1
|
Agadagba SK, Yau SY, Liang Y, Dalton K, Thompson B. Bidirectional causality of physical exercise in retinal neuroprotection. Neural Regen Res 2025; 20:3400-3415. [PMID: 39688575 PMCID: PMC11974656 DOI: 10.4103/nrr.nrr-d-24-00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Physical exercise is recognized as an effective intervention to improve mood, physical performance, and general well-being. It achieves these benefits through cellular and molecular mechanisms that promote the release of neuroprotective factors. Interestingly, reduced levels of physical exercise have been implicated in several central nervous system diseases, including ocular disorders. Emerging evidence has suggested that physical exercise levels are significantly lower in individuals with ocular diseases such as glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. Physical exercise may have a neuroprotective effect on the retina. Therefore, the association between reduced physical exercise and ocular diseases may involve a bidirectional causal relationship whereby visual impairment leads to reduced physical exercise and decreased exercise exacerbates the development of ocular disease. In this review, we summarize the evidence linking physical exercise to eye disease and identify potential mediators of physical exercise-induced retinal neuroprotection. Finally, we discuss future directions for preclinical and clinical research in exercise and eye health.
Collapse
Affiliation(s)
- Stephen K. Agadagba
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Suk-yu Yau
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ying Liang
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Kristine Dalton
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Thompson
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Shi JX, Wang ZY, Wang SW, Shen Q, Tan X. Exercise-mediated muscle-hypothalamus crosstalk: Improvement for cognitive dysfunction caused by disrupted circadian rhythm. Life Sci 2025; 373:123657. [PMID: 40306358 DOI: 10.1016/j.lfs.2025.123657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
In contemporary societal evolution, the increasing disruption of the natural sleep-wake cycle, attributable to factors such as shift work and overexposure to artificial light, has been paralleled by a marked escalation in the incidence of cognitive impairments and the prevalence of neurodegenerative diseases. Current management strategies for cognitive impairments include pharmacological and non-pharmacological interventions. Pharmacological interventions for cognitive impairments typically involve medications to manage cognitive symptoms and improve neurological functions. However, these drugs show limited long-term efficacy in slowing disease progression and may cause side effects. Given the widespread occurrence of cognitive dysfunction, it is crucial to develop accessible non-pharmacological interventions. Physical activity and exercise have emerged as pivotal lifestyle determinants known to exert a modulatory effect on the risk profile for cognitive dysfunction caused by disrupted circadian rhythms. The skeletal muscle, a dynamic tissue, undergoes a profound morphological and metabolic reconfiguration in response to physical exertion, along with the secretion of myokines. Additionally, the hypothalamus, particularly the ventromedial nuclei, arcuate nuclei, and the suprachiasmatic nucleus, have crucial functions in regulating physical activity, influencing energy metabolism, and managing circadian cycles. Nevertheless, the communication between the hypothalamus and skeletal muscle during exercise is not fully understood. This narrative review integrates current knowledge on the interaction between the hypothalamus and skeletal muscle during exercise, emphasizing its neuroendocrine effects and potential therapeutic implications for alleviating cognitive dysfunction associated with disrupted circadian rhythms.
Collapse
Affiliation(s)
- Jun-Xiao Shi
- School of Basic Medical Science, Naval Medical University, Shanghai 200433, China
| | - Zi-Yuan Wang
- School of Basic Medical Science, Naval Medical University, Shanghai 200433, China
| | - Sheng-Wen Wang
- School of Basic Medical Science, Naval Medical University, Shanghai 200433, China
| | - Qi Shen
- Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Xing Tan
- Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
3
|
Rajavand H, Zalouli V, Nematollahi Z, Fathy-Karkaragh F, Karimigharighi E, Jafarizadeh F, Rabiei Rad A. The Cooperation of Neurogranin with Calmodulin Promotes the Treatment of Aging-Related Diseases via Regular Exercise. Mol Neurobiol 2025:10.1007/s12035-025-04959-6. [PMID: 40285939 DOI: 10.1007/s12035-025-04959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Research has demonstrated that engaging in regular exercise has the potential to enhance cognitive function, promote neuroplasticity, and mitigate the likelihood of experiencing cognitive decline. The underlying mechanisms responsible for these effects are intricate and encompass various pathways, including the interaction between neurogranin and calmodulin. The activation of calcium signaling pathways is a significant mechanism through which regular exercise facilitates the treatment of age-related diseases. The activation of neurogranin and calmodulin induced by exercise can provide protection against neurodegeneration by promoting neuronal survival, mitigating oxidative stress, and improving mitochondrial function through the regulation of calcium homeostasis and energy metabolism. In addition, there is evidence suggesting that engaging in regular exercise can lead to an upregulation of neurotrophic factors, specifically brain-derived neurotrophic factor (BDNF). These factors are crucial for the survival of neurons, the plasticity of synapses, and overall cognitive function. Researchers have discovered the involvement of neurogranin in the regulation of BDNF signaling, underscoring its significance in exercise-induced neuroprotection and cognitive enhancement. The current work offers valuable insights into how neurogranin/calmodulin cooperation, facilitated by regular exercise, promotes the treatment of aging-related diseases. The results suggest that regular exercise could enhance memory, learning, synaptic plasticity, and resilience to neurological damage; promote recovery after brain injury; and treat aging-related disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Hosniyeh Rajavand
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahideh Zalouli
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zeinab Nematollahi
- 4UCL Department of Nanotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Farshid Fathy-Karkaragh
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Tehran, Tehran, Iran
| | - Elham Karimigharighi
- Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Farzad Jafarizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Rabiei Rad
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey.
| |
Collapse
|
4
|
Nyul-Toth A, Shanmugarama S, Patai R, Gulej R, Faakye J, Nagy D, Nagykaldi M, Kiss T, Csipo T, Milan M, Ekambaram S, Negri S, Nagaraja RY, Csiszar A, Brown JL, Van Remmen H, Ungvari A, Yabluchanskiy A, Tarantini S, Ungvari Z. Endothelial IGF- 1R deficiency disrupts microvascular homeostasis, impairing skeletal muscle perfusion and endurance: implications for age-related sarcopenia. GeroScience 2025:10.1007/s11357-025-01653-2. [PMID: 40199795 DOI: 10.1007/s11357-025-01653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
Aging is associated with a progressive decline in circulating insulin-like growth factor- 1 (IGF- 1) levels in humans, which has been implicated in the pathogenesis of sarcopenia. IGF- 1 is an anabolic hormone that plays a dual role in maintaining skeletal muscle health, acting both directly on muscle fibers to promote growth and indirectly by supporting the vascular network that sustains muscle perfusion. However, the microvascular consequences of IGF- 1 deficiency in aging muscle remain poorly understood. To elucidate how impaired IGF- 1 input affects skeletal muscle vasculature, we examined the effects of endothelial-specific IGF- 1 receptor (IGF- 1R) deficiency using a mouse model of endothelial IGF- 1R knockdown (VE-Cadherin-CreERT2/Igf1rf/f mice). These mice exhibited significantly reduced skeletal muscle endurance and attenuated hyperemic response to acetylcholine, an endothelium-dependent vasodilator. Additionally, they displayed microvascular rarefaction and impaired nitric oxide-dependent vasorelaxation, indicating a significant decline in microvascular health in skeletal muscle. These findings suggest that endothelial IGF- 1R signaling is critical for maintaining microvascular integrity, muscle perfusion, and function. Impaired IGF- 1 input to the microvascular endothelium may contribute to reduced muscle blood flow and exacerbate age-related sarcopenia. Enhancing vascular health by modulating IGF- 1 signaling could represent a potential therapeutic strategy to counteract age-related muscle decline.
Collapse
Affiliation(s)
- Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College, Health Sciences Division, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dorina Nagy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
| | - Mark Nagykaldi
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Madison Milan
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shoba Ekambaram
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raghavendra Y Nagaraja
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
| | - Jacob L Brown
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary.
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College, Health Sciences Division/Institute of Public Health and Preventive Medicine, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Johnson TP, Tsoy E, Shen J, Rivera W, Lieu K, Salazar C, Tse M, Li Y, Goldberger L, Soo BM, Kramer J, Rosen HJ, Miller BL, Sirkis DW, Bonham LW, Yokoyama JS. Reduced levels of angiogenesis biomarkers predict increased symptom severity in Chinese Americans with Alzheimer's disease with demographic-specific effect. Neurocase 2025; 31:82-91. [PMID: 39924667 PMCID: PMC11919552 DOI: 10.1080/13554794.2025.2455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) symptomatology, while classically studied through the lens of amyloid-β and tau burden, is likely also influenced by multiple-interacting co-pathologies like vascular disease and dysmetabolism. These co-pathologies, especially vascular disease, occur disparately in the Chinese-American population and are often treatable via therapeutics and lifestyle modifications. Given this, we explored whether plasma biomarkers, including an array of vascular-related proteins, associate with cognition in a cohort of 34 Chinese Americans clinically diagnosed as cognitively normal, with mild cognitive impairment, or with AD. We found that a composite score of plasma angiogenesis biomarkers (MMP-1, bFGF, VEGF, and VEGF-C) were positively associated with total Mini Mental State Examination scores (p = 0.045) as well as memory performance (p = 0.006), and that this relationship was most pronounced in AD (biomarker composite score within AD vs MMSE & memory, both p < 0.001). To explore whether these findings were specific to the Chinese-American population, we repeated the above analyses in 73 demographically matched non-Hispanic White American participants and found no significant associations between angiogenesis biomarkers and MMSE or memory, highlighting the potential relevance of vascular dysregulation in Chinese Americans at risk for AD.
Collapse
Affiliation(s)
- Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elena Tsoy
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Jeffrey Shen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Will Rivera
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Lieu
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Cande Salazar
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Marian Tse
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Goldberger
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brendan M Soo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, Ireland
- Trinity College Dublin, Dublin, Ireland
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Li J, Liu T, Xian M, Zhou K, Wei J. The Power of Exercise: Unlocking the Biological Mysteries of Peripheral-Central Crosstalk in Parkinson's Disease. J Adv Res 2025:S2090-1232(25)00143-2. [PMID: 40049515 DOI: 10.1016/j.jare.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Exercise is a widely recognized non-pharmacological treatment for Parkinson's Disease (PD). The bidirectional regulation between the brain and peripheral organs has emerged as a promising area of research, with the mechanisms by which exercise impacts PD closely linked to the interplay between peripheral signals and the central nervous system. AIM OF REVIEW This review aims to summarize the mechanisms by which exercise influences peripheral-central crosstalk to improve PD, discuss the molecular processes mediating these interactions, elucidate the pathways through which exercise may modulate PD pathophysiology, and identify directions for future research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review examines how exercise-induced cytokine release promotes neuroprotection in PD. It discusses how exercise can stimulate cytokine secretion through various pathways, including the gut-brain, muscle-brain, liver-brain, adipose-brain, and bone-brain axes, thereby alleviating PD symptoms. Additionally, the potential contributions of the heart-brain, lung-brain, and spleen-brain axes, as well as multi-axis crosstalk-such as the brain-gut-muscle and brain-gut-bone axes-are explored in the context of exercise therapy. The study highlights the need for further research into peripheral-central crosstalk and outlines future directions to address challenges in clinical PD therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ke Zhou
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China.
