1
|
Carmena A. Latest News from the "Guardian": p53 Directly Activates Asymmetric Stem Cell Division Regulators. Int J Mol Sci 2025; 26:3171. [PMID: 40243948 PMCID: PMC11989047 DOI: 10.3390/ijms26073171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Since its discovery in 1979, the human tumor suppressor gene TP53-also known as the "guardian of the genome"-has been the subject of intense research. Mutated in most human cancers, TP53 has traditionally been considered a key fighter against stress factors by trans-activating a network of target genes that promote cell cycle arrest, DNA repair, or apoptosis. Intriguingly, over the past years, novel non-canonical functions of p53 in unstressed cells have also emerged, including the mode of stem cell division regulation. However, the mechanisms by which p53 modulates these novel functions remain incompletely understood. In a recent work, we found that Drosophila p53 controls asymmetric stem cell division (ASCD) in neural stem cells by transcriptionally activating core ASCD regulators, such as the conserved cell-fate determinants Numb and Brat (NUMB and TRIM3/TRIM2/TRIM32 in humans, respectively). In this short communication, we comment on this new finding, the mild phenotypes associated with Drosophila p53 mutants in this context, as well as novel avenues for future research.
Collapse
Affiliation(s)
- Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicant, Spain
| |
Collapse
|
2
|
Noor H, Zheng Y, Itakura H, Gevaert O. Response to anti-angiogenic therapy is affected by AIMP protein family activity in glioblastoma and lower-grade gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643116. [PMID: 40161601 PMCID: PMC11952521 DOI: 10.1101/2025.03.13.643116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Glioblastoma (GBM) is a highly vascularized, heterogeneous tumor, yet anti-angiogenic therapies have yielded limited survival benefits. The lack of validated predictive biomarkers for treatment response stratification remains a major challenge. Aminoacyl tRNA synthetase complex-interacting multicomplex proteins (AIMPs) 1/2/3 have been implicated in CNS diseases, but their roles in gliomas remain unexplored. We investigated their association with angiogenesis and their significance as predictive biomarkers for anti-angiogenic treatment response. Methods In this multi-cohort retrospective study we analyzed glioma samples from TCGA, CGGA, Rembrandt, Gravendeel, BELOB and REGOMA trials, and four single-cell transcriptomic datasets. Multi-omic analyses incorporated transcriptomic, epigenetic, and proteomic data. Kaplan-Meier and Cox proportional hazards models were used to assess the prognostic value of AIMPs in heterogeneous and homogeneous treatment-groups. Using single-cell transcriptomics, we explored spatial and cell-type-specific AIMP2 expression in GBM. Results AIMP1/2/3 expressions correlated significantly with angiogenesis across TCGA cancers. In gliomas, AIMPs were upregulated in tumor vs. normal tissues, higher- vs. lower-grade gliomas, and recurrent vs. primary tumors (p<0.05). Upon retrospective analysis of two clinical trials assessing different anti-angiogenic drugs, we found that high-AIMP2 subgroups had improved response to therapies in GBM (REGOMA: HR 4.75 [1.96-11.5], p<0.001; BELOB: HR 2.3 [1.17-4.49], p=0.015). AIMP2-cg04317940 methylation emerged as a clinically applicable stratification marker. Single-cell analysis revealed homogeneous AIMP2 expression in tumor tissues, particularly in AC-like cells, suggesting a mechanistic link to tumor angiogenesis. Conclusions These findings provide novel insights into the role of AIMPs in angiogenesis, offering improved patient stratification and therapeutic outcomes in recurrent GBM.
Collapse
Affiliation(s)
- Humaira Noor
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuanning Zheng
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haruka Itakura
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Pastor-Alonso O, Durá I, Bernardo-Castro S, Varea E, Muro-García T, Martín-Suárez S, Encinas-Pérez JM, Pineda JR. HB-EGF activates EGFR to induce reactive neural stem cells in the mouse hippocampus after seizures. Life Sci Alliance 2024; 7:e202201840. [PMID: 38977310 PMCID: PMC11231495 DOI: 10.26508/lsa.202201840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Hippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired. Here, using a mouse model of mesial temporal lobe epilepsy, we show that the epidermal growth factor receptor (EGFR) signaling pathway is key for the induction of React-NSCs and that its inhibition exerts a beneficial effect on the neurogenic niche. We show that during the initial days after the induction of seizures by a single intrahippocampal injection of kainic acid, a strong release of zinc and heparin-binding epidermal growth factor, both activators of the EGFR signaling pathway in neural stem cells, is produced. Administration of the EGFR inhibitor gefitinib, a chemotherapeutic in clinical phase IV, prevents the induction of React-NSCs and preserves neurogenesis.
Collapse
Affiliation(s)
- Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Irene Durá
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Sara Bernardo-Castro
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Emilio Varea
- Faculty of Biology, University of Valencia, Valencia, Spain
| | - Teresa Muro-García
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Soraya Martín-Suárez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Juan Manuel Encinas-Pérez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Ikerbasque, The Basque Foundation for Science, Bizkaia, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Jose Ramon Pineda
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| |
Collapse
|
4
|
Díaz-Piña DA, Rivera-Ramírez N, García-López G, Díaz NF, Molina-Hernández A. Calcium and Neural Stem Cell Proliferation. Int J Mol Sci 2024; 25:4073. [PMID: 38612887 PMCID: PMC11012558 DOI: 10.3390/ijms25074073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
Collapse
Affiliation(s)
- Dafne Astrid Díaz-Piña
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
- Facultad de Medicina, Circuito Exterior Universitario, Universidad Nacional Autónoma de México Universitario, Copilco Universidad, Coyoacán, Ciudad de México 04360, Mexico
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| |
Collapse
|
5
|
Wilcockson SG, Guglielmi L, Araguas Rodriguez P, Amoyel M, Hill CS. An improved Erk biosensor detects oscillatory Erk dynamics driven by mitotic erasure during early development. Dev Cell 2023; 58:2802-2818.e5. [PMID: 37714159 PMCID: PMC7615346 DOI: 10.1016/j.devcel.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Extracellular signal-regulated kinase (Erk) signaling dynamics elicit distinct cellular responses in a variety of contexts. The early zebrafish embryo is an ideal model to explore the role of Erk signaling dynamics in vivo, as a gradient of activated diphosphorylated Erk (P-Erk) is induced by fibroblast growth factor (Fgf) signaling at the blastula margin. Here, we describe an improved Erk-specific biosensor, which we term modified Erk kinase translocation reporter (modErk-KTR). We demonstrate the utility of this biosensor in vitro and in developing zebrafish and Drosophila embryos. Moreover, we show that Fgf/Erk signaling is dynamic and coupled to tissue growth during both early zebrafish and Drosophila development. Erk activity is rapidly extinguished just prior to mitosis, which we refer to as mitotic erasure, inducing periods of inactivity, thus providing a source of heterogeneity in an asynchronously dividing tissue. Our modified reporter and transgenic lines represent an important resource for interrogating the role of Erk signaling dynamics in vivo.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Pablo Araguas Rodriguez
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
6
|
Tavares Tamborindeguy M, Lorenzatto PF, Lamers ML, Lenz G. Asymmetric mitosis contributes to different migratory performance in sister cells. Exp Cell Res 2023:113715. [PMID: 37429373 DOI: 10.1016/j.yexcr.2023.113715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In cancer, cell migration contributes to the spread of tumor cells resulting in metastasis. Heterogeneity in the migration capacity can produce individual cells with heightened capacity leading to invasion and metastasis. Our hypothesis is that cell migration characteristics can divide asymmetrically in mitosis, allowing a subset of cells to have a larger contribution to invasion and metastasis. Therefore, our aim is to elucidate whether sister cells have different migratory capacity and analyze if this difference is defined by mitosis. Through time-lapse videos, we analyzed migration speed, directionality, maximum displacement of each trajectory, and velocity as well as cell area and polarity and then compared the values between mother-daughter cells and between sister cells of three tumor cell lines (A172, MCF7, SCC25) and two normal cell lines (MRC5 and CHO·K1 cells). We observed that daughter cells had a different migratory phenotype compared to their mothers, and one single mitosis is enough for the sisters behave like nonrelated cells. However, mitosis did not influence cell area and polarity dynamics. These findings indicates that migration performance is not heritable, and that asymmetric cell division might have an important impact on cancer invasion and metastasis, by producing cells with different migratory capacity.
