for healthy, young adults. We assessed 99 healthy young adults' ability to navigate in a virtual, desktop maze and correlated their performance with total hippocampal gray matter volume. For a subset of these individuals, we further segmented the medial temporal lobe-including regions of the hippocampus-into anatomically-distinct subregions to uniquely examine the association between volumes of hippocampal subfields and navigation. Given the need to distinguish between similar-looking maze hallways and partially overlapping routes, young adults with stronger pattern separation ability may perform better in this task. Thus, we theorized that successful navigation would positively correlate with hippocampal CA3 and dentate gyrus (DG) subfield volumes due to these regions' role in pattern separation. CA1 and entorhinal cortex (ERC) are both associated with rodent spatial memory, too, suggesting a possible relationship between their volumes and navigation performance. Consistent with our hypotheses, we observed a positive relationship between volumes of hippocampal subfields and wayfinding accuracy, while ERC and parahippocampal cortex volumes correlated with navigation efficiency. However, when analyzing total hippocampal volume, a nuanced interpretation is warranted. We found evidence of Simpson's Paradox, where total hippocampal volume and navigation accuracy displayed no correlation in males, a negative correlation in females, yet a positive correlation when considering the full sample of males and females combined. Furthermore, no significant relationship was observed between total hippocampal volume and path efficiency. Given these findings, we urge caution in interpreting the results because these associations differ by analysis techniques (including voxel-based morphometry), after sex stratification, and with anterior and posterior hippocampal subdivisions. Overall, this study enhances our understanding of the relationship between brain volume and navigation ability for young adults but also emphasizes the need for methodological consistency across studies with respect to boundary definitions, neuroimaging techniques, statistical methods, and factors that give rise to individual differences.
Collapse
Affiliation(s)
- Alina S Tu
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92612, USA
| | - Nicholas A Krohn
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92612, USA
| | - Olivia C Cooper
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92612, USA
| | | | - Caitlin McIntyre
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92612, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92612, USA.
| |
Collapse
|
11
|
Hupka DJ, Abey A, Misaghi E, Gargula J, Steve TA. Curved multiplanar reformatting allows the accurate histological delineation of hippocampal subfields. Hippocampus 2024; 34:625-632. [PMID: 39258930 DOI: 10.1002/hipo.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Hippocampal subfields perform specific roles in normal cognitive functioning and have distinct vulnerabilities in neurological disorders. However, measurement of subfields with MRI is technically difficult in the head and tail of the hippocampus. Recent studies have utilized curved multiplanar reconstruction (CMPR) to improve subfield visualization in the head and tail, but this method has not yet been applied to histological data. METHODS We utilized BigBrain data, an open-source database of serially sectioned histological data for our analyses. The left hippocampus was segmented according to histological criteria by two raters in order to evaluate intra- and inter-rater reliability of histology-based segmentation throughout the long axis. Segmentation according to our previous protocol for the hippocampal body was then compared to these histological measurements to evaluate for histological validity. Agreement between segmentations was evaluated using Dice similarity coefficients (DSCs). RESULTS Intra-rater reliability (DSCs) of histological segmentation was excellent for all subfields: CA1 (0.8599), CA2 (0.7586), CA3/CA4/DG (0.8907), SLM (0.9123), subiculum (0.8149). Similarly, inter-rater reliability analysis demonstrated excellent agreement (DSCs) for all subfield locations: CA1 (0.8203), CA2 (0.7253), CA3/CA4/DG (0.8439), SLM (0.8700), subiculum (0.7794). Finally, histological accuracy (DSCs) for our previous protocol was excellent for all subfields: CA1 (0.8821), CA2 (0.8810), CA3/CA4/DG (0.9802), SLM (0.9879), subiculum (0.8774). When subfields in the hippocampus head, body, and tail were analyzed independently, DSCs also showed excellent agreement. CONCLUSIONS CMPR allows reliable subfield segmentation based on histological criteria throughout the hippocampal head, body, and tail. Our previous protocol for the hippocampal body can be applied to provide histologically valid subfield measurements throughout the entire hippocampal long axis.
Collapse
Affiliation(s)
- Devon James Hupka
- Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Abey
- Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ehsan Misaghi
- Department of Medical Genetics and Ophthalmology & Visual Sciences, Faculty of Medicine and Dentistry, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Justine Gargula
- Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Trevor Adam Steve
- Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Yushkevich PA, Ittyerah R, Li Y, Denning AE, Sadeghpour N, Lim S, McGrew E, Xie L, DeFlores R, Brown CA, Wisse LEM, Wolk DA, Das SR. Morphometry of medial temporal lobe subregions using high-resolution T2-weighted MRI in ADNI3: Why, how, and what's next? Alzheimers Dement 2024; 20:8113-8128. [PMID: 39279366 PMCID: PMC11567830 DOI: 10.1002/alz.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/18/2024]
Abstract
This paper for the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI) provides an overview of magnetic resonance imaging (MRI) of medial temporal lobe (MTL) subregions in ADNI using a dedicated high-resolution T2-weighted sequence. A review of the work that supported the inclusion of this imaging modality into ADNI Phase 3 is followed by a brief description of the ADNI MTL imaging and analysis protocols and a summary of studies that have used these data. This review is supplemented by a new study that uses novel surface-based tools to characterize MTL neurodegeneration across biomarker-defined AD stages. This analysis reveals a pattern of spreading cortical thinning associated with increasing levels of tau pathology in the presence of elevated amyloid beta, with apparent epicenters in the transentorhinal region and inferior hippocampal subfields. The paper concludes with an outlook for high-resolution imaging of the MTL in ADNI Phase 4. HIGHLIGHTS: As of Phase 3, the Alzheimer's Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) protocol includes a high-resolution T2-weighted MRI scan optimized for imaging hippocampal subfields and medial temporal lobe (MTL) subregions. These scans are processed by the ADNI core to obtain automatic segmentations of MTL subregions and to derive morphologic measurements. More detailed granular examination of MTL neurodegeneration in response to disease progression is achieved by applying surface-based modeling techniques. Surface-based analysis of gray matter loss in MTL subregions reveals increasing and spatially expanding patterns of neurodegeneration with advancing stages of Alzheimer's disease (AD), as defined based on amyloid and tau positron emission tomography biomarkers in accordance with recently proposed criteria. These patterns closely align with post mortem literature on spread of pathological tau in AD, supporting the role of tau pathology in the presence of elevated levels of amyloid beta as the driver of neurodegeneration.
Collapse
Affiliation(s)
- Paul A. Yushkevich
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Ranjit Ittyerah
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Yue Li
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Amanda E. Denning
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Niyousha Sadeghpour
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Sydney Lim
- Department of RadiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Emily McGrew
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Long Xie
- Department of Digital Technology and InnovationSiemens HealthineersMalvernPennsylvaniaUSA
| | - Robin DeFlores
- UMR‐S U1237PhIND “Physiopathology and Imaging of Neurological Disorders”INSERMCaenFrance
| | - Christopher A. Brown
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - David A. Wolk
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Sandhitsu R. Das
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
13
|
Mazloum‐Farzaghi N, Barense M, Ryan J, Stark C, Olsen R. The Effect of Segmentation Method on Medial Temporal Lobe Subregion Volumes in Aging. Hum Brain Mapp 2024; 45:e70054. [PMID: 39450487 PMCID: PMC11502966 DOI: 10.1002/hbm.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Early stages of Alzheimer's disease (AD) are associated with volume reductions in specific subregions of the medial temporal lobe (MTL). Using a manual segmentation method-the Olsen-Amaral-Palombo (OAP) protocol-previous work in healthy older adults showed that reductions in grey matter volumes in MTL subregions were associated with lower scores on the Montreal Cognitive Assessment (MoCA), suggesting atrophy may occur prior to diagnosis of mild cognitive impairment, a condition that often progresses to AD. However, current "gold standard" manual segmentation methods are labour intensive and time consuming. Here, we examined the utility of Automatic Segmentation of Hippocampal Subfields (ASHS) to detect volumetric differences in MTL subregions of healthy older adults who varied in cognitive status as determined by the MoCA. We trained ASHS on the OAP protocol to create the ASHS-OAP atlas and then examined how well automated segmentation replicated manual segmentation. Volumetric measures obtained from the ASHS-OAP atlas were also contrasted against those from the ASHS-PMC atlas, a widely used atlas provided by the ASHS team. The pattern of volumetric results was similar between the ASHS-OAP atlas and manual segmentation for anterolateral entorhinal cortex and perirhinal cortex, suggesting that ASHS-OAP is a viable alternative to current manual segmentation methods for detecting group differences based on cognitive status. Although ASHS-OAP and ASHS-PMC produced varying volumes for most regions of interest, they both identified early signs of neurodegeneration in CA2/CA3/DG and identified marginal differences in entorhinal cortex. Our findings highlight the utility of automated segmentation methods but still underscore the need for a unified and harmonized MTL segmentation atlas.