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China; Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
7
|
Chen Y, Chen X, Luo Z, Kang X, Ge Y, Wan R, Wang Q, Han Z, Li F, Fan Z, Xie Y, Qi B, Zhang X, Yang Z, Zhang JH, Liu D, Xu Y, Wu D, Chen S. Exercise-Induced Reduction of IGF1R Sumoylation Attenuates Neuroinflammation in APP/PS1 Transgenic Mice. J Adv Res 2025; 69:279-297. [PMID: 38565402 PMCID: PMC11954827 DOI: 10.1016/j.jare.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is marked by cognitive deterioration and heightened neuroinflammation. The influence of Insulin-like Growth Factor 1 Receptor (IGF1R) and its post-translational modifications, especially sumoylation, is crucial in understanding the progression of AD and exploring novel therapeutic avenues. OBJECTIVES This study investigates the impact of exercise on the sumoylation of IGF1R and its role in ameliorating AD symptoms in APP/PS1 mice, with a specific focus on neuroinflammation and innovative therapeutic strategies. METHODS APP/PS1 mice were subjected to a regimen of moderate-intensity exercise. The investigation encompassed assessments of cognitive functions, alterations in hippocampal protein expressions, neuroinflammatory markers, and the effects of exercise on IGF1R and SUMO1 nuclear translocation. Additionally, the study evaluated the efficacy of KPT-330, a nuclear export inhibitor, as an alternative to exercise. RESULTS Exercise notably enhanced cognitive functions in AD mice, possibly through modulations in hippocampal proteins, including Bcl-2 and BACE1. A decrease in neuroinflammatory markers such as IL-1β, IL-6, and TNF-α was observed, indicative of reduced neuroinflammation. Exercise modulated the nuclear translocation of SUMO1 and IGF1R in the hippocampus, thereby facilitating neuronal regeneration. Mutant IGF1R (MT IGF1R), lacking SUMO1 modification sites, showed reduced SUMOylation, leading to diminished expression of pro-inflammatory cytokines and apoptosis. KPT-330 impeded the formation of the IGF1R/RanBP2/SUMO1 complex, thereby limiting IGF1R nuclear translocation, inflammation, and neuronal apoptosis, while enhancing cognitive functions and neuron proliferation. CONCLUSION Moderate-intensity exercise effectively mitigates AD symptoms in mice, primarily by diminishing neuroinflammation, through the reduction of IGF1R Sumoylation. KPT-330, as a potential alternative to physical exercise, enhances the neuroprotective role of IGF1R by inhibiting SUMOylation through targeting XPO1, presenting a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Department of Orthopaedics, National Regional Medical Center, Jinjiang Municipal Hospital,Shanghai Sixth People's Hospital, Fujian, Jinjiang,China.
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, China
| | - Yunshen Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Renwen Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fangqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopaedic Surgery, Hainan Province Clinical Medical Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, China
| | - Yuchun Xie
- Jiangsu Province Geriatric Hospital, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital Lianhua Road, Shenzhen City, Guangdong Province, China
| | - Zhenwei Yang
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - John H Zhang
- Department of Neurosurgery, Department of Physiology and Pharmacology, Department of Neurosurgery and Anesthesiology, School of Medicine, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| | - Danping Liu
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
| | - Dongyan Wu
- Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Zanardo E, Quinto G, Battista F, Duregon F, Vecchiato M, Bergia C, Erickson K, Ermolao A, Neunhaeuserer D. Acute effects of physical exercise on cognitive function and neurotrophins in patients with type 1 diabetes: A systematic review. Heliyon 2025; 11:e42456. [PMID: 40028553 PMCID: PMC11868937 DOI: 10.1016/j.heliyon.2025.e42456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is associated with cognitive decline. In contrast, higher levels of neurotrophins, such as brain-derived neurotrophic factor (BDNF), may be associated with better brain health. Physical exercise has been associated with elevated levels of BDNF and consequently improved cognitive function, but whether this association is found in T1DM remains unresolved. The aim of this systematic review was to evaluate the acute effect of physical exercise on cognitive function and BDNF levels in patients affected by T1DM. Methods MEDLINE, Cochrane Library (CENTRAL database), EMBASE and SPORTDiscus were screened by 2 independent reviewers, who selected studies that analysed acute effects of physical exercise in patients with T1DM on BDNF levels or cognitive function tests before and after exercise. Studies in humans and English written were included. The quality of these studies was assessed using the respective Cochrane Risk of Bias tool. Results After identifying 507 articles, 4 studies including 78 participants were analysed. Two studies were non-randomized clinical trials, the others were crossover trials. Selected studies performed different exercise intervention protocols, evaluating both high and moderate intensity training. BDNF levels were found higher after exercise in all studies. Cognitive function tests resulted also improved after the training intervention. Conclusions In subjects with T1DM, preliminary evidence suggests that exercise training might increase plasma BDNF levels and ameliorate cognitive deficits. However, scientific evidence is still very limited and there is a significant need for further research to clarify the possible positive neurocognitive effects of exercise in T1DM.
Collapse
Affiliation(s)
- Emanuele Zanardo
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Giulia Quinto
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Francesca Battista
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Federica Duregon
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Marco Vecchiato
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Chiara Bergia
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Kirk Erickson
- Advent Health Research Institute, Neuroscience, Orlando, FL, USA
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA, USA
| | - Andrea Ermolao
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Daniel Neunhaeuserer
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Marcourt C, Pin-Barre C, Langeard A, Rivera C, Temprado JJ, Laurin J. Cognitive and sensorimotor benefits of moderate- and high-intensity exercise are associated with specific expression of neurotrophic markers in older rats. Sci Rep 2025; 15:6292. [PMID: 39984706 PMCID: PMC11845600 DOI: 10.1038/s41598-025-90719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Endurance training is strongly recommended for older adults to maintain cognitive and motor function. The respective effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on improving behavioural function and cerebral plasticity remain unknown. The purpose of this study was to determine the relative effects of 4 weeks of MICT and HIIT training on endurance, sensorimotor, and cognitive performance, as well as on the expression of neurotrophic markers in the hippocampus and cerebral cortex in aged rats. Twenty-two old male Wistar rats were assigned to one of the following groups: MICT (n = 7), HIIT (n = 6), and Control (n = 9). Incremental treadmill exercise tests, the forelimb grip strength test, the adhesive removal test, and the novel object recognition test were performed. Cerebral cortex and hippocampus were then removed for ELISA and Western blot measurements. The results showed similar benefits of MICT and HIIT on sensorimotor and cognitive functions, and a greater benefit of HIIT on endurance performance. HIIT and MICT differentially promoted cortical and hippocampal neurotrophic markers, demonstrating their complementarity. However, MICT was found to be more effective in promoting a broader range of markers, suggesting its potential as an initial training strategy for older adults.
Collapse
Affiliation(s)
- Cécile Marcourt
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Aix Marseille University, CNRS, ISM, Marseille, France
| | - Caroline Pin-Barre
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
| | - Antoine Langeard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - Claudio Rivera
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
| | | | - Jérôme Laurin
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France.
| |
Collapse
|
10
|
Son HJ, Lee SH. Light-Sheet Fluorescence Imaging Reveals Three-Dimensional Amyloid Burden Reduction Following Five Weeks of Swimming Exercise in Alzheimer's Mouse. Int J Mol Sci 2025; 26:1249. [PMID: 39941019 PMCID: PMC11818873 DOI: 10.3390/ijms26031249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Emerging evidence from observational studies suggests that lifestyle modifications, particularly moderate-intensity exercise, may confer neuroprotective benefits against dementia, potentially by enhancing brain resistance through clearance mechanisms. Using light-sheet fluorescence microscopy (LSFM) with tissue clearing, we investigated the role of voluntary swimming in ameliorating β-amyloid pathology in a transgenic Alzheimer's disease (AD) mouse model. Twenty 52-week-old hAPPsw mice were randomly divided into a 5-week voluntary swimming intervention group and a control group (each n = 10). Each session included a 10-min swim followed by a 10-min rest, escalating from one session per day in the first week to three sessions per day by the fifth week. The excised brains were prepared using tissue-clearing and volume immunostaining with thioflavin-S for β-amyloid. For LSFM imaging, the individual plaque area and volume, total plaque load, and morphological parameters were quantified via an Imaris-based three-dimensional (3D) volumetric surface model. Visual comparison revealed that the intervention group presented significantly lower β-amyloid accumulation. The total surface volume of β-amyloid accumulation in the intervention group was significantly lower than that of the control group (intervention, 122,180,948 μm3 [105,854,660-169,063,081]; control, 167,201,016 μm3 [139,367,765-193,535,450]; p = 0.043). There were no significant differences in the morphological parameters, such as ellipticity and sphericity. Our LSFM study demonstrated notable reductions in β-amyloid, as evidenced by a decrease in total surface volume, in 52-week-old transgenic mice after a 5-week structured swimming program, supporting the notion that even in advanced AD stages, leisure-time voluntary swimming serves as an efficacious intervention for augmenting resistance to pathology.
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Dankook University College of Medicine, Cheonan, Chungnam 31116, Republic of Korea
| | - Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| |
Collapse
|
11
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2025; 36:1-25. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
12
|
Romero Garavito A, Díaz Martínez V, Juárez Cortés E, Negrete Díaz JV, Montilla Rodríguez LM. Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Front Neurol 2025; 15:1505879. [PMID: 39935805 PMCID: PMC11810746 DOI: 10.3389/fneur.2024.1505879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
This review explores the impact of physical exercise on brain-derived neurotrophic factor (BDNF) and its relationship with neurodegenerative diseases. The key role of BDNF in maintaining brain health is highlighted, and recent studies are analyzed that indicate an increase in BDNF levels following physical activity, particularly in young adults. Additionally, the interaction between the BDNF Val66Met genetic polymorphism and exercise on cognitive function is examined. The review emphasizes the possibility of exercise as a complementary therapy for neurodegenerative diseases, although further research is required to fully understand its effects.