Collapse
Affiliation(s)
- Maurício Tavares Tamborindeguy
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Paola Farias Lorenzatto
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Departamento de Ciencias Morfológicas, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Higginbottom SL, Tomaskovic-Crook E, Crook JM. Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer Metastasis Rev 2023; 42:507-541. [PMID: 37004686 PMCID: PMC10348989 DOI: 10.1007/s10555-023-10100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Diffuse high-grade gliomas contain some of the most dangerous human cancers that lack curative treatment options. The recent molecular stratification of gliomas by the World Health Organisation in 2021 is expected to improve outcomes for patients in neuro-oncology through the development of treatments targeted to specific tumour types. Despite this promise, research is hindered by the lack of preclinical modelling platforms capable of recapitulating the heterogeneity and cellular phenotypes of tumours residing in their native human brain microenvironment. The microenvironment provides cues to subsets of glioma cells that influence proliferation, survival, and gene expression, thus altering susceptibility to therapeutic intervention. As such, conventional in vitro cellular models poorly reflect the varied responses to chemotherapy and radiotherapy seen in these diverse cellular states that differ in transcriptional profile and differentiation status. In an effort to improve the relevance of traditional modelling platforms, recent attention has focused on human pluripotent stem cell-based and tissue engineering techniques, such as three-dimensional (3D) bioprinting and microfluidic devices. The proper application of these exciting new technologies with consideration of tumour heterogeneity and microenvironmental interactions holds potential to develop more applicable models and clinically relevant therapies. In doing so, we will have a better chance of translating preclinical research findings to patient populations, thereby addressing the current derisory oncology clinical trial success rate.
Collapse
Affiliation(s)
- Sarah L Higginbottom
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Eva Tomaskovic-Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Jeremy M Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
8
|
Zhang X, Xiao G, Johnson C, Cai Y, Horowitz ZK, Mennicke C, Coffey R, Haider M, Threadgill D, Eliscu R, Oldham MC, Greenbaum A, Ghashghaei HT. Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain. iScience 2023; 26:106242. [PMID: 36915679 PMCID: PMC10006693 DOI: 10.1016/j.isci.2023.106242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a role in cell proliferation and differentiation during healthy development and tumor growth; however, its requirement for brain development remains unclear. Here we used a conditional mouse allele for Egfr to examine its contributions to perinatal forebrain development at the tissue level. Subtractive bulk ventral and dorsal forebrain deletions of Egfr uncovered significant and permanent decreases in oligodendrogenesis and myelination in the cortex and corpus callosum. Additionally, an increase in astrogenesis or reactive astrocytes in effected regions was evident in response to cortical scarring. Sparse deletion using mosaic analysis with double markers (MADM) surprisingly revealed a regional requirement for EGFR in rostrodorsal, but not ventrocaudal glial lineages including both astrocytes and oligodendrocytes. The EGFR-independent ventral glial progenitors may compensate for the missing EGFR-dependent dorsal glia in the bulk Egfr-deleted forebrain, potentially exposing a regenerative population of gliogenic progenitors in the mouse forebrain.
Collapse
Affiliation(s)
- Xuying Zhang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Guanxi Xiao
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caroline Johnson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Zachary K. Horowitz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christine Mennicke
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Robert Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mansoor Haider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Liu DD, He JQ, Sinha R, Eastman AE, Toland AM, Morri M, Neff NF, Vogel H, Uchida N, Weissman IL. Purification and characterization of human neural stem and progenitor cells. Cell 2023; 186:1179-1194.e15. [PMID: 36931245 PMCID: PMC10409303 DOI: 10.1016/j.cell.2023.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/06/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.
Collapse
Affiliation(s)
- Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| | - Joy Q He
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA.
| | - Anna E Eastman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| | - Angus M Toland
- Department of Pathology, Stanford Medicine, Stanford, CA 94305, USA
| | | | | | - Hannes Vogel
- Department of Pathology, Stanford Medicine, Stanford, CA 94305, USA
| | - Nobuko Uchida
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Choi J, Kim BR, Akuzum B, Chang L, Lee JY, Kwon HK. TREGking From Gut to Brain: The Control of Regulatory T Cells Along the Gut-Brain Axis. Front Immunol 2022; 13:916066. [PMID: 35844606 PMCID: PMC9279871 DOI: 10.3389/fimmu.2022.916066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract has an enormous and diverse microbial community, termed microbiota, that is necessary for the development of the immune system and tissue homeostasis. In contrast, microbial dysbiosis is associated with various inflammatory and autoimmune diseases as well as neurological disorders in humans by affecting not only the immune system in the gastrointestinal tract but also other distal organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that function as a gatekeeper for immune activation and are essential for peripheral autoimmunity prevention. Tregs are crucial to the maintenance of immunological homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and distinct function. The gut microbiota has an impact on Tregs development, accumulation, and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed towards gut microbes, which supports the host–microbiota symbiotic interaction in the gut. Recent studies have indicated that Tregs interact with a variety of resident cells in central nervous system (CNS) to limit the progression of neurological illnesses such as ischemic stroke, Alzheimer’s disease, and Parkinson’s disease. The gastrointestinal tract and CNS are functionally connected, and current findings provide insights that Tregs function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells. The purpose of this study is to explain our current knowledge of the biological role of tissue-resident Tregs, as well as the interaction along the gut-brain axis.
Collapse
Affiliation(s)
- Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Leechung Chang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| |
Collapse
|
11
|
Wang W, Su L, Wang Y, Li C, Ji F, Jiao J. Endothelial Cells Mediated by UCP2 Control the Neurogenic-to-Astrogenic Neural Stem Cells Fate Switch During Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105208. [PMID: 35488517 PMCID: PMC9218656 DOI: 10.1002/advs.202105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
During mammalian cortical development, neural stem/progenitor cells (NSCs) gradually alter their characteristics, and the timing of generation of neurons and glial cells is strictly regulated by internal and external factors. However, whether the blood vessels located near NSCs affect the neurogenic-to-gliogenic transition remain unknown. Here, it is demonstrated that endothelial uncoupling protein 2 (UCP2) deletion reduces blood vessel diameter and affects the transition timing of neurogenesis and gliogenesis. Deletion of endothelial UCP2 results in a persistent increase in astrocyte production at the postnatal stage. Mechanistically, the endothelial UCP2/ROS/ERK1/2 pathway increases chymase-1 expression to enhance angiotensin II (AngII) secretion outside the brain endothelium. The endotheliocyte-driven AngII-gp130-JAK-STAT pathway also regulates gliogenesis initiation. Moreover, endothelial UCP2 knockdown decreases human neural precursor cell (hNPC) differentiation into neurons and accelerates hNPC differentiation into astrocytes. Altogether, this work provides mechanistic insights into how endothelial UCP2 regulates the neurogenic-to-gliogenic fate switch in the developing neocortex.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanyan Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chenxiao Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
12
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
13
|
Endosomal trafficking defects alter neural progenitor proliferation and cause microcephaly. Nat Commun 2022; 13:16. [PMID: 35013230 PMCID: PMC8748540 DOI: 10.1038/s41467-021-27705-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors. Mutations in the human WDR81 gene result in severe microcephaly. Carpentieri et al. show that mutation of WDR81, a gene coding for an endosomal regulator, alters intracellular processing of the EGF receptor, leading to reduced proliferation rates of neuronal progenitors and to microcephaly.
