1
|
Ríos C, Salgado-Ceballos H, Grijalva I, Morales-Guadarrama A, Diaz-Ruiz A, Olayo R, Morales-Corona J, Olayo MG, Cruz GJ, Mondragón-Lozano R, Alvarez-Mejia L, Orozco-Barrios C, Sánchez-Torres S, Fabela-Sánchez O, Coyoy-Salgado A, Hernández-Godínez B, Ibáñez-Contreras A, Mendez-Armenta M. Demonstration of therapeutic effect of plasma-synthesized polypyrrole/iodine biopolymer in rhesus monkey with complete spinal cord section. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:21. [PMID: 39961937 PMCID: PMC11832569 DOI: 10.1007/s10856-025-06862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Spinal cord injury (SCI) can cause paralysis, and although multiple therapeutic proposals have been developed in murine models, results have hardly been replicated in humans. As non-human primates (NHP) are more similar to humans than rodents, the current study investigated whether it was possible to reproduce in a NHP, the previously obtained beneficial results by using a plasma-synthesized polypyrrole/iodine (PPy/I) biopolymer, which reduce glial scar formation and inflammatory response and promotes nerve tissue preservation, regenerative processes and functional recovery in rats. In NHPs (Rhesus monkey) with SCI by complete transection (SCT) and with plasma-synthesized PPy/I application (experimental) or without (control), the expression of pro-inflammatory cytokines in blood, preservation of nervous tissue through magnetic resonance imaging and histological and morphometric techniques, regeneration through immunohistochemistry study and functional recovery through clinical examination, were evaluated. Control NHP showed a markedly increased of pro-inflammatory cytokines vs. experimental NHP, which preserved more nerve tissue. At the end of the follow-up, a thinner glial scar in the injured spinal cord was observed in the experimental NHP as well as regenerative nerve processes (NeuN and β-III tubulin expression), while control NHP had a marked glial scar, large cysts and less nerve tissue at the injured zone. Plasma-synthesized PPy/I also reduced the loss of pelvic limb muscle mass and allowed the experimental NHP recovered knee-jerk, withdrawal and plantar reflexes as well as movement in the hind limbs. Since most of the beneficial effects of plasma-synthesized PPy/I previously reported in rats were also observed in the NHP, these preliminary findings make their replication in humans with SCI more likely.
Collapse
Affiliation(s)
- Camilo Ríos
- Research Direction, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, México City, México
| | - Hermelinda Salgado-Ceballos
- Medical Research Unit in Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, México.
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico.
| | - Israel Grijalva
- Medical Research Unit in Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, México
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- National Center for Research in Imaging and Medical Instrumentation, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Araceli Diaz-Ruiz
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Roberto Olayo
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Juan Morales-Corona
- Division of Basic Sciences and Engineering, Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - María G Olayo
- Department of Physics, Instituto Nacional de Investigaciones Nucleares, Estado de México, Mexico
| | - Guillermo J Cruz
- Department of Physics, Instituto Nacional de Investigaciones Nucleares, Estado de México, Mexico
| | - Rodrigo Mondragón-Lozano
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Laura Alvarez-Mejia
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- Division of Basic Sciences and Engineering, Department of Physics, CONAHCyT-Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Carlos Orozco-Barrios
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Omar Fabela-Sánchez
- Department of Chemistry Macromolecules and Nanomaterials, CONAHCyT-Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico
| | - Angélica Coyoy-Salgado
- Research Center of Proyecto CAMINA A.C., Mexico City, Mexico
- CONAHCyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | | | | | - Marisela Mendez-Armenta
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
2
|
Brown TC, McGee AW. Experience directs the instability of neuronal tuning for critical period plasticity in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633213. [PMID: 39868143 PMCID: PMC11761750 DOI: 10.1101/2025.01.15.633213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Brief monocular deprivation during a developmental critical period, but not thereafter, alters the receptive field properties (tuning) of neurons in visual cortex, but the characteristics of neural circuitry that permit this experience-dependent plasticity are largely unknown. We performed repeated calcium imaging at neuronal resolution to track the tuning properties of populations of excitatory layer 2/3 neurons in mouse visual cortex during or after the critical period, as well as in nogo-66 receptor (ngr1) mutant mice that sustain critical-period plasticity as adults. The instability of tuning for populations of neurons was greater in juvenile mice and adult ngr1 mutant mice. We propose instability of neuronal tuning gates plasticity and is directed by experience to alter the tuning of neurons during the critical period.
Collapse
|
3
|
Tian R, Zhou Y, Ren Y, Zhang Y, Tang W. Wallerian degeneration: From mechanism to disease to imaging. Heliyon 2025; 11:e40729. [PMID: 39811315 PMCID: PMC11730939 DOI: 10.1016/j.heliyon.2024.e40729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Wallerian degeneration (WD) was first discovered by Augustus Waller in 1850 in a transection of the glossopharyngeal and hypoglossal nerves in frogs. Initial studies suggested that the formation mechanism of WD is related to the nutrition of neuronal cell bodies to axons. However, with the wide application of transgenic mice in experiments, the latest studies have found that the mechanism of WD is related to axonal degeneration, myelin clearance and extracellular matrix. This review summarizes the discovery and research progress of WD and discusses the mechanism of WD from the perspective of molecular biology. In addition, this review combines the etiology, symptoms and imaging results of WD patients, and analyzes the clinical and imaging characteristics of WD, to provide the best perspective for future clinical research.
Collapse
Affiliation(s)
- Ruiqi Tian
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Yingying Zhou
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Yuan Ren
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Yisen Zhang
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| | - Wei Tang
- Department of Neurology, Xinhua Hospital Affiliated with Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
4
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Kurihara Y, Kawaguchi Y, Ohta Y, Kawasaki N, Fujita Y, Takei K. Nogo Receptor Antagonist LOTUS Promotes Neurite Outgrowth through Its Interaction with Teneurin-4. Cells 2024; 13:1369. [PMID: 39195260 PMCID: PMC11352776 DOI: 10.3390/cells13161369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo receptor-1 (NgR1). We previously reported that lateral olfactory tract usher substance (LOTUS) functions as an endogenous antagonist for NgR1 in forming neuronal circuits in the developing brain and improving axonal regeneration in the adult injured CNS. However, another molecular and cellular function of LOTUS remains unknown. In this study, we found that cultured retinal explant neurons extend their neurites on the LOTUS-coating substrate. This action was also observed in cultured retinal explant neurons derived from Ngr1-deficient mouse embryos, indicating that the promoting action of LOTUS on neurite outgrowth may be mediated by unidentified LOTUS-binding protein(s). We therefore screened the binding partner(s) of LOTUS by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS analysis and pull-down assay showed that LOTUS interacts with Teneurin-4 (Ten-4), a cell adhesion molecule. RNAi knockdown of Ten-4 inhibited neurite outgrowth on the LOTUS substrate in retinoic acid (RA)-treated Neuro2A cells. Furthermore, a soluble form of Ten-4 attenuates the promoting action on neurite outgrowth in cultured retinal explant neurons on the LOTUS substrate. These results suggest that LOTUS promotes neurite outgrowth by interacting with Ten-4. Our findings may provide a new molecular mechanism of LOTUS to contribute to neuronal circuit formation in development and to enhance axonal regeneration after CNS injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Anatomy & Developmental Biology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Yuki Kawaguchi
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 230-0045, Japan
| | - Yuki Ohta
- Laboratory of Biopharmaceutical and Regenerative Sciences, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Nana Kawasaki
- Laboratory of Biopharmaceutical and Regenerative Sciences, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Yuki Fujita
- Department of Anatomy & Developmental Biology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 230-0045, Japan
| |
Collapse
|
6
|
Saijilafu, Ye LC, Zhang JY, Xu RJ. The top 100 most cited articles on axon regeneration from 2003 to 2023: a bibliometric analysis. Front Neurosci 2024; 18:1410988. [PMID: 38988773 PMCID: PMC11233811 DOI: 10.3389/fnins.2024.1410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
Objective In this study, we used a bibliometric and visual analysis to evaluate the characteristics of the 100 most cited articles on axon regeneration. Methods The 100 most cited papers on axon regeneration published between 2003 and 2023 were identified by searching the Web of Science Core Collection database. The extracted data included the title, author, keywords, journal, publication year, country, and institution. A bibliometric analysis was subsequently undertaken. Results The examined set of 100 papers collectively accumulated a total of 39,548 citations. The number of citations for each of the top 100 articles ranged from 215 to 1,604, with a median value of 326. The author with the most contributions to this collection was He, Zhigang, having authored eight papers. Most articles originated in the United States (n = 72), while Harvard University was the institution with the most cited manuscripts (n = 19). Keyword analysis unveiled several research hotspots, such as chondroitin sulfate proteoglycan, alternative activation, exosome, Schwann cells, axonal protein synthesis, electrical stimulation, therapeutic factors, and remyelination. Examination of keywords in the articles indicated that the most recent prominent keyword was "local delivery." Conclusion This study offers bibliometric insights into axon regeneration, underscoring that the United States is a prominent leader in this field. Our analysis highlights the growing relevance of local delivery systems in axon regeneration. Although these systems have shown promise in preclinical models, challenges associated with long-term optimization, agent selection, and clinical translation remain. Nevertheless, the continued development of local delivery technologies represents a promising pathway for achieving axon regeneration; however, additional research is essential to fully realize their potential and thereby enhance patient outcomes.