Collapse
Affiliation(s)
- Negar Mazloum‐Farzaghi
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
| | - Morgan D. Barense
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
| | - Jennifer D. Ryan
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Craig E. L. Stark
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Rosanna K. Olsen
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
| |
Collapse
|
14
|
Canada KL, Mazloum‐Farzaghi N, Rådman G, Adams JN, Bakker A, Baumeister H, Berron D, Bocchetta M, Carr VA, Dalton MA, de Flores R, Keresztes A, La Joie R, Mueller SG, Raz N, Santini T, Shaw T, Stark CEL, Tran TT, Wang L, Wisse LEM, Wuestefeld A, Yushkevich PA, Olsen RK, Daugherty AM. A (sub)field guide to quality control in hippocampal subfield segmentation on high-resolution T 2-weighted MRI. Hum Brain Mapp 2024; 45:e70004. [PMID: 39450914 PMCID: PMC11503726 DOI: 10.1002/hbm.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 10/26/2024] Open
Abstract
Inquiries into properties of brain structure and function have progressed due to developments in magnetic resonance imaging (MRI). To sustain progress in investigating and quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the validity and reliability of brain measurements. Despite its importance, there is little guidance on best QC practices and reporting procedures. The study of hippocampal subfields in vivo is a critical case for QC because of their small size, inter-dependent boundary definitions, and common artifacts in the MRI data used for subfield measurements. We addressed this gap by surveying the broader scientific community studying hippocampal subfields on their views and approaches to QC. We received responses from 37 investigators spanning 10 countries, covering different career stages, and studying both healthy and pathological development and aging. In this sample, 81% of researchers considered QC to be very important or important, and 19% viewed it as fairly important. Despite this, only 46% of researchers reported on their QC processes in prior publications. In many instances, lack of reporting appeared due to ambiguous guidance on relevant details and guidance for reporting, rather than absence of QC. Here, we provide recommendations for correcting errors to maximize reliability and minimize bias. We also summarize threats to segmentation accuracy, review common QC methods, and make recommendations for best practices and reporting in publications. Implementing the recommended QC practices will collectively improve inferences to the larger population, as well as have implications for clinical practice and public health.
Collapse
Affiliation(s)
- Kelsey L. Canada
- Institute of Gerontology, Wayne State UniversityDetroitMichiganUSA
| | - Negar Mazloum‐Farzaghi
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research Institute, Baycrest Academy for Research and EducationTorontoOntarioCanada
| | - Gustaf Rådman
- Department of Clinical Sciences LundLund UniversityLundSweden
| | - Jenna N. Adams
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - David Berron
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of HealthMedicine and Life Sciences, Brunel University LondonLondonUK
| | - Valerie A. Carr
- Department of PsychologySan Jose State UniversitySan JoseCaliforniaUSA
| | - Marshall A. Dalton
- School of Psychology, Faculty of ScienceThe University of SydneySydneyAustralia
- Brain and Mind CentreThe University of SydneySydneyAustralia
| | - Robin de Flores
- INSERM UMR‐S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain Caen‐Normandie, Caen‐Normandie University, GIP CyceronCaenFrance
| | - Attila Keresztes
- Brain Imaging Centre, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Institute of Psychology, ELTE Eötvös Loránd UniversityBudapestHungary
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Renaud La Joie
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Susanne G. Mueller
- Department of RadiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
- Department of PsychologyStony Brook UniversityStony BrookNew YorkUSA
| | - Tales Santini
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Thomas Shaw
- School of Electrical Engineering and Computer Science, The University of QueenslandBrisbaneAustralia
| | - Craig E. L. Stark
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tammy T. Tran
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Lei Wang
- Department of Psychiatry and Behavioral HealthThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | | | - Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences, MalmöLund UniversityMalmoSweden
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rosanna K. Olsen
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research Institute, Baycrest Academy for Research and EducationTorontoOntarioCanada
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State UniversityDetroitMichiganUSA
- Department of PsychologyWayne State UniversityDetroitMichiganUSA
- Michigan Alzheimer's Disease Research CenterAnn ArborMichiganUSA
| | | |
Collapse
|
15
|
Sackl M, Tinauer C, Urschler M, Enzinger C, Stollberger R, Ropele S. Fully Automated Hippocampus Segmentation using T2-informed Deep Convolutional Neural Networks. Neuroimage 2024; 298:120767. [PMID: 39103064 DOI: 10.1016/j.neuroimage.2024.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Hippocampal atrophy (tissue loss) has become a fundamental outcome parameter in clinical trials on Alzheimer's disease. To accurately estimate hippocampus volume and track its volume loss, a robust and reliable segmentation is essential. Manual hippocampus segmentation is considered the gold standard but is extensive, time-consuming, and prone to rater bias. Therefore, it is often replaced by automated programs like FreeSurfer, one of the most commonly used tools in clinical research. Recently, deep learning-based methods have also been successfully applied to hippocampus segmentation. The basis of all approaches are clinically used T1-weighted whole-brain MR images with approximately 1 mm isotropic resolution. However, such T1 images show low contrast-to-noise ratios (CNRs), particularly for many hippocampal substructures, limiting delineation reliability. To overcome these limitations, high-resolution T2-weighted scans are suggested for better visualization and delineation, as they show higher CNRs and usually allow for higher resolutions. Unfortunately, such time-consuming T2-weighted sequences are not feasible in a clinical routine. We propose an automated hippocampus segmentation pipeline leveraging deep learning with T2-weighted MR images for enhanced hippocampus segmentation of clinical T1-weighted images based on a series of 3D convolutional neural networks and a specifically acquired multi-contrast dataset. This dataset consists of corresponding pairs of T1- and high-resolution T2-weighted images, with the T2 images only used to create more accurate manual ground truth annotations and to train the segmentation network. The T2-based ground truth labels were also used to evaluate all experiments by comparing the masks visually and by various quantitative measures. We compared our approach with four established state-of-the-art hippocampus segmentation algorithms (FreeSurfer, ASHS, HippoDeep, HippMapp3r) and demonstrated a superior segmentation performance. Moreover, we found that the automated segmentation of T1-weighted images benefits from the T2-based ground truth data. In conclusion, this work showed the beneficial use of high-resolution, T2-based ground truth data for training an automated, deep learning-based hippocampus segmentation and provides the basis for a reliable estimation of hippocampal atrophy in clinical studies.
Collapse
Affiliation(s)
- Maximilian Sackl
- Department of Neurology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | | | - Martin Urschler
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | | | - Rudolf Stollberger
- Institute of Biomedical Imaging, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
16
|
Valk SL, Engert V, Puhlmann L, Linz R, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, Singer T. Differential increase of hippocampal subfield volume after socio-affective mental training relates to reductions in diurnal cortisol. eLife 2024; 12:RP87634. [PMID: 39196261 DOI: 10.7554/elife.87634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.
Collapse
Affiliation(s)
- Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- INM-7, FZ Jülich, Jülich, Germany
- Institute for System Neurosciences, Heinrich Heine University, Düsseldorf, Germany
| | - Veronika Engert
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lara Puhlmann
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Roman Linz
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Caldairou
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| |
Collapse
|
17
|
Eichert N, DeKraker J, Howard AFD, Huszar IN, Zhu S, Sallet J, Miller KL, Mars RB, Jbabdi S, Bernhardt BC. Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain. Nat Commun 2024; 15:5963. [PMID: 39013855 PMCID: PMC11252401 DOI: 10.1038/s41467-024-49823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Jordan DeKraker
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Silei Zhu
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- INSERM U1208 Stem Cell and Brain Research Institute, Univ Lyon, Bron, France
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Boris C Bernhardt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Gao N, Ye C, Chen H, Hao X, Ma T. MRI-based axis-referenced morphometric model corresponding to lamellar organization for assessing hippocampal atrophy in dementia. Hum Brain Mapp 2024; 45:e26715. [PMID: 38994693 PMCID: PMC11240145 DOI: 10.1002/hbm.26715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 05/04/2024] [Indexed: 07/13/2024] Open
Abstract
Research on the local hippocampal atrophy for early detection of dementia has gained considerable attention. However, accurately quantifying subtle atrophy remains challenging in existing morphological methods due to the lack of consistent biological correspondence with the complex curving regions like the hippocampal head. Thereby, this article presents an innovative axis-referenced morphometric model (ARMM) that follows the anatomical lamellar organization of the hippocampus, which capture its precise and consistent longitudinal curving trajectory. Specifically, we establish an "axis-referenced coordinate system" based on a 7 T ex vivo hippocampal atlas following its entire curving longitudinal axis and orthogonal distributed lamellae. We then align individual hippocampi by deforming this template coordinate system to target spaces using boundary-guided diffeomorphic transformation, while ensuring that the lamellar vectors adhere to the constraint of medial-axis geometry. Finally, we measure local thickness and curvatures based on the coordinate system and boundary surface reconstructed from vector tips. The morphometric accuracy is evaluated by comparing reconstructed surfaces with those directly extracted from 7 T and 3 T MRI hippocampi. The results demonstrate that ARMM achieves the best performance, particularly in the curving head, surpassing the state-of-the-art morphological models. Additionally, morphological measurements from ARMM exhibit higher discriminatory power in distinguishing early Alzheimer's disease from mild cognitive impairment compared to volume-based measurements. Overall, the ARMM offers a precise morphometric assessment of hippocampal morphology on MR images, and sheds light on discovering potential image markers for neurodegeneration associated with hippocampal impairment.
Collapse
Affiliation(s)
- Na Gao
- Electronic & Information Engineering SchoolHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Chenfei Ye
- International Research Institute for Artificial Intelligence, Harbin Institute of Technology at ShenzhenShenzhenChina
| | - Hantao Chen
- Electronic & Information Engineering SchoolHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Xingyu Hao
- Electronic & Information Engineering SchoolHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Ting Ma
- Electronic & Information Engineering SchoolHarbin Institute of Technology (Shenzhen)ShenzhenChina
- International Research Institute for Artificial Intelligence, Harbin Institute of Technology at ShenzhenShenzhenChina
- Peng Cheng LaboratoryShenzhenChina
| |
Collapse
|
19
|
Hickling AL, Clark IA, Wu YI, Maguire EA. Automated protocols for delineating human hippocampal subfields from 3 Tesla and 7 Tesla magnetic resonance imaging data. Hippocampus 2024; 34:302-308. [PMID: 38593279 DOI: 10.1002/hipo.23606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Researchers who study the human hippocampus are naturally interested in how its subfields function. However, many researchers are precluded from examining subfields because their manual delineation from magnetic resonance imaging (MRI) scans (still the gold standard approach) is time consuming and requires significant expertise. To help ameliorate this issue, we present here two protocols, one for 3T MRI and the other for 7T MRI, that permit automated hippocampus segmentation into six subregions, namely dentate gyrus/cornu ammonis (CA)4, CA2/3, CA1, subiculum, pre/parasubiculum, and uncus along the entire length of the hippocampus. These protocols are particularly notable relative to existing resources in that they were trained and tested using large numbers of healthy young adults (n = 140 at 3T, n = 40 at 7T) whose hippocampi were manually segmented by experts from MRI scans. Using inter-rater reliability analyses, we showed that the quality of automated segmentations produced by these protocols was high and comparable to expert manual segmenters. We provide full open access to the automated protocols, and anticipate they will save hippocampus researchers a significant amount of time. They could also help to catalyze subfield research, which is essential for gaining a full understanding of how the hippocampus functions.