Collapse
|
14
|
Arellano JI, Morozov YM, Micali N, Rakic P. Radial Glial Cells: New Views on Old Questions. Neurochem Res 2021; 46:2512-2524. [PMID: 33725233 PMCID: PMC8855517 DOI: 10.1007/s11064-021-03296-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as guides for migration of neurons from the ventricular surface to their final positions in the brain. These cells originate from neuroepithelial cells (NEC) from which they inherit their epithelial features and polarized morphology, with processes extending from the ventricular to the pial surface of the embryonic cerebrum. We have learnt a great deal since the first descriptions of these cells at the end of the nineteenth century. However, there are still questions regarding how and when NEC transform into RGC or about the function of intermediate filaments such as glial fibrillary acidic protein (GFAP) in RGCs and their dynamics during neurogenesis. For example, it is not clear why RGCs in primates, including humans, express GFAP at the onset of cortical neurogenesis while in rodents it is expressed when it is essentially complete. Based on an ultrastructural analysis of GFAP expression and cell morphology of dividing progenitors in the developing neocortex of the macaque monkey, we show that RGCs become the main progenitor in the developing cerebrum by the start of neurogenesis, as all dividing cells show glial features such as GFAP expression and lack of tight junctions. Also, our data suggest that RGCs retract their apical process during mitosis. We discuss our findings in the context of the role and molecular characteristics of RGCs in the vertebrate brain, their differences with NECs and their dynamic behavior during the process of neurogenesis.
Collapse
Affiliation(s)
- Jon I Arellano
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Nicola Micali
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA.
| |
Collapse
|
15
|
Chen J, Ma XL, Zhao H, Wang XY, Xu MX, Wang H, Yang TQ, Peng C, Liu SS, Huang M, Zhou YD, Shen Y. Increasing astrogenesis in the developing hippocampus induces autistic-like behavior in mice via enhancing inhibitory synaptic transmission. Glia 2021; 70:106-122. [PMID: 34498776 PMCID: PMC9291003 DOI: 10.1002/glia.24091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized primarily by impaired social communication and rigid, repetitive, and stereotyped behaviors. Many studies implicate abnormal synapse development and the resultant abnormalities in synaptic excitatory–inhibitory (E/I) balance may underlie many features of the disease, suggesting aberrant neuronal connections and networks are prone to occur in the developing autistic brain. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function during a critical developmental period may also contribute to the pathogenesis of ASD. Here, we report that increasing hippocampal astrogenesis during development induces autistic‐like behavior in mice and a concurrent decreased E/I ratio in the hippocampus that results from enhanced GABAergic transmission in CA1 pyramidal neurons. Suppressing the aberrantly elevated GABAergic synaptic transmission in hippocampal CA1 area rescues autistic‐like behavior and restores the E/I balance. Thus, we provide direct evidence for a developmental role of astrocytes in driving the behavioral phenotypes of ASD, and our results support that targeting the altered GABAergic neurotransmission may represent a promising therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhao
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min-Xin Xu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Qi Yang
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Peng
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Pharmacology, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, Hangzhou, China
| |
Collapse
|
16
|
Micali N, Kim SK, Diaz-Bustamante M, Stein-O'Brien G, Seo S, Shin JH, Rash BG, Ma S, Wang Y, Olivares NA, Arellano JI, Maynard KR, Fertig EJ, Cross AJ, Bürli RW, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Rakic P, Colantuoni C, McKay RD. Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates. Cell Rep 2021; 31:107599. [PMID: 32375049 PMCID: PMC7357345 DOI: 10.1016/j.celrep.2020.107599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/22/2019] [Accepted: 04/10/2020] [Indexed: 11/06/2022] Open
Abstract
Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon. Micali et al. report that human telencephalic NSCs in vitro transition through the organizer states that pattern the neocortex. Human pluripotent lines vary in organizer formation, generating divergent neuronal differentiation trajectories biased toward dorsal or ventral telencephalic fates and opening further analysis of the earliest cortical specification events.
Collapse
Affiliation(s)
- Nicola Micali
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Suel-Kee Kim
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Genevieve Stein-O'Brien
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Brian G Rash
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shaojie Ma
- Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Nicolas A Olivares
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Jon I Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Roland W Bürli
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Astellas Research Institute of America, 3565 General Atomics Ct., Ste. 200, San Diego, CA 92121, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ronald D McKay
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Fu Y, Yang M, Yu H, Wang Y, Wu X, Yong J, Mao Y, Cui Y, Fan X, Wen L, Qiao J, Tang F. Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex. Cell Rep 2021; 34:108788. [PMID: 33657375 DOI: 10.1016/j.celrep.2021.108788] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/29/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The heterogeneity and molecular characteristics of progenitor cells, especially glial progenitors, in the developing human cerebral cortex remain elusive. Here, we find that EGFR expression begins to sharply increase after gestational week (GW) 20, which corresponds to the beginning stages of human gliogenesis. In addition, EGFR+ cells are mainly distributed in the germinal zone and frequently colocalize with the stemness marker SOX2 during this period. Then, by performing single-cell RNA sequencing on these EGFR+ cells, we successfully enriched and characterized various glial- and neuronal-lineage progenitor cells and validated their phenotypes in fixed slices. Notably, we identified two subgroups with molecular characteristics similar to those of astrocytes, and the immunostaining results show that these cells are mainly distributed in the outer subventricular zone and might originate from the outer radial glial cells. In short, the EGFR-sorting strategy and molecular signatures in the diverse lineages provide insights into human glial development.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Life Sciences, Beijing 100871, China
| | - Ming Yang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Center for Life Sciences, Beijing 100871, China
| | - Hongmin Yu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Yicheng Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yueli Cui
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaoying Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Center for Life Sciences, Beijing 100871, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 100069, China; Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
18
|
Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage. Cells 2020; 9:cells9122662. [PMID: 33322301 PMCID: PMC7764668 DOI: 10.3390/cells9122662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis.
Collapse
|
19
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
20
|
Woappi Y, Altomare D, Creek KE, Pirisi L. Self-assembling 3D spheroid cultures of human neonatal keratinocytes have enhanced regenerative properties. Stem Cell Res 2020; 49:102048. [PMID: 33128954 PMCID: PMC7805020 DOI: 10.1016/j.scr.2020.102048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Relative to conventional two-dimensional (2-D) culture, three-dimensional (3-D) suspension culture of epithelial cells more closely mimics the in vivo cell microenvironment regarding cell architecture, cell to matrix interaction, and osmosis exchange. However, primary normal human keratinocytes (NHKc) rapidly undergo terminal differentiation and detachment-induced cell death (anoikis) upon disconnection from the basement membrane, thus greatly constraining their use in 3-D suspension culture models. Here, we examined the 3-D anchorage-free growth potential of NHKc isolated from neonatal skin explants of 59 different individuals. We found that 40% of all isolates naturally self-assembled into multicellular spheroids within 24 h in anchorage-free culture, while 60% did not. Placing a single spheroid back into 2-D monolayer culture yielded proliferating cells that expressed elevated levels of nuclear P63 and basal cytokeratin 14. These cells also displayed prolonged keratinocyte renewal and a gene expression profile corresponding to cellular heterogeneity, quiescence, and de-differentiation. Notably, spheroid-derived (SD) NHKc were enriched for a P63/K14 double-positive population that formed holoclonal colonies and reassembled into multicellular spheroids during 3-D suspension subculture. This study reveals marked phenotypic differences in neonatal keratinocyte suspension cultures isolated from different individuals and present a model system that can be readily employed to study epithelial cell behavior, along with a variety of dermatological diseases.
Collapse
Affiliation(s)
- Yvon Woappi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Kim E Creek
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lucia Pirisi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
21
|
LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Rep 2020; 33:108257. [PMID: 33053360 DOI: 10.1016/j.celrep.2020.108257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.