Collapse
Affiliation(s)
- Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jing-Yu Zhang
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
7
|
Bi Y, Duan W, Silver J. Collagen I is a critical organizer of scarring and CNS regeneration failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592424. [PMID: 38766123 PMCID: PMC11100746 DOI: 10.1101/2024.05.07.592424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Although axotomized neurons retain the ability to initiate the formation of growth cones and attempt to regenerate after spinal cord injury, the scar area formed as a result of the lesion in most adult mammals contains a variety of reactive cells that elaborate multiple extracellular matrix and enzyme components that are not suitable for regrowth 1,2 . Newly migrating axons in the vicinity of the scar utilize upregulated LAR family receptor protein tyrosine phosphatases, such as PTPσ, to associate with extracellular chondroitin sulphate proteoglycans (CSPGs), which have been discovered to tightly entrap the regrowing axon tip and transform it into a dystrophic non-growing endball. The scar is comprised of two compartments, one in the lesion penumbra, the glial scar, composed of reactive microglia, astrocytes and OPCs; and the other in the lesion epicenter, the fibrotic scar, which is made up of fibroblasts, pericytes, endothelial cells and inflammatory cells. While the fibrotic scar is known to be strongly inhibitory, even more so than the glial scar, the molecular determinants that curtail axon elongation through the injury core are largely uncharacterized. Here, we show that one sole member of the entire family of collagens, collagen I, creates an especially potent inducer of endball formation and regeneration failure. The inhibitory signaling is mediated by mechanosensitive ion channels and RhoA activation. Staggered systemic administration of two blood-brain barrier permeable-FDA approved drugs, aspirin and pirfenidone, reduced fibroblast incursion into the complete lesion and dramatically decreased collagen I, as well as CSPG deposition which were accompanied by axonal growth and considerable functional recovery. The anatomical substrate for robust axonal regeneration was provided by laminin producing GFAP + and NG2 + bridging cells that spanned the wound. Our results reveal a collagen I-mechanotransduction axis that regulates axonal regrowth in spinal cord injury and raise a promising strategy for rapid clinical application.
Collapse
|
8
|
Howard EM, Strittmatter SM. Development of neural repair therapy for chronic spinal cord trauma: soluble Nogo receptor decoy from discovery to clinical trial. Curr Opin Neurol 2023; 36:516-522. [PMID: 37865850 PMCID: PMC10841037 DOI: 10.1097/wco.0000000000001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.
Collapse
Affiliation(s)
- Elisa M. Howard
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
9
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Tanaka R, Yamada K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int J Mol Sci 2023; 24:15623. [PMID: 37958606 PMCID: PMC10648424 DOI: 10.3390/ijms242115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
11
|
Leibinger M, Zeitler C, Paulat M, Gobrecht P, Hilla A, Andreadaki A, Guthoff R, Fischer D. Inhibition of microtubule detyrosination by parthenolide facilitates functional CNS axon regeneration. eLife 2023; 12:RP88279. [PMID: 37846146 PMCID: PMC10581688 DOI: 10.7554/elife.88279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Injured axons in the central nervous system (CNS) usually fail to regenerate, causing permanent disabilities. However, the knockdown of Pten knockout or treatment of neurons with hyper-IL-6 (hIL-6) transforms neurons into a regenerative state, allowing them to regenerate axons in the injured optic nerve and spinal cord. Transneuronal delivery of hIL-6 to the injured brain stem neurons enables functional recovery after severe spinal cord injury. Here we demonstrate that the beneficial hIL-6 and Pten knockout effects on axon growth are limited by the induction of tubulin detyrosination in axonal growth cones. Hence, cotreatment with parthenolide, a compound blocking microtubule detyrosination, synergistically accelerates neurite growth of cultured murine CNS neurons and primary RGCs isolated from adult human eyes. Systemic application of the prodrug dimethylamino-parthenolide (DMAPT) facilitates axon regeneration in the injured optic nerve and spinal cord. Moreover, combinatorial treatment further improves hIL-6-induced axon regeneration and locomotor recovery after severe SCI. Thus, DMAPT facilitates functional CNS regeneration and reduces the limiting effects of pro-regenerative treatments, making it a promising drug candidate for treating CNS injuries.
Collapse
Affiliation(s)
- Marco Leibinger
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Charlotte Zeitler
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Miriam Paulat
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Philipp Gobrecht
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Alexander Hilla
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Anastasia Andreadaki
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Rainer Guthoff
- Eye Hospital, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Dietmar Fischer
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| |
Collapse
|
12
|
Maynard G, Kannan R, Liu J, Wang W, Lam TKT, Wang X, Adamson C, Hackett C, Schwab JM, Liu C, Leslie DP, Chen D, Marino R, Zafonte R, Flanders A, Block G, Smith E, Strittmatter SM. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. Lancet Neurol 2023; 22:672-684. [PMID: 37479373 PMCID: PMC10410101 DOI: 10.1016/s1474-4422(23)00215-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) causes neural disconnection and persistent neurological deficits, so axon sprouting and plasticity might promote recovery. Soluble Nogo-Receptor-Fc decoy (AXER-204) blocks inhibitors of axon growth and promotes recovery of motor function after SCI in animals. This first-in-human and randomised trial sought to determine primarily the safety and pharmacokinetics of AXER-204 in individuals with chronic SCI, and secondarily its effect on recovery. METHODS We conducted a two-part study in adults (aged 18-65 years) with chronic (>1 year) cervical traumatic SCI at six rehabilitation centres in the USA. In part 1, AXER-204 was delivered open label as single intrathecal doses of 3 mg, 30 mg, 90 mg, or 200 mg, with primary outcomes of safety and pharmacokinetics. Part 2 was a randomised, parallel, double-blind comparison of six intrathecal doses of 200 mg AXER-204 over 104 days versus placebo. Participants were randomly allocated (1:1) by investigators using a central electronic system, stratified in blocks of four by American Spinal Injury Association Impairment Scale grade and receipt of AXER-204 in part 1. All investigators and patients were masked to treatment allocation until at least day 169. The part 2 primary objectives were safety and pharmacokinetics, with a key secondary objective to assess change in International Standards for Neurological Classification of SCI (ISNCSCI) Upper Extremity Motor Score (UEMS) at day 169 for all enrolled participants. This trial is registered with ClinicalTrials.gov, NCT03989440, and is completed. FINDINGS We treated 24 participants in part 1 (six per dose; 18 men, six women), and 27 participants in part 2 (13 placebo, 14 AXER-204; 23 men, four women), between June 20, 2019, and June 21, 2022. There were no deaths and no discontinuations from the study due to an adverse event in part 1 and 2. In part 2, treatment-related adverse events were of similar incidence in AXER-204 and placebo groups (ten [71%] vs nine [69%]). Headache was the most common treatment-related adverse event (five [21%] in part 1, 11 [41%] in part 2). In part 1, AXER-204 reached mean maximal CSF concentration 1 day after dosing with 200 mg of 412 000 ng/mL (SD 129 000), exceeding those concentrations that were efficacious in animal studies. In part 2, mean changes from baseline to day 169 in ISNCSCI UEMS were 1·5 (SD 3·3) for AXER-204 and 0·9 (2·3) for placebo (mean difference 0·54, 95% CI -1·48 to 2·55; p=0·59). INTERPRETATION This study delivers the first, to our knowledge, clinical trial of a rationally designed pharmacological treatment intended to promote neural repair in chronic SCI. AXER-204 appeared safe and reached target CSF concentrations; exploratory biomarker results were consistent with target engagement and synaptic stabilisation. Post-hoc subgroup analyses suggest that future trials could investigate efficacy in patients with moderately severe SCI without prior AXER-204 exposure. FUNDING Wings for Life Foundation, National Institute of Neurological Disorders and Stroke, National Center for Advancing Translational Sciences, National Institute on Drug Abuse, and ReNetX Bio.
