1
|
Bjornson KJ, Vanderplow AM, Yang Y, Anderson DR, Kermath BA, Cahill ME. Stress-mediated dysregulation of the Rap1 small GTPase impairs hippocampal structure and function. iScience 2023; 26:107566. [PMID: 37664580 PMCID: PMC10470260 DOI: 10.1016/j.isci.2023.107566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The effects of repeated stress on cognitive impairment are thought to be mediated, at least in part, by reductions in the stability of dendritic spines in brain regions critical for proper learning and memory, including the hippocampus. Small GTPases are particularly potent regulators of dendritic spine formation, stability, and morphology in hippocampal neurons. Through the use of small GTPase protein profiling in mice, we identify increased levels of synaptic Rap1 in the hippocampal CA3 region in response to escalating, intermittent stress. We then demonstrate that increased Rap1 in the CA3 is sufficient in and of itself to produce stress-relevant dendritic spine and cognitive phenotypes. Further, using super-resolution imaging, we investigate how the pattern of Rap1 trafficking to synapses likely underlies its effects on the stability of select dendritic spine subtypes. These findings illuminate the involvement of aberrant Rap1 regulation in the hippocampus in contributing to the psychobiological effects of stress.
Collapse
Affiliation(s)
- Kathryn J. Bjornson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda M. Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yezi Yang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Danielle R. Anderson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bailey A. Kermath
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E. Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Tang L, Liu C, Rosenberger P. Platelet formation and activation are influenced by neuronal guidance proteins. Front Immunol 2023; 14:1206906. [PMID: 37398659 PMCID: PMC10310924 DOI: 10.3389/fimmu.2023.1206906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Platelets are anucleate blood cells derived from megakaryocytes. They link the fundamental functions of hemostasis, inflammation and host defense. They undergo intracellular calcium flux, negatively charged phospholipid translocation, granule release and shape change to adhere to collagen, fibrin and each other, forming aggregates, which are key to several of their functions. In all these dynamic processes, the cytoskeleton plays a crucial role. Neuronal guidance proteins (NGPs) form attractive and repulsive signals to drive neuronal axon navigation and thus refine neuronal circuits. By binding to their target receptors, NGPs rearrange the cytoskeleton to mediate neuron motility. In recent decades, evidence has indicated that NGPs perform important immunomodulatory functions and influence platelet function. In this review, we highlight the roles of NGPs in platelet formation and activation.
Collapse
|
3
|
Maruo T, Mizutani K, Miyata M, Kuriu T, Sakakibara S, Takahashi H, Kida D, Maesaka K, Sugaya T, Sakane A, Sasaki T, Takai Y, Mandai K. s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons. J Biol Chem 2023; 299:103040. [PMID: 36803960 PMCID: PMC10040811 DOI: 10.1016/j.jbc.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshihiko Kuriu
- Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Hatena Takahashi
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Daichi Kida
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Kouki Maesaka
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Tsukiko Sugaya
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kenji Mandai
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
4
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
5
|
The Rap1 small GTPase is a critical mediator of the effects of stress on prefrontal cortical dysfunction. Mol Psychiatry 2021; 26:3223-3239. [PMID: 32651478 DOI: 10.1038/s41380-020-0835-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
The neural molecular and biochemical response to stress is a distinct physiological process, and multiple lines of evidence indicate that the prefrontal cortex (PFC) is particularly sensitive to, and afflicted by, exposure to stress. Largely through this PFC dysfunction, stress has a characterized role in facilitating cognitive impairment, which is often dissociable from its effects on non-cognitive behaviors. The Rap1 small GTPase pathway has emerged as a commonly disrupted intracellular target in neuropsychiatric conditions, whether it be via alterations in Rap1 expression or through alterations in the expression of direct and specific upstream Rap1 activators and inhibitors. Here we demonstrate that escalating, intermittent stress increases Rap1 in mouse PFC synapses, results in cognitive impairments, and reduces the preponderance of mature dendritic spines in PFC neurons. Using viral-mediated gene transfer, we reveal that the hyper-induction of Rap1 in the PFC is sufficient to drive stress-relevant cognitive and synaptic phenotypes. These findings point to Rap1 as a critical mediator of stress-driven neuronal and behavioral pathology and highlight a previously unrecognized involvement for Rap1 in novelty-driven PFC engagement.