Collapse
Affiliation(s)
- Ana Romero Garavito
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Valery Díaz Martínez
- Facultad de medicina, Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | | | - José Vicente Negrete Díaz
- Programa de Fisioterapia, Universidad de Guanajuato, Guanajuato, Mexico
- Programa de Psicologia Clinica, Universidad de Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
13
|
Sullens DG, Gilley K, Moraglia LE, Dison S, Hoffman JT, Wiffler MB, Barnes RC, Ginty AT, Sekeres MJ. Sex in aging matters: exercise and chronic stress differentially impact females and males across the lifespan. Front Aging Neurosci 2025; 16:1508801. [PMID: 39881679 PMCID: PMC11774976 DOI: 10.3389/fnagi.2024.1508801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Assessing sex as a biological variable is critical to determining the influence of environmental and lifestyle risks and protective factors mediating behavior and neuroplasticity across the lifespan. We investigated sex differences in affective behavior, memory, and hippocampal neurogenesis following short- or long-term exposure to exercise or chronic mild stress in young and aged mice. Male and female mice were assigned control, running, or chronic stress rearing conditions for 1 month (young) or for 15 months (aged), then underwent a behavioral test battery to assess activity, affective behavior, and memory. Stress exposure into late-adulthood increased hyperactivity in both sexes, and enhanced anxiety-like and depressive-like behavior in aged female, but not male, mice. One month of stress or running had no differential effects on behavior in young males and females. Running increased survival of BrdU-labelled hippocampal cells in both young and aged mice, and enhanced spatial memory in aged mice. These findings highlight the importance of considering sex when determining how aging is differently impacted by modifiable lifestyle factors across the lifespan.
Collapse
Affiliation(s)
- D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Kayla Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| | - Luke E. Moraglia
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Psychology, The University of Texas at Dallas, Richardson, TX, United States
| | - Sarah Dison
- Department of Biology, Baylor University, Waco, TX, United States
| | - Jessica T. Hoffman
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Madison B. Wiffler
- Department of Biology, Baylor University, Waco, TX, United States
- Department of Neurobiology, University of Utah, Salt Lake City, UT, United States
| | - Robert C. Barnes
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Annie T. Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Melanie J. Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Kelly S, Meyer J, Stielow C, Heinzel S, Heissel A. Effects of an acute maximal exercise bout on serum insulin-like growth factor-1 in adults with MDD. Psychoneuroendocrinology 2025; 171:107215. [PMID: 39413529 PMCID: PMC11568898 DOI: 10.1016/j.psyneuen.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Exercise has acute, positive effects on mood and can lead to antidepressant effects over time when repeated regularly. The mechanisms underlying the antidepressant effects of exercise training are not well known, limiting the prescription of exercise training for depression. Serum Insulin-Like Growth Factor-1 (IGF-1) appears dysregulated in those with Major Depressive Disorder (MDD), suggesting MDD could inhibit or alter the IGF-1 response to exercise. In healthy individuals, exercise has been shown to acutely increase serum IGF-1, which may act positively on the dysregulated IGF-1 system in MDD. Therefore, the purpose of this study was to examine the sensitivity of serum IGF-1 levels to an acute maximal exercise bout in adults with MDD and healthy controls. Additionally, clinical and behavioral factors of MDD are likely to affect this system, such as depression severity, antidepressant usage and physical activity habits. Baseline data were used from a larger trial in Germany (SPeED Study) collected from individuals with mild to moderate MDD (n=113) and healthy controls (n=34) that were matched for age, sex, and education. Demographics, depression severity (Hamilton Depression Rating Scale-17), self-reported antidepressant usage, MVPA (International Physical Activity Questionnaire-Short Form), and blood draws before and after a maximal exercise test were collected. Multiple linear regressions were conducted to determine relationships between depression severity, antidepressant usage, and physical activity with peripheral IGF-1 levels following acute exercise. Covariates included demographic factors and IGF-1 pre-exercise (baseline levels). Acute IGF-1 changes occurred similarly in depression (mean ± SD; 11.3 ± 12.9) as well as healthy adults (11.3 ± 20.4: p>0.05). Neither depression severity, antidepressant use, nor regular physical activity were significant predictors of peripheral IGF-1 levels at baseline or following exercise. Individuals with MDD are likely to have favorable exercise-induced IGF-1 changes regardless of clinical and behavioral differences. Acute exercise increases peripheral IGF-1 briefly, and in response to repeated exercise bouts, the IGF-1 system could normalize over time. The normalization of the IGF-1 system might be a possible mechanism underlying mood increases that occur during exercise with exercise training research warranted.
Collapse
Affiliation(s)
- Shania Kelly
- Department of Kinesiology, University of Wisconsin - Madison, Madison, Wisconsin
| | - Jacob Meyer
- Department of Kinesiology, University of Wisconsin - Madison, Madison, Wisconsin.
| | - Christiane Stielow
- Department of Sports and Health Sciences, Intra-Faculty Unit "Cognitive Sciences", University of Potsdam, Potsdam, Germany
| | - Stephan Heinzel
- Department of Educational Sciences and Psychology, TU Dortmund University, Dortmund, Germany
| | - Andreas Heissel
- Department of Sports and Health Sciences, Intra-Faculty Unit "Cognitive Sciences", University of Potsdam, Potsdam, Germany
| |
Collapse
|
15
|
Gholami F, Mesrabadi J, Iranpour M, Donyaei A. Exercise training alters resting brain-derived neurotrophic factor concentration in older adults: A systematic review with meta-analysis of randomized-controlled trials. Exp Gerontol 2025; 199:112658. [PMID: 39674562 DOI: 10.1016/j.exger.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This systematic review with meta-analysis investigated the effects of exercise training on brain-derived neurotrophic factor (BDNF) in older adults. Electronic databases of PubMed, Web of Science and Scopus were searched for studies investigating the effect of exercise training ≥4 weeks on resting BDNF levels in older adults. A standardized mean difference (SMD) was generated through random effects model. Thirty-five randomized-controlled trials met the inclusion criteria. Exercise training significantly increased resting BDNF levels [SMD = 0.56 (95 % CI 0.28 to 0.85)] both in plasma (SMD = 0.63) and serum (SMD = 0.54). Regarding exercise modality, aerobic (SMD = 0.48), resistance (SMD = 0.76) and combined exercise training (SMD = 0.55) increased BDNF levels. Exercise training with the duration of 12 weeks (SMD =0.65), moderate-to-vigorous (SMD = 0.83) and vigorous intensity (SMD = 0.71), and 3-4 sessions per week frequency (SMD = 0.78) yielded the largest effects on BDNF elevation. Since BDNF represents a fundamental contribution in neuronal processes and is linked to brain health, exercise training may help delay aging-related neuro-degenerative processes. REGISTRATION NUMBER: CRD42024499195.
Collapse
Affiliation(s)
- Farhad Gholami
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran.
| | - Javad Mesrabadi
- Department of Educational Psychology, Psychology and Educational Science Faculty, University of Azarbai-jan Shahid Madani, Tabriz, Iran
| | - Mohadeseh Iranpour
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran
| | - Adel Donyaei
- Department of Physical Education and Sport Sciences, Faculty of Physical Education, Shahrood University of Technology, Shahrood, Semnan, Iran
| |
Collapse
|
16
|
Zare N, Bishop DJ, Levinger I, Febbraio MA, Broatch JR. Exercise intensity matters: A review on evaluating the effects of aerobic exercise intensity on muscle-derived neuroprotective myokines. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70056. [PMID: 39975467 PMCID: PMC11837734 DOI: 10.1002/trc2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Exercise as a medical intervention is effective to help prevent and manage many chronic and complex diseases, including dementia. There is evidence to suggest that regular aerobic exercise protects against age-related brain atrophy and reduces the risk of cognitive decline. The mechanisms by which exercise infers a neuroprotective effect remain to be established but may be related to a maintenance of brain volume and neuronal survival, improved cerebrovascular density and function, and/or increased synaptic plasticity. In addition, there is growing evidence to suggest the beneficial effects of exercise on brain health and cognitive function are, at least in part, mediated by factors released by skeletal muscle during contraction. The fact that the brain responds to exercise suggests that muscle-derived peripheral factors, or "myokines," may play a key role in muscle-brain crosstalk and exercise neuroprotection. However, the most effective "dose" of aerobic exercise to promote beneficial changes in these myokine pathways is currently unknown. Specifically, most of the evidence to date is from studies that have used moderate-intensity exercise, and research investigating the merit of high-intensity exercise is scarce. Considering the well-established role of high-intensity interval training in protecting against numerous medical conditions, more research is needed to identify the most effective "dose" of exercise to improve the beneficial effects of these myokines. Highlights Neuroprotection through exercise: Regular aerobic exercise mitigates age-related brain atrophy and cognitive decline via multiple mechanisms, including brain volume maintenance, improved cerebrovascular function, and synaptic plasticity. Myokines as mediators: Muscle-derived factors (myokines) play a crucial role in muscle-brain crosstalk, significantly contributing to the neuroprotective effects of exercise. Intensity matters: The review underscores the necessity to define and study exercise intensity, revealing high-intensity exercise may be as effective, if not more, in promoting neuroprotective myokine levels compared to moderate-intensity exercise. Future research directions: This review emphasizes the need for well-controlled studies to explore the optimal exercise dose for enhancing myokine pathways and their implications for neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Navabeh Zare
- Institute for Health and Sport (IHES)Victoria UniversityMelbourneVictoriaAustralia
| | - David J. Bishop
- Institute for Health and Sport (IHES)Victoria UniversityMelbourneVictoriaAustralia
| | - Itamar Levinger
- Institute for Health and Sport (IHES)Victoria UniversityMelbourneVictoriaAustralia
- Australian Institute for Musculoskeletal Science (AIMSS)Victoria UniversityUniversity of Melbourne and Western HealthMelbourneVictoriaAustralia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - James R. Broatch
- Institute for Health and Sport (IHES)Victoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
17
|
Behrendt T, Quisilima JI, Bielitzki R, Behrens M, Glazachev OS, Brigadski T, Leßmann V, Schega L. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med 2024; 56:2304650. [PMID: 38253008 PMCID: PMC10810628 DOI: 10.1080/07853890.2024.2304650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Animal and human studies have shown that exposure to hypoxia can increase brain-derived neurotrophic factor (BDNF) protein transcription and reduce systematic inflammatory cytokine response. Therefore, the aim of this study was to investigate the acute and chronic effects of intermittent hypoxic-hyperoxic exposure (IHHE) prior to aerobic exercise on BDNF, interleukin-6 (IL-6), and C-reactive protein (CRP) blood levels in geriatric patients. PATIENTS AND METHODS Twenty-five geriatric patients (83.1 ± 5.0 yrs, 71.1 ± 10.0 kg, 1.8 ± 0.9 m) participated in a placebo-controlled, single-blinded trial and were randomly assigned to either an intervention (IG) or control group (CG) performing an aerobic cycling training (17 sessions, 20 min·session-1, 3 sessions·week-1). Prior to aerobic cycling exercise, the IG was additionally exposed to IHHE for 30 min, whereas the CG received continuous normoxic air. Blood samples were taken immediately before (pre-exercise) and 10 min (post-exercise) after the first session as well as 48 h (post-training) after the last session to determine serum (BDNFS) and plasma BDNF (BDNFP), IL-6, and CRP levels. Intervention effects were analyzed using a 2 x 2 analysis of covariance with repeated measures. Results were interpreted based on effect sizes with a medium effect considered as meaningful (ηp2 ≥ 0.06, d ≥ 0.5). RESULTS CRP was moderately higher (d = 0.51) in the CG compared to the IG at baseline. IHHE had no acute effect on BDNFS (ηp2 = 0.01), BDNFP (ηp2 < 0.01), BDNF serum/plasma-ratio (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 = 0.04). After the 6-week intervention, an interaction was found for BDNF serum/plasma-ratio (ηp2 = 0.06) but not for BDNFS (ηp2 = 0.04), BDNFP (ηp2 < 0.01), IL-6 (ηp2 < 0.01), or CRP (ηp2 < 0.01). BDNF serum/plasma-ratio increased from pre-exercise to post-training (d = 0.67) in the CG compared to the IG (d = 0.51). A main effect of time was found for BDNFP (ηp2 = 0.09) but not for BDNFS (ηp2 = 0.02). Within-group post-hoc analyses revealed a training-related reduction in BDNFP in the IG and CG by 46.1% (d = 0.73) and 24.7% (d = 0.57), respectively. CONCLUSION The addition of 30 min IHHE prior to 20 min aerobic cycling seems not to be effective to increase BDNFS and BDNFP or to reduce IL-6 and CRP levels in geriatric patients after a 6-week intervention.The study was retrospectively registered at drks.de (DRKS-ID: DRKS00025130).
