1
|
Wang T, Shao J, Yan R, Dai Z, Pei C, Zhang W, Yao Z, Lu Q. Neuroimaging pattern interactions for suicide risk in depression captured by ensemble learning over transcriptome-defined parcellation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111390. [PMID: 40320231 DOI: 10.1016/j.pnpbp.2025.111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND For suicide in major depression disorder, it is urgent to seek for a reliable neuroimaging biomarker with interpretable links to molecular tissue signatures. Accordingly, we developed an ensemble learning scheme over transcriptome-defined parcellations (TDP) to explore homogeneously parcellated brain patterns and their interactions. METHODS 96 depressed patients without suicide attempt (SA), 86 with SA and 102 healthy controls were recruited for resting state fMRI scanning. Six genetic dimensions were created by homogenous transcriptomic delineations from Allen Human Brain Atlas. Spatially-continuous TDPs were generated according to expression-levels of each brain region along diverse dimensions. Subsequently, TDPs were integrated with a three-layer ensemble learning scheme, where brain dysfunction of each TDP related to suicide was quantified with a resting-state functional abnormality (RSFA) score. Then, personalized index of brain dysfunction was produced according to the interactive pattern across TDPs. RESULTS Ensemble learning over TDPs displayed higher suicide predictive performance, relative to that over the regions level, and over null model (95 % CI of accuracy: 73.23 ± 1.07 %; 64.59 ± 3.00 %; 65.41 ± 3.97 %, respectively). Empowered by specific parieto-occipital TDP (PO-TDP) pattern quantified with RSFA score in suicide risk prediction, its alternations of SA effects were spatially associated with transcriptional profiles of GRIN2A and GABRG2. Moreover, glutamatergic and GABAergic synapse were overrepresented in enrichment analysis. CONCLUSION Glutamatergic and GABAergic dysfunction in the visual cortex was suggested via the PO-TDP specific interaction pattern. The inherent excitatory/inhibitory imbalance could contribute to aberrant emotional processing and neurocognitive impairment, ultimately leading to suicide.
Collapse
Affiliation(s)
- Ting Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Cong Pei
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Wei Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|
2
|
Pashkov A, Dakhtin I. Direct Comparison of EEG Resting State and Task Functional Connectivity Patterns for Predicting Working Memory Performance Using Connectome-Based Predictive Modeling. Brain Connect 2025; 15:175-187. [PMID: 40317131 DOI: 10.1089/brain.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Background: The integration of machine learning with advanced neuroimaging has emerged as a powerful approach for uncovering the relationship between neuronal activity patterns and behavioral traits. While resting-state neuroimaging has significantly contributed to understanding the neural basis of cognition, recent fMRI studies suggest that task-based paradigms may offer superior predictive power for cognitive outcomes. However, this hypothesis has never been tested using electroencephalography (EEG) data. Methods: We conducted the first experimental comparison of predictive models built on high-density EEG data recorded during both resting-state and an auditory working memory task. Multiple data processing pipelines were employed to ensure robustness and reliability. Model performance was evaluated by computing the Pearson correlation coefficient between predicted and observed behavioral scores, supplemented by mean absolute error and root mean square error metrics for each model configuration. Results: Consistent with prior fMRI findings, task-based EEG data yielded slightly better modeling performance than resting-state data. Both conditions demonstrated high predictive accuracy, with peak correlations between observed and predicted values reaching r = 0.5. Alpha and beta band functional connectivity were the strongest predictors of working memory performance, followed by theta and gamma bands. Additionally, the choice of parcellation atlas and connectivity method significantly influenced results, highlighting the importance of methodological considerations. Conclusion: Our findings support the advantage of task-based EEG over resting-state data in predicting cognitive performance, aligning with. The study underscores the critical role of frequency-specific functional connectivity and methodological choices in model performance. These insights should guide future experimental designs in cognitive neuroscience. Impact Statement This study provides the first direct comparison of EEG-based functional connectivity during rest and task conditions for predicting working memory performance using connectome-based predictive modeling (CPM). It demonstrates that task-based EEG data slightly outperforms resting-state data, with alpha and beta bands being the most predictive. The findings highlight the critical influence of methodological choices, such as parcellation atlases and connectivity metrics, on model outcomes. By bridging gaps in EEG research and validating CPM's applicability, this work advances the optimization of neuroimaging protocols for cognitive assessment, offering insights for future studies in cognitive neuroscience.
Collapse
Affiliation(s)
- Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
- Department of neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Ivan Dakhtin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
- Department of Fundamental Medicine, Chelyabinsk State University, Chelyabinsk, Russia
| |
Collapse
|
3
|
Tu JC, Myers MJ, Li W, Li J, Wang X, Dierker D, Day TKM, Snyder A, Latham A, Kenley JK, Sobolewski CM, Wang Y, Labonte AK, Feczko E, Kardan O, Moore LA, Sylvester CM, Fair DA, Elison JT, Warner BB, Barch DM, Rogers CE, Luby JL, Smyser CD, Gordon EM, Laumann TO, Eggebrecht AT, Wheelock MD. The generalizability of cortical area parcellations across early childhood. Cereb Cortex 2025; 35:bhaf116. [PMID: 40422981 DOI: 10.1093/cercor/bhaf116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 05/28/2025] Open
Abstract
The cerebral cortex consists of distinct areas that develop through intrinsic embryonic patterning and postnatal experiences. Accurate parcellation of these areas in neuroimaging studies improves statistical power and cross-study comparability. Given significant brain changes in volume, microstructure, and connectivity during early life, we hypothesized that cortical areas in 1- to 3-year-olds would differ markedly from neonates and increasingly resemble adult patterns as development progresses. Here, we parcellated the cerebral cortex into putative areas using local functional connectivity (FC) gradients in 92 toddlers at 2 years old. We demonstrate high reproducibility of these cortical areas across 1- to 3-year-olds in two independent datasets. The area boundaries in 1- to 3-year-olds were more similar to those in adults than those in neonates. While the age-specific group area parcellation better fits the underlying FC in individuals during the first 3 years, adult area parcellations still have utility in developmental studies, especially in children older than 6 years. Additionally, we provide connectivity-based community assignments of the area parcels, showing fragmented anterior and posterior components based on the strongest connectivity, yet alignment with adult systems when weaker connectivity was included.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Michael J Myers
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Wei Li
- Department of Mathematics and Statistics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States
| | - Jiaqi Li
- Department of Mathematics and Statistics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States
- Department of Statistics, University of Chicago, 5747 S Ellis Ave, Chicago, IL 60637, United States
| | - Xintian Wang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Trevor K M Day
- Masonic Institute for the Developing Brain, University of Minnesota, 2025 E River Pkwy, Minneapolis, MN 55414, United States
- Institute of Child Development, University of Minnesota, Campbell Hall, 51 E River Rd, Minneapolis, MN 55455, United States
- Center for Brain Plasticity and Recovery, Georgetown University, Department of Neurology Building D, Suite 145, 4000 Reservoir Road, N.W. Washington, DC 20007, United States
| | - Abraham Snyder
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Aidan Latham
- Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Jeanette K Kenley
- Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Chloe M Sobolewski
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
- Department of Psychology, Virginia Commonwealth University, White House 806 W. Franklin St. Box 842018. Richmond, Virginia 23284-2018, United States
| | - Yu Wang
- Department of Mathematics and Statistics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, United States
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, 2025 E River Pkwy, Minneapolis, MN 55414, United States
| | - Omid Kardan
- Department of Psychiatry, University of Michigan, 250 Plymouth Road, Ann Arbor 48109, United States
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, 2025 E River Pkwy, Minneapolis, MN 55414, United States
| | - Chad M Sylvester
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, United States
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, 4444 Forest Park Ave #2600, St. Louis, MO 63108, United States
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, 2025 E River Pkwy, Minneapolis, MN 55414, United States
- Institute of Child Development, University of Minnesota, Campbell Hall, 51 E River Rd, Minneapolis, MN 55455, United States
| | - Jed T Elison
- Masonic Institute for the Developing Brain, University of Minnesota, 2025 E River Pkwy, Minneapolis, MN 55414, United States
- Institute of Child Development, University of Minnesota, Campbell Hall, 51 E River Rd, Minneapolis, MN 55455, United States
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Deanna M Barch
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, United States
- Department of Psychological and Brain Sciences, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, United States
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, United States
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
- Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, United States
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, United States
- Department of Pediatrics, Washington University in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110-1010, United States
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| |
Collapse
|
4
|
Reeves WD, Ahmed I, Jackson BS, Sun W, Williams CF, Davis CL, McDowell JE, Yanasak NE, Su S, Zhao Q. fMRI-based data-driven brain parcellation using independent component analysis. J Neurosci Methods 2025; 417:110403. [PMID: 39978483 PMCID: PMC11908389 DOI: 10.1016/j.jneumeth.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Studies using functional magnetic resonance imaging (fMRI) broadly require a method of parcellating the brain into regions of interest (ROIs). Parcellations can be based on standardized brain anatomy, such as the Montreal Neurological Institute's (MNI) 152 atlas, or an individual's functional activity patterns, such as the Personode software. NEW METHOD This work outlines and tests the independent component analysis (ICA)-based parcellation algorithm (IPA) when applied to a hypertension study (n = 48) that uses the independent components (ICs) output from group ICA (gICA) to build ROIs which are ideally spatially consistent and functionally homogeneous. After regression of ICs to all subjects, the IPA builds individualized parcellations while simultaneously obtaining a gICA-derived parcellation. RESULTS ROI spatial consistency quantified by dice similarity coefficients (DSCs) show individualized parcellations exhibit mean DSCs of 0.69 ± 0.14. Functional homogeneity, calculated as mean Pearson correlation value of all voxels comprising a ROI, shows individualized parcellations with a mean of 0.30 ± 0.14 and gICA-derived parcellations' mean of 0.38 ± 0.15. COMPARISON WITH EXISTING METHOD(S) Individualized Personode parcellations show decreased mean DSCs (0.43 ± 0.11) with the individualized parcellations, gICA-derived parcellations, and the MNI atlas having decreased homogeneity values of 0.28 ± 0.14, 0.31 ± 0.15, and 0.20 ± 0.11 respectively. CONCLUSIONS Results show that the IPA can more reliably define a ROI and does so with higher functional homogeneity. Given these findings, the IPA shows promise as a novel parcellation technique that could aid the analysis of fMRI data.