Collapse
|
22
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
23
|
Romano R, Bucci C. Role of EGFR in the Nervous System. Cells 2020; 9:E1887. [PMID: 32806510 PMCID: PMC7464966 DOI: 10.3390/cells9081887] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is the first discovered member of the receptor tyrosine kinase superfamily and plays a fundamental role during embryogenesis and in adult tissues, being involved in growth, differentiation, maintenance and repair of various tissues and organs. The role of EGFR in the regulation of tissue development and homeostasis has been thoroughly investigated and it has also been demonstrated that EGFR is a driver of tumorigenesis. In the nervous system, other growth factors, and thus other receptors, are important for growth, differentiation and repair of the tissue, namely neurotrophins and neurotrophins receptors. For this reason, for a long time, the role of EGFR in the nervous system has been underestimated and poorly investigated. However, EGFR is expressed both in the central and peripheral nervous systems and it has been demonstrated to have specific important neurotrophic functions, in particular in the central nervous system. This review discusses the role of EGFR in regulating differentiation and functions of neurons and neuroglia. Furthermore, its involvement in regeneration after injury and in the onset of neurodegenerative diseases is examined.
Collapse
Affiliation(s)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
24
|
Fame RM, Cortés-Campos C, Sive HL. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube: A Primer with Latest Insights. Bioessays 2020; 42:e1900186. [PMID: 32078177 DOI: 10.1002/bies.201900186] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.
Collapse
Affiliation(s)
- Ryann M Fame
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hazel L Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
KIDA S. Function and mechanisms of memory destabilization and reconsolidation after retrieval. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:95-106. [PMID: 32161213 PMCID: PMC7167366 DOI: 10.2183/pjab.96.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/27/2019] [Indexed: 05/30/2023]
Abstract
Memory retrieval is not a passive process. When a memory is retrieved, the retrieved memory is destabilized, similar to short-term memory just after learning, and requires memory reconsolidation to re-stabilize the memory. Recent studies characterizing destabilization and reconsolidation showed that a retrieved memory is not always destabilized and that there are boundary conditions that determine the induction of destabilization and reconsolidation according to certain parameters, such as the duration of retrieval and the memory strength and age. Moreover, the reconsolidation of contextual fear memory is not independent of memory extinction; rather, these memory processes interact with each other. There is an increasing number of findings suggesting that destabilization following retrieval facilitates the modification, weakening, or strengthening of the original memory, and the resultant updated memory is stabilized through reconsolidation. Reconsolidation could be targeted therapeutically to improve emotional disorders such as post-traumatic stress disorder and phobia. Thus, this review summarizes recent findings to understand the mechanisms and function of reconsolidation.
Collapse
Affiliation(s)
- Satoshi KIDA
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Trujillo-Gonzalez I, Friday WB, Munson CA, Bachleda A, Weiss ER, Alam NM, Sha W, Zeisel SH, Surzenko N. Low availability of choline in utero disrupts development and function of the retina. FASEB J 2019; 33:9194-9209. [PMID: 31091977 PMCID: PMC6662989 DOI: 10.1096/fj.201900444r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Adequate supply of choline, an essential nutrient, is necessary to support proper brain development. Whether prenatal choline availability plays a role in development of the visual system is currently unknown. In this study, we addressed the role of in utero choline supply for the development and later function of the retina in a mouse model. We lowered choline availability in the maternal diet during pregnancy and assessed proliferative and differentiation properties of retinal progenitor cells (RPCs) in the developing prenatal retina, as well as visual function in adult offspring. We report that low choline availability during retinogenesis leads to persistent retinal cytoarchitectural defects, ranging from focal lesions with displacement of retinal neurons into subretinal space to severe hypocellularity and ultrastructural defects in photoreceptor organization. We further show that low choline availability impairs timely differentiation of retinal neuronal cells, such that the densities of early-born retinal ganglion cells, amacrine and horizontal cells, as well as cone photoreceptor precursors, are reduced in low choline embryonic d 17.5 retinas. Maintenance of higher proportions of RPCs that fail to exit the cell cycle underlies aberrant neuronal differentiation in low choline embryos. Increased RPC cell cycle length, and associated reduction in neurofibromin 2/Merlin protein, an upstream regulator of the Hippo signaling pathway, at least in part, explain aberrant neurogenesis in low choline retinas. Furthermore, we find that animals exposed to low choline diet in utero exhibit a significant degree of intraindividual variation in vision, characterized by marked functional discrepancy between the 2 eyes in individual animals. Together, our findings demonstrate, for the first time, that choline availability plays an essential role in the regulation of temporal progression of retinogenesis and provide evidence for the importance of adequate supply of choline for proper development of the visual system.-Trujillo-Gonzalez, I., Friday, W. B., Munson, C. A., Bachleda, A., Weiss, E. R., Alam, N. M., Sha, W., Zeisel, S. H., Surzenko, N. Low availability of choline in utero disrupts development and function of the retina.
Collapse
Affiliation(s)
- Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina–Chapel Hill, Kannapolis, North Carolina, USA
| | - Walter B. Friday
- Nutrition Research Institute, University of North Carolina–Chapel Hill, Kannapolis, North Carolina, USA
| | - Carolyn A. Munson
- Nutrition Research Institute, University of North Carolina–Chapel Hill, Kannapolis, North Carolina, USA
| | - Amelia Bachleda
- Department of Cell Biology and Physiology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nazia M. Alam
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- Center for Visual Restoration, Burke Neurological Institute, White Plains, New York, USA
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina–Charlotte, Kannapolis, North Carolina, USA
| | - Steven H. Zeisel
- Nutrition Research Institute, University of North Carolina–Chapel Hill, Kannapolis, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalia Surzenko
- Nutrition Research Institute, University of North Carolina–Chapel Hill, Kannapolis, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Wang R, Liu C. All-trans retinoic acid therapy induces asymmetric division of glioma stem cells from the U87MG cell line. Oncol Lett 2019; 18:3646-3654. [PMID: 31579077 PMCID: PMC6757269 DOI: 10.3892/ol.2019.10691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
The poor therapeutic effect of the current treatments for malignant glioma may be attributed to glioma stem cells (GSCs), which have been demonstrated to divide symmetrically. All-trans retinoic acid (ATRA)-induced differentiation is considered to target GSCs and has been reported to have the capability of eradicating cancer stem cells in specific malignancies. The aim of the present study was to investigate the effects of ATRA on the division mode of GSCs isolated from the U87MG glioblastoma cell line of unknown origin. The expressions of the GSC markers CD133 and nestin were detected using immunocytochemistry to identify GSCs. In addition, the differentiation potency of these GSCs was observed by detecting the expression of glial fibrillary acidic protein, β-tubulin III and galactosylceramidase using immunofluorescent staining. The Numb protein distribution was analyzed in two daughter cells following a GSC division. The results of the present study demonstrated that Numb protein is symmetrically segregated into two daughter cells during GSC division. Furthermore, the present study demonstrated that treatment with ATRA increased the asymmetric cell division of GSCs. In conclusion, these results suggest a therapeutic effect from ATRA-induced asymmetric division of GSCs from the U87MG cell line.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chongxiao Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
28
|
An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 2019; 178:835-849.e21. [PMID: 31327527 DOI: 10.1016/j.cell.2019.06.024] [Citation(s) in RCA: 1552] [Impact Index Per Article: 258.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/27/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022]
Abstract
Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.
Collapse
|
29
|
Rash BG, Duque A, Morozov YM, Arellano JI, Micali N, Rakic P. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proc Natl Acad Sci U S A 2019; 116:7089-7094. [PMID: 30894491 PMCID: PMC6452694 DOI: 10.1073/pnas.1822169116] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness. However, as the oSVZ grows in size, its output changes to production of astrocytes and oligodendrocytes, which in primates outnumber cerebral neurons by a factor of three. After the completion of neurogenesis around embryonic day (E) 90, when the cerebrum is still lissencephalic, the oSVZ enlarges and contains Pax6+/Hopx+ outer (basal) radial glial cells producing astrocytes and oligodendrocytes until after E125. Our data indicate that oSVZ gliogenesis, rather than neurogenesis, correlates with rapid enlargement of the cerebrum and development of convolutions, which occur concomitantly with the formation of cortical connections via the underlying white matter, in addition to neuronal growth, elaboration of dendrites, and amplification of neuropil in the cortex, which are primary factors in the formation of cerebral convolutions in primates.