Collapse
Affiliation(s)
- Alice L Hickling
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ian A Clark
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Yan I Wu
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
20
|
Kember J, Patenaude P, Sweatman H, Van Schaik L, Tabuenca Z, Chai XJ. Specialization of anterior and posterior hippocampal functional connectivity differs in autism. Autism Res 2024; 17:1126-1139. [PMID: 38770780 DOI: 10.1002/aur.3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Structural and functional differences in the hippocampus have been related to the episodic memory and social impairments observed in autism spectrum disorder (ASD). In neurotypical individuals, hippocampal-cortical functional connectivity systematically varies between anterior and posterior hippocampus, with changes observed during typical development. It remains unknown whether this specialization of anterior-posterior hippocampal connectivity is disrupted in ASD, and whether age-related differences in this specialization exist in ASD. We examined connectivity of the anterior and posterior hippocampus in an ASD (N = 139) and non-autistic comparison group (N = 133) aged 5-21 using resting-state functional magnetic resonance imaging (MRI) data from the Healthy Brain Network (HBN). Consistent with previous results, we observed lower connectivity between the whole hippocampus and medial prefrontal cortex in ASD. Moreover, preferential connectivity of the posterior relative to the anterior hippocampus for memory-sensitive regions in posterior parietal cortex was reduced in ASD, demonstrating a weaker anterior-posterior specialization of hippocampal-cortical connectivity. Finally, connectivity between the posterior hippocampus and precuneus negatively correlated with age in the ASD group but remained stable in the comparison group, suggesting an altered developmental specialization. Together, these differences in hippocampal-cortical connectivity may help us understand the neurobiological basis of the memory and social impairments found in ASD.
Collapse
Affiliation(s)
- J Kember
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - P Patenaude
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - H Sweatman
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - L Van Schaik
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Z Tabuenca
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Department of Statistics, University of Zaragoza, Zaragoza, Spain
| | - X J Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
21
|
Wuestefeld A, Baumeister H, Adams JN, de Flores R, Hodgetts CJ, Mazloum-Farzaghi N, Olsen RK, Puliyadi V, Tran TT, Bakker A, Canada KL, Dalton MA, Daugherty AM, La Joie R, Wang L, Bedard ML, Buendia E, Chung E, Denning A, Del Mar Arroyo-Jiménez M, Artacho-Pérula E, Irwin DJ, Ittyerah R, Lee EB, Lim S, Del Pilar Marcos-Rabal M, Iñiguez de Onzoño Martin MM, Lopez MM, de la Rosa Prieto C, Schuck T, Trotman W, Vela A, Yushkevich P, Amunts K, Augustinack JC, Ding SL, Insausti R, Kedo O, Berron D, Wisse LEM. Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories. Hippocampus 2024; 34:241-260. [PMID: 38415962 PMCID: PMC11039382 DOI: 10.1002/hipo.23602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 μm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 μm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
| | - Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | | | - Negar Mazloum-Farzaghi
- University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Toronto, Ontario, Canada
| | - Rosanna K Olsen
- University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Toronto, Ontario, Canada
| | - Vyash Puliyadi
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tammy T Tran
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelsey L Canada
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | | | - Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Lei Wang
- The Ohio State University, Columbus, Ohio, USA
| | - Madigan L Bedard
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Esther Buendia
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Eunice Chung
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda Denning
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - David J Irwin
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Edward B Lee
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney Lim
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Monica Munoz Lopez
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | | | - Theresa Schuck
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Alicia Vela
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | | | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Olga Kedo
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Hayashi S, Caron BA, Heinsfeld AS, Vinci-Booher S, McPherson B, Bullock DN, Bertò G, Niso G, Hanekamp S, Levitas D, Ray K, MacKenzie A, Avesani P, Kitchell L, Leong JK, Nascimento-Silva F, Koudoro S, Willis H, Jolly JK, Pisner D, Zuidema TR, Kurzawski JW, Mikellidou K, Bussalb A, Chaumon M, George N, Rorden C, Victory C, Bhatia D, Aydogan DB, Yeh FCF, Delogu F, Guaje J, Veraart J, Fischer J, Faskowitz J, Fabrega R, Hunt D, McKee S, Brown ST, Heyman S, Iacovella V, Mejia AF, Marinazzo D, Craddock RC, Olivetti E, Hanson JL, Garyfallidis E, Stanzione D, Carson J, Henschel R, Hancock DY, Stewart CA, Schnyer D, Eke DO, Poldrack RA, Bollmann S, Stewart A, Bridge H, Sani I, Freiwald WA, Puce A, Port NL, Pestilli F. brainlife.io: a decentralized and open-source cloud platform to support neuroscience research. Nat Methods 2024; 21:809-813. [PMID: 38605111 PMCID: PMC11093740 DOI: 10.1038/s41592-024-02237-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.
Collapse
Affiliation(s)
| | - Bradley A Caron
- Indiana University, Bloomington, IN, USA
- The University of Texas, Austin, TX, USA
| | | | - Sophia Vinci-Booher
- Indiana University, Bloomington, IN, USA
- Vanderbilt University, Nashville, TN, USA
| | - Brent McPherson
- Indiana University, Bloomington, IN, USA
- McGill University, Montréal, Quebec, Canada
| | | | | | - Guiomar Niso
- Indiana University, Bloomington, IN, USA
- Cajal Institute, CSIC, Madrid, Spain
| | | | - Daniel Levitas
- Indiana University, Bloomington, IN, USA
- The University of Texas, Austin, TX, USA
| | | | | | | | - Lindsey Kitchell
- Indiana University, Bloomington, IN, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Josiah K Leong
- Indiana University, Bloomington, IN, USA
- University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | | | | - Kyriaki Mikellidou
- University of Limassol, Nicosia, Cyprus
- University of Cyprus, Nicosia, Cyprus
| | - Aurore Bussalb
- Institut du Cerveau, CNRS, Sorbonne Université, Paris, France
| | | | - Nathalie George
- Institut du Cerveau, CNRS, Sorbonne Université, Paris, France
| | | | | | | | - Dogu Baran Aydogan
- University of Eastern Finland, Kuopio, Finland
- Aalto University School of Science, Espoo, Finland
| | | | - Franco Delogu
- Lawrence Technological University, Southfield, MI, USA
| | | | | | | | | | | | - David Hunt
- Indiana University, Bloomington, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ashley Stewart
- University of Queensland, St Lucia, Queensland, Australia
| | | | - Ilaria Sani
- The Rockefeller University, New York, NY, USA
- University of Geneva, Geneva, Switzerland
| | | | - Aina Puce
- Indiana University, Bloomington, IN, USA
| | | | - Franco Pestilli
- Indiana University, Bloomington, IN, USA.
- The University of Texas, Austin, TX, USA.
| |
Collapse
|
23
|
Tustison NJ, Yassa MA, Rizvi B, Cook PA, Holbrook AJ, Sathishkumar MT, Tustison MG, Gee JC, Stone JR, Avants BB. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. Sci Rep 2024; 14:8848. [PMID: 38632390 PMCID: PMC11024129 DOI: 10.1038/s41598-024-59440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
UK Biobank is a large-scale epidemiological resource for investigating prospective correlations between various lifestyle, environmental, and genetic factors with health and disease progression. In addition to individual subject information obtained through surveys and physical examinations, a comprehensive neuroimaging battery consisting of multiple modalities provides imaging-derived phenotypes (IDPs) that can serve as biomarkers in neuroscience research. In this study, we augment the existing set of UK Biobank neuroimaging structural IDPs, obtained from well-established software libraries such as FSL and FreeSurfer, with related measurements acquired through the Advanced Normalization Tools Ecosystem. This includes previously established cortical and subcortical measurements defined, in part, based on the Desikan-Killiany-Tourville atlas. Also included are morphological measurements from two recent developments: medial temporal lobe parcellation of hippocampal and extra-hippocampal regions in addition to cerebellum parcellation and thickness based on the Schmahmann anatomical labeling. Through predictive modeling, we assess the clinical utility of these IDP measurements, individually and in combination, using commonly studied phenotypic correlates including age, fluid intelligence, numeric memory, and several other sociodemographic variables. The predictive accuracy of these IDP-based models, in terms of root-mean-squared-error or area-under-the-curve for continuous and categorical variables, respectively, provides comparative insights between software libraries as well as potential clinical interpretability. Results demonstrate varied performance between package-based IDP sets and their combination, emphasizing the need for careful consideration in their selection and utilization.