Collapse
Affiliation(s)
- William D Reeves
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA
| | - Ishfaque Ahmed
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA
| | - Brooke S Jackson
- University of Georgia Franklin College of Arts and Sciences, Department of Psychology, Athens, GA, USA
| | - Wenwu Sun
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA
| | | | - Catherine L Davis
- Medical College of Georgia, Georgia Prevention Institute, Augusta, GA, USA
| | - Jennifer E McDowell
- University of Georgia Bio-Imaging Research Center, Athens, GA, USA; University of Georgia Franklin College of Arts and Sciences, Department of Psychology, Athens, GA, USA
| | - Nathan E Yanasak
- Medical College of Georgia, Department of Radiology and Imaging, Augusta, GA, USA
| | - Shaoyong Su
- Medical College of Georgia, Georgia Prevention Institute, Augusta, GA, USA
| | - Qun Zhao
- University of Georgia Franklin College of Arts and Sciences, Department of Physics and Astronomy, Athens, GA, USA; University of Georgia Bio-Imaging Research Center, Athens, GA, USA.
| |
Collapse
|
5
|
Savvateev I, Grimm C, Markicevic M, Grandjean J, Sastre D, Gozzi A, Wenderoth N, Polania R, Zerbi V. Functional-based parcellation of the mouse prefrontal cortex for network perturbation analysis. Cell Rep 2025; 44:115622. [PMID: 40287941 DOI: 10.1016/j.celrep.2025.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/06/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The prefrontal cortex (PFC) is a brain region involved in higher-order cognitive processes such as attention, emotional regulation, and social behavior. However, the delineation of distinct subdivisions within the mouse PFC and their contributions to the broader brain network function remain debated. This study utilizes resting-state functional magnetic resonance imaging (MRI) from a cohort of 100 C57BL/6J wild-type mice to derive the functional connectivity (FC)-based parcellation of the mouse PFC with voxel resolution. Our findings reveal clusters that deviate from the established anatomical subdivisions within the cingulate and prelimbic areas while aligning in infralimbic and orbital cortices. Upon the chemogenetic perturbation of one of the clusters, FC perturbations occur only within the functional network linked to the targeted cluster and do not spread to neighboring anatomical areas or functional clusters. We propose FC-based parcellation as a valuable approach for tracking the site of activation and network impact of neurostimulation strategies.
Collapse
Affiliation(s)
- Iurii Savvateev
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Grimm
- Neuro-X Institute, School of Engineering (STI), EPFL, Lausanne, Switzerland
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Joanes Grandjean
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen 6525 AJ, the Netherlands; Department of Medical Imaging, Radboud University Medical Centre, Nijmegen 6525 GA, the Netherlands
| | - David Sastre
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Wang Y, Lin J, Zhu K, Nie Y, Wang M, Ma X, Liu X, Wang R, Mai W, Chu F, Liu R, Wu J, Jin J, Zhou X, Ma R, Wang X, Yin T, Liu Z, Zhang S. Precision neuroregulation combining liquid metal and magnetic stimulation. J Neuroeng Rehabil 2025; 22:76. [PMID: 40197274 PMCID: PMC11974191 DOI: 10.1186/s12984-025-01575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/11/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Electromagnetic field-based neuroregulation technology is a crucial technique for treating central nervous system and peripheral nervous system disorders. However, the use of invasive electrodes has unavoidable problems such as the risk of inflammation due to high hardness, electrical connections and the need for batteries. On the other hand, non-invasive magnetic stimulation has limitations such as centimeter-level focal areas and shallow stimulation depth. METHODS To enhance the precision and effectiveness of wireless magnetic stimulation, we employed a figure-8 magnetic stimulation coil (8-coil) to generate a magnetic field, combined with an injectable, highly conductive, and flexible liquid metal (LM) to produce a millimeter-scale focused electric field. A coaxial electric field measurement electrode was used to establish an agar phantom-based electric field measurement platform. The sciatic nerve of C57 mice was stimulated under acute anesthesia conditions, and electromyography (EMG) signals were collected to evaluate the enhancement of stimulation effects. Long-term safety was assessed through four weeks of implantation. RESULTS Theoretical analysis and finite element simulations demonstrated that the combination of LM and the 8-coil generated a millimeter-scale enhanced vector electric field within the tissue. Measured electric field distributions closely aligned with theoretical and simulation results. In the sciatic nerve experiments on mice, 1 µL of LM under a 0.45 T magnetic field significantly increased EMG signals and leg movement amplitude by approximately 500%. Long-term implantation under magnetic stimulation revealed no adverse effects. CONCLUSIONS This method utilizes focused electric fields to improve the precision and effectiveness of neuro-magnetic stimulation. It holds promise as a novel approach for precise stimulation. Preliminary evidence was provided for the safety of in vivo LM implantation under external magnetic fields.
Collapse
Affiliation(s)
- Yuheng Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Junjie Lin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Kai Zhu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Yuhui Nie
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Mengyuan Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Xiaoxu Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Xu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Ruru Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Wenshu Mai
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Fangxuan Chu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Ruixu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
| | - Jiankang Wu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoqing Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ren Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China.
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China.
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Shunqi Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300192, China.
- Tianjin Key Laboratory of Neuroregulation and Neurorepair, Tianjin, 300192, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
7
|
Ye H, Liu S, Li M, Zhu H, Cao F. Semantic-spatial feature-fused cortical surface parcellation: a scale-unified spatial learning network with boundary contrastive loss. Med Biol Eng Comput 2025; 63:987-1000. [PMID: 39549225 DOI: 10.1007/s11517-024-03242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
The cortical surface parcellation provides prior guidance for studying mental disorders and human cognition. Graph neural networks (GNNs) have gained popularity in this task to preserve its spatial structure. However, previous GNNs struggled to effectively exploit the information contained in the complex spatial structure of the cortical surface and generally encountered an uneven node distribution issue. Meanwhile, labeling boundary nodes was also identified as a widespread problem in this task. Accordingly, this paper develops a scale-unified spatial learning network with a boundary contrastive loss (SSLNet) for cortical surface parcellation. Its core is the scale-unified spatial learning module. It devises neighbor feature extraction and aggregation strategies by fully integrating spatial coordinates and semantic structure to learn effective spatial features of local neighborhoods. More importantly, spatial scale unification is incorporated into this module to mitigate the negative effect on spatial learning caused by node distribution differences among local areas. Additionally, a universal boundary contrastive loss is constructed, enhancing the feature discriminability of boundary nodes by constraining them to be close to the same class nodes and apart from different class nodes in the feature space. It considerably improves boundary performance without increasing parameters or changing the network structure. Experiments regarding public Mindboggle demonstrate that the dice score and accuracy of SSLNet achieve 89.8 % and 90.89 % , respectively, surpassing existing methods.
Collapse
Affiliation(s)
- Hailiang Ye
- Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou, China
| | - Siqi Liu
- Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou, China
| | - Ming Li
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Houying Zhu
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Feilong Cao
- Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
8
|
Carpenter CM, Mullin HA, Cwiek A, Carter E, Vervoordt S, Lan X, Dennis NA, Rabinowitz A, Venkatesan UM, Hillary FG. Hippocampal network connectivity and episodic memory in individuals aging with traumatic brain injury. Brain Imaging Behav 2025; 19:433-445. [PMID: 39982608 DOI: 10.1007/s11682-025-00979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Aging is associated with marked declines in episodic memory corresponding with decreased volume in studies of morphology and reduced network response in studies of functional connectomics. Furthermore, recent research has demonstrated that reductions in resting state network connectivity are related to declines in episodic memory, specifically in the default mode and frontoparietal cortical networks. Additionally, the interactive effects of aging and traumatic brain injury (TBI) are associated with increased risk for neurodegeneration and episodic memory impairments. However, there is a gap in the literature examining episodic memory and hippocampal-subcortical resting state connectivity differences related to aging with and without TBI. The current work aims to investigate episodic memory differences between older adults with TBI (N = 45) and older adults with no history of TBI (N = 28) and how that relates to hippocampal-subcortical network differences at rest. We demonstrate a positive relationship between default mode and frontoparietal network connectivity and memory performance differentially between those aging with and without moderate-severe TBI (msTBI). Additionally, we demonstrate that reliability in the strength of resting state functional connectivity between parcellations is weakest among connections to the hippocampus compared to other cortical connections but is generally reliable across other connections.
Collapse
Affiliation(s)
| | - Hollie A Mullin
- The Pennsylvania State University, State College, University Park, USA
| | - Andrew Cwiek
- The Pennsylvania State University, State College, University Park, USA
| | - Emily Carter
- The Pennsylvania State University, State College, University Park, USA
| | | | - Xinhui Lan
- The Pennsylvania State University, State College, University Park, USA
| | - Nancy A Dennis
- The Pennsylvania State University, State College, University Park, USA
| | - Amanda Rabinowitz
- Moss Rehabilitation Research Institute, Philadelphia, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| | - Umesh M Venkatesan
- Moss Rehabilitation Research Institute, Philadelphia, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| | - Frank G Hillary
- The Pennsylvania State University, State College, University Park, USA.
| |
Collapse
|
9
|
Liu Y, Choi JY, Perrachione TK. Systematic bias in surface area asymmetry measurements from automatic cortical parcellations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645109. [PMID: 40196603 PMCID: PMC11974827 DOI: 10.1101/2025.03.25.645109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Anatomical asymmetry is a hallmark of the human brain and may reflect hemispheric differences in its functional organization. Widely used software like FreeSurfer can automate neuroanatomical measurements and facilitate studies of hemispheric asymmetry. However, patterns of surface area lateralization measured using FreeSurfer are curiously consistent across diverse samples. Here, we demonstrate systematic biases in these measurements obtained from the default processing pipeline. We compared surface area asymmetry measured from reconstructions of original brains vs. the same scans after flipping their left-right orientation. The default pipeline returned implausible asymmetry patterns between the original and flipped brains: Many structures were always left- or right-lateralized. Notably, these biases occur prominently in key speech and language regions. In contrast, manual labeling and curvature-based parcellations of key structures both yielded the expected reversals of left/right lateralization in flipped brains. We determined that these biases result from discrepancies in how regional labels are defined in the left vs. right hemisphere in the default cortical parcellation atlases. These biases are carried into individual parcellations because the FreeSurfer parcellation algorithm prioritizes vertex correspondence to the template atlas relative to individual neuroanatomical variation. We further demonstrate several straightforward, bias-free approaches to measuring surface area asymmetry, including using symmetric registration templates and parcellation atlases, vertex-wise analyses, and within-subject curvature-based parcellations. These results highlight theoretical concerns about using only the default processing stream to make inferences about population-level brain asymmetry and underscore the need for validating bias-free neuroanatomical measurements, particularly when studying regions where structural lateralization may underlie functional lateralization.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, USA
| | - Ja Young Choi
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Kong R, Spreng RN, Xue A, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Holmes AJ, Laird AR, Larson-Prior L, Nickerson LD, Pinho AL, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Uddin LQ. A network correspondence toolbox for quantitative evaluation of novel neuroimaging results. Nat Commun 2025; 16:2930. [PMID: 40133295 PMCID: PMC11937327 DOI: 10.1038/s41467-025-58176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
The brain can be decomposed into large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. We have developed the Network Correspondence Toolbox (NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and multiple widely used functional brain atlases. We provide several exemplar demonstrations to illustrate how researchers can use the NCT to report their own findings. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.
Collapse
Affiliation(s)
- Ru Kong
- Centre for Translational MR Research and Centre for Sleep & Cognition, National University of Singapore, Singapore, Singapore
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Aihuiping Xue
- Centre for Translational MR Research and Centre for Sleep & Cognition, National University of Singapore, Singapore, Singapore
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | | | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Alex Fornito
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Caterina Gratton
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana Champaign, IL, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Avram J Holmes
- Department of Psychiatry, Rutgers University, New Brunswick, NJ, USA
- Center for Brain Health, Rutgers University, New Brunswick, NJ, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurosciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lisa D Nickerson
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, USA
| | - Ana Luísa Pinho
- Western Centre for Brain and Mind, Western University, London, ON, Canada
- Department of Computer Science and Department of Psychology, Western University, London, ON, Canada
| | - Adeel Razi
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana Champaign, IL, USA
| | - James M Shine
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B T Thomas Yeo
- Centre for Translational MR Research and Centre for Sleep & Cognition, National University of Singapore, Singapore, Singapore.