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Ibanez Quisilima
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Oleg S. Glazachev
- Department of Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
Boidin M, Grégoire CA, Gagnon C, Thorin-Trescases N, Thorin E, Nigam A, Juneau M, Guillaume A, Tremblay J, Gayda M, Bherer L. Effects of variation in exercise training load on cognitive performances and neurotrophic biomarkers in patients with coronary artery disease. J Appl Physiol (1985) 2024; 137:1158-1167. [PMID: 38961824 PMCID: PMC11573279 DOI: 10.1152/japplphysiol.00636.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
This study compared the effects of linear (LP) and nonlinear (NLP) training periodization on cognitive functions, neurotrophic biomarkers [plasma brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1)], and cathepsin-B in patients with coronary artery disease (CAD). Forty-four patients with CAD reported to our laboratory on two occasions to undergo testing procedures before and after training sessions, and were then blindly randomized to NLP or LP for 36 training sessions. Visit 1 included blood samples and a maximal cardiopulmonary exercise testing to get maximal oxygen uptake (V̇o2peak). Visit 2 included cognitive functions assessment. Thirty-nine patients completed the study (LP: n = 20, NLP: n = 19), with no observed changes in cognitive performances after the training intervention in either group. IGF-1 concentration decreased in both groups (time-effect: P < 0.001), whereas BDNF concentration increased (time-effect: P < 0.05) without group interaction, and cathepsin-B did not change after the intervention. Associations were found between ΔV̇o2peak and ΔBDNF (R2 = 0.18, P = 0.04), and ΔIGF-1 and Δshort-term/working memory (R2 = 0.17, P = 0.01) in the pooled sample, with ΔIGF-1 and ΔBDNF accounting for 10% of the variance in Δshort-term/working memory. In the LP group, associations were found between ΔV̇o2peak and ΔBDNF (R2 = 0.45, P = 0.02), ΔBDNF and Δshort-term/working memory (R2 = 0.62, P = 0.004), ΔIGF-1 and Δshort-term/working memory (R2 = 0.31, P = 0.01), and ΔIGF-1 and Δexecutive function (R2 = 0.22, P = 0.04). This study indicates that linear and nonlinear training periodization led to an increase in BDNF, and a decrease in IGF-1, without change in cognitive function in individuals with stable CAD.NEW & NOTEWORTHY We used a novel and supervised iso-energetic training, integrating both moderate- and high-intensity aerobic exercises. Our findings indicate that greater variation in training load did not yield cognitive enhancements, although both protocols exhibited positive effects on brain-derived neurotrophic factor (BDNF) levels. Moreover, this study establishes a clear positive association between short-term and working memory and neurotrophic biomarkers. In addition, the independent predictive value of change in insulin-like growth factor-1 (IGF-1) on improvement in short-term and working memory highlight the close relationship between neurotrophic markers and cognition. Consequently, our results advocate for exercise training interventions targeting neurotrophic biomarkers to enhance cognitive function among individuals with coronary artery disease.
Collapse
Affiliation(s)
- Maxime Boidin
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Christine Gagnon
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Anil Nigam
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Juneau
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Arthur Guillaume
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Tremblay
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Gayda
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Louis Bherer
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Ramires Júnior OV, Silveira JS, Gusso D, Krupp Prauchner GR, Ferrary Deniz B, Almeida WD, Pereira LO, Wyse AT. Homocysteine decreases VEGF, EGF, and TrkB levels and increases CCL5/RANTES in the hippocampus: Neuroprotective effects of rivastigmine and ibuprofen. Chem Biol Interact 2024; 403:111260. [PMID: 39357784 DOI: 10.1016/j.cbi.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Homocysteine (Hcy) is produced through methionine transmethylation. Elevated Hcy levels are termed Hyperhomocysteinemia (HHcy) and represent a risk factor for neurodegenerative conditions such as Alzheimer's disease. This study aimed to explore the impact of mild HHcy and the neuroprotective effects of ibuprofen and rivastigmine via immunohistochemical analysis of glial markers (Iba-1 and GFAP). Additionally, we assessed levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), chemokine ligand 5 (CCL5/RANTES), CX3C chemokine ligand 1 (CX3CL1), and the NGF/p75NTR/tropomyosin kinase B (TrkB) pathway in the hippocampus of adult rats. Mild chronic HHcy was induced chemically in Wistar rats by subcutaneous administration of Hcy (4 mg/kg body weight) twice daily for 30 days. Rivastigmine (0.5 mg/kg) and ibuprofen (40 mg/kg) were administered intraperitoneally once daily. Results revealed elevated levels of CCL5/RANTES and reduced levels of VEGF, EGF, and TrkB in the hippocampus of HHcy-exposed rats. Rivastigmine mitigated the neurotoxic effects of HHcy by increasing TrkB and VEGF levels. Conversely, ibuprofen attenuated CCL5/RANTES levels against the neurotoxicity of HHcy, significantly reducing this chemokine's levels. HHcy-induced neurochemical impairment in the hippocampus may jeopardize neurogenesis, synapse formation, axonal transport, and inflammatory balance, leading to neurodegeneration. Treatments with rivastigmine and ibuprofen alleviated some of these detrimental effects. Reversing HHcy-induced damage through these compounds could serve as a potential neuroprotective strategy against brain damage.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Fisiologia e Farmacologia, Instiruto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wellington de Almeida
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Behrad S, Dezfuli SAT, Yazdani R, Hayati S, Shanjani SM. The effect of physical exercise on circulating neurotrophic factors in healthy aged subjects: A meta-analysis and meta-regression. Exp Gerontol 2024; 196:112579. [PMID: 39260585 DOI: 10.1016/j.exger.2024.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor-1 (IGF-1) may help the brain resist both functional and structural neurodegeneration, which is critical for maintaining cognitive and neurological health in older adults. This meta-analysis and meta-regression seek to elucidate the impact of physical activity on these biomarker levels in healthy seniors, as well as to examine the influence of several moderator factors, including age, sex, period length, and time, for the first time. The standardized mean effect metric was used to assess the influence of weights, which reflected each group's relative importance in comparison to baseline data. The study looked at potential moderating factors including age, gender, and physical activity levels. The analysis of 11 studies indicated no significant effect of physical activity on VEGF levels [0.328, CI 95 % (-0.871 to 1.52); I2 = 0.00; p = 0.592; Q = 4.14]. Physical activity had a substantial impact on brain-derived neurotrophic factor (0.827, 95 % confidence interval: 0.487 to 1.16; I2 = 0.00; p = 0.00; Q = 78.46), with females showing particularly notable effects (Tau2 = 0.327, Tau = 0.571, I2 = 80.90 %, Q = 68.05, df = 15, p = 0.00). Physical activity also had a substantial effect on insulin-like growth factor 1 (0.276, 95 % confidence interval: 0.065 to 0.487; I2 = 0.00; p = 0.10; Q = 8.35), indicating that it positively influences IGF-1 levels. Overall, while physical exercise has a significant effect on BDNF and IGF-1, more research is needed to fully understand its impact on vascular endothelial growth factor and to investigate how individual characteristics may influence exercise outcomes.
Collapse
Affiliation(s)
- Samira Behrad
- Department of Oral and Maxillofacial Pathology, Dental School, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Reza Yazdani
- Department of Emergency Medicine, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saeed Hayati
- Department of Emergency Medicine, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Mirzayan Shanjani
- Department of Sport Physiology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
| |
Collapse
|
21
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Gao X, Chen Y, Cheng P. Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol 2024; 15:1338875. [PMID: 39286235 PMCID: PMC11402696 DOI: 10.3389/fphys.2024.1338875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives This review aims to summarize the common physiological mechanisms associated with both mild cognitive impairment (MCI) and musculoskeletal aging while also examining the relevant literature on how exercise regulation influences the levels of shared myokines in these conditions. Methods The literature search was conducted via databases such as PubMed (including MEDLINE), EMBASE, and the Cochrane Library of Systematic Reviews. The searches were limited to full-text articles published in English, with the most recent search conducted on 16 July 2024. The inclusion criteria for this review focused on the role of exercise and myokines in delaying musculoskeletal aging and enhancing cognitive health. The Newcastle‒Ottawa Scale (NOS) was utilized to assess the quality of nonrandomized studies, and only those studies with moderate to high quality scores, as per these criteria, were included in the final analysis. Data analysis was performed through narrative synthesis. Results The primary outcome of this study was the evaluation of myokine expression, which included IL-6, IGF-1, BDNF, CTSB, irisin, and LIF. A total of 16 studies involving 633 older adults met the inclusion criteria. The current exercise modalities utilized in these studies primarily consisted of resistance training and moderate-to high-intensity cardiovascular exercise. The types of interventions included treadmill training, elastic band training, aquatic training, and Nordic walking training. The results indicated that both cardiovascular exercise and resistance exercise could delay musculoskeletal aging and enhance the cognitive functions of the brain. Additionally, different types and intensities of exercise exhibited varying effects on myokine expression. Conclusion Current evidence suggests that exercise mediates the secretion of specific myokines, including IL-6, IGF-1, BDNF, CTSB, irisin, and LIF, which establish self-regulatory circuits between the brain and muscle. This interaction enhances cognitive function in the brain and improves skeletal muscle function. Future research should focus on elucidating the exact mechanisms that govern the release of myokines, the correlation between the intensity of exercise and the secretion of these myokines, and the distinct processes by which myokines influence the interaction between muscle and the brain.