Collapse
Affiliation(s)
- Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | | | | | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
González-Arnay E, Pérez-Santos I, Jiménez-Sánchez L, Cid E, Gal B, de la Prida LM, Cavada C. Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis. Brain Struct Funct 2024; 229:359-385. [PMID: 38180568 PMCID: PMC10917878 DOI: 10.1007/s00429-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024]
Abstract
The primate hippocampus includes the dentate gyrus, cornu ammonis (CA), and subiculum. CA is subdivided into four fields (CA1-CA3, plus CA3h/hilus of the dentate gyrus) with specific pyramidal cell morphology and connections. Work in non-human mammals has shown that hippocampal connectivity is precisely patterned both in the laminar and longitudinal axes. One of the main handicaps in the study of neuropathological semiology in the human hippocampus is the lack of clear laminar and longitudinal borders. The aim of this study was to explore a histochemical segmentation of the adult human hippocampus, integrating field (medio-lateral), laminar, and anteroposterior longitudinal patterning. We provide criteria for head-body-tail field and subfield parcellation of the human hippocampus based on immunodetection of Rabphilin3a (Rph3a), Purkinje-cell protein 4 (PCP4), Chromogranin A and Regulation of G protein signaling-14 (RGS-14). Notably, Rph3a and PCP4 allow to identify the border between CA3 and CA2, while Chromogranin A and RGS-14 give specific staining of CA2. We also provide novel histological data about the composition of human-specific regions of the anterior and posterior hippocampus. The data are given with stereotaxic coordinates along the longitudinal axis. This study provides novel insights for a detailed region-specific parcellation of the human hippocampus useful for human brain imaging and neuropathology.
Collapse
Affiliation(s)
- Emilio González-Arnay
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Basic Medical Science-Division of Human Anatomy, Universidad de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lorena Jiménez-Sánchez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad CEU-San Pablo, Madrid, Spain
| | | | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Villavisanis DF, Khandelwal P, Zapatero ZD, Wagner CS, Blum JD, Cho DY, Swanson JW, Taylor JA, Yushkevich PA, Bartlett SP. Craniofacial Soft-Tissue Anthropomorphic Database with Magnetic Resonance Imaging and Unbiased Diffeomorphic Registration. Plast Reconstr Surg 2024; 153:667-677. [PMID: 37036329 DOI: 10.1097/prs.0000000000010526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
BACKGROUND Objective assessment of craniofacial surgery outcomes in a pediatric population is challenging because of the complexity of patient presentations, diversity of procedures performed, and rapid craniofacial growth. There is a paucity of robust methods to quantify anatomical measurements by age and objectively compare craniofacial dysmorphology and postoperative outcomes. Here, the authors present data in developing a racially and ethnically sensitive anthropomorphic database, providing plastic and craniofacial surgeons with "normal" three-dimensional anatomical parameters with which to appraise and optimize aesthetic and reconstructive outcomes. METHODS Patients with normal craniofacial anatomy undergoing head magnetic resonance imaging (MRI) scans from 2008 to 2021 were included in this retrospective study. Images were used to construct composite (template) images with diffeomorphic image registration method using the Advanced Normalization Tools package. Composites were thresholded to generate binary three-dimensional segmentations used for anatomical measurements in Materalise Mimics. RESULTS High-resolution MRI scans from 130 patients generated 12 composites from an average of 10 MRI sequences each: four 3-year-olds, four 4-year-olds, and four 5-year-olds (two male, two female, two Black, and two White). The average head circumference of 3-, 4-, and 5-year-old composites was 50.3, 51.5, and 51.7 cm, respectively, comparable to normative data published by the World Health Organization. CONCLUSIONS Application of diffeomorphic registration-based image template algorithm to MRI is effective in creating composite templates to represent "normal" three-dimensional craniofacial and soft-tissue anatomy. Future research will focus on development of automated computational tools to characterize anatomical normality, generation of indices to grade preoperative severity, and quantification of postoperative results to reduce subjectivity bias.
Collapse
Affiliation(s)
- Dillan F Villavisanis
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| | - Pulkit Khandelwal
- Department of Radiology, Penn Image Computing and Science Laboratory, University of Pennsylvania
| | - Zachary D Zapatero
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| | - Connor S Wagner
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| | - Jessica D Blum
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| | - Daniel Y Cho
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| | - Jordan W Swanson
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| | - Jesse A Taylor
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| | - Paul A Yushkevich
- Department of Radiology, Penn Image Computing and Science Laboratory, University of Pennsylvania
| | - Scott P Bartlett
- From the Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia
| |
Collapse
|
26
|
Rosenblum EW, Williams EM, Champion SN, Frosch MP, Augustinack JC. The prosubiculum in the human hippocampus: A rostrocaudal, feature-driven, and systematic approach. J Comp Neurol 2024; 532:e25604. [PMID: 38477395 PMCID: PMC11060218 DOI: 10.1002/cne.25604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The hippocampal subfield prosubiculum (ProS), is a conserved neuroanatomic region in mouse, monkey, and human. This area lies between CA1 and subiculum (Sub) and particularly lacks consensus on its boundaries; reports have varied on the description of its features and location. In this report, we review, refine, and evaluate four cytoarchitectural features that differentiate ProS from its neighboring subfields: (1) small neurons, (2) lightly stained neurons, (3) superficial clustered neurons, and (4) a cell sparse zone. ProS was delineated in all cases (n = 10). ProS was examined for its cytoarchitectonic features and location rostrocaudally, from the anterior head through the body in the hippocampus. The most common feature was small pyramidal neurons, which were intermingled with larger pyramidal neurons in ProS. We quantitatively measured ProS pyramidal neurons, which showed (average, width at pyramidal base = 14.31 µm, n = 400 per subfield). CA1 neurons averaged 15.57 µm and Sub neurons averaged 15.63 µm, both were significantly different than ProS (Kruskal-Wallis test, p < .0001). The other three features observed were lightly stained neurons, clustered neurons, and a cell sparse zone. Taken together, these findings suggest that ProS is an independent subfield, likely with distinct functional contributions to the broader interconnected hippocampal network. Our results suggest that ProS is a cytoarchitecturally varied subfield, both for features and among individuals. This diverse architecture in features and individuals for ProS could explain the long-standing complexity regarding the identification of this subfield.
Collapse
Affiliation(s)
- Emma W Rosenblum
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Emily M Williams
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Samantha N Champion
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Evans JW, Graves MC, Nugent AC, Zarate CA. Hippocampal volume changes after (R,S)-ketamine administration in patients with major depressive disorder and healthy volunteers. Sci Rep 2024; 14:4538. [PMID: 38402253 PMCID: PMC10894199 DOI: 10.1038/s41598-024-54370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
The hippocampus and amygdala have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Preclinical models suggest that stress-related changes in these regions can be reversed by antidepressants, including ketamine. Clinical studies have identified reduced volumes in MDD that are thought to be potentiated by early life stress and worsened by repeated depressive episodes. This study used 3T and 7T structural magnetic resonance imaging data to examine longitudinal changes in hippocampal and amygdalar subfield volumes associated with ketamine treatment. Data were drawn from a previous double-blind, placebo-controlled, crossover trial of healthy volunteers (HVs) unmedicated individuals with treatment-resistant depression (TRD) (3T: 18 HV, 26 TRD, 7T: 17 HV, 30 TRD) who were scanned at baseline and twice following either a 40 min IV ketamine (0.5 mg/kg) or saline infusion (acute: 1-2 days, interim: 9-10 days post infusion). No baseline differences were noted between the two groups. At 10 days post-infusion, a slight increase was observed between ketamine and placebo scans in whole left amygdalar volume in individuals with TRD. No other differences were found between individuals with TRD and HVs at either field strength. These findings shed light on the timing of ketamine's effects on cortical structures.
Collapse
Affiliation(s)
- Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA.
| | - Morgan C Graves
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA
| | - Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA
- MEG Core, NIMH, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Dr., Bldg 10, Rm 7-3335, Bethesda, MD, 20814, USA
| |
Collapse
|
28
|
Hoang KN, Huang Y, Fujiwara E, Malykhin N. Effects of healthy aging and mnemonic strategies on verbal memory performance across the adult lifespan: Mediating role of posterior hippocampus. Hippocampus 2024; 34:100-122. [PMID: 38145465 DOI: 10.1002/hipo.23592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
In this study, we aimed to understand the contributions of hippocampal anteroposterior subregions (head, body, tail) and subfields (cornu ammonis 1-3 [CA1-3], dentate gyrus [DG], and subiculum [Sub]) and encoding strategies to the age-related verbal memory decline. Healthy participants were administered the California Verbal Learning Test-II to evaluate verbal memory performance and encoding strategies and underwent 4.7 T magnetic resonance imaging brain scan with subsequent hippocampal subregions and subfields manual segmentation. While total hippocampal volume was not associated with verbal memory performance, we found the volumes of the posterior hippocampus (body) and Sub showed significant effects on verbal memory performance. Additionally, the age-related volume decline in hippocampal body volume contributed to lower use of semantic clustering, resulting in lower verbal memory performance. The effect of Sub on verbal memory was statistically independent of encoding strategies. While total CA1-3 and DG volumes did not show direct or indirect effects on verbal memory, exploratory analyses with DG and CA1-3 volumes within the hippocampal body subregion suggested an indirect effect of age-related volumetric reduction on verbal memory performance through semantic clustering. As semantic clustering is sensitive to age-related hippocampal volumetric decline but not to the direct effect of age, further investigation of mechanisms supporting semantic clustering can have implications for early detection of cognitive impairments and decline.