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Tu JC, Myers M, Li W, Li J, Wang X, Dierker D, Day TKM, Snyder AZ, Latham A, Kenley JK, Sobolewski CM, Wang Y, Labonte AK, Feczko E, Kardan O, Moore LA, Sylvester CM, Fair DA, Elison JT, Warner BB, Barch DM, Rogers CE, Luby JL, Smyser CD, Gordon EM, Laumann TO, Eggebrecht AT, Wheelock MD. The Generalizability of Cortical Area Parcellations Across Early Childhood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.09.612056. [PMID: 39314355 PMCID: PMC11419084 DOI: 10.1101/2024.09.09.612056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The cerebral cortex consists of distinct areas that develop through intrinsic embryonic patterning and postnatal experiences. Accurate parcellation of these areas in neuroimaging studies improves statistical power and cross-study comparability. Given significant brain changes in volume, microstructure, and connectivity during early life, we hypothesized that cortical areas in 1- to 3-year-olds would differ markedly from neonates and increasingly resemble adult patterns as development progresses. Here, we parcellated the cerebral cortex into putative areas using local functional connectivity gradients in 92 toddlers at 2 years old. We demonstrate high reproducibility of these cortical regions across 1- to 3-year-olds in two independent datasets. The area boundaries in 1- to 3-year-olds were more similar to those in adults than those in neonates. While the age-specific group area parcellation better fit the underlying functional connectivity in individuals during the first 3 years, adult area parcellations might still have some utility in developmental studies, especially in children older than 6 years. Additionally, we provide connectivity-based community assignments of the parcels, showing fragmented anterior and posterior components based on the strongest connectivity, yet alignment with adult systems when weaker connectivity was included.
Collapse
Affiliation(s)
| | - Michael Myers
- Department of Psychiatry, Washington University in St. Louis
| | - Wei Li
- Department of Mathematics and Statistics, Washington University in St. Louis
| | - Jiaqi Li
- Department of Mathematics and Statistics, Washington University in St. Louis
- Department of Statistics, University of Chicago
| | - Xintian Wang
- Department of Radiology, Washington University in St. Louis
| | - Donna Dierker
- Department of Radiology, Washington University in St. Louis
| | - Trevor K M Day
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
- Center for Brain Plasticity and Recovery, Georgetown University
| | | | - Aidan Latham
- Department of Neurology, Washington University in St. Louis
| | | | - Chloe M Sobolewski
- Department of Radiology, Washington University in St. Louis
- Department of Psychology, Virginia Commonwealth University
| | - Yu Wang
- Department of Mathematics and Statistics, Washington University in St. Louis
| | | | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Omid Kardan
- Department of Psychiatry, University of Michigan
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota
| | | | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | - Jed T Elison
- Masonic Institute for the Developing Brain, University of Minnesota
- Institute of Child Development, University of Minnesota
| | | | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St Louis
| | | | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
- Department of Neurology, Washington University in St. Louis
- Department of Pediatrics, Washington University in St. Louis
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis
| | | | | | | |
Collapse
|
12
|
Hua L, Huang C, Zeng X, Gao F, Yuan Z. Individualized brain radiomics-based network tracks distinct subtypes and abnormal patterns in prodromal Parkinson's disease. Neuroimage 2025; 306:121012. [PMID: 39788336 DOI: 10.1016/j.neuroimage.2025.121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025] Open
Abstract
Individuals in the prodromal phase of Parkinson's disease (PD) exhibit significant heterogeneity and can be divided into distinct subtypes based on clinical symptoms, pathological mechanisms, and brain network patterns. However, little has been done regarding the valid subtyping of prodromal PD, which hinders the early diagnosis of PD. Therefore, we aimed to identify the subtypes of prodromal PD using the brain radiomics-based network and examine the unique patterns linked to the clinical presentations of each subtype. Individualized brain radiomics-based network was constructed for normal controls (NC; N = 110), prodromal PD patients (N = 262), and PD patients (N = 108). A data-driven clustering approach using the radiomics-based network was carried out to cluster prodromal PD patients into higher-/lower-risk subtypes. Then, the dissociated patterns of clinical manifestations, anatomical structure alterations, and gene expression between these two subtypes were evaluated. Clustering findings indicated that one prodromal PD subtype closely resembled the pattern of NCs (N-P; N = 159), while the other was similar to the pattern of PD (P-P; N = 103). Significant differences were observed between the subtypes in terms of multiple clinical measurements, neuroimaging for morphological changes, and gene enrichment for synaptic transmission. Identification of prodromal PD subtypes based on brain connectomes and a full understanding of heterogeneity at this phase could inform early and accurate PD diagnosis and effective neuroprotective interventions.
Collapse
Affiliation(s)
- Lin Hua
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, PR China
| | - Canpeng Huang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, PR China
| | - Xinglin Zeng
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, PR China; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Fei Gao
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, PR China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, PR China.
| |
Collapse
|
13
|
Tu JC, Kim JH, Luckett P, Adeyemo B, Shimony JS, Elison JT, Eggebrecht AT, Wheelock MD. Deep-learning based Embedding of Functional Connectivity Profiles for Precision Functional Mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635570. [PMID: 39975052 PMCID: PMC11838398 DOI: 10.1101/2025.01.29.635570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Spatial correlation of functional connectivity profiles across matching anatomical locations in individuals is often calculated to delineate individual differences in functional networks. Likewise, spatial correlation is assessed across average functional connectivity profiles of groups to evaluate the maturity of functional networks during development. Despite its widespread use, spatial correlation is limited to comparing two samples at a time. In this study, we employed a variational autoencoder to embed functional connectivity profiles from various anatomical locations, individuals, and group averages for simultaneous comparison. We demonstrate that our variational autoencoder, with pre-trained weights, can project new functional connectivity profiles from the vertex space to a latent space with as few as two dimensions, yet still retain meaningful global and local structures in the data. Functional connectivity profiles from various functional networks occupy distinct compartments of the latent space. Moreover, the variability of functional connectivity profiles from the same anatomical location is readily captured in the latent space. We believe that this approach could be useful for visualization and exploratory analyses in precision functional mapping.
Collapse
Affiliation(s)
- Jiaxin Cindy Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis
| | - Jung-Hoon Kim
- Developing Brain Institute, Children's National Hospital
| | | | - Babatunde Adeyemo
- Mallinckrodt Institute of Radiology, Washington University in St. Louis
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis
| | - Jed T Elison
- Institute of Child Development, University of Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University in St. Louis
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University in St. Louis
| |
Collapse
|
14
|
Turnbull A, Lin FV, Zhang Z. Issues of parcellation in the calculation of structure-function coupling. Nat Rev Neurosci 2025; 26:60. [PMID: 39543247 DOI: 10.1038/s41583-024-00877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Affiliation(s)
- Adam Turnbull
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Feng Vankee Lin
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Robinson PA. Near-critical corticothalamic eigenmodes: Effects of nonuniform connectivity on modes, activity, and communication channels. Phys Rev E 2025; 111:014404. [PMID: 39972850 DOI: 10.1103/physreve.111.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025]
Abstract
The effects of nonuniformities in axonal connectivity on natural modes of brain activity are explored to determine their contributions to modal eigenvalues, structure, and communication and to clarify the limits of validity of widely used uniform-connectivity approximations. Preferred channels of communication are demonstrated that are supported by natural modes of mean connectivity and resulting activity. The effects of axonal tracts on these modes are calculated using perturbation methods, and it is found that modes and their spectra are only moderately perturbed by even the largest white matter tracts. However, perturbations of activity are greatly magnified when modes are near-critical and realistic connectivity and gain perturbations can then enable rapid responses to stimuli on the observed timescales of evoked responses. It is thus argued that dynamic mode-mode communication channels complement ones based on white matter tracts and that both rely on near-criticality to have their observed effects.
Collapse
Affiliation(s)
- P A Robinson
- University of Sydney, School of Physics, New South Wales 2006, Australia
| |
Collapse
|
16
|
Li Y, Gu J, Li R, Yi H, He J, Gao J. Sensory and motor cortices parcellations estimated via distance-weighted sparse representation with application to autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111125. [PMID: 39173993 DOI: 10.1016/j.pnpbp.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Motor impairments and sensory processing abnormalities are prevalent in autism spectrum disorder (ASD), closely related to the core functions of the primary motor cortex (M1) and the primary somatosensory cortex (S1). Currently, there is limited knowledge about potential therapeutic targets in the subregions of M1 and S1 in ASD patients. This study aims to map clinically significant functional subregions of M1 and S1. METHODS Resting-state functional magnetic resonance imaging data (NTD = 266) from Autism Brain Imaging Data Exchange (ABIDE) were used for subregion modeling. We proposed a distance-weighted sparse representation algorithm to construct brain functional networks. Functional subregions of M1 and S1 were identified through consensus clustering at the group level. Differences in the characteristics of functional subregions were analyzed, along with their correlation with clinical scores. RESULTS We observed symmetrical and continuous subregion organization from dorsal to ventral aspects in M1 and S1, with M1 subregions conforming to the functional pattern of the motor homunculus. Significant intergroup differences and clinical correlations were found in the dorsal and ventral aspects of M1 (p < 0.05/3, Bonferroni correction) and the ventromedial BA3 of S1 (p < 0.05/5). These functional characteristics were positively correlated with autism severity. All subregions showed significant results in the ROI-to-ROI intergroup differential analysis (p < 0.05/80). LIMITATIONS The generalizability of the segmentation model requires further evaluation. CONCLUSIONS This study highlights the significance of M1 and S1 in ASD treatment and may provide new insights into brain parcellation and the identification of therapeutic targets for ASD.
Collapse
Affiliation(s)
- Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jiahe Gu
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Hongtao Yi
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Junbiao He
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-tech Zone (West Zone), Sichuan Province, Chengdu 611731, China.
| |
Collapse
|
17
|
Kotlarz P, Lankinen K, Hakonen M, Turpin T, Polimeni JR, Ahveninen J. Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.23.573208. [PMID: 38187540 PMCID: PMC10769454 DOI: 10.1101/2023.12.23.573208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In graph theory, "multilayer networks" represent systems involving several interconnected topological levels. One example in neuroscience is the stratification of connections between different cortical depths or "laminae", which is becoming non-invasively accessible in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-mm3 voxels; 30 participants). Blood oxygenation level dependent (BOLD) signals were derived from five depths between the white matter and pial surface. We compared networks where the inter-regional connections were limited to a single cortical depth only ("layer-by-layer matrices") to those considering all possible connections between areas and cortical depths ("multilayer matrix"). We utilized global and local graph theory features that quantitatively characterize network attributes including network composition, nodal centrality, path-based measures, and hub segregation. Detecting functional differences between cortical depths was improved using multilayer connectomics compared to the layer-by-layer versions. Superficial depths of the cortex dominated information transfer and deeper depths drove clustering. These differences were largest in frontotemporal and limbic regions. fMRI functional connectivity across different cortical depths may contain neurophysiologically relevant information; thus, multilayer connectomics could provide a methodological framework for studies on how information flows across this stratification.