Collapse
Affiliation(s)
| | - Ramakrishnan Kannan
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jian Liu
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Weiwei Wang
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA
| | - Tu Kiet T Lam
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Xingxing Wang
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Jan M Schwab
- Belford Center for Spinal Cord Injury and Departments of Neurology and Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Charles Liu
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - David Chen
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Ralph Marino
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross Zafonte
- Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam Flanders
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
13
|
Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. Int J Mol Sci 2023; 24:ijms24054479. [PMID: 36901909 PMCID: PMC10003089 DOI: 10.3390/ijms24054479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes progressive neurological disability in most patients due to neurodegeneration. Activated immune cells infiltrate the CNS, triggering an inflammatory cascade that leads to demyelination and axonal injury. Non-inflammatory mechanisms are also involved in axonal degeneration, although they are not fully elucidated yet. Current therapies focus on immunosuppression; however, no therapies to promote regeneration, myelin repair, or maintenance are currently available. Two different negative regulators of myelination have been proposed as promising targets to induce remyelination and regeneration, namely the Nogo-A and LINGO-1 proteins. Although Nogo-A was first discovered as a potent neurite outgrowth inhibitor in the CNS, it has emerged as a multifunctional protein. It is involved in numerous developmental processes and is necessary for shaping and later maintaining CNS structure and functionality. However, the growth-restricting properties of Nogo-A have negative effects on CNS injury or disease. LINGO-1 is also an inhibitor of neurite outgrowth, axonal regeneration, oligodendrocyte differentiation, and myelin production. Inhibiting the actions of Nogo-A or LINGO-1 promotes remyelination both in vitro and in vivo, while Nogo-A or LINGO-1 antagonists have been suggested as promising therapeutic approaches for demyelinating diseases. In this review, we focus on these two negative regulators of myelination while also providing an overview of the available data on the effects of Nogo-A and LINGO-1 inhibition on oligodendrocyte differentiation and remyelination.
Collapse
|
14
|
Fisher KM, Garner JP, Darian-Smith C. Small sensory spinal lesions that affect hand function in monkeys greatly alter primary afferent and motor neuron connections in the cord. J Comp Neurol 2022; 530:3039-3055. [PMID: 35973735 PMCID: PMC9561953 DOI: 10.1002/cne.25395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Small sensory spinal injuries induce plasticity across the neuraxis, but little is understood about their effect on segmental connections or motor neuron (MN) function. Here, we begin to address this at two levels. First, we compared afferent input distributions from the skin and muscles of the digits with corresponding MN pools to determine their spatial relationship, in both the normal state and 4-6 months after a unilateral dorsal root/dorsal column lesion (DRL/DCL), affecting digits 1-3. Second, we looked at specific changes to MN inputs and membrane properties that likely impact functional recovery. Monkeys received a targeted unilateral DRL/DCL, and 4-6 months later, cholera toxin subunit B (CT-B) was injected bilaterally into either the distal pads of digits 1-3, or related intrinsic hand muscles, to label inputs to the cord, and corresponding MNs. In controls (unlesioned side), cutaneous and proprioceptive afferents from digits 1-3 showed different distribution patterns but similar rostrocaudal spread within the dorsal horn from C1 to T2. In contrast, MNs were distributed across just two segments (C7-8). Following the lesion, sensory inputs were significantly diminished across all 10 segments, though this did not alter MN distributions. Afferent and monoamine inputs, as well as KCC2 cotransporters, were also significantly altered on the cell membrane of CT-B labeled MNs postlesion. In contrast, inhibitory neurotransmission and perineuronal net integrity were not altered at this prechronic timepoint. Our findings indicate that even a small sensory injury can significantly impact sensory and motor spinal neurons and provide new insight into the complex process of recovery.
Collapse
Affiliation(s)
- Karen M. Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Joseph P. Garner
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| |
Collapse
|
15
|
A small molecule M1 promotes optic nerve regeneration to restore target-specific neural activity and visual function. Proc Natl Acad Sci U S A 2022; 119:e2121273119. [PMID: 36306327 PMCID: PMC9636930 DOI: 10.1073/pnas.2121273119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axon regeneration is an energy-demanding process that requires active mitochondrial transport. In contrast to the central nervous system (CNS), axonal mitochondrial transport in regenerating axons of the peripheral nervous system (PNS) increases within hours and sustains for weeks after injury. Yet, little is known about targeting mitochondria in nervous system repair. Here, we report the induction of sustained axon regeneration, neural activities in the superior colliculus (SC), and visual function recovery after optic nerve crush (ONC) by M1, a small molecule that promotes mitochondrial fusion and transport. We demonstrated that M1 enhanced mitochondrial dynamics in cultured neurons and accelerated in vivo axon regeneration in the PNS. Ex vivo time-lapse imaging and kymograph analysis showed that M1 greatly increased mitochondrial length, axonal mitochondrial motility, and transport velocity in peripheral axons of the sciatic nerves. Following ONC, M1 increased the number of axons regenerating through the optic chiasm into multiple subcortical areas and promoted the recovery of local field potentials in the SC after optogenetic stimulation of retinal ganglion cells, resulting in complete recovery of the pupillary light reflex, and restoration of the response to looming visual stimuli was detected. M1 increased the gene expression of mitochondrial fusion proteins and major axonal transport machinery in both the PNS and CNS neurons without inducing inflammatory responses. The knockdown of two key mitochondrial genes,
Opa1
or
Mfn2
, abolished the growth-promoting effects of M1 after ONC, suggesting that maintaining a highly dynamic mitochondrial population in axons is required for successful CNS axon regeneration.
Collapse
|
16
|
Rodriguez CM, Bechek SC, Jones GL, Nakayama L, Akiyama T, Kim G, Solow-Cordero DE, Strittmatter SM, Gitler AD. Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2. Cell Rep 2022; 41:111505. [PMID: 36288715 PMCID: PMC9664481 DOI: 10.1016/j.celrep.2022.111505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023] Open
Abstract
Gene-based therapeutic strategies to lower ataxin-2 levels are emerging for the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). Additional strategies to lower levels of ataxin-2 could be beneficial. Here, we perform a genome-wide arrayed small interfering RNA (siRNA) screen in human cells and identify RTN4R, the gene encoding the RTN4/NoGo-Receptor, as a potent modifier of ataxin-2 levels. RTN4R knockdown, or treatment with a peptide inhibitor, is sufficient to lower ataxin-2 protein levels in mouse and human neurons in vitro, and Rtn4r knockout mice have reduced ataxin-2 levels in vivo. We provide evidence that ataxin-2 shares a role with the RTN4/NoGo-Receptor in limiting axonal regeneration. Reduction of either protein increases axonal regrowth following axotomy. These data define the RTN4/NoGo-Receptor as a novel therapeutic target for ALS and SCA2 and implicate the targeting of ataxin-2 as a potential treatment following nerve injury.