Collapse
Affiliation(s)
- Kim Ngan Hoang
- Neuroscience and Mental Health Institute, Edmonton, Canada
| | - Yushan Huang
- Neuroscience and Mental Health Institute, Edmonton, Canada
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute, Edmonton, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Nikolai Malykhin
- Neuroscience and Mental Health Institute, Edmonton, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| |
Collapse
|
29
|
McHugo M, Roeske MJ, Vandekar SN, Armstrong K, Avery SN, Heckers S. Smaller anterior hippocampal subfields in the early stage of psychosis. Transl Psychiatry 2024; 14:69. [PMID: 38296964 PMCID: PMC10830481 DOI: 10.1038/s41398-023-02719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Hippocampal volume is smaller in schizophrenia, but it is unclear when in the illness the changes appear and whether specific regions (anterior, posterior) and subfields (CA1, CA2/3, dentate gyrus, subiculum) are affected. Here, we used a high-resolution T2-weighted sequence specialized for imaging hippocampal subfields to test the hypothesis that anterior CA1 volume is lower in early psychosis. We measured subfield volumes across hippocampal regions in a group of 90 individuals in the early stage of a non-affective psychotic disorder and 70 demographically similar healthy individuals. We observed smaller volume in the anterior CA1 and dentate gyrus subfields in the early psychosis group. Our findings support models that implicate anterior CA1 and dentate gyrus subfield deficits in the mechanism of psychosis.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
30
|
Wuestefeld A, Baumeister H, Adams JN, de Flores R, Hodgetts C, Mazloum-Farzaghi N, Olsen RK, Puliyadi V, Tran TT, Bakker A, Canada KL, Dalton MA, Daugherty AM, Joie RL, Wang L, Bedard M, Buendia E, Chung E, Denning A, Arroyo-Jiménez MDM, Artacho-Pérula E, Irwin DJ, Ittyerah R, Lee EB, Lim S, Marcos-Rabal MDP, Martin MMIDO, Lopez MM, Prieto CDLR, Schuck T, Trotman W, Vela A, Yushkevich P, Amunts K, Augustinack JC, Ding SL, Insausti R, Kedo O, Berron D, Wisse LEM. Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.542054. [PMID: 37292729 PMCID: PMC10245880 DOI: 10.1101/2023.05.24.542054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain, Caen-Normandie University, Caen-Normandie, France
| | | | - Negar Mazloum-Farzaghi
- University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, North York, ON, Canada
| | - Rosanna K Olsen
- University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, North York, ON, Canada
| | - Vyash Puliyadi
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Tammy T Tran
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Arnold Bakker
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kelsey L Canada
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | | | - Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco USA
| | - Lei Wang
- The Ohio State University, Columbus, OH, USA
| | - Madigan Bedard
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Eunice Chung
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Lim
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Alicia Vela
- University of Castilla-La Mancha, Albacete, Spain
| | | | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | - Olga Kedo
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | | |
Collapse
|
31
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
32
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
33
|
Zheng L, Gao Z, Doner S, Oyao A, Forloines M, Grilli MD, Barnes CA, Ekstrom AD. Hippocampal contributions to novel spatial learning are both age-related and age-invariant. Proc Natl Acad Sci U S A 2023; 120:e2307884120. [PMID: 38055735 PMCID: PMC10723126 DOI: 10.1073/pnas.2307884120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Older adults show declines in spatial memory, although the extent of these alterations is not uniform across the healthy older population. Here, we investigate the stability of neural representations for the same and different spatial environments in a sample of younger and older adults using high-resolution functional MRI of the medial temporal lobes. Older adults showed, on average, lower neural pattern similarity for retrieving the same environment and more variable neural patterns compared to young adults. We also found a positive association between spatial distance discrimination and the distinctiveness of neural patterns between environments. Our analyses suggested that one source for this association was the extent of informational connectivity to CA1 from other subfields, which was dependent on age, while another source was the fidelity of signals within CA1 itself, which was independent of age. Together, our findings suggest both age-dependent and independent neural contributions to spatial memory performance.
Collapse
Affiliation(s)
- Li Zheng
- Psychology Department, University of Arizona, Tucson, AZ85721
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Stephanie Doner
- Psychology Department, University of Arizona, Tucson, AZ85721
| | - Alexis Oyao
- Psychology Department, University of Arizona, Tucson, AZ85721
| | - Martha Forloines
- Alzheimer’s Disease Center, Department of Neurology, University of California, Davis, Sacramento, CA95816
| | - Matthew D. Grilli
- Psychology Department, University of Arizona, Tucson, AZ85721
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ85721
| | - Carol A. Barnes
- Psychology Department, University of Arizona, Tucson, AZ85721
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ85721
| | - Arne D. Ekstrom
- Psychology Department, University of Arizona, Tucson, AZ85721
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ85721
| |
Collapse
|
34
|
Doran S, Carey D, Knight S, Meaney JF, Kenny RA, De Looze C. Relationship between hippocampal subfield volumes and cognitive decline in healthy subjects. Front Aging Neurosci 2023; 15:1284619. [PMID: 38131011 PMCID: PMC10733466 DOI: 10.3389/fnagi.2023.1284619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
We examined the relationship between hippocampal subfield volumes and cognitive decline over a 4-year period in a healthy older adult population with the goal of identifying subjects at risk of progressive cognitive impairment which could potentially guide therapeutic interventions and monitoring. 482 subjects (68.1 years +/- 7.4; 52.9% female) from the Irish Longitudinal Study on Ageing underwent magnetic resonance brain imaging and a series of cognitive tests. Using K-means longitudinal clustering, subjects were first grouped into three separate global and domain-specific cognitive function trajectories; High-Stable, Mid-Stable and Low-Declining. Linear mixed effects models were then used to establish associations between hippocampal subfield volumes and cognitive groups. Decline in multiple hippocampal subfields was associated with global cognitive decline, specifically the presubiculum (estimate -0.20; 95% confidence interval (CI) -0.78 - -0.02; p = 0.03), subiculum (-0.44; -0.82 - -0.06; p = 0.02), CA1 (-0.34; -0.78 - -0.02; p = 0.04), CA4 (-0.55; -0.93 - -0.17; p = 0.005), molecular layer (-0.49; -0.87 - -0.11; p = 0.01), dentate gyrus (-0.57; -0.94 - -0.19; p = 0.003), hippocampal tail (-0.53; -0.91 - -0.15; p = 0.006) and HATA (-0.41; -0.79 - -0.03; p = 0.04), with smaller volumes for the Low-Declining cognition group compared to the High-Stable cognition group. In contrast to global cognitive decline, when specifically assessing the memory domain, cornu ammonis 1 subfield was not found to be associated with low declining cognition (-0.14; -0.37 - 0.10; p = 0.26). Previously published data shows that atrophy of specific hippocampal subfields is associated with cognitive decline but our study confirms the same effect in subjects asymptomatic at time of enrolment. This strengthens the predictive value of hippocampal subfield atrophy in risk of cognitive decline and may provide a biomarker for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Simon Doran
- Department of Radiology, St James’s Hospital, Dublin, Ireland
- The Thomas Mitchell Centre for Advanced Medical Imaging, St James’s Hospital, Dublin, Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Silvin Knight
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - James F. Meaney
- Department of Radiology, St James’s Hospital, Dublin, Ireland
- The Thomas Mitchell Centre for Advanced Medical Imaging, St James’s Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Mercer’s Institute for Successful Ageing (MISA), St James’s Hospital, Dublin, Ireland
| | - Céline De Looze
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Canada K, Mazloum-Farzaghi N, Rådman G, Adams J, Bakker A, Baumeister H, Berron D, Bocchetta M, Carr V, Dalton M, de Flores R, Keresztes A, La Joie R, Mueller S, Raz N, Santini T, Shaw T, Stark C, Tran T, Wang L, Wisse L, Wuestefeld A, Yushkevich P, Olsen R, Daugherty A. A (Sub)field Guide to Quality Control in Hippocampal Subfield Segmentation on Highresolution T 2-weighted MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.568895. [PMID: 38076964 PMCID: PMC10705396 DOI: 10.1101/2023.11.29.568895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Inquiries into properties of brain structure and function have progressed due to developments in magnetic resonance imaging (MRI). To sustain progress in investigating and quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the validity and reliability of brain measurements. Despite its importance, there is little guidance on best QC practices and reporting procedures. The study of hippocampal subfields in vivo is a critical case for QC because of their small size, inter-dependent boundary definitions, and common artifacts in the MRI data used for subfield measurements. We addressed this gap by surveying the broader scientific community studying hippocampal subfields on their views and approaches to QC. We received responses from 37 investigators spanning 10 countries, covering different career stages, and studying both healthy and pathological development and aging. In this sample, 81% of researchers considered QC to be very important or important, and 19% viewed it as fairly important. Despite this, only 46% of researchers reported on their QC processes in prior publications. In many instances, lack of reporting appeared due to ambiguous guidance on relevant details and guidance for reporting, rather than absence of QC. Here, we provide recommendations for correcting errors to maximize reliability and minimize bias. We also summarize threats to segmentation accuracy, review common QC methods, and make recommendations for best practices and reporting in publications. Implementing the recommended QC practices will collectively improve inferences to the larger population, as well as have implications for clinical practice and public health.