Collapse
Affiliation(s)
- Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Maria Hakonen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Iskov NB, Olsen AS, Madsen KH, Mørup M. Discovering prominent differences in structural and functional connectomes using a multinomial stochastic block model. Netw Neurosci 2024; 8:1243-1264. [PMID: 39735501 PMCID: PMC11674489 DOI: 10.1162/netn_a_00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/13/2024] [Indexed: 12/31/2024] Open
Abstract
Understanding the differences between functional and structural human brain connectivity has been a focus of an extensive amount of neuroscience research. We employ a novel approach using the multinomial stochastic block model (MSBM) to explicitly extract components that characterize prominent differences across graphs. We analyze structural and functional connectomes derived from high-resolution diffusion-weighted MRI and fMRI scans of 250 Human Connectome Project subjects, analyzed at group connectivity level across 50 subjects. The inferred brain partitions revealed consistent, spatially homogeneous clustering patterns across inferred resolutions demonstrating the MSBM's reliability in identifying brain areas with prominent structure-function differences. Prominent differences in low-resolution brain maps (K = {3, 4} clusters) were attributed to weak functional connectivity in the bilateral anterior temporal lobes, while higher resolution results (K ≥ 25) revealed stronger interhemispheric functional than structural connectivity. Our findings emphasize significant differences in high-resolution functional and structural connectomes, revealing challenges in extracting meaningful connectivity measurements from both modalities, including tracking fibers through the corpus callosum and attenuated functional connectivity in anterior temporal lobe fMRI data, which we attribute to increased noise levels. The MSBM emerges as a valuable tool for understanding differences across graphs, with potential future applications and avenues beyond the current focus on characterizing modality-specific distinctions in connectomics data.
Collapse
Affiliation(s)
- Nina Braad Iskov
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Anders Stevnhoved Olsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Kristoffer Hougaard Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Morten Mørup
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
19
|
Akrami H, Cui W, Kim PE, Heck CN, Irimia A, Jerbi K, Nair D, Leahy RM, Joshi AA. Prediction of Post Traumatic Epilepsy Using MR-Based Imaging Markers. Hum Brain Mapp 2024; 45:e70075. [PMID: 39560185 PMCID: PMC11574740 DOI: 10.1002/hbm.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Post-traumatic epilepsy (PTE) is a debilitating neurological disorder that develops after traumatic brain injury (TBI). Despite the high prevalence of PTE, current methods for predicting its occurrence remain limited. In this study, we aimed to identify imaging-based markers for the prediction of PTE using machine learning. Specifically, we examined three imaging features: Lesion volumes, resting-state fMRI-based measures of functional connectivity, and amplitude of low-frequency fluctuation (ALFF). We employed three machine-learning methods, namely, kernel support vector machine (KSVM), random forest, and an artificial neural network (NN), to develop predictive models. Our results showed that the KSVM classifier, with all three feature types as input, achieved the best prediction accuracy of 0.78 AUC (area under the receiver operating characteristic (ROC) curve) using nested cross-validation. Furthermore, we performed voxel-wise and lobe-wise group difference analyses to investigate the specific brain regions and features that the model found to be most helpful in distinguishing PTE from non-PTE populations. Our statistical analysis uncovered significant differences in bilateral temporal lobes and cerebellum between PTE and non-PTE groups. Overall, our findings demonstrate the complementary prognostic value of MR-based markers in PTE prediction and provide new insights into the underlying structural and functional alterations associated with PTE.
Collapse
Affiliation(s)
- Haleh Akrami
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Wenhui Cui
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Paul E Kim
- Department of Radiology, University of Southern California, Los Angeles, California, USA
| | - Christianne N Heck
- Department of Radiology, University of Southern California, Los Angeles, California, USA
| | - Andrei Irimia
- Department of Radiology, University of Southern California, Los Angeles, California, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Karim Jerbi
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
- Psychology Department, Université de Montréal, Montreal, Quebec, Canada
- Mila, Quebec AI Research Center, Montreal, Quebec, Canada
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, Ohio, USA
| | - Richard M Leahy
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Anand A Joshi
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Prompiengchai S, Dunlop K. Breakthroughs and challenges for generating brain network-based biomarkers of treatment response in depression. Neuropsychopharmacology 2024; 50:230-245. [PMID: 38951585 PMCID: PMC11525717 DOI: 10.1038/s41386-024-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Treatment outcomes widely vary for individuals diagnosed with major depressive disorder, implicating a need for deeper understanding of the biological mechanisms conferring a greater likelihood of response to a particular treatment. Our improved understanding of intrinsic brain networks underlying depression psychopathology via magnetic resonance imaging and other neuroimaging modalities has helped reveal novel and potentially clinically meaningful biological markers of response. And while we have made considerable progress in identifying such biomarkers over the last decade, particularly with larger, multisite trials, there are significant methodological and practical obstacles that need to be overcome to translate these markers into the clinic. The aim of this review is to review current literature on brain network structural and functional biomarkers of treatment response or selection in depression, with a specific focus on recent large, multisite trials reporting predictive accuracy of candidate biomarkers. Regarding pharmaco- and psychotherapy, we discuss candidate biomarkers, reporting that while we have identified candidate biomarkers of response to a single intervention, we need more trials that distinguish biomarkers between first-line treatments. Further, we discuss the ways prognostic neuroimaging may help to improve treatment outcomes to neuromodulation-based therapies, such as transcranial magnetic stimulation and deep brain stimulation. Lastly, we highlight obstacles and technical developments that may help to address the knowledge gaps in this area of research. Ultimately, integrating neuroimaging-derived biomarkers into clinical practice holds promise for enhancing treatment outcomes and advancing precision psychiatry strategies for depression management. By elucidating the neural predictors of treatment response and selection, we can move towards more individualized and effective depression interventions, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
| | - Katharine Dunlop
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada.
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Hackney BC, Pyles JA, Grossman ED. A quantitative comparison of atlas parcellations on the human superior temporal sulcus. Brain Res 2024; 1842:149119. [PMID: 38986829 DOI: 10.1016/j.brainres.2024.149119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The superior temporal sulcus (STS) has a functional topography that has been difficult to characterize through traditional approaches. Automated atlas parcellations may be one solution while also being beneficial for both dimensional reduction and standardizing regions of interest, but they yield very different boundary definitions along the STS. Here we evaluate how well machine learning classifiers can correctly identify six social cognitive tasks from STS activation patterns dimensionally reduced using four popular atlases (Glasser et al., 2016; Gordon et al., 2016; Power et al., 2011 as projected onto the surface by Arslan et al., 2018; Schaefer et al., 2018). Functional data was summarized within each STS parcel in one of four ways, then subjected to leave-one-subject-out cross-validation SVM classification. We found that the classifiers could readily label conditions when data was parcellated using any of the four atlases, evidence that dimensional reduction to parcels did not compromise functional fingerprints. Mean activation for the social conditions was the most effective metric for classification in the right STS, whereas all the metrics classified equally well in the left STS. Interestingly, even atlases constructed from random parcellation schemes (null atlases) classified the conditions with high accuracy. We therefore conclude that the complex activation maps on the STS are readily differentiated at a coarse granular level, despite a strict topography having not yet been identified. Further work is required to identify what features have greatest potential to improve the utility of atlases in replacing functional localizers.
Collapse
Affiliation(s)
- Brandon C Hackney
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697, United States.
| | - John A Pyles
- Department of Psychology, Center for Human Neuroscience, University of Washington, 119 Guthrie Hall, Seattle, WA 98195, United States
| | - Emily D Grossman
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697, United States
| |
Collapse
|
22
|
Nishimaki K, Onda K, Ikuta K, Chotiyanonta J, Uchida Y, Mori S, Iyatomi H, Oishi K, Alzheimer's Disease Neuroimaging Initiative, Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing. OpenMAP-T1: A Rapid Deep-Learning Approach to Parcellate 280 Anatomical Regions to Cover the Whole Brain. Hum Brain Mapp 2024; 45:e70063. [PMID: 39523990 PMCID: PMC11551626 DOI: 10.1002/hbm.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This study introduces OpenMAP-T1, a deep-learning-based method for rapid and accurate whole-brain parcellation in T1- weighted brain MRI, which aims to overcome the limitations of conventional normalization-to-atlas-based approaches and multi-atlas label-fusion (MALF) techniques. Brain image parcellation is a fundamental process in neuroscientific and clinical research, enabling a detailed analysis of specific cerebral regions. Normalization-to-atlas-based methods have been employed for this task, but they face limitations due to variations in brain morphology, especially in pathological conditions. The MALF techniques improved the accuracy of the image parcellation and robustness to variations in brain morphology, but at the cost of high computational demand that requires a lengthy processing time. OpenMAP-T1 integrates several convolutional neural network models across six phases: preprocessing; cropping; skull-stripping; parcellation; hemisphere segmentation; and final merging. This process involves standardizing MRI images, isolating the brain tissue, and parcellating it into 280 anatomical structures that cover the whole brain, including detailed gray and white matter structures, while simplifying the parcellation processes and incorporating robust training to handle various scan types and conditions. The OpenMAP-T1 was validated on the Johns Hopkins University atlas library and eight available open resources, including real-world clinical images, and the demonstration of robustness across different datasets with variations in scanner types, magnetic field strengths, and image processing techniques, such as defacing. Compared with existing methods, OpenMAP-T1 significantly reduced the processing time per image from several hours to less than 90 s without compromising accuracy. It was particularly effective in handling images with intensity inhomogeneity and varying head positions, conditions commonly seen in clinical settings. The adaptability of OpenMAP-T1 to a wide range of MRI datasets and its robustness to various scan conditions highlight its potential as a versatile tool in neuroimaging.
Collapse
Affiliation(s)
- Kei Nishimaki
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kumpei Ikuta
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yuto Uchida
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hitoshi Iyatomi
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | |
Collapse
|
23
|
Pas KE, Saleem KS, Basser PJ, Avram AV. Direct segmentation of cortical cytoarchitectonic domains using ultra-high-resolution whole-brain diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618245. [PMID: 39464056 PMCID: PMC11507751 DOI: 10.1101/2024.10.14.618245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assess the potential of detecting cortical laminar patterns and areal borders by directly clustering voxel values of microstructural parameters derived from high-resolution mean apparent propagator (MAP) magnetic resonance imaging (MRI), as an alternative to conventional template-warping-based cortical parcellation methods. We acquired MAP-MRI data with 200μm resolution in a fixed macaque monkey brain. To improve the sensitivity to cortical layers, we processed the data with a local anisotropic Gaussian filter determined voxel-wise by the plane tangent to the cortical surface. We directly clustered all cortical voxels using only the MAP-derived microstructural imaging biomarkers, with no information regarding their relative spatial location or dominant diffusion orientations. MAP-based 3D cytoarchitectonic segmentation revealed laminar patterns similar to those observed in the corresponding histological images. Moreover, transition regions between these laminar patterns agreed more accurately with histology than the borders between cortical areas estimated using conventional atlas/template-warping cortical parcellation. By cross-tabulating all cortical labels in the atlas- and MAP-based segmentations, we automatically matched the corresponding MAP-derived clusters (i.e., cytoarchitectonic domains) across the left and right hemispheres. Our results demonstrate that high-resolution MAP-MRI biomarkers can effectively delineate three-dimensional cortical cytoarchitectonic domains in single individuals. Their intrinsic tissue microstructural contrasts enable the construction of whole-brain mesoscopic cortical atlases.