Collapse
Affiliation(s)
- Brian G Rash
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Alvaro Duque
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Yury M Morozov
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Jon I Arellano
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Nicola Micali
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Pasko Rakic
- Department of Neuroscience, Yale University, New Haven, CT 06520;
- Kavli Institute for Neuroscience at Yale, Yale University, New Haven, CT 06520
| |
Collapse
|
30
|
Lam I, Pickering CM, Mac Gabhann F. Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1437. [PMID: 30255986 PMCID: PMC6537588 DOI: 10.1002/wsbm.1437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell membrane proteins that provide cells with the ability to sense proteins in their environments. Many RTKs are essential to development and organ growth. Derangement of RTKs-by mutation or by overexpression-is central to several developmental and adult disorders including cancer, short stature, and vascular pathologies. The mechanism of action of RTKs is complex and is regulated by contextual components, including the existence of multiple competing ligands and receptors in many families, the intracellular location of the RTK, the dynamic and cell-specific coexpression of other RTKs, and the commonality of downstream signaling pathways. This means that both the state of the cell and the microenvironment outside the cell play a role, which makes sense given the pivotal location of RTKs as the nexus linking the extracellular milieu to intracellular signaling and modification of cell behavior. In this review, we describe these different contextual components through the lens of systems biology, in which both computational modeling and experimental "omics" approaches have been used to better understand RTK networks. The complexity of these networks is such that using these systems biology approaches is necessary to get a handle on the mechanisms of pathology and the design of therapeutics targeting RTKs. In particular, we describe in detail three concrete examples (involving ErbB3, VEGFR2, and AXL) that illustrate how systems approaches can reveal key mechanistic and therapeutic insights. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Inez Lam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christina M Pickering
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
31
|
Del Giovane A, Ragnini-Wilson A. Targeting Smoothened as a New Frontier in the Functional Recovery of Central Nervous System Demyelinating Pathologies. Int J Mol Sci 2018; 19:E3677. [PMID: 30463396 PMCID: PMC6274747 DOI: 10.3390/ijms19113677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myelin sheaths on vertebrate axons provide protection, vital support and increase the speed of neuronal signals. Myelin degeneration can be caused by viral, autoimmune or genetic diseases. Remyelination is a natural process that restores the myelin sheath and, consequently, neuronal function after a demyelination event, preventing neurodegeneration and thereby neuron functional loss. Pharmacological approaches to remyelination represent a promising new frontier in the therapy of human demyelination pathologies and might provide novel tools to improve adaptive myelination in aged individuals. Recent phenotypical screens have identified agonists of the atypical G protein-coupled receptor Smoothened and inhibitors of the glioma-associated oncogene 1 as being amongst the most potent stimulators of oligodendrocyte precursor cell (OPC) differentiation in vitro and remyelination in the central nervous system (CNS) of mice. Here, we discuss the current state-of-the-art of studies on the role of Sonic Hedgehog reactivation during remyelination, referring readers to other reviews for the role of Hedgehog signaling in cancer and stem cell maintenance.
Collapse
Affiliation(s)
- Alice Del Giovane
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| | - Antonella Ragnini-Wilson
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
32
|
Gulaia V, Kumeiko V, Shved N, Cicinskas E, Rybtsov S, Ruzov A, Kagansky A. Molecular Mechanisms Governing the Stem Cell's Fate in Brain Cancer: Factors of Stemness and Quiescence. Front Cell Neurosci 2018; 12:388. [PMID: 30510501 PMCID: PMC6252330 DOI: 10.3389/fncel.2018.00388] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Cellular quiescence is a reversible, non-cycling state controlled by epigenetic, transcriptional and niche-associated molecular factors. Quiescence is a condition where molecular signaling pathways maintain the poised cell-cycle state whilst enabling rapid cell cycle re-entry. To achieve therapeutic breakthroughs in oncology it is crucial to decipher these molecular mechanisms employed by the cancerous milieu to control, maintain and gear stem cells towards re-activation. Cancer stem-like cells (CSCs) have been extensively studied in most malignancies, including glioma. Here, the aberrant niche activities skew the quiescence/activation equilibrium, leading to rapid tumor relapse after surgery and/or chemotherapy. Unraveling quiescence mechanisms promises to afford prevention of (often multiple) relapses, a key problem in current glioma treatment. This review article covers the current knowledge regarding normal and aberrant cellular quiescence control whilst also exploring how different molecular mechanisms and properties of the neighboring cells can influence the molecular processes behind glioma stem cell quiescence.
Collapse
Affiliation(s)
- Valeriia Gulaia
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Nikita Shved
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Eduardas Cicinskas
- Department of Cellular Biology and Genetics, School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology and Bioassays, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, Scotland, United Kingdom
| | - Alexey Ruzov
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
33
|
Yale AR, Nourse JL, Lee KR, Ahmed SN, Arulmoli J, Jiang AYL, McDonnell LP, Botten GA, Lee AP, Monuki ES, Demetriou M, Flanagan LA. Cell Surface N-Glycans Influence Electrophysiological Properties and Fate Potential of Neural Stem Cells. Stem Cell Reports 2018; 11:869-882. [PMID: 30197120 PMCID: PMC6178213 DOI: 10.1016/j.stemcr.2018.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 01/10/2023] Open
Abstract
Understanding the cellular properties controlling neural stem and progenitor cell (NSPC) fate choice will improve their therapeutic potential. The electrophysiological measure whole-cell membrane capacitance reflects fate bias in the neural lineage but the cellular properties underlying membrane capacitance are poorly understood. We tested the hypothesis that cell surface carbohydrates contribute to NSPC membrane capacitance and fate. We found NSPCs differing in fate potential express distinct patterns of glycosylation enzymes. Screening several glycosylation pathways revealed that the one forming highly branched N-glycans differs between neurogenic and astrogenic populations of cells in vitro and in vivo. Enhancing highly branched N-glycans on NSPCs significantly increases membrane capacitance and leads to the generation of more astrocytes at the expense of neurons with no effect on cell size, viability, or proliferation. These data identify the N-glycan branching pathway as a significant regulator of membrane capacitance and fate choice in the neural lineage.
Collapse
Affiliation(s)
- Andrew R Yale
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jamison L Nourse
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Kayla R Lee
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Syed N Ahmed
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Janahan Arulmoli
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Alan Y L Jiang
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa P McDonnell
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Giovanni A Botten
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Edwin S Monuki
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
Robson JP, Wagner B, Glitzner E, Heppner FL, Steinkellner T, Khan D, Petritsch C, Pollak DD, Sitte HH, Sibilia M. Impaired neural stem cell expansion and hypersensitivity to epileptic seizures in mice lacking the EGFR in the brain. FEBS J 2018; 285:3175-3196. [PMID: 30028091 PMCID: PMC6174950 DOI: 10.1111/febs.14603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Mice lacking the epidermal growth factor receptor (EGFR) develop an early postnatal degeneration of the frontal cortex and olfactory bulbs and show increased cortical astrocyte apoptosis. The poor health and early lethality of EGFR−/− mice prevented the analysis of mechanisms responsible for the neurodegeneration and function of the EGFR in the adult brain. Here, we show that postnatal EGFR‐deficient neural stem cells are impaired in their self‐renewal potential and lack clonal expansion capacity in vitro. Mice lacking the EGFR in the brain (EGFRΔbrain) show low penetrance of cortical degeneration compared to EGFR−/− mice despite genetic recombination of the conditional allele. Adult EGFRΔ mice establish a proper blood–brain barrier and perform reactive astrogliosis in response to mechanical and infectious brain injury, but are more sensitive to Kainic acid‐induced epileptic seizures. EGFR‐deficient cortical astrocytes, but not midbrain astrocytes, have reduced expression of glutamate transporters Glt1 and Glast, and show reduced glutamate uptake in vitro, illustrating an excitotoxic mechanism to explain the hypersensitivity to Kainic acid and region‐specific neurodegeneration observed in EGFR‐deficient brains.