Collapse
Affiliation(s)
- K.L. Canada
- Institute of Gerontology, Wayne State University, Detroit, MI 48202
| | - N. Mazloum-Farzaghi
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - G. Rådman
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - J.N. Adams
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - A. Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - H. Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - D. Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - M. Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - V. Carr
- Department of Psychology, San Jose State University, San Jose, CA 95192
| | - M.A. Dalton
- School of Psychology, University of Sydney, Sydney, Australia
| | - R. de Flores
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - A. Keresztes
- Brain Imaging Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - R. La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - S.G. Mueller
- Department of Radiology, University of California, San Francisco, CA 94143
- Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, San Francisco, California 94121
| | - N. Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| | - T. Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - T. Shaw
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - C.E.L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - T.T. Tran
- Department of Psychology, Stanford University, Stanford, CA 94305
| | - L. Wang
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - L.E.M. Wisse
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - A. Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - P.A. Yushkevich
- Penn Image, Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - R.K. Olsen
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - A.M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI 48202
- Department of Psychology, Wayne State University, Detroit, MI 48202
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105
| |
Collapse
|
36
|
Homayouni R, Canada KL, Saifullah S, Foster D, Thill C, Raz N, Daugherty AM, Ofen N. Age-related differences in hippocampal subfield volumes across the human lifespan: A meta-analysis. Hippocampus 2023; 33:1292-1315. [PMID: 37881160 PMCID: PMC10841547 DOI: 10.1002/hipo.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan. Limited evidence suggests that DG and CA3 volumes differ across development while other regions remain relatively stable, and studies of adulthood implicate a downward trend in all subfield volumes with prominent age effects on CA1. Due to differences in methods and limited sampling for any single study, the magnitude of age effects on Hc subfield volumes and their probable lifespan trajectories remain unclear. Here, we conducted a meta-analysis on cross-sectional studies (n = 48,278 participants, ages = 4-94 years) to examine the association between age and Hc subfield volumes in development (n = 11 studies), adulthood (n = 30 studies), and a combined lifespan sample (n = 41 studies) while adjusting estimates for sample sizes. In development, age was positively associated with DG and CA3-4 volumes, whereas in adulthood a negative association was observed with all subfield volumes. Notably, the observed age effects were not different across subfield volumes within each age group. All subfield volumes showed a nonlinear age pattern across the lifespan with DG and CA3-4 volumes showing a more distinct age trajectory as compared to the other subfields. Lastly, among all the study-level variables, only female percentage of the study sample moderated the age effect on CA1 volume: a higher female-to-male ratio in the study sample was linked to the greater negative association between age and CA1 volume. These results document that Hc subfield volumes differ as a function of age offering broader implications for constructing theoretical models of lifespan memory development.
Collapse
Affiliation(s)
- Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | | | | | - Da’Jonae Foster
- Department of Psychology, Wayne State University, Detroit, MI
| | | | - Naftali Raz
- Department of Psychology, Stony Brook University, Stony Brook, NY
- Max Planck Institute for Human Development, Berlin, Germany
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| |
Collapse
|
37
|
Modo M, Sparling K, Novotny J, Perry N, Foley LM, Hitchens TK. Mapping mesoscale connectivity within the human hippocampus. Neuroimage 2023; 282:120406. [PMID: 37827206 PMCID: PMC10623761 DOI: 10.1016/j.neuroimage.2023.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
The connectivity of the hippocampus is essential to its functions. To gain a whole system view of intrahippocampal connectivity, ex vivo mesoscale (100 μm isotropic resolution) multi-shell diffusion MRI (11.7T) and tractography were performed on entire post-mortem human right hippocampi. Volumetric measurements indicated that the head region was largest followed by the body and tail regions. A unique anatomical organization in the head region reflected a complex organization of the granule cell layer (GCL) of the dentate gyrus. Tractography revealed the volumetric distribution of the perforant path, including both the tri-synaptic and temporoammonic pathways, as well as other well-established canonical connections, such as Schaffer collaterals. Visualization of the perforant path provided a means to verify the borders between the pro-subiculum and CA1, as well as between CA1/CA2. A specific angularity of different layers of fibers in the alveus was evident across the whole sample and allowed a separation of afferent and efferent connections based on their origin (i.e. entorhinal cortex) or destination (i.e. fimbria) using a cluster analysis of streamlines. Non-canonical translamellar connections running along the anterior-posterior axis were also discerned in the hilus. In line with "dentations" of the GCL, mossy fibers were bunching together in the sagittal plane revealing a unique lamellar organization and connections between these. In the head region, mossy fibers projected to the origin of the fimbria, which was distinct from the body and tail region. Mesoscale tractography provides an unprecedented systems view of intrahippocampal connections that underpin cognitive and emotional processing.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology; Department of BioEngineering; McGowan Institute for Regenerative Medicine; Centre for Neuroscience University of Pittsburgh (CNUP); Centre for the Neural Basis of Cognition (CNBC).
| | | | | | | | | | - T Kevin Hitchens
- Small Animal Imaging Center; Departmnet of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| |
Collapse
|
38
|
DeKraker J, Palomero-Gallagher N, Kedo O, Ladbon-Bernasconi N, Muenzing SEA, Axer M, Amunts K, Khan AR, Bernhardt BC, Evans AC. Evaluation of surface-based hippocampal registration using ground-truth subfield definitions. eLife 2023; 12:RP88404. [PMID: 37956092 PMCID: PMC10642966 DOI: 10.7554/elife.88404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches.
Collapse
Affiliation(s)
- Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Olga Kedo
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | | | - Sascha EA Muenzing
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Markus Axer
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Ali R Khan
- Robarts Research Institute, University of Western OntarioLondonCanada
| | - Boris C Bernhardt
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Alan C Evans
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
39
|
Aumont E, Bussy A, Bedard MA, Bezgin G, Therriault J, Savard M, Fernandez Arias J, Sziklas V, Vitali P, Poltronetti NM, Pallen V, Thomas E, Gauthier S, Kobayashi E, Rahmouni N, Stevenson J, Tissot C, Chakravarty MM, Rosa-Neto P. Hippocampal subfield associations with memory depend on stimulus modality and retrieval mode. Brain Commun 2023; 5:fcad309. [PMID: 38035364 PMCID: PMC10681971 DOI: 10.1093/braincomms/fcad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Hippocampal atrophy is a well-known feature of age-related memory decline, and hippocampal subfields may contribute differently to this decline. In this cross-sectional study, we investigated the associations between hippocampal subfield volumes and performance in free recall and recognition memory tasks in both verbal and visual modalities in older adults without dementia. We collected MRIs from 97 (41 males) right-handed participants aged over 60. We segmented the right and left hippocampi into (i) dentate gyrus and cornu ammonis 4 (DG/CA4); (ii) CA2 and CA3 (CA2/CA3); (iii) CA1; (iv) strata radiatum, lacunosum and moleculare; and (v) subiculum. Memory was assessed with verbal free recall and recognition tasks, as well as visual free recall and recognition tasks. Amyloid-β and hippocampal tau positivity were assessed using [18F]AZD4694 and [18F]MK6240 PET tracers, respectively. The verbal free recall and verbal recognition performances were positively associated with CA1 and strata radiatum, lacunosum and moleculare volumes. The verbal free recall and visual free recall were positively correlated with the right DG/CA4. The visual free recall, but not verbal free recall, was also associated with the right CA2/CA3. The visual recognition was not significantly associated with any subfield volume. Hippocampal tau positivity, but not amyloid-β positivity, was associated with reduced DG/CA4, CA2/CA3 and strata radiatum, lacunosum and moleculare volumes. Our results suggest that memory performances are linked to specific subfields. CA1 appears to contribute to the verbal modality, irrespective of the free recall or recognition mode of retrieval. In contrast, DG/CA4 seems to be involved in the free recall mode, irrespective of verbal or visual modalities. These results are concordant with the view that DG/CA4 plays a primary role in encoding a stimulus' distinctive attributes, and that CA2/CA3 could be instrumental in recollecting a visual memory from one of its fragments. Overall, we show that hippocampal subfield segmentation can be useful for detecting early volume changes and improve our understanding of the hippocampal subfields' roles in memory.
Collapse
Affiliation(s)
- Etienne Aumont
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Aurélie Bussy
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
| | - Marc-André Bedard
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gleb Bezgin
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Joseph Therriault
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Melissa Savard
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jaime Fernandez Arias
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Viviane Sziklas
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Paolo Vitali
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | | | - Vanessa Pallen
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Emilie Thomas
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jenna Stevenson
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mallar M Chakravarty
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
40
|
Zheng L, Gao Z, Doner S, Oyao A, Forloines M, Grilli MD, Barnes CA, Ekstrom AD. Hippocampal contributions to novel spatial learning are both age-related and age-invariant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546918. [PMID: 37425879 PMCID: PMC10326977 DOI: 10.1101/2023.06.28.546918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Older adults show declines in spatial memory, although the extent of these alterations is not uniform across the healthy older population. Here, we investigate the stability of neural representations for the same and different spatial environments in a sample of younger and older adults using high-resolution functional magnetic resonance imaging (fMRI) of the medial temporal lobe. Older adults showed, on average, lower neural pattern similarity for retrieving the same environment and more variable neural patterns compared to young adults. We also found a positive association between spatial distance discrimination and the distinctiveness of neural patterns between environments. Our analyses suggested that one source for this association was the extent of informational connectivity to CA1 from other subfields, which was dependent on age, while another source was the fidelity of signals within CA1 itself, which was independent of age. Together, our findings suggest both age-dependent and independent neural contributions to spatial memory performance.