Collapse
Affiliation(s)
- Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yiyan Chen
- Department of Physical Education, Suzhou Vocational University, Suzhou, China
| | - Peng Cheng
- Department of Basic Teaching, Suzhou City University, Suzhou, China
| |
Collapse
|
23
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
24
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
25
|
Luo Q, Tian Z, Hu Y, Wang C. Effects of Aerobic Exercise on Executive and Memory Functions in Patients With Alzheimer's Disease: A Systematic Review. J Aging Phys Act 2024; 32:541-553. [PMID: 38521051 DOI: 10.1123/japa.2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Alzheimer's disease threatens the health of older adults, particularly by disrupting executive and memory functions, and many studies have shown that aerobic exercise prevents and improves the symptoms associated with the disease. OBJECTIVE The objective was to systematically review the effects of aerobic exercise on executive and memory functions in patients with Alzheimer's disease and to determine the effect factors and mechanisms of the design of aerobic exercise intervention programs. METHOD Relevant literature was searched in three databases (PubMed, Web of Science, and EBSCO) from January 1, 2014 to March 1, 2023, using a subject-word search method. Data on 10 items, including author and country, were extracted from the literature after screening. The quality of the literature was evaluated using the Physiotherapy Evidence Database scale, and a systematic review was performed. RESULTS Twelve papers from seven countries were ultimately included, embodying 11 randomized controlled trials and one study with a repeated-measures design. The overall quality of the studies was good as 657 study participants, aged 45 years and older who had varying degrees of Alzheimer's disease and significant symptoms, were included. Aerobic exercise was found to have a significant positive impact on executive and memory functions in people with Alzheimer's disease. CONCLUSION The effects of aerobic exercise on aspects of executive function were mainly characterized by improvements in inhibitory control, working memory, and cognitive flexibility, whereas the effects on aspects of memory function were mainly characterized by improvements in logical memory, situational memory, and short-term memory.
Collapse
Affiliation(s)
- Qiaoyou Luo
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Zuguo Tian
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Yuting Hu
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Chaochao Wang
- College of Physical Education, Hunan University, Changsha, HUN, China
| |
Collapse
|
26
|
Gökçe E, Adıgüzel E, Koçak ÖK, Kılınç H, Langeard A, Boran E, Cengiz B. Impact of Acute High-intensity Interval Training on Cortical Excitability, M1-related Cognitive Functions, and Myokines: A Randomized Crossover Study. Neuroscience 2024; 551:290-298. [PMID: 38851379 DOI: 10.1016/j.neuroscience.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
High-intensity interval training (HIIT) is a time-efficient, safe, and feasible exercise type that can be utilized across different ages and health status. This randomized cross-over study aimed to investigate the effect of acute HIIT on cortical excitability, M1-related cognitive functions, cognition-related myokines, brain-derived neurotrophic factor (BDNF), and Cathepsin B (CTSB). Twenty-three sedentary young adults (mean age: 22.78 years ± 2.87; 14 female) participated in a cross-over design involving two sessions: either 23 min of HIIT or seated rest. Before and after the sessions, cortical excitability was measured using transcranial magnetic stimulation, and M1-related cognitive functions were assessed by the n-back test and mental rotation test. Serum levels of BDNF and CTSB were assessed using the ELISA method before and after the HIIT intervention. We demonstrated that HIIT improved mental rotation and working memory, and increased serum levels of BDNF and CTSB, whereas cortical excitability did not change. Our findings provide evidence that one session of HIIT is effective on M1-related cognitive functions and cognition-related myokines. Future research is warranted to determine whether such findings are transferable to different populations, such as cognitively at-risk children, adults, and older adults, and to prescribe effective exercise programs.
Collapse
Affiliation(s)
- Evrim Gökçe
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey.
| | - Emre Adıgüzel
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey
| | - Özlem Kurtkaya Koçak
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hasan Kılınç
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Antoine Langeard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Evren Boran
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey
| |
Collapse
|
27
|
Schwarck S, Voelkle MC, Becke A, Busse N, Glanz W, Düzel E, Ziegler G. Interplay of physical and recognition performance using hierarchical continuous-time dynamic modeling and a dual-task training regime in Alzheimer's patients. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12629. [PMID: 39188923 PMCID: PMC11345748 DOI: 10.1002/dad2.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
Training studies typically investigate the cumulative rather than the analytically challenging immediate effect of exercise on cognitive outcomes. We investigated the dynamic interplay between single-session exercise intensity and time-locked recognition speed-accuracy scores in older adults with Alzheimer's dementia (N = 17) undergoing a 24-week dual-task regime. We specified a state-of-the-art hierarchical Bayesian continuous-time dynamic model with fully connected state variables to analyze the bi-directional effects between physical and recognition scores over time. Higher physical performance was dynamically linked to improved recognition (-1.335, SD = 0.201, 95% Bayesian credible interval [BCI] [-1.725, -0.954]). The effect was short-term, lasting up to 5 days (-0.368, SD = 0.05, 95% BCI [-0.479, -0.266]). Clinical scores supported the validity of the model and observed temporal dynamics. Higher physical performance predicted improved recognition speed accuracy in a day-by-day manner, providing a proof-of-concept for the feasibility of linking exercise training and recognition in patients with Alzheimer's dementia. Highlights Hierarchical Bayesian continuous-time dynamic modeling approachA total of 72 repeated physical exercise (PP) and integrated recognition speed-accuracy (IRSA) measurementsPP is dynamically linked to session-to-session variability of IRSAHigher PP improved IRSA in subsequent sessions in subjects with Alzheimer's dementiaShort-term effect: lasting up to 4 days after training session.
Collapse
Affiliation(s)
- Svenja Schwarck
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgSaxony‐AnhaltGermany
- German Center of Neurodegenerative Diseases (DZNE)MagdeburgSaxony‐AnhaltGermany
| | | | - Andreas Becke
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgSaxony‐AnhaltGermany
- German Center of Neurodegenerative Diseases (DZNE)MagdeburgSaxony‐AnhaltGermany
| | - Nancy Busse
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgSaxony‐AnhaltGermany
- German Center of Neurodegenerative Diseases (DZNE)MagdeburgSaxony‐AnhaltGermany
| | - Wenzel Glanz
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgSaxony‐AnhaltGermany
- German Center of Neurodegenerative Diseases (DZNE)MagdeburgSaxony‐AnhaltGermany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgSaxony‐AnhaltGermany
- German Center of Neurodegenerative Diseases (DZNE)MagdeburgSaxony‐AnhaltGermany
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgSaxony‐AnhaltGermany
- German Center of Neurodegenerative Diseases (DZNE)MagdeburgSaxony‐AnhaltGermany
| |
Collapse
|
28
|
Hayashi H, Sone T, Iokawa K, Sumigawa K, Fujita T, Kawamata H, Asao A, Kawasaki I, Ogasawara M, Kawakatsu S. Effects of computerized cognitive training on biomarker responses in older adults with mild cognitive impairment: A scoping review. Health Sci Rep 2024; 7:e2175. [PMID: 38895550 PMCID: PMC11182779 DOI: 10.1002/hsr2.2175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Background and Aims Mild cognitive impairment (MCI) is a widespread condition in older individuals, posing significant risk of dementia. However, limited research has been conducted to explore effective interventions and clarify their impact at the neural level. Therefore, this study aimed to investigate the effects of computerized cognitive training (CCT) and explore the associated neural mechanisms in preventing dementia in older individuals with MCI, with a view to inform future intervention efforts. Methods We reviewed the effects of CCT on biomarker outcomes in older adults with MCI. The search was conducted for studies published between 2010 and May 10, 2023, using three search engines: PubMed, Scopus, and Cumulative Index to Nursing and Allied Health Literature. The inclusion criteria were as follows: studies that involved participants diagnosed with MCI, included CCT, included quantitative assessment of biomarker results, and conducted randomized controlled trials. Results Sixteen studies that used biomarkers, including magnetic resonance imaging, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and blood or salivary biomarkers, were extracted. The results showed that CCT caused changes in structure and function within the main brain network, including the default mode network, and decreased both theta rhythm activity on EEG and prefrontal activity on fNIRS, with improvement in cognitive function. Furthermore, CCT combined with physical exercise showed more significant structural and functional changes in extensive brain regions compared with CCT alone. Virtual reality-based cognitive training improved not only executive function but also instrumental activities of daily living. Conclusion CCT causes functional and structural changes in extensive brain regions and improves cognitive function in older adults with MCI. Our findings highlight the potential of individualized intervention methods and biomarker assessment according to the specific causes of MCI. Future research should aim to optimize these personalized therapeutic strategies to maximize the benefits of CCT in older adults with MCI.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Toshimasa Sone
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Kazuaki Iokawa
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Koshi Sumigawa
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Takaaki Fujita
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Hironori Kawamata
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Akihiko Asao
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Iori Kawasaki
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Maki Ogasawara
- Department of Occupational TherapyFukushima Medical University School of Health SciencesFukushimaJapan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical CenterFukushima Medical UniversityAizuwakamatsuJapan
| |
Collapse
|
29
|
Boa Sorte Silva NC, Barha CK, Erickson KI, Kramer AF, Liu-Ambrose T. Physical exercise, cognition, and brain health in aging. Trends Neurosci 2024; 47:402-417. [PMID: 38811309 DOI: 10.1016/j.tins.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024]
Abstract
Exercise training is an important strategy to counteract cognitive and brain health decline during aging. Evidence from systematic reviews and meta-analyses supports the notion of beneficial effects of exercise in cognitively unimpaired and impaired older individuals. However, the effects are often modest, and likely influenced by moderators such as exercise training parameters, sample characteristics, outcome assessments, and control conditions. Here, we discuss evidence on the impact of exercise on cognitive and brain health outcomes in healthy aging and in individuals with or at risk for cognitive impairment and neurodegeneration. We also review neuroplastic adaptations in response to exercise and their potential neurobiological mechanisms. We conclude by highlighting goals for future studies, including addressing unexplored neurobiological mechanisms and the inclusion of under-represented populations.
Collapse
Affiliation(s)
- Nárlon C Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Cindy K Barha
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
30
|
Yeshaw Y, Madakkatel I, Mulugeta A, Lumsden A, Hyppönen E. Uncovering Predictors of Low Hippocampal Volume: Evidence from a Large-Scale Machine-Learning-Based Study in the UK Biobank. Neuroepidemiology 2024; 58:369-382. [PMID: 38560977 PMCID: PMC11449190 DOI: 10.1159/000538565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Hippocampal atrophy is an established biomarker for conversion from the normal ageing process to developing cognitive impairment and dementia. This study used a novel hypothesis-free machine-learning approach, to uncover potential risk factors of lower hippocampal volume using information from the world's largest brain imaging study. METHODS A combination of machine learning and conventional statistical methods were used to identify predictors of low hippocampal volume. We run gradient boosting decision tree modelling including 2,891 input features measured before magnetic resonance imaging assessments (median 9.2 years, range 4.2-13.8 years) using data from 42,152 dementia-free UK Biobank participants. Logistic regression analyses were run on 87 factors identified as important for prediction based on Shapley values. False discovery rate-adjusted p value <0.05 was used to declare statistical significance. RESULTS Older age, male sex, greater height, and whole-body fat-free mass were the main predictors of low hippocampal volume with the model also identifying associations with lung function and lifestyle factors including smoking, physical activity, and coffee intake (corrected p < 0.05 for all). Red blood cell count and several red blood cell indices such as haemoglobin concentration, mean corpuscular haemoglobin, mean corpuscular volume, mean reticulocyte volume, mean sphered cell volume, and red blood cell distribution width were among many biomarkers associated with low hippocampal volume. CONCLUSION Lifestyles, physical measures, and biomarkers may affect hippocampal volume, with many of the characteristics potentially reflecting oxygen supply to the brain. Further studies are required to establish causality and clinical relevance of these findings.