Collapse
Affiliation(s)
- Caitlin M Rodriguez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sophia C Bechek
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Graham L Jones
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tetsuya Akiyama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA
| | - David E Solow-Cordero
- High-Throughput Bioscience Center, Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Au NPB, Kumar G, Asthana P, Gao F, Kawaguchi R, Chang RCC, So KF, Hu Y, Geschwind DH, Coppola G, Ma CHE. Clinically relevant small-molecule promotes nerve repair and visual function recovery. NPJ Regen Med 2022; 7:50. [PMID: 36182946 PMCID: PMC9526721 DOI: 10.1038/s41536-022-00233-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/01/2022] [Indexed: 12/01/2022] Open
Abstract
Adult mammalian injured axons regenerate over short-distance in the peripheral nervous system (PNS) while the axons in the central nervous system (CNS) are unable to regrow after injury. Here, we demonstrated that Lycium barbarum polysaccharides (LBP), purified from Wolfberry, accelerated long-distance axon regeneration after severe peripheral nerve injury (PNI) and optic nerve crush (ONC). LBP not only promoted intrinsic growth capacity of injured neurons and function recovery after severe PNI, but also induced robust retinal ganglion cell (RGC) survival and axon regeneration after ONC. By using LBP gene expression profile signatures to query a Connectivity map database, we identified a Food and Drug Administration (FDA)-approved small-molecule glycopyrrolate, which promoted PNS axon regeneration, RGC survival and sustained CNS axon regeneration, increased neural firing in the superior colliculus, and enhanced visual target re-innervations by regenerating RGC axons leading to a partial restoration of visual function after ONC. Our study provides insights into repurposing of FDA-approved small molecule for nerve repair and function recovery.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Gajendra Kumar
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Pallavi Asthana
- grid.35030.350000 0004 1792 6846Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Fuying Gao
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Riki Kawaguchi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Raymond Chuen Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kwok Fai So
- grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR ,grid.194645.b0000000121742757Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong ,grid.258164.c0000 0004 1790 3548Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yang Hu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, USA
| | - Daniel H. Geschwind
- grid.19006.3e0000 0000 9632 6718Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Giovanni Coppola
- grid.19006.3e0000 0000 9632 6718Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.
| |
Collapse
|
18
|
Matson KJE, Russ DE, Kathe C, Hua I, Maric D, Ding Y, Krynitsky J, Pursley R, Sathyamurthy A, Squair JW, Levi BP, Courtine G, Levine AJ. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat Commun 2022; 13:5628. [PMID: 36163250 PMCID: PMC9513082 DOI: 10.1038/s41467-022-33184-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy. Matson et al. performed single nucleus sequencing of the “spared” spinal cord tissue distal to an injury in mice. They found that spinocerebellar neurons expressed a pro-regenerative gene signature and showed axon outgrowth after injury.
Collapse
Affiliation(s)
- Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Johns Hopkins University Department of Biology, Baltimore, MD, USA
| | - Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jonathan Krynitsky
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Gregoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Sekine Y, Kannan R, Wang X, Strittmatter SM. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Exp Neurol 2022; 353:114070. [PMID: 35398339 PMCID: PMC9555232 DOI: 10.1016/j.expneurol.2022.114070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023]
Abstract
Neural repair after traumatic spinal cord injury depends upon the restoration of neural networks via axonal sprouting and regeneration. Our previous genome wide loss-of-function screen identified Rab GTPases as playing a prominent role in preventing successful axon sprouting and regeneration. Here, we searched for Rab27b interactors and identified Rabphilin3A as an effector within regenerating axons. Growth cone Rabphilin3a colocalized and physically associated with integrins at puncta in the proximal body of the axonal growth cone. In regenerating axons, loss of Rabphilin3a increased integrin enrichment in the growth cone periphery, enhanced focal adhesion kinase activation, increased F-actin-rich filopodial density and stimulated axon extension. Compared to wild type, mice lacking Rabphilin3a exhibited greater regeneration of retinal ganglion cell axons after optic nerve crush as well as greater corticospinal axon regeneration after complete thoracic spinal cord crush injury. After moderate spinal cord contusion injury, there was greater corticospinal regrowth in the absence of Rph3a. Thus, an endogenous Rab27b - Raphilin3a pathway limits integrin action in the growth cone, and deletion of this monomeric GTPase pathway permits reparative axon growth in the injured adult mammalian central nervous system.
Collapse
Affiliation(s)
- Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ramakrishnan Kannan
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
20
|
Aravamudhan P, Guzman-Cardozo C, Urbanek K, Welsh OL, Konopka-Anstadt JL, Sutherland DM, Dermody TS. The Murine Neuronal Receptor NgR1 Is Dispensable for Reovirus Pathogenesis. J Virol 2022; 96:e0005522. [PMID: 35353001 PMCID: PMC9044964 DOI: 10.1128/jvi.00055-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.
Collapse
Affiliation(s)
- Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Camila Guzman-Cardozo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelly Urbanek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Olivia L. Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nat Commun 2021; 12:6906. [PMID: 34824275 PMCID: PMC8617297 DOI: 10.1038/s41467-021-27245-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022] Open
Abstract
Astrocytes play critical roles after brain injury, but their precise function is poorly defined. Utilizing single-nuclei transcriptomics to characterize astrocytes after ischemic stroke in the visual cortex of the marmoset monkey, we observed nearly complete segregation between stroke and control astrocyte clusters. Screening for the top 30 differentially expressed genes that might limit stroke recovery, we discovered that a majority of astrocytes expressed RTN4A/ NogoA, a neurite-outgrowth inhibitory protein previously only associated with oligodendrocytes. NogoA upregulation on reactive astrocytes post-stroke was significant in both the marmoset and human brain, whereas only a marginal change was observed in mice. We determined that NogoA mediated an anti-inflammatory response which likely contributes to limiting the infiltration of peripheral macrophages into the surviving parenchyma.
Collapse
|
22
|
Ito S, Nagoshi N, Kamata Y, Kojima K, Nori S, Matsumoto M, Takei K, Nakamura M, Okano H. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury. Stem Cell Reports 2021; 16:2703-2717. [PMID: 34653401 PMCID: PMC8580872 DOI: 10.1016/j.stemcr.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Functional recovery is still limited mainly due to several mechanisms, such as the activation of Nogo receptor-1 (NgR1) signaling, when human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PC) are transplanted for subacute spinal cord injury (SCI). We previously reported the neuroprotective and regenerative benefits of overexpression of lateral olfactory tract usher substance (LOTUS), an endogenous NgR1 antagonist, in the injured spinal cord using transgenic mice. Here, we evaluate the effects of lentiviral transduction of LOTUS gene into hiPSC-NS/PCs before transplantation in a mouse model of subacute SCI. The transduced LOTUS contributes to neurite extension, suppression of apoptosis, and secretion of neurotrophic factors in vitro. In vivo, the hiPSC-NS/PCs enhance the survival of grafted cells and enhance axonal extension of the transplanted cells, resulting in significant restoration of motor function following SCI. Therefore, the gene transduction of LOTUS in hiPSC-NS/PCs could be a promising adjunct for transplantation therapy for SCI.
Collapse
Affiliation(s)
- Shuhei Ito
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Orthopaedic Surgery, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kota Kojima
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
23
|
Yang M, Jian L, Fan W, Chen X, Zou H, Huang Y, Chen X, Zhou YG, Yuan R. Axon regeneration after optic nerve injury in rats can be improved via PirB knockdown in the retina. Cell Biosci 2021; 11:158. [PMID: 34380548 PMCID: PMC8359350 DOI: 10.1186/s13578-021-00670-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/25/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) exert major inhibitory effects on nerve regeneration: Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). MAIs have two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Existing studies confirm that inhibiting NgR only exerted a modest disinhibitory effect in CNS. However, the inhibitory effects of PirB on nerve regeneration after binding to MAIs are controversial too. We aimed to further investigate the effect of PirB knockdown on the neuroprotection and axonal regeneration of retinal ganglion cells (RGCs) after optic nerve injury in rats. METHODS The differential expression of PirB in the retina was observed via immunofluorescence and western blotting after 1, 3, and 7 days of optic nerve injury (ONI). The retina was locally transfected with adeno-associated virus (AAV) PirB shRNA, then, the distribution of virus in tissues and cells was observed 21 days after AAV transfection to confirm the efficiency of PirB knockdown. Level of P-Stat3 and expressions of ciliary neurotrophic factor (CNTF) were detected via western blotting. RGCs were directly labeled with cholera toxin subunit B (CTB). The new axons of the optic nerve were specifically labeled with growth associated protein-43 (GAP43) via immunofluorescence. Flash visual evoked potential (FVEP) was used to detect the P1 and N1 latency, as well as N1-P1, P1-N2 amplitude to confirm visual function. RESULTS PirB expression in the retina was significantly increased after ONI. PirB knockdown was successful and significantly promoted P-Stat3 level and CNTF expression in the retina. PirB knockdown promoted the regeneration of optic nerve axons and improved the visual function indexes such as N1-P1 and P1-N2 amplitude. CONCLUSIONS PirB is one of the key molecules that inhibit the regeneration of the optic nerve, and inhibition of PirB has an excellent effect on promoting nerve regeneration, which allows the use of PirB as a target molecule to promote functional recovery after ONI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lan Jian
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xing Chen
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China
| | - Huan Zou
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yanming Huang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xiaofan Chen
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yuan-Guo Zhou
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China.