Collapse
|
6
|
Modelling and Refining Neuronal Circuits with Guidance Cues: Involvement of Semaphorins. Int J Mol Sci 2021; 22:ijms22116111. [PMID: 34204060 PMCID: PMC8201269 DOI: 10.3390/ijms22116111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.
Collapse
|
7
|
Tomorsky J, Parker PRL, Doe CQ, Niell CM. Precise levels of nectin-3 are required for proper synapse formation in postnatal visual cortex. Neural Dev 2020; 15:13. [PMID: 33160402 PMCID: PMC7648993 DOI: 10.1186/s13064-020-00150-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Developing cortical neurons express a tightly choreographed sequence of cytoskeletal and transmembrane proteins to form and strengthen specific synaptic connections during circuit formation. Nectin-3 is a cell-adhesion molecule with previously described roles in synapse formation and maintenance. This protein and its binding partner, nectin-1, are selectively expressed in upper-layer neurons of mouse visual cortex, but their role in the development of cortical circuits is unknown. METHODS Here we block nectin-3 expression (via shRNA) or overexpress nectin-3 in developing layer 2/3 visual cortical neurons using in utero electroporation. We then assay dendritic spine densities at three developmental time points: eye opening (postnatal day (P)14), one week following eye opening after a period of heightened synaptogenesis (P21), and at the close of the critical period for ocular dominance plasticity (P35). RESULTS Knockdown of nectin-3 beginning at E15.5 or ~ P19 increased dendritic spine densities at P21 or P35, respectively. Conversely, overexpressing full length nectin-3 at E15.5 decreased dendritic spine densities when all ages were considered together. The effects of nectin-3 knockdown and overexpression on dendritic spine densities were most significant on proximal secondary apical dendrites. Interestingly, an even greater decrease in dendritic spine densities, particularly on basal dendrites at P21, was observed when we overexpressed nectin-3 lacking its afadin binding domain. CONCLUSION These data collectively suggest that the proper levels and functioning of nectin-3 facilitate normal synapse formation after eye opening on apical and basal dendrites in layer 2/3 of visual cortex.
Collapse
Affiliation(s)
- Johanna Tomorsky
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
- Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.
| | - Philip R L Parker
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
8
|
Chen WB, Pan HQ, He Y, Wang XH, Zhang WH, Pan BX. Rap1b but not Rap1a in the forebrain is required for learned fear. Cell Biosci 2020; 10:107. [PMID: 32944221 PMCID: PMC7488763 DOI: 10.1186/s13578-020-00469-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fear is an adaptive response across species in the face of threatening cues. It can be either innate or learned through postnatal experience. We have previously shown that genetic deletion of both Rap1a and Rap1b, two isoforms of small GTPase Rap1 in forebrain, causes impairment in auditory fear conditioning. However, the specific roles of these two isoforms are not yet known. Results In the present study, employing mice with forebrain-restricted deletion of Rap1a or Rap1b, we found that they are both dispensable for normal acquisition of fear learning. However, Rap1b but not Rap1a knockout (KO) mice displayed impairment in the retrieval of learned fear. Subsequently, we found that the expression of c-Fos, a marker of neuronal activity, is specifically decreased in prelimbic cortex (PL) of Rap1b KO mice after auditory fear conditioning, while remained unaltered in the amygdala and infralimbic cortex (IL). On the other hand, neither Rap1a nor Rap1b knockout altered the innate fear of mice in response to their predator odor, 2,5-Dihydro-2,4,5-Trimethylthiazoline (TMT). Conclusion Thus, our results indicate that it is Rap1b but not Rap1a involved in the retrieval process of fear learning, and the learned but not innate fear requires Rap1 signaling in forebrain.