Collapse
Affiliation(s)
- Jonathan P Robson
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bettina Wagner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Frank L Heppner
- Department of Neuropathology, Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Germany
| | - Thomas Steinkellner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Deeba Khan
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Claudia Petritsch
- Department of Neurological Surgery, UCSF Broad Institute of Regeneration Medicine, University of California San Francisco, CA, USA
| | - Daniela D Pollak
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
35
|
Masjosthusmann S, Becker D, Petzuch B, Klose J, Siebert C, Deenen R, Barenys M, Baumann J, Dach K, Tigges J, Hübenthal U, Köhrer K, Fritsche E. A transcriptome comparison of time-matched developing human, mouse and rat neural progenitor cells reveals human uniqueness. Toxicol Appl Pharmacol 2018; 354:40-55. [PMID: 29753005 DOI: 10.1016/j.taap.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
It is widely accepted that human brain development has unique features that cannot be represented by rodents. Obvious reasons are the evolutionary distance and divergent physiology. This might lead to false predictions when rodents are used for safety or pharmacological efficacy studies. For a better translation of animal-based research to the human situation, human in vitro systems might be useful. In this study, we characterize developing neural progenitor cells from prenatal human and time-matched rat and mouse brains by analyzing the changes in their transcriptome profile during neural differentiation. Moreover, we identify hub molecules that regulate neurodevelopmental processes like migration and differentiation. Consequences of modulation of three of those hubs on these processes were studied in a species-specific context. We found that although the gene expression profiles of the three species largely differ qualitatively and quantitatively, they cluster in similar GO terms like cell migration, gliogenesis, neurogenesis or development of multicellular organism. Pharmacological modulation of the identified hub molecules triggered species-specific cellular responses. This study underlines the importance of understanding species differences on the molecular level and advocates the use of human based in vitro models for pharmacological and toxicological research.
Collapse
Affiliation(s)
- Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Daniel Becker
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany
| | - Barbara Petzuch
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Clara Siebert
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Rene Deenen
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Duesseldorf, NRW, Germany.
| | - Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Jenny Baumann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany
| | - Katharina Dach
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany; Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Ulrike Hübenthal
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany.
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Duesseldorf, NRW, Germany.
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, NRW, Germany; Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Duesseldorf, NRW, Germany.
| |
Collapse
|
36
|
Ding Z, Roos A, Kloss J, Dhruv H, Peng S, Pirrotte P, Eschbacher JM, Tran NL, Loftus JC. A Novel Signaling Complex between TROY and EGFR Mediates Glioblastoma Cell Invasion. Mol Cancer Res 2017; 16:322-332. [PMID: 29117939 DOI: 10.1158/1541-7786.mcr-17-0454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Abstract
Glioblastoma is the most frequent primary brain tumor in adults and a highly lethal malignancy with a median survival of about 15 months. The aggressive invasion of the surrounding normal brain makes complete surgical resection impossible, increases the resistance to radiation and chemotherapy, and assures tumor recurrence. Thus, there is an urgent need to develop innovative therapeutics to target the invasive tumor cells for improved treatment outcomes of this disease. Expression of TROY (TNFRSF19), a member of the tumor necrosis factor (TNF) receptor family, increases with increasing glial tumor grade and inversely correlates with patient survival. Increased expression of TROY stimulates glioblastoma cell invasion in vitro and in vivo and increases resistance to temozolomide and radiation therapy. Conversely, silencing TROY expression inhibits glioblastoma cell invasion, increases temozolomide sensitivity, and prolongs survival in an intracranial xenograft model. Here, a novel complex is identified between TROY and EGFR, which is mediated predominantly by the cysteine-rich CRD3 domain of TROY. Glioblastoma tumors with elevated TROY expression have a statistically positive correlation with increased EGFR expression. TROY expression significantly increases the capacity of EGF to stimulate glioblastoma cell invasion, whereas depletion of TROY expression blocks EGF stimulation of glioblastoma cell invasion. Mechanistically, TROY expression modulates EGFR signaling by facilitating EGFR activation and delaying EGFR receptor internalization. Moreover, the association of EGFR with TROY increases TROY-induced NF-κB activation. These findings substantiate a critical role for the TROY-EGFR complex in regulation of glioblastoma cell invasion.Implications: The TROY-EGFR signaling complex emerges as a potential therapeutic target to inhibit glioblastoma cell invasion. Mol Cancer Res; 16(2); 322-32. ©2017 AACR.
Collapse
Affiliation(s)
- Zonghui Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Alison Roos
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Jean Kloss
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Harshil Dhruv
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Patrick Pirrotte
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona.,Center for Proteomics, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona.
| |
Collapse
|
37
|
Govindan S, Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 2017; 591:3960-3977. [PMID: 28895133 DOI: 10.1002/1873-3468.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The adult neocortex is composed of several types of glutamatergic neurons, which are sequentially born from progenitors during development. The extent and nature of progenitor diversity, and how it relates to neuronal diversity, is still poorly understood. In this review, we discuss key features of neocortical progenitors across several species, including their morphological properties, cell cycling behaviour and molecular signatures, and how these features relate to the competence of these cells to generate distinct types of progenies.
Collapse
Affiliation(s)
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
38
|
Remaud S, Ortiz FC, Perret-Jeanneret M, Aigrot MS, Gothié JD, Fekete C, Kvárta-Papp Z, Gereben B, Langui D, Lubetzki C, Angulo MC, Zalc B, Demeneix B. Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain. eLife 2017; 6:29996. [PMID: 28875931 PMCID: PMC5779229 DOI: 10.7554/elife.29996] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/05/2017] [Indexed: 11/17/2022] Open
Abstract
In the adult brain, both neurons and oligodendrocytes can be generated from neural stem cells located within the Sub-Ventricular Zone (SVZ). Physiological signals regulating neuronal versus glial fate are largely unknown. Here we report that a thyroid hormone (T3)-free window, with or without a demyelinating insult, provides a favorable environment for SVZ-derived oligodendrocyte progenitor generation. After demyelination, oligodendrocytes derived from these newly-formed progenitors provide functional remyelination, restoring normal conduction. The cellular basis for neuronal versus glial determination in progenitors involves asymmetric partitioning of EGFR and TRα1, expression of which favor glio- and neuro-genesis, respectively. Moreover, EGFR+ oligodendrocyte progenitors, but not neuroblasts, express high levels of a T3-inactivating deiodinase, Dio3. Thus, TRα absence with high levels of Dio3 provides double-pronged blockage of T3 action during glial lineage commitment. These findings not only transform our understanding of how T3 orchestrates adult brain lineage decisions, but also provide potential insight into demyelinating disorders.