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
24
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Punda H, Mardesic S, Filipovic N, Kosovic I, Benzon B, Ogorevc M, Bocina I, Kolic K, Vukojevic K, Saraga-Babic M. Expression Pattern of 5-HT (Serotonin) Receptors during Normal Development of the Human Spinal Cord and Ganglia and in Fetus with Cervical Spina Bifida. Int J Mol Sci 2021; 22:ijms22147320. [PMID: 34298938 PMCID: PMC8304340 DOI: 10.3390/ijms22147320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
The expression of 5-HT (serotonin) receptors (sr) was analyzed in the spinal cord and ganglia of 15 human conceptuses (5–10-weeks), and in the 9-week fetus with spina bifida. We used immunohistochemical method to detect sr-positive, apoptotic (caspase-3) and proliferating (Ki-67) cells, double immunofluorescence for co-localization with protein gene peptide (pgp) 9.5 and GFAP, as well as semiquantification and statistical measurements. Following the neurulation process, moderate (sr1 and sr2) and mild (sr3) expression characterized neuroblasts in the spinal cord and ganglia. During further development, sr1 expression gradually increased in the motoneurons, autonomic and sensory neurons, while sr2 and sr3 increased strongly in floor and roof plates. In the ganglia, sr3 expression increased during limited developmental period, while sr1 and sr2 increased throughout the investigated period. Co-expression of sr/pgp 9.5 characterized developing neurons, while sr/GFAP co-localized in the roof plate. In the spinal cord and ganglia of malformed fetus, weaker sr1 and sr2 and stronger sr3 expression accompanied morphological abnormalities. Anomalous roof plate morphology showed an excess of apoptotic and proliferating cells and increased sr3 expression. Our results indicate a human-species specific sr expression pattern, and the importance of sr1 in neuronal differentiation, and sr2 and sr3 in the control of the roof plate morphogenesis in normal and disturbed development.
Collapse
Affiliation(s)
- Hrvoje Punda
- Department of Diagnostic and Interventional Radiology, University Hospital in Split, 21000 Split, Croatia; (H.P.); (K.K.)
| | - Snjezana Mardesic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Ivona Kosovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Kresimir Kolic
- Department of Diagnostic and Interventional Radiology, University Hospital in Split, 21000 Split, Croatia; (H.P.); (K.K.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (N.F.); (I.K.); (B.B.); (M.O.); (K.V.)
- Correspondence:
| |
Collapse
|
26
|
Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 2021; 343:113794. [PMID: 34166685 DOI: 10.1016/j.expneurol.2021.113794] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Regeneration is bungled following CNS injuries, including spinal cord injury (SCI). Inherent decay of permissive conditions restricts the regrowth of the mature CNS after an injury. Hypertrophic scarring, insignificant intrinsic axon-growth activity, and axon-growth inhibitory molecules such as myelin inhibitors and scar inhibitors constitute a significant hindrance to spinal cord repair. Besides these molecules, a combined absence of various mechanisms responsible for axonal regeneration is the main reason behind the dereliction of the adult CNS to regenerate. The neutralization of specific inhibitors/proteins by stymieing antibodies or encouraging enzymatic degradation results in improved axon regeneration. Previous efforts to induce regeneration after SCI have stimulated axonal development in or near lesion sites, but not beyond them. Several pathways are responsible for the axonal growth obstruction after a CNS injury, including SCI. Herein, we summarize the axonal, glial, and intrinsic factor which impedes the regeneration. We have also discussed the methods to stabilize microtubules and through this to maintain the proper cytoskeletal dynamics of growth cone as disorganized microtubules lead to the failure of axonal regeneration. Moreover, we primarily focus on diverse inhibitors of axonal growth and molecular approaches to counteract them and their downstream intracellular signaling through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
27
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
28
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
29
|
Bakhuraysah MM, Theotokis P, Lee JY, Alrehaili AA, Aui PM, Figgett WA, Azari MF, Abou-Afech JP, Mackay F, Siatskas C, Alderuccio F, Strittmatter SM, Grigoriadis N, Petratos S. B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF. Sci Rep 2021; 11:2890. [PMID: 33536561 PMCID: PMC7858582 DOI: 10.1038/s41598-021-82346-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/14/2021] [Indexed: 02/01/2023] Open
Abstract
We have previously reported evidence that Nogo-A activation of Nogo-receptor 1 (NgR1) can drive axonal dystrophy during the neurological progression of experimental autoimmune encephalomyelitis (EAE). However, the B-cell activating factor (BAFF/BlyS) may also be an important ligand of NgR during neuroinflammation. In the current study we define that NgR1 and its homologs may contribute to immune cell signaling during EAE. Meningeal B-cells expressing NgR1 and NgR3 were identified within the lumbosacral spinal cords of ngr1+/+ EAE-induced mice at clinical score 1. Furthermore, increased secretion of immunoglobulins that bound to central nervous system myelin were shown to be generated from isolated NgR1- and NgR3-expressing B-cells of ngr1+/+ EAE-induced mice. In vitro BAFF stimulation of NgR1- and NgR3-expressing B cells, directed them into the cell cycle DNA synthesis phase. However, when we antagonized BAFF signaling by co-incubation with recombinant BAFF-R, NgR1-Fc, or NgR3 peptides, the B cells remained in the G0/G1 phase. The data suggest that B cells express NgR1 and NgR3 during EAE, being localized to infiltrates of the meninges and that their regulation is governed by BAFF signaling.
Collapse
Affiliation(s)
- Maha M Bakhuraysah
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
- Faculty of Applied Medical Sciences, Taif University, Taif, 26521, Kingdom of Saudi Arabia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, 54636, Thessaloniki, Macedonia, Greece
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
- Toolgen Inc., Gasan Digital-Ro, 08594, Geumcheon, Seoul, Korea
| | - Amani A Alrehaili
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
- Faculty of Applied Medical Sciences, Taif University, Taif, 26521, Kingdom of Saudi Arabia
| | - Pei-Mun Aui
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - William A Figgett
- Department of Microbiology and Immunology, School of Biomedical Science, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Michael F Azari
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - John-Paul Abou-Afech
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - Fabienne Mackay
- Department of Microbiology and Immunology, School of Biomedical Science, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Frank Alderuccio
- Department of Immunology and Pathology, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, 54636, Thessaloniki, Macedonia, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, 3004, Australia.
| |
Collapse
|
30
|
Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Nat Commun 2021; 12:391. [PMID: 33452250 PMCID: PMC7810685 DOI: 10.1038/s41467-020-20112-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) often causes severe and permanent disabilities due to the regenerative failure of severed axons. Here we report significant locomotor recovery of both hindlimbs after a complete spinal cord crush. This is achieved by the unilateral transduction of cortical motoneurons with an AAV expressing hyper-IL-6 (hIL-6), a potent designer cytokine stimulating JAK/STAT3 signaling and axon regeneration. We find collaterals of these AAV-transduced motoneurons projecting to serotonergic neurons in both sides of the raphe nuclei. Hence, the transduction of cortical neurons facilitates the axonal transport and release of hIL-6 at innervated neurons in the brain stem. Therefore, this transneuronal delivery of hIL-6 promotes the regeneration of corticospinal and raphespinal fibers after injury, with the latter being essential for hIL-6-induced functional recovery. Thus, transneuronal delivery enables regenerative stimulation of neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.