Collapse
Affiliation(s)
- Kristofor E. Pas
- National Institutes of Health, Bethesda, MD, USA
- Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kadharbatcha S. Saleem
- National Institutes of Health, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | | | - Alexandru V. Avram
- National Institutes of Health, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| |
Collapse
|
24
|
Pourmotabbed H, Clarke DF, Chang C, Babajani-Feremi A. Genetic fingerprinting with heritable phenotypes of the resting-state brain network topology. Commun Biol 2024; 7:1221. [PMID: 39349968 PMCID: PMC11443053 DOI: 10.1038/s42003-024-06807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Cognitive, behavioral, and disease traits are influenced by both genetic and environmental factors. Individual differences in these traits have been associated with graph theoretical properties of resting-state networks, indicating that variations in connectome topology may be driven by genetics. In this study, we establish the heritability of global and local graph properties of resting-state networks derived from functional MRI (fMRI) and magnetoencephalography (MEG) using a large sample of twins and non-twin siblings from the Human Connectome Project. We examine the heritability of MEG in the source space, providing a more accurate estimate of genetic influences on electrophysiological networks. Our findings show that most graph measures are more heritable for MEG compared to fMRI and the heritability for MEG is greater for amplitude compared to phase synchrony in the delta, high beta, and gamma frequency bands. This suggests that the fast neuronal dynamics in MEG offer unique insights into the genetic basis of brain network organization. Furthermore, we demonstrate that brain network features can serve as genetic fingerprints to accurately identify pairs of identical twins within a cohort. These results highlight novel opportunities to relate individual connectome signatures to genetic mechanisms underlying brain function.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dave F Clarke
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Abbas Babajani-Feremi
- Magnetoencephalography (MEG) Lab, The Norman Fixel Institute of Neurological Diseases, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Casamitjana A, Mancini M, Robinson E, Peter L, Annunziata R, Althonayan J, Crampsie S, Blackburn E, Billot B, Atzeni A, Puonti O, Balbastre Y, Schmidt P, Hughes J, Augustinack JC, Edlow BL, Zöllei L, Thomas DL, Kliemann D, Bocchetta M, Strand C, Holton JL, Jaunmuktane Z, Iglesias JE. A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579016. [PMID: 39282320 PMCID: PMC11398399 DOI: 10.1101/2024.02.05.579016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Magnetic resonance imaging (MRI) is the standard tool to image the human brain in vivo. In this domain, digital brain atlases are essential for subject-specific segmentation of anatomical regions of interest (ROIs) and spatial comparison of neuroanatomy from different subjects in a common coordinate frame. High-resolution, digital atlases derived from histology (e.g., Allen atlas [7], BigBrain [13], Julich [15]), are currently the state of the art and provide exquisite 3D cytoarchitectural maps, but lack probabilistic labels throughout the whole brain. Here we present NextBrain, a next-generation probabilistic atlas of human brain anatomy built from serial 3D histology and corresponding highly granular delineations of five whole brain hemispheres. We developed AI techniques to align and reconstruct ~10,000 histological sections into coherent 3D volumes with joint geometric constraints (no overlap or gaps between sections), as well as to semi-automatically trace the boundaries of 333 distinct anatomical ROIs on all these sections. Comprehensive delineation on multiple cases enabled us to build the first probabilistic histological atlas of the whole human brain. Further, we created a companion Bayesian tool for automated segmentation of the 333 ROIs in any in vivo or ex vivo brain MRI scan using the NextBrain atlas. We showcase two applications of the atlas: automated segmentation of ultra-high-resolution ex vivo MRI and volumetric analysis of Alzheimer's disease and healthy brain ageing based on ~4,000 publicly available in vivo MRI scans. We publicly release: the raw and aligned data (including an online visualisation tool); the probabilistic atlas; the segmentation tool; and ground truth delineations for a 100 μm isotropic ex vivo hemisphere (that we use for quantitative evaluation of our segmentation method in this paper). By enabling researchers worldwide to analyse brain MRI scans at a superior level of granularity without manual effort or highly specific neuroanatomical knowledge, NextBrain holds promise to increase the specificity of MRI findings and ultimately accelerate our quest to understand the human brain in health and disease.
Collapse
Affiliation(s)
- Adrià Casamitjana
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | - Matteo Mancini
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Rome, Italy
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Eleanor Robinson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Loïc Peter
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Roberto Annunziata
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Juri Althonayan
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Shauna Crampsie
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Emily Blackburn
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Benjamin Billot
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alessia Atzeni
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaël Balbastre
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Schmidt
- Advanced Research Computing Centre, University College London, London, United Kingdom
| | - James Hughes
- Advanced Research Computing Centre, University College London, London, United Kingdom
| | - Jean C Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dorit Kliemann
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juan Eugenio Iglesias
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Madden DJ, Merenstein JL, Mullin HA, Jain S, Rudolph MD, Cohen JR. Age-related differences in resting-state, task-related, and structural brain connectivity: graph theoretical analyses and visual search performance. Brain Struct Funct 2024; 229:1533-1559. [PMID: 38856933 PMCID: PMC11374505 DOI: 10.1007/s00429-024-02807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Previous magnetic resonance imaging (MRI) research suggests that aging is associated with a decrease in the functional interconnections within and between groups of locally organized brain regions (modules). Further, this age-related decrease in the segregation of modules appears to be more pronounced for a task, relative to a resting state, reflecting the integration of functional modules and attentional allocation necessary to support task performance. Here, using graph-theoretical analyses, we investigated age-related differences in a whole-brain measure of module connectivity, system segregation, for 68 healthy, community-dwelling individuals 18-78 years of age. We obtained resting-state, task-related (visual search), and structural (diffusion-weighted) MRI data. Using a parcellation of modules derived from the participants' resting-state functional MRI data, we demonstrated that the decrease in system segregation from rest to task (i.e., reconfiguration) increased with age, suggesting an age-related increase in the integration of modules required by the attentional demands of visual search. Structural system segregation increased with age, reflecting weaker connectivity both within and between modules. Functional and structural system segregation had qualitatively different influences on age-related decline in visual search performance. Functional system segregation (and reconfiguration) influenced age-related decline in the rate of visual evidence accumulation (drift rate), whereas structural system segregation contributed to age-related slowing of encoding and response processes (nondecision time). The age-related differences in the functional system segregation measures, however, were relatively independent of those associated with structural connectivity.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC, 27710, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA.
- Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA.
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC, 27710, USA
| | - Hollie A Mullin
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC, 27710, USA
- Department of Psychology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Shivangi Jain
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC, 27710, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL, 32804, USA
| | - Marc D Rudolph
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
27
|
Zhong T, Wang Y, Xu X, Wu X, Liang S, Ning Z, Wang L, Niu Y, Li G, Zhang Y. A brain subcortical segmentation tool based on anatomy attentional fusion network for developing macaques. Comput Med Imaging Graph 2024; 116:102404. [PMID: 38870599 DOI: 10.1016/j.compmedimag.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Magnetic Resonance Imaging (MRI) plays a pivotal role in the accurate measurement of brain subcortical structures in macaques, which is crucial for unraveling the complexities of brain structure and function, thereby enhancing our understanding of neurodegenerative diseases and brain development. However, due to significant differences in brain size, structure, and imaging characteristics between humans and macaques, computational tools developed for human neuroimaging studies often encounter obstacles when applied to macaques. In this context, we propose an Anatomy Attentional Fusion Network (AAF-Net), which integrates multimodal MRI data with anatomical constraints in a multi-scale framework to address the challenges posed by the dynamic development, regional heterogeneity, and age-related size variations of the juvenile macaque brain, thus achieving precise subcortical segmentation. Specifically, we generate a Signed Distance Map (SDM) based on the initial rough segmentation of the subcortical region by a network as an anatomical constraint, providing comprehensive information on positions, structures, and morphology. Then we construct AAF-Net to fully fuse the SDM anatomical constraints and multimodal images for refined segmentation. To thoroughly evaluate the performance of our proposed tool, over 700 macaque MRIs from 19 datasets were used in this study. Specifically, we employed two manually labeled longitudinal macaque datasets to develop the tool and complete four-fold cross-validations. Furthermore, we incorporated various external datasets to demonstrate the proposed tool's generalization capabilities and promise in brain development research. We have made this tool available as an open-source resource at https://github.com/TaoZhong11/Macaque_subcortical_segmentation for direct application.
Collapse
Affiliation(s)
- Tao Zhong
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Ya Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Xiaotong Xu
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Xueyang Wu
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Shujun Liang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Zhenyuan Ning
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, China
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.
| | - Yu Zhang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China.
| |
Collapse
|
28
|
Tchetchenian A, Zekelman L, Chen Y, Rushmore J, Zhang F, Yeterian EH, Makris N, Rathi Y, Meijering E, Song Y, O'Donnell LJ. Deep multimodal saliency parcellation of cerebellar pathways: Linking microstructure and individual function through explainable multitask learning. Hum Brain Mapp 2024; 45:e70008. [PMID: 39185598 PMCID: PMC11345609 DOI: 10.1002/hbm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
Parcellation of human cerebellar pathways is essential for advancing our understanding of the human brain. Existing diffusion magnetic resonance imaging tractography parcellation methods have been successful in defining major cerebellar fibre tracts, while relying solely on fibre tract structure. However, each fibre tract may relay information related to multiple cognitive and motor functions of the cerebellum. Hence, it may be beneficial for parcellation to consider the potential importance of the fibre tracts for individual motor and cognitive functional performance measures. In this work, we propose a multimodal data-driven method for cerebellar pathway parcellation, which incorporates both measures of microstructure and connectivity, and measures of individual functional performance. Our method involves first training a multitask deep network to predict various cognitive and motor measures from a set of fibre tract structural features. The importance of each structural feature for predicting each functional measure is then computed, resulting in a set of structure-function saliency values that are clustered to parcellate cerebellar pathways. We refer to our method as Deep Multimodal Saliency Parcellation (DeepMSP), as it computes the saliency of structural measures for predicting cognitive and motor functional performance, with these saliencies being applied to the task of parcellation. Applying DeepMSP to a large-scale dataset from the Human Connectome Project Young Adult study (n = 1065), we found that it was feasible to identify multiple cerebellar pathway parcels with unique structure-function saliency patterns that were stable across training folds. We thoroughly experimented with all stages of the DeepMSP pipeline, including network selection, structure-function saliency representation, clustering algorithm, and cluster count. We found that a 1D convolutional neural network architecture and a transformer network architecture both performed comparably for the multitask prediction of endurance, strength, reading decoding, and vocabulary comprehension, with both architectures outperforming a fully connected network architecture. Quantitative experiments demonstrated that a proposed low-dimensional saliency representation with an explicit measure of motor versus cognitive category bias achieved the best parcellation results, while a parcel count of four was most successful according to standard cluster quality metrics. Our results suggested that motor and cognitive saliencies are distributed across the cerebellar white matter pathways. Inspection of the final k = 4 parcellation revealed that the highest-saliency parcel was most salient for the prediction of both motor and cognitive performance scores and included parts of the middle and superior cerebellar peduncles. Our proposed saliency-based parcellation framework, DeepMSP, enables multimodal, data-driven tractography parcellation. Through utilising both structural features and functional performance measures, this parcellation strategy may have the potential to enhance the study of structure-function relationships of the cerebellar pathways.