Collapse
Affiliation(s)
- Sylvie Remaud
- Sorbonne Universités, Muséum d'Histoire Naturelle, Paris, France
| | - Fernando C Ortiz
- INSERM U1128, Paris, France.,Université Paris Descartes, Paris, France.,Mechanisms on Myelin Formation and Repair Lab, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | | | | | - Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Medecine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, United States
| | - Zsuzsanna Kvárta-Papp
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Catherine Lubetzki
- Sorbonne Universités UPMC Univ Paris 06, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Bernard Zalc
- Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | - Barbara Demeneix
- Sorbonne Universités, Muséum d'Histoire Naturelle, Paris, France
| |
Collapse
|
39
|
Geng YW, Zhang Z, Liu MY, Hu WP. Differentiation of human dental pulp stem cells into neuronal by resveratrol. Cell Biol Int 2017; 41:1391-1398. [PMID: 28782906 DOI: 10.1002/cbin.10835] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs) have been proposed as a promising source of stem cells in nerve regeneration due to their close embryonic origin and ease of harvest. Resveratrol (RSV) is a natural polyphenolic and possesses many biological functions such as anti-inflammatory activity and protection against atherosclerosis and neuroprotective activities. There is increasing evidence showing that RSV plays a pivotal role in neuron protection and neuronal differentiation. In this study, we isolated DPSCs from impacted third molars and investigated whether RSV induces neuronal differentiation of DPSCs. To avoid loss of DPSCs multipotency, all the experiments were conducted on cells at early passages. RT-PCR results showed that RSV-treated DPSCs (RSV-DPSCs) significantly increased the expression of the neuroprogenitor marker Nestin. When RSV-DPSCs were differentiated with neuronal induction media (RSV-dDPSCs), they showed a cell morphology similar to neurons. The expression of neuronal-specific marker genes Nestin, Musashi, and NF-M in RSV-dDPSCs was significantly increased. Immunocytochemical staining and Western blot analysis showed that the expression of neuronal marker proteins, Nestin, and NF-M, was significantly increased in RSV-dDPSCs. Therefore, we have shown that RSV treatment, along with the use of neuronal induction media, effectively promotes neuronal cell differentiation of DPSCs.
Collapse
Affiliation(s)
- Ya-Wei Geng
- Department of Prosthodontics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Zhen Zhang
- Oral and Maxillofacial Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Ming-Yue Liu
- Department of Prosthodontics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Wei-Ping Hu
- Department of Prosthodontics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| |
Collapse
|
40
|
Yang YP, Ma H, Starchenko A, Huh WJ, Li W, Hickman FE, Zhang Q, Franklin JL, Mortlock DP, Fuhrmann S, Carter BD, Ihrie RA, Coffey RJ. A Chimeric Egfr Protein Reporter Mouse Reveals Egfr Localization and Trafficking In Vivo. Cell Rep 2017; 19:1257-1267. [PMID: 28494873 PMCID: PMC5517093 DOI: 10.1016/j.celrep.2017.04.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023] Open
Abstract
EGF receptor (EGFR) is a critical signaling node throughout life. However, it has not been possible to directly visualize endogenous Egfr in mice. Using CRISPR/Cas9 genome editing, we appended a fluorescent reporter to the C terminus of the Egfr. Homozygous reporter mice appear normal and EGFR signaling is intact in vitro and in vivo. We detect distinct patterns of Egfr expression in progenitor and differentiated compartments in embryonic and adult mice. Systemic delivery of EGF or amphiregulin results in markedly different patterns of Egfr internalization and trafficking in hepatocytes. In the normal intestine, Egfr localizes to the crypt rather than villus compartment, expression is higher in adjacent epithelium than in intestinal tumors, and following colonic injury expression appears in distinct cell populations in the stroma. This reporter, under control of its endogenous regulatory elements, enables in vivo monitoring of the dynamics of Egfr localization and trafficking in normal and disease states.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haiting Ma
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alina Starchenko
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Won Jae Huh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - F Edward Hickman
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sabine Fuhrmann
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
41
|
Pilaz LJ, Silver DL. Moving messages in the developing brain-emerging roles for mRNA transport and local translation in neural stem cells. FEBS Lett 2017; 591:1526-1539. [PMID: 28304078 DOI: 10.1002/1873-3468.12626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 11/10/2022]
Abstract
The mammalian cerebral cortex is a complex brain structure integral to our higher cognition. During embryonic cortical development, radial glial progenitors (RGCs) produce neurons and serve as physical structures for migrating neurons. Recent discoveries highlight new roles for RNA localization and local translation in RGCs, both at the cell body and at distal structures called basal endfeet. By implementing technologies from the field of RNA research to brain development, investigators can manipulate RNA-binding proteins as well as visualize single-molecule RNAs, live movement of mRNAs and their binding proteins, and translation. Going forward, these studies establish a framework for investigating how post-transcriptional RNA regulation helps shape RGC function and triggers neurodevelopmental diseases.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Regeneration Next, Duke University Medical Center, Durham, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Regeneration Next, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
42
|
Tong Y, Li S, Huang C. EGFR induces DNA decomposition via phosphodiester bond cleavage. Sci Rep 2017; 7:43698. [PMID: 28272528 PMCID: PMC5341565 DOI: 10.1038/srep43698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
EGFR may induce DNA degradation. This activity had not been previously described as an EGRF function. To confirm this unexpected activity, testing of EGFR in the presence of ATP and either 5A, 5C, 5G, 5T, or 5U oligonucleotides was performed. HPLC-MS analysis demonstrated that 5A and 5U levels significantly decreased in the presence of EGFR. Furthermore, fragments 4A and 4U were produced in 5A+EGFR+ATP and in 5U+EGFR+ATP reaction mixtures, respectively, but not in EGFR-negative controls. Degradation of Poly(A), Poly(C), Poly(G), Poly(I), Poly(T), and Poly(U) oligomers in the presence of EGFR and ATP correlated with the lower ability of reaction products to pair with complementary oligonucleotides. Gel electrophoresis showed that breakdown products migrated more quickly than controls, especially after addition of paired (complementary) oligomers, Poly(A) and Poly(U). Furthermore, λ DNA reaction products also migrated more quickly after incubation with EGFR. The results suggest that EGFR can induce breakage of certain types of nucleotide phosphodiester bonds, especially within the A residues of DNA or U residues of RNA, to induce DNA or RNA decomposition, respectively. This activity may be important in EGRF signaling, DNA degradation, or repair in normal or cancer cell activities.
Collapse
Affiliation(s)
- Yongpeng Tong
- College of Physics and Energy, Shenzhen University, Shenzhen, 518060, China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chunliu Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
43
|
Regulation of Asymmetric Cell Division in Mammalian Neural Stem and Cancer Precursor Cells. Results Probl Cell Differ 2017; 61:375-399. [PMID: 28409314 DOI: 10.1007/978-3-319-53150-2_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem and progenitor cells are characterized by their abilities to self-renew and produce differentiated progeny. The balance between self-renewal and differentiation is achieved through control of cell division mode, which can be either asymmetric or symmetric. Failure to properly control cell division mode may result in premature depletion of the stem/progenitor cell pool or abnormal growth and impaired differentiation. In many tissues, including the brain, stem cells and progenitor cells undergo asymmetric cell division through the establishment of cell polarity. Cell polarity proteins are therefore potentially critical regulators of asymmetric cell division. Decrease or loss of asymmetric cell division can be associated with reduced differentiation common during aging or impaired remyelination as seen in demyelinating diseases. Progenitor-like glioma precursor cells show decreased asymmetric cell division rates and increased symmetric divisions, which suggests that asymmetric cell division suppresses brain tumor formation. Cancer stem cells, on the other hand, still undergo low rates of asymmetric cell division, which may provide them with a survival advantage during therapy. These findings led to the hypotheses that asymmetric cell divisions are not always tumor suppressive but can also be utilized to maintain a cancer stem cell population. Proper control of cell division mode is therefore not only deemed necessary to generate cellular diversity during development and to maintain adult tissue homeostasis but may also prevent disease and determine disease progression. Since brain cancer is most common in the adult and aging population, we review here the current knowledge on molecular mechanisms that regulate asymmetric cell divisions in the neural and oligodendroglial lineage during development and in the adult brain.
Collapse
|
44
|
Lei K, Thi-Kim Vu H, Mohan RD, McKinney SA, Seidel CW, Alexander R, Gotting K, Workman JL, Sánchez Alvarado A. Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians. Dev Cell 2016; 38:413-29. [PMID: 27523733 DOI: 10.1016/j.devcel.2016.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/01/2016] [Accepted: 07/15/2016] [Indexed: 12/27/2022]
Abstract
A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion.