Collapse
|
31
|
Frantz MG, Crouse EC, Sokhadze G, Ikrar T, Stephany CÉ, Nguyen C, Xu X, McGee AW. Layer 4 Gates Plasticity in Visual Cortex Independent of a Canonical Microcircuit. Curr Biol 2020; 30:2962-2973.e5. [PMID: 32589913 PMCID: PMC7919382 DOI: 10.1016/j.cub.2020.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
Disrupting binocular vision during a developmental critical period can yield enduring changes to ocular dominance (OD) in primary visual cortex (V1). Here we investigated how this experience-dependent plasticity is coordinated within the laminar circuitry of V1 by deleting separately in each cortical layer (L) a gene required to close the critical period, nogo-66 receptor (ngr1). Deleting ngr1 in excitatory neurons in L4, but not in L2/3, L5, or L6, prevented closure of the critical period, and adult mice remained sensitive to brief monocular deprivation. Intracortical disinhibition, but not thalamocortical disinhibition, accompanied this OD plasticity. Both juvenile wild-type mice and adult mice lacking ngr1 in L4 displayed OD plasticity that advanced more rapidly L4 than L2/3 or L5. Interestingly, blocking OD plasticity in L2/3 with the drug AM-251 did not impair OD plasticity in L5. We propose that L4 restricts disinhibition and gates OD plasticity independent of a canonical cortical microcircuit.
Collapse
Affiliation(s)
- Michael G Frantz
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Emily C Crouse
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Guela Sokhadze
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Taruna Ikrar
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Céleste-Élise Stephany
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Collins Nguyen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
32
|
Liu H, Su D, Liu L, Chen L, Zhao Y, Chan SO, Zhang W, Wang Y, Wang J. Identification of a new functional domain of Nogo-A that promotes inflammatory pain and inhibits neurite growth through binding to NgR1. FASEB J 2020; 34:10948-10965. [PMID: 32598099 DOI: 10.1096/fj.202000377r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023]
Abstract
Nogo-A is a key inhibitory molecule to axon regeneration, and plays diverse roles in other pathological conditions, such as stroke, schizophrenia, and neurodegenerative diseases. Nogo-66 and Nogo-Δ20 fragments are two known functional domains of Nogo-A, which act through the Nogo-66 receptor (NgR1) and sphingosine-1-phosphate receptor 2 (S1PR2), respectively. Here, we reported a new functional domain of Nogo-A, Nogo-A aa 846-861, was identified in the Nogo-A-specific segment that promotes complete Freund's adjuvant (CFA)-induced inflammatory pain. Intrathecal injection of its antagonist peptide 846-861PE or the specific antibody attenuated the CFA-induced inflammatory heat hyperalgesia. The 846-861 PE reduced the content of transient receptor potential vanilloid subfamily member 1 (TRPV1) in dorsal root ganglia (DRG) and decreased the response of DRG neurons to capsaicin. These effects were accompanied by a reduction in LIMK/cofilin phosphorylation and actin polymerization. GST pull-down and fluorescence resonance energy transfer (FRET) assays both showed that Nogo-A aa 846-861 bound to NgR1. Moreover, we demonstrated that Nogo-A aa 846-861 inhibited neurite outgrowth from cortical neurons and DRG explants. We concluded that Nogo-A aa 846-861 is a novel ligand of NgR1, which activates the downstream signaling pathways that inhibit axon growth and promote inflammatory pain.
Collapse
Affiliation(s)
- Huaicun Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dongqiang Su
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lei Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Ling Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiguang Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jun Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
33
|
Yuan R, Yang M, Fan W, Lan J, Zhou YG. Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro. Neurosci Bull 2020; 36:972-984. [PMID: 32445021 DOI: 10.1007/s12264-020-00510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.
Collapse
Affiliation(s)
- Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jian Lan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
34
|
Kurihara Y, Takai T, Takei K. Nogo receptor antagonist LOTUS exerts suppression on axonal growth-inhibiting receptor PIR-B. J Neurochem 2020; 155:285-299. [PMID: 32201946 DOI: 10.1111/jnc.15013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023]
Abstract
Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
35
|
Mohammed R, Opara K, Lall R, Ojha U, Xiang J. Evaluating the effectiveness of anti-Nogo treatment in spinal cord injuries. Neural Dev 2020; 15:1. [PMID: 31918754 PMCID: PMC6953157 DOI: 10.1186/s13064-020-0138-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/05/2020] [Indexed: 02/08/2023] Open
Abstract
As humans, we cannot regenerate axons within the central nervous system (CNS), therefore, making any damage to it permanent. This leads to the loss of sensory and motor function below the site of injury and can be crippling to a person’s health. Spontaneous recovery can occur from plastic changes, but it is minimal. The absence of regeneration is due to the inhibitory environment of the CNS as well as the inherent inability of CNS axons to form growth cones. Amongst many factors, one of the major inhibitory signals of the CNS environment is the myelin-associated Nogo pathway. Nogo-A, Nogo-B and Nogo-C (Nogo), stimulate the Nogo receptor, inhibiting neurite outgrowth by causing growth cones to collapse through activation of Rho Kinase (ROCK). Antibodies can be used to target this signalling pathway by binding to Nogo and thus promote the outgrowth of neuronal axons in the CNS. This use of anti-Nogo antibodies has been shown to upregulate CNS regeneration as well as drastically improve sensory and motor function in both rats and primates when coupled with adequate training. Here, we evaluate whether the experimental success of anti-Nogo at improving CNS regeneration can be carried over into the clinical setting to treat spinal cord injuries (SCI) and their symptoms successfully. Furthermore, we also discuss potential methods to improve the current treatment and any developmental obstacles.
Collapse
Affiliation(s)
- Raihan Mohammed
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Hills Rd, Cambridge, CB2 0SP, UK.
| | - Kaesi Opara
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Hills Rd, Cambridge, CB2 0SP, UK
| | - Rahul Lall
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Hills Rd, Cambridge, CB2 0SP, UK
| | - Utkarsh Ojha
- Faculty of Medicine, Imperial College London, London, UK
| | - Jinpo Xiang
- Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
36
|
Takei K. LOTUS as an endogenous protein converting the adult central nervous system environment from nonpermissive to permissive for axonal regrowth after brain injury. Neuropathology 2020; 40:14-20. [PMID: 31908040 DOI: 10.1111/neup.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/10/2019] [Accepted: 12/01/2019] [Indexed: 11/30/2022]
Abstract
Central nervous system (CNS) injury, such as spinal cord injury (SCI), results in severe sensory and motor deficits due to the poor regenerative capacity of the adult CNS primarily caused by a damaged CNS environment containing a large amount of axonal growth inhibitors, such as Nogo receptor-1 (NgR1), which inhibits axonal regrowth strongly after SCI, and its five ligands. Lateral olfactory tract usher substance (LOTUS), identified in the developing brain, completely antagonizes NgR1 function, promoting neuronal regeneration and functional recovery after SCI. Therefore, we hypothesized that LOTUS might be a useful natural agent for the clinical treatment of SCI in order to increase functional recovery by converting the CNS environment from nonpermissive to permissive for neuronal regeneration. Currently, we are attempting to administer LOTUS after SCI by protein injection or gene transfection. In this report, I discuss the probability of clinical application of LOTUS for future therapy of brain injury.
Collapse
Affiliation(s)
- Kohtaro Takei
- Department of Medical Life Science, Molecular Medical Bioscience Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
37
|
Sekine Y, Lindborg JA, Strittmatter SM. A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regeneration. J Biol Chem 2019; 295:2175-2183. [PMID: 31748413 DOI: 10.1074/jbc.ra119.009896] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/14/2019] [Indexed: 11/06/2022] Open
Abstract
Glial signals are known to inhibit axonal regeneration and functional recovery after mammalian central nervous system trauma, including spinal cord injury. Such signals include membrane-associated proteins of the oligodendrocyte plasma membrane and astrocyte-derived, matrix-associated proteins. Here, using cell lines and primary cortical neuron cultures, recombinant protein expression, immunoprecipitation and immunoblot assays, transmission EM of exosomes, and axon regeneration assays, we explored the secretion and activity of the myelin-associated neurite outgrowth inhibitor Nogo-A and observed exosomal release of a 24-kDa C-terminal Nogo-A fragment from cultured cells. We found that the cleavage site in this 1192-amino-acid-long fragment is located between amino acids 961-971. We also detected a Nogo-66 receptor (NgR1)-interacting Nogo-66 domain on the exosome surface. Enzyme inhibitor treatment and siRNA knockdown revealed that β-secretase 1 (BACE1) is the protease responsible for Nogo-A cleavage. Functionally, exosomes with the Nogo-66 domain on their surface potently inhibited axonal regeneration of mechanically injured cerebral cortex neurons from mice. Production of this fragment was observed in the exosomal fraction from neuronal tissue lysates after spinal cord crush injury of mice. We also noted that, relative to the exosomal marker Alix, a Nogo-immunoreactive, 24-kDa protein is enriched in exosomes 2-fold after injury. We conclude that membrane-associated Nogo-A produced in oligodendrocytes is processed proteolytically by BACE1, is released via exosomes, and is a potent diffusible inhibitor of regenerative growth in NgR1-expressing axons.