Collapse
Affiliation(s)
- Li Zheng
- Psychology Department, University of Arizona, Tucson, AZ 85719
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Stephanie Doner
- Psychology Department, University of Arizona, Tucson, AZ 85719
| | - Alexis Oyao
- Psychology Department, University of Arizona, Tucson, AZ 85719
| | - Martha Forloines
- Alzheimer s Disease Center, Department of Neurology, University of California, Davis, Sacramento, CA 95816
| | - Matthew D Grilli
- Psychology Department, University of Arizona, Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ 85719
| | - Carol A Barnes
- Psychology Department, University of Arizona, Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ 85719
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, Tucson, AZ 85719
- Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
41
|
Christopher-Hayes NJ, Embury CM, Wiesman AI, May PE, Schantell M, Johnson CM, Wolfson SL, Murman DL, Wilson TW. Piecing it together: atrophy profiles of hippocampal subfields relate to cognitive impairment along the Alzheimer's disease spectrum. Front Aging Neurosci 2023; 15:1212197. [PMID: 38020776 PMCID: PMC10644116 DOI: 10.3389/fnagi.2023.1212197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction People with Alzheimer's disease (AD) experience more rapid declines in their ability to form hippocampal-dependent memories than cognitively normal healthy adults. Degeneration of the whole hippocampal formation has previously been found to covary with declines in learning and memory, but the associations between subfield-specific hippocampal neurodegeneration and cognitive impairments are not well characterized in AD. To improve prognostic procedures, it is critical to establish in which hippocampal subfields atrophy relates to domain-specific cognitive declines among people along the AD spectrum. In this study, we examine high-resolution structural magnetic resonance imaging (MRI) of the medial temporal lobe and extensive neuropsychological data from 29 amyloid-positive people on the AD spectrum and 17 demographically-matched amyloid-negative healthy controls. Methods Participants completed a battery of neuropsychological exams including select tests of immediate recollection, delayed recollection, and general cognitive status (i.e., performance on the Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). Hippocampal subfield volumes (CA1, CA2, CA3, dentate gyrus, and subiculum) were measured using a dedicated MRI slab sequence targeting the medial temporal lobe and used to compute distance metrics to quantify AD spectrum-specific atrophic patterns and their impact on cognitive outcomes. Results Our results replicate prior studies showing that CA1, dentate gyrus, and subiculum hippocampal subfield volumes were significantly reduced in AD spectrum participants compared to amyloid-negative controls, whereas CA2 and CA3 did not exhibit such patterns of atrophy. Moreover, degeneration of the subiculum along the AD spectrum was linked to a significant decline in general cognitive status measured by the MMSE, while degeneration scores of the CA1 and dentate gyrus were more widely associated with declines on the MMSE and tests of learning and memory. Discussion These findings provide evidence that subfield-specific patterns of hippocampal degeneration, in combination with cognitive assessments, may constitute a sensitive prognostic approach and could be used to better track disease trajectories among individuals on the AD spectrum.
Collapse
Affiliation(s)
- Nicholas J. Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Mind and Brain, University of California, Davis, CA, United States
| | - Christine M. Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pamela E. May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, UNMC, Omaha, NE, United States
| | | | | | - Daniel L. Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- Memory Disorders and Behavioral Neurology Program, UNMC, Omaha, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, UNMC, Omaha, NE, United States
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
42
|
Tustison NJ, Yassa MA, Rizvi B, Cook PA, Holbrook AJ, Sathishkumar MT, Tustison MG, Gee JC, Stone JR, Avants BB. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. RESEARCH SQUARE 2023:rs.3.rs-3459157. [PMID: 37961236 PMCID: PMC10635385 DOI: 10.21203/rs.3.rs-3459157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
UK Biobank is a large-scale epidemiological resource for investigating prospective correlations between various lifestyle, environmental, and genetic factors with health and disease progression. In addition to individual subject information obtained through surveys and physical examinations, a comprehensive neuroimaging battery consisting of multiple modalities provides imaging-derived phenotypes (IDPs) that can serve as biomarkers in neuroscience research. In this study, we augment the existing set of UK Biobank neuroimaging structural IDPs, obtained from well-established software libraries such as FSL and FreeSurfer, with related measurements acquired through the Advanced Normalization Tools Ecosystem. This includes previously established cortical and subcortical measurements defined, in part, based on the Desikan-Killiany-Tourville atlas. Also included are morphological measurements from two recent developments: medial temporal lobe parcellation of hippocampal and extra-hippocampal regions in addition to cerebellum parcellation and thickness based on the Schmahmann anatomical labeling. Through predictive modeling, we assess the clinical utility of these IDP measurements, individually and in combination, using commonly studied phenotypic correlates including age, fluid intelligence, numeric memory, and several other sociodemographic variables. The predictive accuracy of these IDP-based models, in terms of root-mean-squared-error or area-under-the-curve for continuous and categorical variables, respectively, provides comparative insights between software libraries as well as potential clinical interpretability. Results demonstrate varied performance between package-based IDP sets and their combination, emphasizing the need for careful consideration in their selection and utilization.
Collapse
Affiliation(s)
- Nicholas J. Tustison
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
- Department of Neurobiology & Behavior, University of California, Irvine, CA
| | - Michael A. Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA
| | - Philip A. Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - James C. Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - James R. Stone
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| | - Brian B. Avants
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| |
Collapse
|
43
|
Geva-Sagiv M, Dimsdale-Zucker HR, Williams AB, Ranganath C. Proximity to boundaries reveals spatial context representation in human hippocampal CA1. Neuropsychologia 2023; 189:108656. [PMID: 37541615 DOI: 10.1016/j.neuropsychologia.2023.108656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Recollection of real-world events is often accompanied by a sense of being in the place where the event transpired. Convergent evidence suggests the hippocampus plays a key role in supporting episodic memory by associating information with the time and place it was originally encountered. This representation is reinstated during memory retrieval. However, little is known about the roles of different subfields of the human hippocampus in this process. Research in humans and non-human animal models has suggested that spatial environmental boundaries have a powerful influence on spatial and episodic memory, as well as hippocampal representations of contexts and events. Here, we used high-resolution fMRI to investigate how boundaries influence hippocampal activity patterns during the recollection of objects encountered in different spatial contexts. During the encoding phase, participants viewed objects once in a naturalistic virtual reality task in which they passively explored two rooms in one of two houses. Following the encoding phase, participants were scanned while they recollected items in the absence of any spatial contextual information. Our behavioral results demonstrated that spatial context memory was enhanced for objects encountered near a boundary. Activity patterns in CA1 carried information about the spatial context associated with each of these boundary items. Exploratory analyses revealed that recollection performance was correlated with the fidelity of retrieved spatial context representations in anterior parahippocampal cortex and subiculum. Our results highlight the privileged role of boundaries in CA1 and suggest more generally a close relationship between memory for spatial contexts and representations in the hippocampus and parahippocampal region.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, University of California, Davis, CA, USA.
| | - Halle R Dimsdale-Zucker
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, Columbia University, USA
| | | | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
44
|
Gervais NJ, Gravelsins L, Brown A, Reuben R, Perovic M, Karkaby L, Nicoll G, Laird K, Ramana S, Bernardini MQ, Jacobson M, Velsher L, Foulkes W, Rajah MN, Olsen RK, Grady C, Einstein G. Disturbed sleep is associated with reduced verbal episodic memory and entorhinal cortex volume in younger middle-aged women with risk-reducing early ovarian removal. Front Endocrinol (Lausanne) 2023; 14:1265470. [PMID: 37859979 PMCID: PMC10584319 DOI: 10.3389/fendo.2023.1265470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Women with early ovarian removal (<48 years) have an elevated risk for both late-life Alzheimer's disease (AD) and insomnia, a modifiable risk factor. In early midlife, they also show reduced verbal episodic memory and hippocampal volume. Whether these reductions correlate with a sleep phenotype consistent with insomnia risk remains unexplored. Methods We recruited thirty-one younger middleaged women with risk-reducing early bilateral salpingo-oophorectomy (BSO), fifteen of whom were taking estradiol-based hormone replacement therapy (BSO+ERT) and sixteen who were not (BSO). Fourteen age-matched premenopausal (AMC) and seventeen spontaneously peri-postmenopausal (SM) women who were ~10y older and not taking ERT were also enrolled. Overnight polysomnography recordings were collected at participants' home across multiple nights (M=2.38 SEM=0.19), along with subjective sleep quality and hot flash ratings. In addition to group comparisons on sleep measures, associations with verbal episodic memory and medial temporal lobe volume were assessed. Results Increased sleep latency and decreased sleep efficiency were observed on polysomnography recordings of those not taking ERT, consistent with insomnia symptoms. This phenotype was also observed in the older women in SM, implicating ovarian hormone loss. Further, sleep latency was associated with more forgetting on the paragraph recall task, previously shown to be altered in women with early BSO. Both increased sleep latency and reduced sleep efficiency were associated with smaller anterolateral entorhinal cortex volume. Discussion Together, these findings confirm an association between ovarian hormone loss and insomnia symptoms, and importantly, identify an younger onset age in women with early ovarian removal, which may contribute to poorer cognitive and brain outcomes in these women.
Collapse
Affiliation(s)
- Nicole J. Gervais
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Alana Brown
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Rebekah Reuben
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mateja Perovic
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Laurice Karkaby
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gina Nicoll
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Kazakao Laird
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Marcus Q. Bernardini
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle Jacobson
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lea Velsher
- Genetics Program, North York General Hospital, Toronto, ON, Canada
| | - William Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - M. Natasha Rajah
- Departments of Psychiatry and Douglas Research Centre, McGill University, Montreal, QC, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Rosanna K. Olsen
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Cheryl Grady
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Women’s College Research Institute, Toronto, ON, Canada
| |
Collapse
|
45
|
Callow DD, Kommula Y, Stark CEL, Smith JC. Acute cycling exercise and hippocampal subfield function and microstructure in healthy older adults. Hippocampus 2023; 33:1123-1138. [PMID: 37526119 PMCID: PMC10543457 DOI: 10.1002/hipo.23571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Aging is associated with deterioration in dentate gyrus (DG) and CA3, both crucial hippocampal subfields for age susceptible memory processes such as mnemonic discrimination (MD). Meanwhile, a single aerobic exercise session alters DG/CA3 function and neural activity in both rats and younger adults and can elicit short-term microstructural alterations in the hippocampus of older adults. However, our understanding of the effects of acute exercise on hippocampal subfield integrity via function and microstructure in older adults is limited. Thus, a within subject-design was employed to determine if 20-min of moderate to vigorous aerobic exercise alters bilateral hippocampal subfield function and microstructure using high-resolution functional magnetic resonance imaging (fMRI) during an MD task (n = 35) and high angular resolution multi-shell diffusion imaging (n = 31), in healthy older adults, compared to seated rest. Following the exercise condition, participants exhibited poorer MD performance, particularly when their perception of effort was higher. Exercise was also related to lower MD-related activity within the DG/CA3 but not CA1 subfield. Finally, after controlling for whole brain gray matter diffusion, exercise was associated with lower neurite density index (NDI) within the DG/CA3. However, exercise-related differences in DG/CA3 activity and NDI were not associated with differences in MD performance. Our results suggest moderate to vigorous aerobic exercise may temporarily inhibit MD performance, and suppress DG/CA3 MD-related activity and NDI, potentially through neuroinflammatory/glial processes. However, additional studies are needed to confirm whether these short-term changes in behavior and hippocampal subfield neurophysiology are beneficial and how they might relate to long-term exercise habits.