Collapse
Affiliation(s)
- Ari Tchetchenian
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Leo Zekelman
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Harvard UniversityCambridgeMassachusettsUSA
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Fan Zhang
- School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | | | - Nikos Makris
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Erik Meijering
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Yang Song
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Lauren J. O'Donnell
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
29
|
Ling Q, Liu A, Li Y, McKeown MJ, Chen X. fMRI-based spatio-temporal parcellations of the human brain. Curr Opin Neurol 2024; 37:369-380. [PMID: 38804205 DOI: 10.1097/wco.0000000000001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Human brain parcellation based on functional magnetic resonance imaging (fMRI) plays an essential role in neuroscience research. By segmenting vast and intricate fMRI data into functionally similar units, researchers can better decipher the brain's structure in both healthy and diseased states. This article reviews current methodologies and ideas in this field, while also outlining the obstacles and directions for future research. RECENT FINDINGS Traditional brain parcellation techniques, which often rely on cytoarchitectonic criteria, overlook the functional and temporal information accessible through fMRI. The adoption of machine learning techniques, notably deep learning, offers the potential to harness both spatial and temporal information for more nuanced brain segmentation. However, the search for a one-size-fits-all solution to brain segmentation is impractical, with the choice between group-level or individual-level models and the intended downstream analysis influencing the optimal parcellation strategy. Additionally, evaluating these models is complicated by our incomplete understanding of brain function and the absence of a definitive "ground truth". SUMMARY While recent methodological advancements have significantly enhanced our grasp of the brain's spatial and temporal dynamics, challenges persist in advancing fMRI-based spatio-temporal representations. Future efforts will likely focus on refining model evaluation and selection as well as developing methods that offer clear interpretability for clinical usage, thereby facilitating further breakthroughs in our comprehension of the brain.
Collapse
Affiliation(s)
- Qinrui Ling
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Aiping Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Li
- Institute of Dataspace, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Martin J McKeown
- Department of Medicine, University of British Columbia, Vancouver, Vancouver V6T2B5, Canada
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
30
|
Alavash M, Obleser J. Brain Network Interconnectivity Dynamics Explain Metacognitive Differences in Listening Behavior. J Neurosci 2024; 44:e2322232024. [PMID: 38839303 PMCID: PMC11293451 DOI: 10.1523/jneurosci.2322-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Complex auditory scenes pose a challenge to attentive listening, rendering listeners slower and more uncertain in their perceptual decisions. How can we explain such behaviors from the dynamics of cortical networks that pertain to the control of listening behavior? We here follow up on the hypothesis that human adaptive perception in challenging listening situations is supported by modular reconfiguration of auditory-control networks in a sample of N = 40 participants (13 males) who underwent resting-state and task functional magnetic resonance imaging (fMRI). Individual titration of a spatial selective auditory attention task maintained an average accuracy of ∼70% but yielded considerable interindividual differences in listeners' response speed and reported confidence in their own perceptual decisions. Whole-brain network modularity increased from rest to task by reconfiguring auditory, cinguloopercular, and dorsal attention networks. Specifically, interconnectivity between the auditory network and cinguloopercular network decreased during the task relative to the resting state. Additionally, interconnectivity between the dorsal attention network and cinguloopercular network increased. These interconnectivity dynamics were predictive of individual differences in response confidence, the degree of which was more pronounced after incorrect judgments. Our findings uncover the behavioral relevance of functional cross talk between auditory and attentional-control networks during metacognitive assessment of one's own perception in challenging listening situations and suggest two functionally dissociable cortical networked systems that shape the considerable metacognitive differences between individuals in adaptive listening behavior.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
31
|
Nenning KH, Xu T, Tambini A, Franco AR, Margulies DS, Colcombe SJ, Milham MP. Fast connectivity gradient approximation: maintaining spatially fine-grained connectivity gradients while reducing computational costs. Commun Biol 2024; 7:697. [PMID: 38844612 PMCID: PMC11156950 DOI: 10.1038/s42003-024-06401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Brain connectome analysis suffers from the high dimensionality of connectivity data, often forcing a reduced representation of the brain at a lower spatial resolution or parcellation. This is particularly true for graph-based representations, which are increasingly used to characterize connectivity gradients, capturing patterns of systematic spatial variation in the functional connectivity structure. However, maintaining a high spatial resolution is crucial for enabling fine-grained topographical analysis and preserving subtle individual differences that might otherwise be lost. Here we introduce a computationally efficient approach to establish spatially fine-grained connectivity gradients. At its core, it leverages a set of landmarks to approximate the underlying connectivity structure at the full spatial resolution without requiring a full-scale vertex-by-vertex connectivity matrix. We show that this approach reduces computational time and memory usage while preserving informative individual features and demonstrate its application in improving brain-behavior predictions. Overall, its efficiency can remove computational barriers and enable the widespread application of connectivity gradients to capture spatial signatures of the connectome. Importantly, maintaining a spatially fine-grained resolution facilitates to characterize the spatial transitions inherent in the core concept of gradients of brain organization.
Collapse
Affiliation(s)
- Karl-Heinz Nenning
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | - Arielle Tambini
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- New York University, New York, NY, USA
| | - Alexandre R Franco
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, New York, NY, USA
- New York University, New York, NY, USA
| | | | - Stanley J Colcombe
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, New York, NY, USA
- New York University, New York, NY, USA
| | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, New York, NY, USA
| |
Collapse
|
32
|
Luppi AI, Gellersen HM, Liu ZQ, Peattie ARD, Manktelow AE, Adapa R, Owen AM, Naci L, Menon DK, Dimitriadis SI, Stamatakis EA. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics. Nat Commun 2024; 15:4745. [PMID: 38834553 PMCID: PMC11150439 DOI: 10.1038/s41467-024-48781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander R D Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Department of Psychology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Integrative Neuroimaging Lab, Thessaloniki, Greece
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Wen X, Yang M, Qi S, Wu X, Zhang D. Automated individual cortical parcellation via consensus graph representation learning. Neuroimage 2024; 293:120616. [PMID: 38697587 DOI: 10.1016/j.neuroimage.2024.120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.
Collapse
Affiliation(s)
- Xuyun Wen
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, Jiangsu, China.
| | - Mengting Yang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, Jiangsu, China
| | - Xia Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Abstract
Objective Accurate infant brain parcellation is crucial for understanding early brain development; however, it is challenging due to the inherent low tissue contrast, high noise, and severe partial volume effects in infant magnetic resonance images (MRIs). The aim of this study was to develop an end-to-end pipeline that enabled accurate parcellation of infant brain MRIs. Methods We proposed an end-to-end pipeline that employs a two-stage global-to-local approach for accurate parcellation of infant brain MRIs. Specifically, in the global regions of interest (ROIs) localization stage, a combination of transformer and convolution operations was employed to capture both global spatial features and fine texture features, enabling an approximate localization of the ROIs across the whole brain. In the local ROIs refinement stage, leveraging the position priors from the first stage along with the raw MRIs, the boundaries o the ROIs are refined for a more accurate parcellation. Results We utilized the Dice ratio to evaluate the accuracy of parcellation results. Results on 263 subjects from National Database for Autism Research (NDAR), Baby Connectome Project (BCP) and Cross-site datasets demonstrated the better accuracy and robustness of our method than other competing methods. Conclusion Our end-to-end pipeline may be capable of accurately parcellating 6-month-old infant brain MRIs.
Collapse
Affiliation(s)
- Limei Wang
- Department of Radiology and Biomedical Research Imaging Center, UNC-Chapel Hill, New Caledonia, 27599, USA
| | - Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, UNC-Chapel Hill, New Caledonia, 27599, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, UNC-Chapel Hill, New Caledonia, 27599, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, UNC-Chapel Hill, New Caledonia, 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, UNC-Chapel Hill, New Caledonia, 27599, USA
| |
Collapse
|
35
|
Lee DJ, Shin DH, Son YH, Han JW, Oh JH, Kim DH, Jeong JH, Kam TE. Spectral Graph Neural Network-Based Multi-Atlas Brain Network Fusion for Major Depressive Disorder Diagnosis. IEEE J Biomed Health Inform 2024; 28:2967-2978. [PMID: 38363664 DOI: 10.1109/jbhi.2024.3366662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Major Depressive Disorder (MDD) imposes a substantial burden within the healthcare domain, impacting millions of individuals worldwide. Functional Magnetic Resonance Imaging (fMRI) has emerged as a promising tool for the objective diagnosis of MDD, enabling the investigation of functional connectivity patterns in the brain associated with this disorder. However, most existing methods focus on a single brain atlas, which limits their ability to capture the complex, multi-scale nature of functional brain networks. To address these limitations, we propose a novel multi-atlas fusion method that incorporates early and late fusion in a unified framework. Our method introduces the concept of the holistic Functional Connectivity Network (FCN), which captures both intra-atlas relationships within individual atlases and inter-regional relationships between atlases with different brain parcellation scales. This comprehensive representation enables the identification of potential disease-related patterns associated with MDD in the early stage of our framework. Moreover, by decoding the holistic FCN from various perspectives through multiple spectral Graph Convolutional Neural Networks and fusing their results with decision-level ensembles, we further improve the performance of MDD diagnosis. Our approach is easily implemented with minimal modifications to existing model structures and demonstrates a robust performance across different baseline models. Our method, evaluated on public resting-state fMRI datasets, surpasses the current multi-atlas fusion methods, enhancing the accuracy of MDD diagnosis. The proposed novel multi-atlas fusion framework provides a more reliable MDD diagnostic technique. Experimental results show our approach outperforms both single- and multi-atlas-based methods, demonstrating its effectiveness in advancing MDD diagnosis.
Collapse
|
36
|
Galdi P, Cabez MB, Farrugia C, Vaher K, Williams LZJ, Sullivan G, Stoye DQ, Quigley AJ, Makropoulos A, Thrippleton MJ, Bastin ME, Richardson H, Whalley H, Edwards AD, Bajada CJ, Robinson EC, Boardman JP. Feature similarity gradients detect alterations in the neonatal cortex associated with preterm birth. Hum Brain Mapp 2024; 45:e26660. [PMID: 38488444 PMCID: PMC10941526 DOI: 10.1002/hbm.26660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- School of InformaticsUniversity of EdinburghEdinburghUK
| | | | - Christine Farrugia
- Faculty of EngineeringUniversity of MaltaVallettaMalta
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
| | - Kadi Vaher
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Logan Z. J. Williams
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - Gemma Sullivan
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - David Q. Stoye
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | | | | | | | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Hilary Richardson
- School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Heather Whalley
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
| | - A. David Edwards
- Centre for the Developing BrainKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Claude J. Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
- Department of Physiology and Biochemistry, Faculty of Medicine and SurgeryUniversity of MaltaVallettaMalta
| | - Emma C. Robinson
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - James P. Boardman
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
37
|
Litwińczuk MC, Muhlert N, Trujillo‐Barreto N, Woollams A. Impact of brain parcellation on prediction performance in models of cognition and demographics. Hum Brain Mapp 2024; 45:e26592. [PMID: 38339892 PMCID: PMC10831203 DOI: 10.1002/hbm.26592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 02/12/2024] Open
Abstract
Brain connectivity analysis begins with the selection of a parcellation scheme that will define brain regions as nodes of a network whose connections will be studied. Brain connectivity has already been used in predictive modelling of cognition, but it remains unclear if the resolution of the parcellation used can systematically impact the predictive model performance. In this work, structural, functional and combined connectivity were each defined with five different parcellation schemes. The resolution and modality of the parcellation schemes were varied. Each connectivity defined with each parcellation was used to predict individual differences in age, education, sex, executive function, self-regulation, language, encoding and sequence processing. It was found that low-resolution functional parcellation consistently performed above chance at producing generalisable models of both demographics and cognition. However, no single parcellation scheme showed a superior predictive performance across all cognitive domains and demographics. In addition, although parcellation schemes impacted the graph theory measures of each connectivity type (structural, functional and combined), these differences did not account for the out-of-sample predictive performance of the models. Taken together, these findings demonstrate that while high-resolution parcellations may be beneficial for modelling specific individual differences, partial voluming of signals produced by the higher resolution of the parcellation likely disrupts model generalisability.