Collapse
Affiliation(s)
- Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration, and Repair Program, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Jane A Lindborg
- Cellular Neuroscience, Neurodegeneration, and Repair Program, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, and Repair Program, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536.
| |
Collapse
|
38
|
Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration. Cell Rep 2019; 23:415-428. [PMID: 29642001 DOI: 10.1016/j.celrep.2018.03.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
Axonal regrowth is crucial for recovery from CNS injury but is severely restricted in adult mammals. We used a genome-wide loss-of-function screen for factors limiting axonal regeneration from cerebral cortical neurons in vitro. Knockdown of 16,007 individual genes identified 580 significant phenotypes. These molecules share no significant overlap with those suggested by previous expression profiles. There is enrichment for genes in pathways related to transport, receptor binding, and cytokine signaling, including Socs4 and Ship2. Among transport-regulating proteins, Rab GTPases are prominent. In vivo assessment with C. elegans validates a cell-autonomous restriction of regeneration by Rab27. Mice lacking Rab27b show enhanced retinal ganglion cell axon regeneration after optic nerve crush and greater motor function and raphespinal sprouting after spinal cord trauma. Thus, a comprehensive functional screen reveals multiple pathways restricting axonal regeneration and neurological recovery after injury.
Collapse
|
39
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
40
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
41
|
Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination. J Neurosci 2019; 39:5562-5580. [PMID: 31061088 DOI: 10.1523/jneurosci.1760-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxβ in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxβ displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.
Collapse
|
42
|
Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. Int J Mol Sci 2019; 20:ijms20051054. [PMID: 30823442 PMCID: PMC6429374 DOI: 10.3390/ijms20051054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor (HGF) was first identified as a potent mitogen for mature hepatocytes, and has also gained attention as a strong neurotrophic factor in the central nervous system. We found that during the acute phase of spinal cord injury (SCI) in rats, c-Met, the specific receptor for HGF, increases sharply, while the endogenous HGF up-regulation is relatively weak. Introducing exogenous HGF into the spinal cord by injecting an HGF-expressing viral vector significantly increased the neuron and oligodendrocyte survival, angiogenesis, and axonal regeneration, to reduce the area of damage and to promote functional recovery in rats after SCI. Other recent studies in rodents have shown that exogenously administered HGF during the acute phase of SCI reduces astrocyte activation to decrease glial scar formation, and exerts anti-inflammatory effects to reduce leukocyte infiltration. We also reported that the intrathecal infusion of recombinant human HGF (intrathecal rhHGF) improves neurological hand function after cervical contusive SCI in the common marmoset, a non-human primate. Based on these collective results, we conducted a phase I/II clinical trial of intrathecal rhHGF for patients with acute cervical SCI who showed a modified Frankel grade of A/B1/B2 72 h after injury onset, from June 2014 to May 2018.
Collapse
|
43
|
Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma. J Neurosci 2019; 39:3204-3216. [PMID: 30804090 DOI: 10.1523/jneurosci.2996-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/17/2019] [Indexed: 01/01/2023] Open
Abstract
After brain or spinal cord trauma, interaction of Nogo-A with neuronal NgR1 limits regenerative axonal sprouting and functional recovery. Cellular signaling by lipid-anchored NgR1 requires a coreceptor but the relevant partner in vivo is not clear. Here, we examined proteins enriched in NgR1 immunoprecipitates by Nogo-A exposure, identifying CRMP2, a cytosolic protein implicated in axon growth inhibition by Semaphorin/Plexin complexes. The Nogo-A-induced association of NgR1 with CRMP2 requires PlexinA2 as a coreceptor. Non-neuronal cells expressing both NgR1 and PlexinA2, but not either protein alone, contract upon Nogo-A exposure. Inhibition of cortical axon regeneration by Nogo-A depends on a NgR1/PlexinA2 genetic interaction because double-heterozygous NgR1+/-, PlexinA2+/- neurons, but not single-heterozygote neurons, are rescued from Nogo-A inhibition. NgR1 and PlexinA2 also interact genetically in vivo to restrict corticospinal sprouting in mouse cervical spinal cord after unilateral pyramidotomy. Greater post-injury sprouting in NgR1+/-, PlexinA2+/- mice supports enhanced neurological recovery of a mixed female and male double-heterozygous cohort. Thus, a NgR1/PlexinA2/CRMP2 ternary complex limits neural repair after adult mammalian CNS trauma.SIGNIFICANCE STATEMENT Several decades of molecular research have suggested that developmental regulation of axon growth is distinct in most regards from titration of axonal regenerative growth after adult CNS trauma. Among adult CNS pathways, the oligodendrocyte Nogo-A inhibition of growth through NgR1 is thought to have little molecular relationship to axonal guidance mechanisms active embryonically. Here, biochemical analysis of NgR1 function uncovered a physical complex with CRMP cytoplasmic mediators, and this led to appreciation of a role for PlexinA2 in concert with NgR1 after adult trauma. The data extend molecular understanding of neural repair after CNS trauma and link it to developmental processes.
Collapse
|
44
|
Smith LM, Kostylev MA, Lee S, Strittmatter SM. Systematic and standardized comparison of reported amyloid-β receptors for sufficiency, affinity, and Alzheimer's disease relevance. J Biol Chem 2019; 294:6042-6053. [PMID: 30787106 DOI: 10.1074/jbc.ra118.006252] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Indexed: 11/06/2022] Open
Abstract
Oligomeric assemblies of amyloid-β (Aβ) peptide (Aβo) in the brains of individuals with Alzheimer's disease (AD) are toxic to neuronal synapses. More than a dozen Aβ receptor candidates have been suggested to be responsible for various aspects of the molecular pathology and memory impairment in mouse models of AD. A lack of consistent experimental design among previous studies of different receptor candidates limits evaluation of the relative roles of these candidates, producing some controversy within the field. Here, using cell-based assays with several Aβ species, including Aβo from AD brains obtained by autopsy, we directly compared the Aβ-binding capacity of multiple receptor candidates while accounting for variation in expression and confirming cell surface expression. In a survey of 15 reported Aβ receptors, only cellular prion protein (PrPC), Nogo receptor 1 (NgR1), and leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) exhibited direct binding to synaptotoxic assemblies of synthetic Aβ. Both PrPC and NgR1 preferentially bound synaptotoxic oligomers rather than nontoxic monomers, and the method of oligomer preparation did not significantly alter our binding results. Hippocampal neurons lacking both NgR1 and LilrB2 exhibited a partial reduction of Aβo binding, but this reduction was lower than in neurons lacking PrPC under the same conditions. Finally, binding studies with soluble Aβo from human AD brains revealed a strong affinity for PrPC, weak affinity for NgR1, and no detectable affinity for LilrB2. These findings clarify the relative contributions of previously reported Aβ receptors under controlled conditions and highlight the prominence of PrPC as an Aβ-binding site.
Collapse
Affiliation(s)
- Levi M Smith
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536; the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Mikhail A Kostylev
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Suho Lee
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Stephen M Strittmatter
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536.
| |
Collapse
|
45
|
Huang Z, Yarong G, Shimoda Y, Watanabe K, Liu Y. Induced NB-3 Limits Regenerative Potential of Serotonergic Axons after Complete Spinal Transection. J Neurotrauma 2019; 36:436-447. [PMID: 30156464 DOI: 10.1089/neu.2018.5652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
NB-3 (contactin-6) is a member of the contactin family and has a wide range of roles during central nervous system development and disease. Here, we found that NB-3 was simultaneously induced in the serotonergic raphespinal tract (sRST) axons and in the scar-forming cells after spinal cord injury (SCI). Regrowth of sRST axons was promoted in vivo by blocking NB-3 expression in either sRST axons or scar-forming cells when post-traumatic axons of the sRST tried to penetrate the glial scar. NB-3 deficiency promoted synapse reformation between sRST regenerative axons and motor neurons and enhanced the potential for electrical activity of muscle contraction and motor coordination. In vivo evidence also suggested that NB-3 induction in both sRST axons and scar-forming cells was required to mediate NB-3 signaling inhibition of sRST axon regeneration after SCI. Our findings suggest that NB-3 protein is a potential molecular target for future SCI treatments.