Collapse
Affiliation(s)
- Kai Lei
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Hanh Thi-Kim Vu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ryan D Mohan
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Kirsten Gotting
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|
45
|
Chen ZD, Xu L, Tang KK, Gong FX, Liu JQ, Ni Y, Jiang LZ, Hong J, Han F, Li Q, Yang XH, Sun RH, Mo SJ. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation. Exp Cell Res 2016; 347:52-59. [PMID: 27443256 DOI: 10.1016/j.yexcr.2016.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/27/2016] [Accepted: 07/12/2016] [Indexed: 12/28/2022]
Abstract
Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury.
Collapse
Affiliation(s)
- Zhi-Dong Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang, China
| | - Liang Xu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Kan-Kai Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang, China
| | - Fang-Xiao Gong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Jing-Quan Liu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Yin Ni
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Ling-Zhi Jiang
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Jun Hong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Qian Li
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Xiang-Hong Yang
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Ren-Hua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China.
| | - Shi-Jing Mo
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
46
|
Glioma Stem Cells: Signaling, Microenvironment, and Therapy. Stem Cells Int 2016; 2016:7849890. [PMID: 26880988 PMCID: PMC4736567 DOI: 10.1155/2016/7849890] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma remains the most common and devastating primary brain tumor despite maximal therapy with surgery, chemotherapy, and radiation. The glioma stem cell (GSC) subpopulation has been identified in glioblastoma and likely plays a key role in resistance of these tumors to conventional therapies as well as recurrent disease. GSCs are capable of self-renewal and differentiation; glioblastoma-derived GSCs are capable of de novo tumor formation when implanted in xenograft models. Further, GSCs possess unique surface markers, modulate characteristic signaling pathways to promote tumorigenesis, and play key roles in glioma vascular formation. These features, in addition to microenvironmental factors, present possible targets for specifically directing therapy against the GSC population within glioblastoma. In this review, the authors summarize the current knowledge of GSC biology and function and the role of GSCs in new vascular formation within glioblastoma and discuss potential therapeutic approaches to target GSCs.
Collapse
|
47
|
Wang Y, Surzenko N, Friday WB, Zeisel SH. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. FASEB J 2015; 30:1566-78. [PMID: 26700730 DOI: 10.1096/fj.15-282426] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/08/2015] [Indexed: 11/11/2022]
Abstract
Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring.
Collapse
Affiliation(s)
- Yanyan Wang
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalia Surzenko
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Walter B Friday
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven H Zeisel
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Fujimoto I, Hasegawa K, Fujiwara K, Yamada M, Yoshikawa K. Necdin controls EGFR signaling linked to astrocyte differentiation in primary cortical progenitor cells. Cell Signal 2015; 28:94-107. [PMID: 26655377 DOI: 10.1016/j.cellsig.2015.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
Cellular signaling mediated by the EGF receptor (EGFR) plays a key role in controlling proliferation and differentiation of cortical progenitor cells (CPCs). However, regulatory mechanisms of EGFR signaling in CPCs remain largely unknown. Here we demonstrate that necdin, a MAGE (melanoma antigen) family protein, interacts with EGFR in primary CPCs and represses its downstream signaling linked to astrocyte differentiation. EGFR was autophosphorylated and interacted with necdin in EGF-stimulated CPCs. Necdin bound to autophosphorylated EGFR via its tyrosine kinase domain. EGF-induced phosphorylation of ERK was enhanced in necdin-null CPCs, where the interaction between EGFR and the adaptor protein Grb2 was strengthened, suggesting that endogenous necdin suppresses the EGFR/ERK signaling pathway in CPCs. In necdin-null CPCs, astrocyte differentiation induced by the gliogenic cytokine cardiotrophin-1 was significantly accelerated in the presence of EGF, and inhibition of EGFR/ERK signaling abolished the acceleration. Furthermore, necdin strongly suppressed astrocyte differentiation induced by overexpression of EGFR or its ligand binding-defective mutant equivalent to a glioblastoma-associated EGFR variant. These results suggest that necdin acts as an intrinsic suppressor of the EGFR/ERK signaling pathway in EGF-responsive CPCs to restrain astroglial development in a cell-autonomous manner.
Collapse
Affiliation(s)
- Izumi Fujimoto
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Koichi Hasegawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kazushiro Fujiwara
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
49
|
Joppé SE, Hamilton LK, Cochard LM, Levros LC, Aumont A, Barnabé-Heider F, Fernandes KJL. Bone morphogenetic protein dominantly suppresses epidermal growth factor-induced proliferative expansion of adult forebrain neural precursors. Front Neurosci 2015; 9:407. [PMID: 26576147 PMCID: PMC4625077 DOI: 10.3389/fnins.2015.00407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023] Open
Abstract
A single asymmetric division by an adult neural stem cell (NSC) ultimately generates dozens of differentiated progeny, a feat made possible by the proliferative expansion of transit-amplifying progenitor cells (TAPs). Although NSC activation and TAP expansion is determined by pro- and anti-proliferative signals found within the niche, remarkably little is known about how these cells integrate simultaneous conflicting signals. We investigated this question focusing on the subventricular zone (SVZ) niche of the adult murine forebrain. Using primary cultures of SVZ cells, we demonstrate that Epidermal Growth Factor (EGF) and Bone Morphogenetic Protein (BMP)-2 are particularly powerful pro- and anti-proliferative factors for SVZ-derived neural precursors. Dose-response experiments showed that when simultaneously exposed to both signals, BMP dominantly suppressed EGF-induced proliferation; moreover, this dominance extended to all parameters of neural precursor behavior tested, including inhibition of proliferation, modulation of cell cycle, promotion of differentiation, and increase of cell death. BMP's anti-proliferative effect did not involve inhibition of mTORC1 or ERK signaling, key mediators of EGF-induced proliferation, and had distinct stage-specific consequences, promoting TAP differentiation but NSC quiescence. In line with these in vitro data, in vivo experiments showed that exogenous BMP limits EGF-induced proliferation of TAPs while inhibition of BMP-SMAD signaling promotes activation of quiescent NSCs. These findings clarify the stage-specific effects of BMPs on SVZ neural precursors, and support a hierarchical model in which the anti-proliferative effects of BMP dominate over EGF proliferation signaling to constitutively drive TAP differentiation and NSC quiescence.
Collapse
Affiliation(s)
- Sandra E Joppé
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Laura K Hamilton
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Loic M Cochard
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Louis-Charles Levros
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | - Anne Aumont
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| | | | - Karl J L Fernandes
- Central Nervous System Research Group, Department of Pathology and Cell Biology, and Department of Neurosciences, Research Center of the University of Montreal Hospital, University of Montreal Montreal, QC, Canada
| |
Collapse
|
50
|
The EGFR-HER2 module: a stem cell approach to understanding a prime target and driver of solid tumors. Oncogene 2015; 35:2949-60. [PMID: 26434585 PMCID: PMC4820040 DOI: 10.1038/onc.2015.372] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 01/26/2023]
Abstract
The epidermal growth factor receptor (EGFR) and a coreceptor denoted HER2/ERBB2 are frequently overexpressed or mutated in solid tumors, such as carcinomas and gliomas. In line with driver roles, cancer drugs intercepting EGFR or HER2 currently outnumber therapies targeting other hubs of signal transduction. To explain the roles for EGFR and HER2 as prime drivers and targets, we take lessons from invertebrates and refer to homeostatic regulation of several mammalian tissues. The model we infer ascribes to the EGFR-HER2 module pivotal functions in rapid clonal expansion of progenitors called transient amplifying cells (TACs). Accordingly, TACs of tumors suffer from replication stress, and hence accumulate mutations. In addition, several lines of evidence propose that in response to EGF and related mitogens, TACs might undergo dedifferentiation into tissue stem cells, which might enable entry of oncogenic mutations into the stem cell compartment. According to this view, antibodies or kinase inhibitors targeting EGFR-HER2 effectively retard some solid tumors because they arrest mutation-enriched TACs and possibly inhibit their dedifferentiation. Deeper understanding of the EGFR-HER2 module and relations between cancer stem cells and TACs will enhance our ability to control a broad spectrum of human malignancies.
Collapse
|