Collapse
Affiliation(s)
| | - Nils Muhlert
- School of Health SciencesUniversity of ManchesterManchesterUK
| | | | - Anna Woollams
- School of Health SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
38
|
Tan JB, Müller EJ, Orlando IF, Taylor NL, Margulies DS, Szeto J, Lewis SJG, Shine JM, O'Callaghan C. Abnormal higher-order network interactions in Parkinson's disease visual hallucinations. Brain 2024; 147:458-471. [PMID: 37677056 DOI: 10.1093/brain/awad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Visual hallucinations in Parkinson's disease can be viewed from a systems-level perspective, whereby dysfunctional communication between brain networks responsible for perception predisposes a person to hallucinate. To this end, abnormal functional interactions between higher-order and primary sensory networks have been implicated in the pathophysiology of visual hallucinations in Parkinson's disease, however the precise signatures remain to be determined. Dimensionality reduction techniques offer a novel means for simplifying the interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the data that are driven by both within- and between-functional network changes. Here, we applied two complementary non-linear dimensionality reduction techniques-diffusion-map embedding and t-distributed stochastic neighbour embedding (t-SNE)-to resting state functional MRI data, in order to characterize the altered functional hierarchy associated with susceptibility to visual hallucinations. Our study involved 77 people with Parkinson's disease (31 with hallucinations; 46 without hallucinations) and 19 age-matched healthy control subjects. In patients with visual hallucinations, we found compression of the unimodal-heteromodal gradient consistent with increased functional integration between sensory and higher order networks. This was mirrored in a traditional functional connectivity analysis, which showed increased connectivity between the visual and default mode networks in the hallucinating group. Together, these results suggest a route by which higher-order regions may have excessive influence over earlier sensory processes, as proposed by theoretical models of hallucinations across disorders. By contrast, the t-SNE analysis identified distinct alterations in prefrontal regions, suggesting an additional layer of complexity in the functional brain network abnormalities implicated in hallucinations, which was not apparent in traditional functional connectivity analyses. Together, the results confirm abnormal brain organization associated with the hallucinating phenotype in Parkinson's disease and highlight the utility of applying convergent dimensionality reduction techniques to investigate complex clinical symptoms. In addition, the patterns we describe in Parkinson's disease converge with those seen in other conditions, suggesting that reduced hierarchical differentiation across sensory-perceptual systems may be a common transdiagnostic vulnerability in neuropsychiatric disorders with perceptual disturbances.
Collapse
Affiliation(s)
- Joshua B Tan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Eli J Müller
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Isabella F Orlando
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Natasha L Taylor
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Center National de la Recherche Scientifique (CNRS) and Université de Paris, 75006 Paris, France
| | - Jennifer Szeto
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
39
|
Myers MJ, Labonte AK, Gordon EM, Laumann TO, Tu JC, Wheelock MD, Nielsen AN, Schwarzlose RF, Camacho MC, Alexopoulos D, Warner BB, Raghuraman N, Luby JL, Barch DM, Fair DA, Petersen SE, Rogers CE, Smyser CD, Sylvester CM. Functional parcellation of the neonatal cortical surface. Cereb Cortex 2024; 34:bhae047. [PMID: 38372292 PMCID: PMC10875653 DOI: 10.1093/cercor/bhae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data. We next derive a set of 283 cortical surface parcels from a sample of n = 261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.
Collapse
Affiliation(s)
- Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Jiaxin C Tu
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Ashley N Nielsen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Rebecca F Schwarzlose
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - M Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, United States
| | - Steven E Petersen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
40
|
Pan N, Wang S, Lan H, Zhang X, Qin K, Kemp GJ, Suo X, Gong Q. Multivariate patterns of brain functional connectome associated with COVID-19-related negative affect symptoms. Transl Psychiatry 2024; 14:49. [PMID: 38253618 PMCID: PMC10803304 DOI: 10.1038/s41398-024-02741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Severe mental health problems with the representation of negative affect symptoms (NAS) have been increasingly reported during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to explore the multivariate patterns of brain functional connectome predicting COVID-19-related NAS. This cohort study encompassed a group of university students to undergo neuroimaging scans before the pandemic, and we re-contacted participants for 1-year follow-up COVID-related NAS evaluations during the pandemic. Regularized canonical correlation analysis was used to identify connectome-based dimensions of NAS to compute pairs of canonical variates. The predictive ability of identified functional connectome to NAS dimensional scores was examined with a nested cross-validation. Two dimensions (i.e. mode stress and mode anxiety) were related to distinct patterns of brain functional connectome (r2 = 0.911, PFDR = 0.048; r2 = 0.901, PFDR = 0.037, respectively). Mode anxiety was characterized by high loadings in connectivity between affective network (AFN) and visual network (VN), while connectivity of the default mode network with dorsal attention network (DAN) were remarkably prominent in mode stress. Connectivity patterns within the DAN and between DAN and VN, ventral attention network, and AFN was common for both dimensions. The identified functional connectome can reliably predict mode stress (r = 0.37, MAE = 5.1, p < 0.001) and mode anxiety (r = 0.28, MAE = 5.4, p = 0.005) in the cross-validation. Our findings provide new insight into multivariate dimensions of COVID-related NAS, which may have implications for developing network-based biomarkers in psychological interventions for vulnerable individuals in the pandemic.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Huan Lan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
41
|
Liu Y, Li J, Wisnowski JL, Leahy RM. Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574423. [PMID: 38260447 PMCID: PMC10802375 DOI: 10.1101/2024.01.05.574423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cortical parcellation has long been a cornerstone in the field of neuroscience, enabling the cerebral cortex to be partitioned into distinct, non-overlapping regions that facilitate the interpretation and comparison of complex neuroscientific data. In recent years, these parcellations have frequently been based on the use of resting-state fMRI (rsfMRI) data. In parallel, methods such as independent components analysis have long been used to identify large-scale functional networks with significant spatial overlap between networks. Despite the fact that both forms of decomposition make use of the same spontaneous brain activity measured with rsfMRI, a gap persists in establishing a clear relationship between disjoint cortical parcellations and brain-wide networks. To address this, we introduce a novel parcellation framework that integrates NASCAR, a three-dimensional tensor decomposition method that identifies a series of functional brain networks, with state-of-the-art graph representation learning to produce cortical parcellations that represent near-homogeneous functional regions that are consistent with these brain networks. Further, through the use of the tensor decomposition, we avoid the limitations of traditional approaches that assume statistical independence or orthogonality in defining the underlying networks. Our findings demonstrate that these parcellations are comparable or superior to established atlases in terms of homogeneity of the functional connectivity across parcels, task contrast alignment, and architectonic map alignment. Our methodological pipeline is highly automated, allowing for rapid adaptation to new datasets and the generation of custom parcellations in just minutes, a significant advancement over methods that require extensive manual input. We describe this integrated approach, which we refer to as Untamed, as a tool for use in the fields of cognitive and clinical neuroscientific research. Parcellations created from the Human Connectome Project dataset using Untamed, along with the code to generate atlases with custom parcel numbers, are publicly available at https://untamed-atlas.github.io.
Collapse
Affiliation(s)
- Yijun Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica L. Wisnowski
- Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard M. Leahy
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Li X, Lei D, Qin K, Li L, Zhang Y, Zhou D, Kemp GJ, Gong Q. Effects of PRRT2 mutation on brain gray matter networks in paroxysmal kinesigenic dyskinesia. Cereb Cortex 2024; 34:bhad418. [PMID: 37955636 DOI: 10.1093/cercor/bhad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Although proline-rich transmembrane protein 2 is the primary causative gene of paroxysmal kinesigenic dyskinesia, its effects on the brain structure of paroxysmal kinesigenic dyskinesia patients are not yet clear. Here, we explored the influence of proline-rich transmembrane protein 2 mutations on similarity-based gray matter morphological networks in individuals with paroxysmal kinesigenic dyskinesia. A total of 51 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations, 55 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, and 80 healthy controls participated in the study. We analyzed the structural connectome characteristics across groups by graph theory approaches. Relative to paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation and healthy controls, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations exhibited a notable increase in characteristic path length and a reduction in both global and local efficiency. Relative to healthy controls, both patient groups showed reduced nodal metrics in right postcentral gyrus, right angular, and bilateral thalamus; Relative to healthy controls and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations showed almost all reduced nodal centralities and structural connections in cortico-basal ganglia-thalamo-cortical circuit including bilateral supplementary motor area, bilateral pallidum, and right caudate nucleus. Finally, we used support vector machine by gray matter network matrices to classify paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, achieving an accuracy of 73%. These results show that proline-rich transmembrane protein 2 related gray matter network deficits may contribute to paroxysmal kinesigenic dyskinesia, offering new insights into its pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiuli Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Du Lei
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 260 Stetson St., Suite 3326, Cincinnati, Ohio, 45219, United States
| | - Kun Qin
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, L69 3BX, Liverpool, L3 5TR, United Kingdom
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| |
Collapse
|
43
|
Gajwani M, Oldham S, Pang JC, Arnatkevičiūtė A, Tiego J, Bellgrove MA, Fornito A. Can hubs of the human connectome be identified consistently with diffusion MRI? Netw Neurosci 2023; 7:1326-1350. [PMID: 38144690 PMCID: PMC10631793 DOI: 10.1162/netn_a_00324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/17/2023] [Indexed: 12/26/2023] Open
Abstract
Recent years have seen a surge in the use of diffusion MRI to map connectomes in humans, paralleled by a similar increase in processing and analysis choices. Yet these different steps and their effects are rarely compared systematically. Here, in a healthy young adult population (n = 294), we characterized the impact of a range of analysis pipelines on one widely studied property of the human connectome: its degree distribution. We evaluated the effects of 40 pipelines (comparing common choices of parcellation, streamline seeding, tractography algorithm, and streamline propagation constraint) and 44 group-representative connectome reconstruction schemes on highly connected hub regions. We found that hub location is highly variable between pipelines. The choice of parcellation has a major influence on hub architecture, and hub connectivity is highly correlated with regional surface area in most of the assessed pipelines (ρ > 0.70 in 69% of the pipelines), particularly when using weighted networks. Overall, our results demonstrate the need for prudent decision-making when processing diffusion MRI data, and for carefully considering how different processing choices can influence connectome organization.