Collapse
Affiliation(s)
- Daniel D. Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Yash Kommula
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
46
|
Frick A, Besson G, Salmon E, Delhaye E. Perirhinal cortex is associated with fine-grained discrimination of conceptually confusable objects in Alzheimer's disease. Neurobiol Aging 2023; 130:1-11. [PMID: 37419076 DOI: 10.1016/j.neurobiolaging.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/09/2023]
Abstract
The perirhinal cortex (PrC) stands among the first brain areas to deteriorate in Alzheimer's disease (AD). This study tests to what extent the PrC is involved in representing and discriminating confusable objects based on the conjunction of their perceptual and conceptual features. To this aim, AD patients and control counterparts performed 3 tasks: a naming, a recognition memory, and a conceptual matching task, where we manipulated conceptual and perceptual confusability. A structural MRI of the antero-lateral parahippocampal subregions was obtained for each participant. We found that the sensitivity to conceptual confusability was associated with the left PrC volume in both AD patients and control participants for the recognition memory task, while it was specifically associated with the volume of the left PrC in AD patients for the conceptual matching task. This suggests that a decreased volume of the PrC is related to the ability to disambiguate conceptually confusable items. Therefore, testing recognition memory or conceptual matching of easily conceptually confusable items can provide a potential cognitive marker of PrC atrophy.
Collapse
Affiliation(s)
- Aurélien Frick
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium.
| | - Gabriel Besson
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Eric Salmon
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| | - Emma Delhaye
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
47
|
Hayashi S, Caron BA, Heinsfeld AS, Vinci-Booher S, McPherson B, Bullock DN, Bertò G, Niso G, Hanekamp S, Levitas D, Ray K, MacKenzie A, Kitchell L, Leong JK, Nascimento-Silva F, Koudoro S, Willis H, Jolly JK, Pisner D, Zuidema TR, Kurzawski JW, Mikellidou K, Bussalb A, Rorden C, Victory C, Bhatia D, Baran Aydogan D, Yeh FCF, Delogu F, Guaje J, Veraart J, Bollman S, Stewart A, Fischer J, Faskowitz J, Chaumon M, Fabrega R, Hunt D, McKee S, Brown ST, Heyman S, Iacovella V, Mejia AF, Marinazzo D, Craddock RC, Olivetti E, Hanson JL, Avesani P, Garyfallidis E, Stanzione D, Carson J, Henschel R, Hancock DY, Stewart CA, Schnyer D, Eke DO, Poldrack RA, George N, Bridge H, Sani I, Freiwald WA, Puce A, Port NL, Pestilli F. brainlife.io: A decentralized and open source cloud platform to support neuroscience research. ARXIV 2023:arXiv:2306.02183v3. [PMID: 37332566 PMCID: PMC10274934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research.
Collapse
|
48
|
Diers K, Baumeister H, Jessen F, Düzel E, Berron D, Reuter M. An automated, geometry-based method for hippocampal shape and thickness analysis. Neuroimage 2023; 276:120182. [PMID: 37230208 DOI: 10.1016/j.neuroimage.2023.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
The hippocampus is one of the most studied neuroanatomical structures due to its involvement in attention, learning, and memory as well as its atrophy in ageing, neurological, and psychiatric diseases. Hippocampal shape changes, however, are complex and cannot be fully characterized by a single summary metric such as hippocampal volume as determined from MR images. In this work, we propose an automated, geometry-based approach for the unfolding, point-wise correspondence, and local analysis of hippocampal shape features such as thickness and curvature. Starting from an automated segmentation of hippocampal subfields, we create a 3D tetrahedral mesh model as well as a 3D intrinsic coordinate system of the hippocampal body. From this coordinate system, we derive local curvature and thickness estimates as well as a 2D sheet for hippocampal unfolding. We evaluate the performance of our algorithm with a series of experiments to quantify neurodegenerative changes in Mild Cognitive Impairment and Alzheimer's disease dementia. We find that hippocampal thickness estimates detect known differences between clinical groups and can determine the location of these effects on the hippocampal sheet. Further, thickness estimates improve classification of clinical groups and cognitively unimpaired controls when added as an additional predictor. Comparable results are obtained with different datasets and segmentation algorithms. Taken together, we replicate canonical findings on hippocampal volume/shape changes in dementia, extend them by gaining insight into their spatial localization on the hippocampal sheet, and provide additional, complementary information beyond traditional measures. We provide a new set of sensitive processing and analysis tools for the analysis of hippocampal geometry that allows comparisons across studies without relying on image registration or requiring manual intervention.
Collapse
Affiliation(s)
- Kersten Diers
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hannah Baumeister
- Clinical Cognitive Neuroscience Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Frank Jessen
- Clinical Alzheimer's Disease Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Emrah Düzel
- Clinical Neurophysiology and Memory Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - David Berron
- Clinical Cognitive Neuroscience Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Martin Reuter
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston MA, USA; Department of Radiology, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
49
|
Poiret C, Bouyeure A, Patil S, Grigis A, Duchesnay E, Faillot M, Bottlaender M, Lemaitre F, Noulhiane M. A fast and robust hippocampal subfields segmentation: HSF revealing lifespan volumetric dynamics. Front Neuroinform 2023; 17:1130845. [PMID: 37396459 PMCID: PMC10308024 DOI: 10.3389/fninf.2023.1130845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The hippocampal subfields, pivotal to episodic memory, are distinct both in terms of cyto- and myeloarchitectony. Studying the structure of hippocampal subfields in vivo is crucial to understand volumetric trajectories across the lifespan, from the emergence of episodic memory during early childhood to memory impairments found in older adults. However, segmenting hippocampal subfields on conventional MRI sequences is challenging because of their small size. Furthermore, there is to date no unified segmentation protocol for the hippocampal subfields, which limits comparisons between studies. Therefore, we introduced a novel segmentation tool called HSF short for hippocampal segmentation factory, which leverages an end-to-end deep learning pipeline. First, we validated HSF against currently used tools (ASHS, HIPS, and HippUnfold). Then, we used HSF on 3,750 subjects from the HCP development, young adults, and aging datasets to study the effect of age and sex on hippocampal subfields volumes. Firstly, we showed HSF to be closer to manual segmentation than other currently used tools (p < 0.001), regarding the Dice Coefficient, Hausdorff Distance, and Volumetric Similarity. Then, we showed differential maturation and aging across subfields, with the dentate gyrus being the most affected by age. We also found faster growth and decay in men than in women for most hippocampal subfields. Thus, while we introduced a new, fast and robust end-to-end segmentation tool, our neuroanatomical results concerning the lifespan trajectories of the hippocampal subfields reconcile previous conflicting results.
Collapse
Affiliation(s)
- Clement Poiret
- UNIACT, NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Université Paris Cité, Inserm, Paris, France
| | - Antoine Bouyeure
- UNIACT, NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Université Paris Cité, Inserm, Paris, France
| | - Sandesh Patil
- UNIACT, NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Université Paris Cité, Inserm, Paris, France
| | - Antoine Grigis
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Université Paris Cité, Inserm, Paris, France
| | - Edouard Duchesnay
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Université Paris Cité, Inserm, Paris, France
| | - Matthieu Faillot
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- BioMaps, Service Hospitalier Frédéric Joliot, CNRS, Inserm, Université Paris-Saclay, Orsay, France
| | - Michel Bottlaender
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- BioMaps, Service Hospitalier Frédéric Joliot, CNRS, Inserm, Université Paris-Saclay, Orsay, France
| | - Frederic Lemaitre
- CETAPS EA 3832, Université de Rouen, Rouen, France
- CRIOBE, UAR 3278, CNRS-EPHE-UPVD, Mooréa, France
| | - Marion Noulhiane
- UNIACT, NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- NeuroSpin, CEA Paris-Saclay, Frederic Joliot Institute, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Université Paris Cité, Inserm, Paris, France
| |
Collapse
|
50
|
Crivelli-Decker J, Clarke A, Park SA, Huffman DJ, Boorman ED, Ranganath C. Goal-oriented representations in the human hippocampus during planning and navigation. Nat Commun 2023; 14:2946. [PMID: 37221176 PMCID: PMC10206082 DOI: 10.1038/s41467-023-35967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2023] [Indexed: 05/25/2023] Open
Abstract
Recent work in cognitive and systems neuroscience has suggested that the hippocampus might support planning, imagination, and navigation by forming cognitive maps that capture the abstract structure of physical spaces, tasks, and situations. Navigation involves disambiguating similar contexts, and the planning and execution of a sequence of decisions to reach a goal. Here, we examine hippocampal activity patterns in humans during a goal-directed navigation task to investigate how contextual and goal information are incorporated in the construction and execution of navigational plans. During planning, hippocampal pattern similarity is enhanced across routes that share a context and a goal. During navigation, we observe prospective activation in the hippocampus that reflects the retrieval of pattern information related to a key-decision point. These results suggest that, rather than simply representing overlapping associations or state transitions, hippocampal activity patterns are shaped by context and goals.
Collapse
Affiliation(s)
- Jordan Crivelli-Decker
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| | - Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Seongmin A Park
- Center for Neuroscience, University of California, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - Derek J Huffman
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| | - Erie D Boorman
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|