Collapse
Affiliation(s)
- Zhenhui Huang
- 1 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gao Yarong
- 1 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yasushi Shimoda
- 2 Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | - Yaobo Liu
- 1 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
46
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
47
|
Meves JM, Geoffroy CG, Kim ND, Kim JJ, Zheng B. Oligodendrocytic but not neuronal Nogo restricts corticospinal axon sprouting after CNS injury. Exp Neurol 2018; 309:32-43. [PMID: 30055160 PMCID: PMC6139267 DOI: 10.1016/j.expneurol.2018.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Recovery from injury to the central nervous system (CNS) is limited in the mammalian adult. Nonetheless, some degree of spontaneous recovery occurs after partial CNS injury. Compensatory axonal growth from uninjured neurons, termed sprouting, contributes to this naturally occurring recovery process and can be modulated by molecular intervention. Extensive studies have depicted a long-held hypothesis that oligodendrocyte-derived Nogo restricts axonal sprouting and functional recovery after CNS injury. However, cell type-specific function of Nogo in compensatory sprouting, spinal axon repair or functional recovery after CNS injury has not been reported. Here we present data showing that inducible, cell type-specific deletion of Nogo from oligodendrocytes led to a ~50% increase in the compensatory sprouting of corticospinal tract (CST) axons in the cervical spinal cord after unilateral pyramidotomy in mice. In contrast to a previously proposed growth-promoting role of neuronal Nogo in the optic nerve, deleting neuronal Nogo did not significantly affect CST axon sprouting in the spinal cord. Sprouting axons were associated with the expression of synaptic marker VGLUT1 in both the oligodendrocytic Nogo deletion and control mice. However, we did not detect any functional improvement in fine motor control associated with the increased sprouting in oligodendrocytic Nogo deletion mice. These data show for the first time with genetic evidence that Nogo specifically expressed by oligodendrocytes restricts compensatory sprouting after CNS injury, supporting a longstanding but heretofore untested hypothesis. While implicating a focus on sprouting as a repair mechanism in the translational potential of targeting the myelin inhibitory pathway, our study illustrates the challenge to harness enhanced structural plasticity for functional improvement.
Collapse
Affiliation(s)
- Jessica M Meves
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cédric G Geoffroy
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Noah D Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joseph J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Binhai Zheng
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Ding C, Hammarlund M. Aberrant information transfer interferes with functional axon regeneration. eLife 2018; 7:e38829. [PMID: 30371349 PMCID: PMC6231761 DOI: 10.7554/elife.38829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022] Open
Abstract
Functional axon regeneration requires regenerating neurons to restore appropriate synaptic connectivity and circuit function. To model this process, we developed an assay in Caenorhabditis elegans that links axon and synapse regeneration of a single neuron to recovery of behavior. After axon injury and regeneration of the DA9 neuron, synapses reform at their pre-injury location. However, these regenerated synapses often lack key molecular components. Further, synaptic vesicles accumulate in the dendrite in response to axon injury. Dendritic vesicle release results in information misrouting that suppresses behavioral recovery. Dendritic synapse formation depends on dynein and jnk-1. But even when information transfer is corrected, axonal synapses fail to adequately transmit information. Our study reveals unexpected plasticity during functional regeneration. Regeneration of the axon is not sufficient for the reformation of correct neuronal circuits after injury. Rather, synapse reformation and function are also key variables, and manipulation of circuit reformation improves behavioral recovery.
Collapse
Affiliation(s)
- Chen Ding
- Department of NeuroscienceYale UniversityNew HavenUnited States
| | - Marc Hammarlund
- Department of NeuroscienceYale UniversityNew HavenUnited States
- Department of GeneticsYale UniversityNew HavenUnited States
| |
Collapse
|
49
|
Ito S, Nagoshi N, Tsuji O, Shibata S, Shinozaki M, Kawabata S, Kojima K, Yasutake K, Hirokawa T, Matsumoto M, Takei K, Nakamura M, Okano H. LOTUS Inhibits Neuronal Apoptosis and Promotes Tract Regeneration in Contusive Spinal Cord Injury Model Mice. eNeuro 2018; 5:ENEURO.0303-18.2018. [PMID: 30560203 PMCID: PMC6294604 DOI: 10.1523/eneuro.0303-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 01/02/2023] Open
Abstract
Nogo receptor-1 (NgR1) signaling is involved in the limitation of axonal regeneration following spinal cord injury (SCI) through collapsing the growth cone and inhibiting neurite outgrowth. Lateral olfactory tract usher substance (LOTUS), a NgR antagonist, suppresses these pathological conditions. A previous report demonstrated the positive effects of LOTUS expression on motor function through raphespinal tract regeneration using pan-neuronally LOTUS-overexpressing transgenic mice. However, this report used a hemi-section model, which does not represent the majority of clinical SCI cases, and lacked a detailed histological analysis of other descending tracts. To determine the true therapeutic effects of LOTUS, we used a more clinically relevant contusive SCI model in female transgenic mice. Definitive tracing analyses revealed that LOTUS promoted the extensive regeneration of the reticulospinal tract across the lesion site and suppressed axonal dieback of corticospinal tract (CST). A significant increase in raphespinal tract fibers was seen from the subacute to the chronic phase after the injury, strongly suggesting that LOTUS promoted translesional elongation of this tract. Furthermore, histological analyses revealed that LOTUS had a neuroprotective effect on the injured spinal cord through suppressing cellular apoptosis during the acute phase. These neuroprotective and regenerative effects contributed to significant motor functional recovery and restoration of the motor evoked potential (MEP). Therefore, LOTUS application could prove beneficial in the treatment of SCI by promoting axonal regeneration of some descending fibers, reducing axonal dieback of CST fibers and encouraging motor function recovery.
Collapse
Affiliation(s)
- Shuhei Ito
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Soya Kawabata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kota Kojima
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaori Yasutake
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoko Hirokawa
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama 230-0045, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
50
|
Ruschel J, Bradke F. Systemic administration of epothilone D improves functional recovery of walking after rat spinal cord contusion injury. Exp Neurol 2018; 306:243-249. [PMID: 29223322 DOI: 10.1016/j.expneurol.2017.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 10/28/2017] [Accepted: 12/04/2017] [Indexed: 01/31/2023]
Abstract
Central nervous system (CNS) injuries cause permanent impairments of sensorimotor functions as mature neurons fail to regenerate their severed axons. The poor intrinsic growth capacity of adult CNS neurons and the formation of an inhibitory lesion scar are key impediments to axon regeneration. Systemic administration of the microtubule stabilizing agent epothilone B promotes axon regeneration and recovery of motor function by activating the intrinsic axonal growth machinery and by reducing the inhibitory fibrotic lesion scar. Thus, epothilones hold clinical promise as potential therapeutics for spinal cord injury. Here we tested the efficacy of epothilone D, an epothilone B analog with a superior safety profile. By using liquid chromatography and mass spectrometry (LC/MS), we found adequate CNS penetration and distribution of epothilone D after systemic administration, confirming the suitability of the drug for non-invasive CNS treatment. Systemic administration of epothilone D reduced inhibitory fibrotic scarring, promoted regrowth of injured raphespinal fibers and improved walking function after mid-thoracic spinal cord contusion injury in adult rats. These results confirm that systemic administration of epothilones is a valuable therapeutic strategy for CNS regeneration and repair after injury and provides a further advance for potential clinical translation.
Collapse
Affiliation(s)
- Jörg Ruschel
- German Center for Neurodegenerative Diseases, Sigmund-Freud-Strasse 27, 53127 Bonn, Germany.
| | - Frank Bradke
- German Center for Neurodegenerative Diseases, Sigmund-Freud-Strasse 27, 53127 Bonn, Germany.
| |
Collapse
|