Collapse
Affiliation(s)
- Mehul Gajwani
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Stuart Oldham
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - James C. Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Aurina Arnatkevičiūtė
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Mark A. Bellgrove
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| |
Collapse
|
44
|
Biswas R, Sripada S. Causal functional connectivity in Alzheimer's disease computed from time series fMRI data. Front Comput Neurosci 2023; 17:1251301. [PMID: 38169714 PMCID: PMC10758424 DOI: 10.3389/fncom.2023.1251301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Functional connectivity between brain regions is known to be altered in Alzheimer's disease and promises to be a biomarker for early diagnosis. Several approaches for functional connectivity obtain an un-directed network representing stochastic associations (correlations) between brain regions. However, association does not necessarily imply causation. In contrast, Causal Functional Connectivity (CFC) is more informative, providing a directed network representing causal relationships between brain regions. In this paper, we obtained the causal functional connectome for the whole brain from resting-state functional magnetic resonance imaging (rs-fMRI) recordings of subjects from three clinical groups: cognitively normal, mild cognitive impairment, and Alzheimer's disease. We applied the recently developed Time-aware PC (TPC) algorithm to infer the causal functional connectome for the whole brain. TPC supports model-free estimation of whole brain CFC based on directed graphical modeling in a time series setting. We compared the CFC outcome of TPC with that of other related approaches in the literature. Then, we used the CFC outcomes of TPC and performed an exploratory analysis of the difference in strengths of CFC edges between Alzheimer's and cognitively normal groups, based on edge-wise p-values obtained by Welch's t-test. The brain regions thus identified are found to be in agreement with literature on brain regions impacted by Alzheimer's disease, published by researchers from clinical/medical institutions.
Collapse
Affiliation(s)
- Rahul Biswas
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
45
|
Zuo C, Suo X, Lan H, Pan N, Wang S, Kemp GJ, Gong Q. Global Alterations of Whole Brain Structural Connectome in Parkinson's Disease: A Meta-analysis. Neuropsychol Rev 2023; 33:783-802. [PMID: 36125651 PMCID: PMC10770271 DOI: 10.1007/s11065-022-09559-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/14/2022] [Indexed: 10/14/2022]
Abstract
Recent graph-theoretical studies of Parkinson's disease (PD) have examined alterations in the global properties of the brain structural connectome; however, reported alterations are not consistent. The present study aimed to identify the most robust global metric alterations in PD via a meta-analysis. A comprehensive literature search was conducted for all available diffusion MRI structural connectome studies that compared global graph metrics between PD patients and healthy controls (HC). Hedges' g effect sizes were calculated for each study and then pooled using a random-effects model in Comprehensive Meta-Analysis software, and the effects of potential moderator variables were tested. A total of 22 studies met the inclusion criteria for review. Of these, 16 studies reporting 10 global graph metrics (916 PD patients; 560 HC) were included in the meta-analysis. In the structural connectome of PD patients compared with HC, we found a significant decrease in clustering coefficient (g = -0.357, P = 0.005) and global efficiency (g = -0.359, P < 0.001), and a significant increase in characteristic path length (g = 0.250, P = 0.006). Dopaminergic medication, sex and age of patients were potential moderators of global brain network changes in PD. These findings provide evidence of decreased global segregation and integration of the structural connectome in PD, indicating a shift from a balanced small-world network to 'weaker small-worldization', which may provide useful markers of the pathophysiological mechanisms underlying PD.
Collapse
Affiliation(s)
- Chao Zuo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huan Lan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
46
|
Myers MJ, Labonte AK, Gordon EM, Laumann TO, Tu JC, Wheelock MD, Nielsen AN, Schwarzlose R, Camacho MC, Warner BB, Raghuraman N, Luby JL, Barch DM, Fair DA, Petersen SE, Rogers CE, Smyser CD, Sylvester CM. Functional parcellation of the neonatal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566629. [PMID: 37986902 PMCID: PMC10659431 DOI: 10.1101/2023.11.10.566629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that adult- and older infant-derived parcels are a poor fit with neonatal data, emphasizing the need for neonatal-specific parcels. We next derive a set of 283 cortical surface parcels from a sample of n=261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.
Collapse
Affiliation(s)
- Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jiaxin Cindy Tu
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Ashley N Nielsen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca Schwarzlose
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - M Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven E Petersen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
47
|
Molloy MF, Osher DE. A personalized cortical atlas for functional regions of interest. J Neurophysiol 2023; 130:1067-1080. [PMID: 37727907 PMCID: PMC10994647 DOI: 10.1152/jn.00108.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Advances in functional MRI (fMRI) allow mapping an individual's brain function in vivo. Task fMRI can localize domain-specific regions of cognitive processing or functional regions of interest (fROIs) within an individual. Moreover, data from resting state (no task) fMRI can be used to define an individual's connectome, which can characterize that individual's functional organization via connectivity-based parcellations. However, can connectivity-based parcellations alone predict an individual's fROIs? Here, we describe an approach to compute individualized rs-fROIs (i.e., regions that correspond to given fROI constructed using only resting state data) for motor control, working memory, high-level vision, and language comprehension. The rs-fROIs were computed and validated using a large sample of young adults (n = 1,018) with resting state and task fMRI from the Human Connectome Project. First, resting state parcellations were defined across a sequence of resolutions from broadscale to fine-grained networks in a training group of 500 individuals. Second, 21 rs-fROIs were defined from the training group by identifying the rs network that most closely matched task-defined fROIs across all individuals. Third, the selectivity of rs-fROIs was investigated in a training set of the remaining 518 individuals. All computed rs-fROIs were indeed selective for their preferred category. Critically, the rs-fROIs had higher selectivity than probabilistic atlas parcels for nearly all fROIs. In conclusion, we present a potential approach to define selective fROIs on an individual-level circumventing the need for multiple task-based localizers.NEW & NOTEWORTHY We compute individualized resting state parcels that identify an individual's own functional regions of interest (fROIs) for high-level vision, language comprehension, motor control, and working memory, using only their functional connectome. This approach demonstrates a rapid and powerful alternative for finding a large set of fROIs in an individual, using only their unique connectivity pattern, which does not require the costly acquisition of multiple fMRI localizer tasks.
Collapse
Affiliation(s)
- M. Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States
| | - David E. Osher
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
48
|
Balajoo SM, Eickhoff SB, Masouleh SK, Plachti A, Waite L, Saberi A, Bahri MA, Bastin C, Salmon E, Hoffstaedter F, Palomero-Gallagher N, Genon S. Hippocampal metabolic subregions and networks: Behavioral, molecular, and pathological aging profiles. Alzheimers Dement 2023; 19:4787-4804. [PMID: 37014937 PMCID: PMC10698199 DOI: 10.1002/alz.13056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Hippocampal local and network dysfunction is the hallmark of Alzheimer's disease (AD). METHODS We characterized the spatial patterns of hippocampus differentiation based on brain co-metabolism in healthy elderly participants and demonstrated their relevance to study local metabolic changes and associated dysfunction in pathological aging. RESULTS The hippocampus can be differentiated into anterior/posterior and dorsal cornu ammonis (CA)/ventral (subiculum) subregions. While anterior/posterior CA show co-metabolism with different regions of the subcortical limbic networks, the anterior/posterior subiculum are parts of cortical networks supporting object-centered memory and higher cognitive demands, respectively. Both networks show relationships with the spatial patterns of gene expression pertaining to cell energy metabolism and AD's process. Finally, while local metabolism is generally lower in posterior regions, the anterior-posterior imbalance is maximal in late mild cognitive impairment with the anterior subiculum being relatively preserved. DISCUSSION Future studies should consider bidimensional hippocampal differentiation and in particular the posterior subicular region to better understand pathological aging.
Collapse
Affiliation(s)
- Somayeh Maleki Balajoo
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Shahrzad Kharabian Masouleh
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Anna Plachti
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Laura Waite
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Amin Saberi
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM‑1), Research Centre Juelich, Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sarah Genon
- Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
49
|
Artiles O, Al Masry Z, Saeed F. Confounding Effects on the Performance of Machine Learning Analysis of Static Functional Connectivity Computed from rs-fMRI Multi-site Data. Neuroinformatics 2023; 21:651-668. [PMID: 37581850 PMCID: PMC11877654 DOI: 10.1007/s12021-023-09639-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/16/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive imaging technique widely used in neuroscience to understand the functional connectivity of the human brain. While rs-fMRI multi-site data can help to understand the inner working of the brain, the data acquisition and processing of this data has many challenges. One of the challenges is the variability of the data associated with different acquisitions sites, and different MRI machines vendors. Other factors such as population heterogeneity among different sites, with variables such as age and gender of the subjects, must also be considered. Given that most of the machine-learning models are developed using these rs-fMRI multi-site data sets, the intrinsic confounding effects can adversely affect the generalizability and reliability of these computational methods, as well as the imposition of upper limits on the classification scores. This work aims to identify the phenotypic and imaging variables producing the confounding effects, as well as to control these effects. Our goal is to maximize the classification scores obtained from the machine learning analysis of the Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI multi-site data. To achieve this goal, we propose novel methods of stratification to produce homogeneous sub-samples of the 17 ABIDE sites, as well as the generation of new features from the static functional connectivity values, using multiple linear regression models, ComBat harmonization models, and normalization methods. The main results obtained with our statistical models and methods are an accuracy of 76.4%, sensitivity of 82.9%, and specificity of 77.0%, which are 8.8%, 20.5%, and 7.5% above the baseline classification scores obtained from the machine learning analysis of the static functional connectivity computed from the ABIDE rs-fMRI multi-site data.
Collapse
Affiliation(s)
- Oswaldo Artiles
- Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street CASE 354, Miami, Florida, 33199, USA
| | - Zeina Al Masry
- SUPMICROTECH, CNRS, institut FEMTO-ST, 24 rue Alain Savary, Besançon, F-25000, France
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street CASE 354, Miami, Florida, 33199, USA.
| |
Collapse
|
50
|
Molloy MF, Yu EJ, Mattson WI, Hoskinson KR, Taylor HG, Osher DE, Nelson EE, Saygin ZM. Effect of Extremely Preterm Birth on Adolescent Brain Network Organization. Brain Connect 2023; 13:394-409. [PMID: 37312515 DOI: 10.1089/brain.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Introduction: Extremely preterm (EPT) birth, defined as birth at a gestational age (GA) <28 weeks, can have a lasting impact on cognition throughout the life span. Previous investigations reveal differences in brain structure and connectivity between infants born preterm and full-term (FT), but how does preterm birth impact the adolescent connectome? Methods: In this study, we investigate how EPT birth can alter broadscale network organization later in life by comparing resting-state functional magnetic resonance imaging connectome-based parcellations of the entire cortex in adolescents born EPT (N = 22) to age-matched adolescents born FT (GA ≥37 weeks, N = 28). We compare these parcellations to adult parcellations from previous studies and explore the relationship between an individual's network organization and behavior. Results: Primary (occipital and sensorimotor) and frontoparietal networks were observed in both groups. However, there existed notable differences in the limbic and insular networks. Surprisingly, the connectivity profile of the limbic network of EPT adolescents was more adultlike than the same network in FT adolescents. Finally, we found a relationship between adolescents' overall cognition score and their limbic network maturity. Discussion: Overall, preterm birth may contribute to the atypical development of broadscale network organization in adolescence and may partially explain the observed cognitive deficits.
Collapse
Affiliation(s)
- M Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Emily J Yu
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - H Gerry Taylor
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David E Osher
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Eric E Nelson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zeynep M Saygin
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|