Collapse
Affiliation(s)
- Yigizie Yeshaw
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia,
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia,
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia,
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia,
| | - Iqbal Madakkatel
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa, Ethiopia
| | - Amanda Lumsden
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Wu R, Xiong Y, Gu Y, Cao LY, Zhang SY, Song ZX, Fan P, Lin L. Traditional Pediatric Massage Enhanced Hippocampal GR, BDNF and IGF-1 Expressions and Exerted an Anti-depressant Effect in an Adolescent Rat Model of CUMS-induced Depression. Neuroscience 2024; 542:47-58. [PMID: 38364964 DOI: 10.1016/j.neuroscience.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to investigate the anti-depressant effect of traditional pediatric massage (TPM) in adolescent rats and its possible mechanism. The adolescent depression model in rats was established by using chronic unpredictable mild stress (CUMS). All rats were randomly divided into five groups (seven per group), including the groups of control (CON), CUMS, CUMS with TPM, CUMS with back stroking massage (BSM) and CUMS with fluoxetine (FLX). The tests of sucrose preference, Morris water maze and elevated plus maze were used to evaluate depression-related behaviors. Plasma corticosterone (CORT) level was measured by ELISA. The gene and protein expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) were measured by RT-qPCR and IHC respectively. The results showed that CUMS induced depression-related behaviors in the adolescent rats, along with decreased weight gain and reduced hippocampal expressions of GR, IGF-1 and BDNF. TPM could effectively prevent depression-related behaviors in CUMS-exposed adolescent rats, manifested as increasing weight gain, sucrose consumption, ratio of open-arm entry, times of crossing the specific quadrant and shortening escape latency. TPM also decreased CORT level in plasma, together with enhancing expressions of GR, IGF-1 and BDNF in the hippocampus. These results may support the clinical application of TPM to prevent and treat adolescent depression.
Collapse
Affiliation(s)
- Rong Wu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Xiong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yun Gu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, China
| | - Li-Yue Cao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Ying Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Xiu Song
- College of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pu Fan
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Lin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Huang X, Dong K, Gan C, Xu Z, Lei D, Dong X, Liu H, Chen X. Effect of Rhythmically Cued Exercise Interventions on Functions in Patients With Parkinson Disease: A Meta-Analysis. Phys Ther 2024; 104:pzad158. [PMID: 37962936 DOI: 10.1093/ptj/pzad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE The purpose of this review was to investigate the efficacy of rhythmically cued exercise interventions on motor function, cognition, and mental state in patients with Parkinson disease. METHODS PubMed, Cochrane Database, Web of Science, Embase, and CINAHL were searched June 15, 2023. Original studies investigating the efficacy of rhythmically cued exercise interventions on the functions of patients with Parkinson disease were included. The Cochrane risk-of-bias assessment tool was used to evaluate the risk of bias. The protocol was registered in PROSPERO (CRD42022371203). RESULTS A total of 38 original studies involving 1486 participants were included. Rhythmically cued exercise interventions demonstrated superior effects on motor function compared to exercise therapy without rhythm (standardized mean difference [SMD] = -0.31). However, no significant improvements were observed in cognition and mental state. Overall, significant improvements were observed in motor examination (SMD = -0.61), Timed "Up & Go" Test (mean difference [MD] = -0.91), activities of daily living (SMD = -0.49), balance (SMD = 0.59), walking velocity (MD = 0.06), step length (MD = 2.65), and stride length (MD = 0.04) following rhythmically cued exercise interventions. No significant improvements were observed in freezing of gait and cadence. Assessment of publication bias showed no significant evidence of publication bias. Meta-regression analyses revealed a significant association between treatment duration and improvement in motor function. Furthermore, adverse events and dropout rates did not significantly differ between the 2 groups. CONCLUSION Rhythmically cued exercise interventions are effective in improving motor function in the early to middle stages of Parkinson disease. More than 10 weeks of intervention yielded better results. However, these interventions do not have a significant impact on cognition and mental states. Importantly, rhythmically cued exercise interventions are safe and well tolerated. Large-scale trials are needed for further confirmation. IMPACT This study contributes to the development of safe and reliable home rehabilitation programs, aiming to enhance the quality of life for patients with Parkinson disease.
Collapse
Affiliation(s)
- Xin Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chu Gan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinghua Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
33
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
34
|
Zhu YH, Hu P, Luo YX, Yao XQ. Knowledge mapping of trends and hotspots in the field of exercise and cognition research over the past decade. Aging Clin Exp Res 2024; 36:19. [PMID: 38308660 PMCID: PMC10838253 DOI: 10.1007/s40520-023-02661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
Exercise elicits a wide range of physiological responses in mammalian tissues that enhance a broad range of functions, particularly in improving cognitive performance. However, the field lacks a comprehensive bibliometric analysis that clarifies its knowledge structure and research hotspots. This study aims to address this gap and map the research landscape regarding the role of exercise in cognitive function enhancement. Firstly, the frequencies and co-occurrence of keywords were analysed to identify six main clusters: aging, cognitive impairment, rehabilitation, obesity, fatigue, and hippocampus. Secondly, reference timeline co-citation analysis revealed that hippocampus and aging were the major bursts with high intensity and long attention span while children had recently emerged as a topical subject. Finally, the evolution of themes from 2012 to 2022 was analysed, and found that older adults had been the leading research theme for exercise affecting cognition. Childhood obesity was an emerging theme that attracted increasing research attention in recent years while the hippocampus research theme expanded rapidly during the decade but remained a niche topic with less relevance to others. This research identified and summarised research priorities and evolutionary trends in exercise to improve cognition by constructing knowledge networks through visual analysis. It provides researchers with a comprehensive insight into the current state of the field to facilitate further research.
Collapse
Affiliation(s)
- Ying-Hai Zhu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
| |
Collapse
|
35
|
Haghighi AH, Shojaee M, Askari R, Abbasian S, Gentil P. The effects of 12 weeks resistance training and vitamin D administration on neuromuscular joint, muscle strength and power in postmenopausal women. Physiol Behav 2024; 274:114419. [PMID: 38036018 DOI: 10.1016/j.physbeh.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND This study aimed to examine the effects of 12 weeks of resistance training (RT) and vitamin D (VitD) supplementation on muscle strength and C-terminal agrin fragment (CAF) and Neurotrophin-3 (NT-3) concentrations as potential biomarkers in postmenopausal women. METHODS This was a randomized double-blind placebo-controlled study. Forty-four healthy postmenopausal women (55.84 ± 4.70 years and 29.61 ± 4.26 kg/m2) were randomly assigned into four groups: (1) Resistance training + placebo (RT + PLA), (2) Vitamin D supplementation (VitD), (3) Resistance training + vitamin D (RT + VitD), and (4) Placebo (PLA). VitD was supplemented as an oral capsule containing 50000 IU of cholecalciferol every two weeks. RT involved leg press, chest press, leg extension, leg curl, and shoulder press exercises, performed with 3-4 sets at 70-85 % of 1RM, three times a week. RESULTS Circulating levels of CAF and NT-3 did not significantly change following the intervention period in the study groups (p > 0.05). There were significant increases in upper and lower body muscle strength and power for RT + VitD and RT + PLA ( < 0.05), but not for VitD or PLA (p > 0.05). The muscle function gains for RT + VitD and RT + PLA were higher than those for VitD and PLA but did not differ between them. CONCLUSION 12-week of RT interventions resulted in significant increases in muscle strength and power in postmenopausal women. However, VitD supplementation did not result in any additional benefits. The positive changes in muscle function promoted by RT do not seem to be associated with changes in the neuromuscular joint via the CAF or NT-3 as potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Haghighi
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Malihe Shojaee
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Roya Askari
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Sadegh Abbasian
- Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad, Iran
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goias, Brazil.
| |
Collapse
|
36
|
Norling AM, Gerstenecker A, Bolding MS, Hoef LV, Buford T, Walden R, An H, Ying C, Myers T, Jones BS, Del Bene V, Lazar RM. Effects of a brief HIIT intervention on cognitive performance in older women. GeroScience 2024; 46:1371-1384. [PMID: 37581755 PMCID: PMC10828265 DOI: 10.1007/s11357-023-00893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
Cardiorespiratory fitness (CRF) mitigates age-related decline in cognition and brain volume. Little is known, however, about the effects of high-intensity interval training (HIIT) on cognitive aging and the relationship between HIIT, cognition, hippocampal subfield volumes, and cerebral oxygen extraction fraction (OEF). Older sedentary women participated in an 8-week HIIT intervention. We conducted cognitive assessments, fitness assessments (VO2max), MRI scans: asymmetric spin echo oxygen extraction fraction (ASE-OEF), high-resolution multiple image co-registration and averaging (HR-MICRA) imaging, and transcranial Doppler ultrasonography before and after the intervention. VO2max increased from baseline (M = 19.36, SD = 2.84) to follow-up (M = 23.25, SD = 3.61), Z = - 2.93, p < .001, r = 0.63. Composite cognitive (Z = - 2.05, p = 0.041), language (Z = - 2.19, p = 0.028), and visuospatial memory (Z = - 2.22, p = 0.026), z-scores increased significantly. Hippocampal subfield volumes CA1 and CA3 dentate gyrus and subiculum decreased non-significantly (all p > 0.05); whereas a significant decrease in CA2 (Z = - 2.045, p = 0.041, r = 0.436) from baseline (M = 29.51; SD = 24.50) to follow-up (M = 24.50; SD = 13.38) was observed. Right hemisphere gray matter was correlated with language z-scores (p = 0.025; r = 0.679). The subiculum was correlated with attention (p = 0.047; r = 0.618) and verbal memory (p = 0.020; r = 0.700). The OEF and CBF were unchanged at follow-up (all p > .05). Although we observed cognitive improvements following 8 weeks of our HIIT intervention, they were not explained by hippocampal, OEF, or CBF changes.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA.
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Adam Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark S Bolding
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
| | - Thomas Buford
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Randall Walden
- School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University of Medicine in St. Louis, St. Louis, MO, USA
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University of Medicine in St. Louis, St. Louis, MO, USA
| | - Terina Myers
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Benjamin S Jones
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
| | - Victor Del Bene
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
37
|
Kang D, Koh S, Kim T, Bressel E, Kim D. Circuit Training Improves the Levels of β-Amyloid and Brain-Derived Neurotrophic Factor Related to Cognitive Impairment Risk Factors in Obese Elderly Korean Women. J Clin Med 2024; 13:799. [PMID: 38337492 PMCID: PMC10856235 DOI: 10.3390/jcm13030799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Background: The purpose of this study was to investigate the effect of circuit training on β-amyloid, BDNF, and cognitive function in untrained obese elderly Korean women. Methods: The subjects for the study were aged 65-70 years and were each assigned to a circuit training group (EG, n = 12) or a control group (CG, n = 11). The 60 min combined exercise was performed 3 times per week for 16 weeks. The exercise intensity was progressively increased from a 40% heart rate reserve to a 70% heart rate reserve. The test data were analyzed using a paired t-test, an independent t-test, and a two-way repeated measures ANOVA, and an alpha level of 0.05 was set for all tests of significance. Results: Group-by-time interaction effects were observed for β-amyloid (p < 0.05), brain-derived neurotrophic factor (p < 0.01), and cognitive function (p < 0.05). Within the exercise group, significant differences were found in β-amyloid (p < 0.05), brain-derived neurotrophic factor (p < 0.001), and cognitive function (p < 0.05) when comparing across different time points. Additionally, there were statistically significant differences between groups in post-exercise β-amyloid (p < 0.05), change in β-amyloid (p < 0.05), brain-derived neurotrophic factor (p < 0.01), and cognitive function (p < 0.05). Conclusions: Therefore, it is suggested that the circuit training used in this study could be an effective exercise method for improving the risk factors of cognitive impairment in obese elderly Korean women.
Collapse
Affiliation(s)
- Duwang Kang
- Department of Physical Education, Pusan National University, Busan 46241, Republic of Korea
| | - Suhan Koh
- Department of Physical Education, Pusan National University, Busan 46241, Republic of Korea
| | - Taekyu Kim
- Department of Physical Education, Pusan National University, Busan 46241, Republic of Korea
| | - Eadric Bressel
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA
| | - Doyeon Kim
- Department of Physical Education, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
38
|
Halloway S, Volgman AS, Barnes LL, Schoeny ME, Wilbur J, Pressler SJ, Laddu D, Phillips SA, Vispute S, Hall G, Shakya S, Goodyke M, Auger C, Cagin K, Borgia JA, Arvanitakis ZA. The MindMoves Trial: Cross-Sectional Analyses of Baseline Vascular Risk and Cognition in Older Women with Cardiovascular Disease. J Alzheimers Dis 2024; 100:1407-1416. [PMID: 39031356 DOI: 10.3233/jad-240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Vascular diseases, including atherosclerotic cardiovascular disease (ASCVD) and stroke, increase the risk of Alzheimer's disease and cognitive impairment. Serum biomarkers, such as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor 1 (IGF-1), may be indicators of cognitive health. Objective We examined whether vascular risk was associated with levels of cognition and serum biomarkers in older women with cardiovascular disease (CVD). Methods Baseline data from a lifestyle trial in older women (n = 253) with CVD (NCT04556305) were analyzed. Vascular risk scores were calculated for ASCVD (ASCVD risk estimator) and stroke (CHA2DS2-VASc) based on published criteria. Cognition-related serum biomarkers included BDNF, VEGF, and IGF-1. Cognition was based on a battery of neuropsychological tests that assessed episodic memory, semantic memory, working memory, and executive function. A series of separate linear regression models were used to evaluate associations of vascular risk scores with outcomes of cognition and serum biomarkers. All models were adjusted for age, education level, and racial and ethnic background. Results In separate linear regression models, both ASCVD and CHA2DS2-VASc scores were inversely associated with semantic memory (β= -0.22, p = 0.007 and β= -0.15, p = 0.022, respectively), with no significant findings for the other cognitive domains. There were no significant associations between vascular risk scores and serum biomarkers. Conclusions Future studies should prospectively examine associations between vascular risk and cognition in other populations and additionally consider other serum biomarkers that may be related to vascular risk and cognition.
Collapse
Affiliation(s)
- Shannon Halloway
- College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | | | - Lisa L Barnes
- Rush Medical College, Rush University, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Michael E Schoeny
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - JoEllen Wilbur
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - Susan J Pressler
- Indiana University School of Nursing, Indiana University, IN, USA
| | - Deepika Laddu
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | - Shane A Phillips
- College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sachin Vispute
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - Gabriel Hall
- Rush University College of Nursing, Rush University, Chicago, IL, USA
| | - Shamatree Shakya
- College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Madison Goodyke
- College of Nursing, University of Illinois Chicago, Chicago, IL, USA
| | - Claire Auger
- Rush Medical College, Rush University, Chicago, IL, USA
| | - Kelly Cagin
- Rush Medical College, Rush University, Chicago, IL, USA
| | | | - Zoe A Arvanitakis
- Rush Medical College, Rush University, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
39
|
Wu C, Ruan T, Yuan Y, Xu C, Du L, Wang F, Xu S. Alterations in Synaptic Connectivity and Synaptic Transmission in Alzheimer's Disease with High Physical Activity. J Alzheimers Dis 2024; 99:1005-1022. [PMID: 38759013 DOI: 10.3233/jad-240123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegeneration disease. Physical activity is one of the most promising modifiable lifestyles that can be effective in slowing down the progression of AD at an early stage. Objective Explore the molecular processes impaired in AD that were conversely preserved and enhanced by physical activity. Methods Integrated transcriptomic analyses were performed in datasets that contain AD patients and elders with different degrees of physical activity. The changes of the hub genes were validated through analyzing another two datasets. The expression of the hub genes was further detected in the hippocampus and cortexes of APP/PS1 transgenic mice with or without physical activity by Quantitative polymerase chain reaction (qPCR). Results Cross-comparison highlighted 195 DEGs displaying opposed regulation patterns between AD and high physical activity (HPA). The common DEGs were predominantly involved in synaptic vesicle recycling and synaptic transmission, largely downregulated in AD patients but upregulated in the elders with HPA. Two key modules and four hub genes that were related to synaptic vesicle turnover were obtained from the PPI network. The expression of these hub genes (SYT1, SYT4, SH3GL2, and AP2M1) was significantly decreased in AD transgenic mice and was reversed by HPA training. Conclusions HPA may reverse AD pathology by upregulating a range of synaptic vesicle transport related proteins which might improve the efficiency of synaptic vesicle turnover and facilitate inter-neuronal information transfer. The study provides novel insights into the mechanisms underlining the protective effects of HPA on AD.
Collapse
Affiliation(s)
- Can Wu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Tingting Ruan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yalan Yuan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chunshuang Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Lijuan Du
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
| | - Fang Wang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
40
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
41
|
Bugge Kambestad O, Sirevåg K, Mrdalj J, Hovland A, Bruun Endal T, Andersson E, Sjøbø T, Haukenes Stavestrand S. Physical Exercise and Serum BDNF Levels: Accounting for the Val66Met Polymorphism in Older Adults. Cogn Behav Neurol 2023; 36:219-227. [PMID: 37404130 PMCID: PMC10683974 DOI: 10.1097/wnn.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/28/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) expression, which can be measured in blood serum, has been found to increase with aerobic exercise. The link between BDNF level, physical exercise, and genetic status (Val66Met polymorphism) has not been well researched in older adults. OBJECTIVE To investigate the possible link between BDNF expression, acute aerobic exercise, and the Val66Met polymorphism in older adults. METHOD Twenty-three healthy older adults participated in one session of acute aerobic exercise. Their serum BDNF levels were measured both at baseline and post exercise. Saliva samples were collected to identify each individual's genetic status. RESULTS At baseline, the individuals' mean serum BDNF level was 16.03 ng/mL (Val66Val = 15.89 ng/mL; Val66Met = 16.34 ng/mL); post exercise, the individuals' mean serum BDNF level was 16.81 ng/mL (Val66Val = 16.14 ng/mL; Val66Met = 18.34 ng/mL). CONCLUSION One session of acute aerobic exercise significantly increased the individuals' mean serum BDNF level. Males had higher BDNF levels than females. There was a significant interaction between gender and BDNF expression post exercise and a significant between-group effect of gender. The Val66Met carriers had a more positive response to the acute aerobic exercise compared with the Val66Val carriers, although without a significant difference between the two groups.
Collapse
Affiliation(s)
- Oda Bugge Kambestad
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| | - Kristine Sirevåg
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Anders Hovland
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| | | | - Eva Andersson
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Karolinska Institute, Department of Neuroscience, Stockholm, Sweden
| | - Trond Sjøbø
- Solli District Psychiatric Centre, Nesttun, Norway
| | - Silje Haukenes Stavestrand
- Solli District Psychiatric Centre, Nesttun, Norway
- Institute for Clinical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Yang Y, Wang K, Liu S, Liu H, Zhang T, Luo J. Exergames improve cognitive function in older adults and their possible mechanisms: A systematic review. J Glob Health 2023; 13:04177. [PMID: 38038376 PMCID: PMC10691300 DOI: 10.7189/jogh.13.04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Objective The degree of aging in China is deepening, leading to cognitive decline and seriously affecting the health status of the elderly. This article explores the benefits of exergames in improving cognitive function in older adults through a literature review, with aim of contributing to the development of healthy aging. Methods Using PubMed, Web of Science, CNKI, dimensional spectrum, search for research papers from 2005 to April 2023 by using keywords such as a somatosensory game, cognitive function, execute function, working memory, aged and suppression control. PEDro Scale was used to check the quality of the literature. Results A total of 16 papers were included in the review. Exergames improve the executive function of the elderly and support the relationship between exergames and cognitive performance in older adults. From a mechanistic perspective, somatosensory play promotes signal transduction of brain neurotrophin, thereby protecting the structure and function of neurons in specific brain regions and delays the decline of executive function in older adults as much as possible. Conclusions It is recommended to use exergames as an intervention measure for the physical and mental health preservation of older adults. Suggest adopting personalised exergames in the future to explore the impact of cognitive and physical functions in elderly people, as well as measurable changes in brain structure.
Collapse
|
43
|
Yan J, Li X, Guo X, Lin Y, Wang S, Cao Y, Lin H, Dai Y, Ding Y, Liu W. Effect of Multicomponent Exercise on Cognition, Physical Function and Activities of Daily Life in Older Adults With Dementia or Mild Cognitive Impairment: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2023; 104:2092-2108. [PMID: 37142178 DOI: 10.1016/j.apmr.2023.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To review the evidence for the effectiveness of multicomponent exercise (an exercise program combining aerobic, endurance, balance, and flexibility exercises) on cognition, physical function, and activities of daily living in people with dementia and mild cognitive impairment (MCI). DATA SOURCES AND STUDY SELECTION We conducted this study under the guidance of a designated protocol (PROSPERO CRD42022324641). Pertinent randomized controlled trials were selected from PubMed, Embase, Web of Science, and the Cochrane Library by 2 independent authors through May 2022. DATA EXTRACTION Two authors independently extracted the data and assessed the quality of the included studies following the Cochrane Risk of Bias tool. Outcome data were extracted in a random effects model and estimated as Hedges' g and 95% confidence interval (CI). To validate specific results, the Egger test combined the Duval and Tweedie "trim and fill" method and sensitivity analysis with study removed were performed. DATA SYNTHESIS A total of 21 publications were eligible for the quantitative analysis. In dementia, estimates of Hedges' g showed effects on global cognition (g=0.403; 95% CI, 0.168-0.638; P<.05), especially executive function (g=0.344; 95% CI, 0.111-0.577; P<.05), flexibility (g=0.671; 95% CI, 0.353-0.989; P<.001), agility and mobility (g=0.402; 95% CI, 0.089-0.714; P<.05), muscle strength (g=1.132; 95% CI, 0.420-1.845; P<.05), and activities of daily living (g=0.402; 95% CI, 0.188-0.615; P<.05). Also, a positive trend was observed in gait speed. Additionally, multicomponent exercise had positive effects on global cognition (g=0.978; 95% CI, 0.298-1.659; P<.05) and executive function (g=0.448; 95% CI, 0.171-0.726; P<.05) in patients with MCI. CONCLUSIONS Our findings confirm the viability of multicomponent exercise as a management strategy for patients with dementia and MCI.
Collapse
Affiliation(s)
- Jiamin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaohan Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoqin Guo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanting Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sinuo Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yajun Cao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yanyi Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, China.
| |
Collapse
|
44
|
Zhao Y, Huang B, Yu Y, Luan J, Huang S, Liu Y, Yang H, Chen Y, Yang R, Dong J, Shi H. Exercise to prevent the negative effects of sleep deprivation: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105433. [PMID: 37898446 DOI: 10.1016/j.neubiorev.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Ample sleep is an important basis for maintaining health, however with the pace of life accelerating in modern society, more people are using sacrificial sleep to cope with these social changes. Sleep deprivation can have negative effects on cognitive performance and psychosomatic health. It is well known that exercise, as a beneficial intervention strategy for human health, has been increasingly used in the clinic. But it's not clear if it can prevent the negative effects of sleep deprivation. In this meta-analysis, we reviewed 23 articles from PubMed and Web of Science to investigate whether moderate physical exercise can prevent the negative effects of sleep deprivation in rodents. Our findings suggest that exercise can prevent sleep deprivation-induced cognitive impairment and anxiety-like behaviors through multiple pathways. We also discuss possible molecular mechanisms involved in this protective effect, highlighting the potential of exercise as a preventive or therapeutic strategy for sleep deprivation-induced negative effects.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yang Yu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiage Luan
- Nursing School, Hebei Medical University, Shijiazhuang 050017, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Ye Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Huiping Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jing Dong
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan 430000, Hubei, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
45
|
Ren J, Xiao H. Exercise Intervention for Alzheimer's Disease: Unraveling Neurobiological Mechanisms and Assessing Effects. Life (Basel) 2023; 13:2285. [PMID: 38137886 PMCID: PMC10744739 DOI: 10.3390/life13122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a major cause of age-related dementia, characterized by cognitive dysfunction and memory impairment. The underlying causes include the accumulation of beta-amyloid protein (Aβ) in the brain, abnormal phosphorylation, and aggregation of tau protein within nerve cells, as well as neuronal damage and death. Currently, there is no cure for AD with drug therapy. Non-pharmacological interventions such as exercise have been widely used to treat AD, but the specific molecular and biological mechanisms are not well understood. In this narrative review, we integrate the biology of AD and summarize the knowledge of the molecular, neural, and physiological mechanisms underlying exercise-induced improvements in AD progression. We discuss various exercise interventions used in AD and show that exercise directly or indirectly affects the brain by regulating crosstalk mechanisms between peripheral organs and the brain, including "bone-brain crosstalk", "muscle-brain crosstalk", and "gut-brain crosstalk". We also summarize the potential role of artificial intelligence and neuroimaging technologies in exercise interventions for AD. We emphasize that moderate-intensity, regular, long-term exercise may improve the progression of Alzheimer's disease through various molecular and biological pathways, with multimodal exercise providing greater benefits. Through in-depth exploration of the molecular and biological mechanisms and effects of exercise interventions in improving AD progression, this review aims to contribute to the existing knowledge base and provide insights into new therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Child, Lingnan Normal University, Zhanjiang 524037, China
- Institute of Sport and Health, South China Normal University, Guangzhou 510631, China
| | - Haili Xiao
- Institute of Sport and Health, Lingnan Normal University, Zhanjiang 524037, China;
| |
Collapse
|
46
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
47
|
Lee DY, Im SC, Kang NY, Kim K. Analysis of Effect of Intensity of Aerobic Exercise on Cognitive and Motor Functions and Neurotrophic Factor Expression Patterns in an Alzheimer's Disease Rat Model. J Pers Med 2023; 13:1622. [PMID: 38003937 PMCID: PMC10672300 DOI: 10.3390/jpm13111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The effect of aerobic exercise at different intensities on Alzheimer's disease (AD) still remains unclear. We investigated the effect of aerobic exercise at different intensities on cognitive and motor functions and neurotrophic factor expression. Thirty-two AD-induced rats were randomly assigned to control (CG), low-intensity (Group I), medium-intensity (Group II), and high-intensity (Group III) exercise groups. Each group, except for the CG, performed aerobic exercise for 20 min a day five times a week. After performing aerobic exercise for 4 weeks, their cognitive and motor functions and neurotrophic factor expression patterns were analyzed and compared between the groups. All variables of cognitive and motor functions and neurotrophic factor expression were significantly improved in Groups I, II, and III compared to those in the CG (p < 0.05). Among the neurotrophic factors, brain-derived neurotrophic factor (BDNF) expression was significantly improved in Group III compared to that in Groups I and II (p < 0.05). In the intra-group comparison of cognitive and motor functions, no significant difference was observed in CG, but the aerobic exercise groups showed improvements. Only Group III showed a significant improvement in the time it took to find eight food items accurately (p < 0.05). Aerobic exercise improved the cognitive and motor functions and neurotrophic factor expression patterns in the AD-induced rat model, with high-intensity aerobic exercise having greater effects on cognitive function and BDNF expression.
Collapse
Affiliation(s)
| | | | | | - Kyoung Kim
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan 38453, Republic of Korea; (D.-Y.L.); (S.-C.I.); (N.-Y.K.)
| |
Collapse
|
48
|
Yoon E, Jeong J, Yoon E, Park D. The effects of treadmill exercise on brain angiogenesis in ovariectomized rats. Physiol Rep 2023; 11:10.14814/phy2.15864. [PMID: 37962017 PMCID: PMC10644280 DOI: 10.14814/phy2.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Menopause is associated with vascular dysfunction attributed to reduced estrogen levels. Exercise has been proposed to promote angiogenesis and vascular dysfunction. However, studies of brain angiogenesis during menopause are limited. We analyzed the effects of exercise on angiogenesis-related factors in menopausal rat model. Twenty-week-old female Sprague-Dawley rats (N = 18) were randomly divided into a normal control group (N, n = 6), an ovariectomized control group (OVX, n = 6), and an ovariectomy + exercise group (OVX-EX, n = 6). Treadmill exercises were conducted in the OVX-EX group for 8 weeks (15-60 m/min, 1 h/day, and 5 days/week). The current study showed that the expression of angiogenesis-related factors (platelet-derived growth factor subunit A, B, vascular endothelial growth factor, angiopoietin 1, and angiopoietin 2) significantly decreased in the cortex of the OVX group. However, these factors were significantly restored in the cortex of the OVX-EX group after 8 weeks of treadmill exercise. In summary, estrogen deficiency causes vascular dysfunction by inhibiting the expression of angiogenesis-related factors. However, exercise can restore angiogenesis-related factors in OVX rats. Exercise eventually prevents vascular dysfunction in the brain and may help prevent cognitive dysfunction in menopausal women.
Collapse
Affiliation(s)
- Eun‐Jung Yoon
- Laboratory of Animal Physiology and Medicine, Department of Biology EducationKorea National University of EducationCheongjuKorea
| | - Jiwon Jeong
- Laboratory of Animal Physiology and Medicine, Department of Biology EducationKorea National University of EducationCheongjuKorea
| | - Eunji Yoon
- Laboratory of Animal Physiology and Medicine, Department of Biology EducationKorea National University of EducationCheongjuKorea
| | - Dongsun Park
- Laboratory of Animal Physiology and Medicine, Department of Biology EducationKorea National University of EducationCheongjuKorea
| |
Collapse
|
49
|
Islam A, Mishra A, Ahsan R, Fareha S. Phytopharmaceuticals and Herbal Approaches to Target Neurodegenerative Disorders. Drug Res (Stuttg) 2023; 73:388-407. [PMID: 37308092 DOI: 10.1055/a-2076-7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurodegeneration is characterized as the continuous functional and structural loss of neurons, resulting in various clinical and pathological manifestations and loss of functional anatomy. Medicinal plants have been oppressed from ancient years and are highly considered throughout the world as a rich source of therapeutic means for the prevention, treatment of various ailments. Plant-derived medicinal products are becoming popular in India and other nations. Further herbal therapies shows good impact on chronic long term illnesses including degenerative conditions of neurons and brain. The use of herbal medicines continues to expand rapidly across the world. The active phytochemical constituents of individual plants are sometimes insufficient to achieve the desirable therapeutic effects. Combining the multiple herbs in a particular ratio (polyherbalism) will give a better therapeutic effect and reduce toxicity. Herbal-based nanosystems are also being studied as a way to enhance the delivery and bioavailability of phytochemical compounds for the treatment of neurodegenerative diseases. This review mainly focuses on the importance of the herbal medicines, polyherbalism and herbal-based nanosystems and its clinical significance for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anas Islam
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Rabia Ahsan
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Syed Fareha
- Department of Bioengineering, Integral University,, Lucknow, Uttar Pradesh, India
| |
Collapse
|
50
|
Fischetti F, Poli L, De Tommaso M, Paolicelli D, Greco G, Cataldi S. The role of exercise parameters on small extracellular vesicles and microRNAs cargo in preventing neurodegenerative diseases. Front Physiol 2023; 14:1241010. [PMID: 37654673 PMCID: PMC10466047 DOI: 10.3389/fphys.2023.1241010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Physical activity (PA), which includes exercise, can reduce the risk of developing various non-communicable diseases, including neurodegenerative diseases (NDs), and mitigate their adverse effects. However, the mechanisms underlying this ability are not yet fully understood. Among several possible mechanisms proposed, such as the stimulation of brain-derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF), the possible involvement of particular vesicular structures enclosed in lipid membranes known as extracellular vesicles (EVs) has recently been investigated. These EVs would appear to exert a paracrine and systemic action through their ability to carry various molecules, particularly so-called microRNAs (miRNAs), performing a function as mediators of intercellular communication. Interestingly, EVs and miRNAs are differentially expressed following PA, but evidence on how different exercise parameters may differentially affect EVs and the miRNAs they carry is still scarce. In this review we summarized the current human findings on the effects of PA and different exercise parameters exerted on EVs and their cargo, focusing on miRNAs molecules, and discussing how this may represent one of the biological mechanisms through which exercise contributes to preventing and slowing NDs.
Collapse
Affiliation(s)
- Francesco Fischetti
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Luca Poli
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Marina De Tommaso
- Applied Neurophysiology and Pain Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Damiano Paolicelli
- Neurophysiology Operative Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| |
Collapse
|