Collapse
Affiliation(s)
- Wen-Bing Chen
- School of Life Sciences, Nanchang University, Nanchang, 330031 China.,Institute of Life Science, Nanchang University, Nanchang, 330031 China
| | - Han-Qing Pan
- School of Life Sciences, Nanchang University, Nanchang, 330031 China.,Institute of Life Science, Nanchang University, Nanchang, 330031 China
| | - Ye He
- Institute of Life Science, Nanchang University, Nanchang, 330031 China.,Center for Basic Medical Experiment, Nanchang University, Nanchang, 330031 China
| | - Xue-Hui Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031 China.,Institute of Life Science, Nanchang University, Nanchang, 330031 China
| | - Wen-Hua Zhang
- Institute of Life Science, Nanchang University, Nanchang, 330031 China
| | - Bing-Xing Pan
- School of Life Sciences, Nanchang University, Nanchang, 330031 China.,Institute of Life Science, Nanchang University, Nanchang, 330031 China.,Department of Ophthalmology, The 2nd Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| |
Collapse
|
9
|
Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020. [DOI: 10.3390/ijms21176312
expr 858053618 + 832508766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
|
10
|
Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, Lacerda HM, Lucia A, Llavero F, Zugaza JL. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6312. [PMID: 32878220 PMCID: PMC7504559 DOI: 10.3390/ijms21176312] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
Affiliation(s)
- Alazne Arrazola Sastre
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - Miriam Luque Montoro
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain;
- R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain
| | | | - Alejandro Lucia
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
- Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Fang Y, Yu Z, Chen F. Noise Helps Optimization Escape From Saddle Points in the Synaptic Plasticity. Front Neurosci 2020; 14:343. [PMID: 32410937 PMCID: PMC7201302 DOI: 10.3389/fnins.2020.00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/23/2020] [Indexed: 11/20/2022] Open
Abstract
Numerous experimental studies suggest that noise is inherent in the human brain. However, the functional importance of noise remains unknown. n particular, from a computational perspective, such stochasticity is potentially harmful to brain function. In machine learning, a large number of saddle points are surrounded by high error plateaus and give the illusion of the existence of local minimum. As a result, being trapped in the saddle points can dramatically impair learning and adding noise will attack such saddle point problems in high-dimensional optimization, especially under the strict saddle condition. Motivated by these arguments, we propose one biologically plausible noise structure and demonstrate that noise can efficiently improve the optimization performance of spiking neural networks based on stochastic gradient descent. The strict saddle condition for synaptic plasticity is deduced, and under such conditions, noise can help optimization escape from saddle points on high dimensional domains. The theoretical results explain the stochasticity of synapses and guide us on how to make use of noise. In addition, we provide biological interpretations of proposed noise structures from two points: one based on the free energy principle in neuroscience and another based on observations of in vivo experiments. Our simulation results manifest that in the learning and test phase, the accuracy of synaptic sampling with noise is almost 20% higher than that without noise for synthesis dataset, and the gain in accuracy with/without noise is at least 10% for the MNIST and CIFAR-10 dataset. Our study provides a new learning framework for the brain and sheds new light on deep noisy spiking neural networks.
Collapse
Affiliation(s)
- Ying Fang
- Department of Automation, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, China
- Beijing Innovation Center for Future Chip, Beijing, China
- Beijing Key Laboratory of Security in Big Data Processing and Application, Beijing, China
| | - Zhaofei Yu
- National Engineering Laboratory for Video Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Feng Chen
- Department of Automation, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, China
- Beijing Innovation Center for Future Chip, Beijing, China
- Beijing Key Laboratory of Security in Big Data Processing and Application, Beijing, China
| |
Collapse
|
12
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
13
|
Shank2 Binds to aPKC and Controls Tight Junction Formation with Rap1 Signaling during Establishment of Epithelial Cell Polarity. Cell Rep 2020; 31:107407. [DOI: 10.1016/j.celrep.2020.02.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022] Open
|
14
|
Kim Y, Jang YN, Kim JY, Kim N, Noh S, Kim H, Queenan BN, Bellmore R, Mun JY, Park H, Rah JC, Pak DTS, Lee KJ. Microtubule-associated protein 2 mediates induction of long-term potentiation in hippocampal neurons. FASEB J 2020; 34:6965-6983. [PMID: 32237183 DOI: 10.1096/fj.201902122rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Microtubule-associated protein (MAP) 2 has been perceived as a static cytoskeletal protein enriched in neuronal dendritic shafts. Emerging evidence indicates dynamic functions for various MAPs in activity-dependent synaptic plasticity. However, it is unclear how MAP2 is associated with synaptic plasticity mechanisms. Here, we demonstrate that specific silencing of high-molecular-weight MAP2 in vivo abolished induction of long-term potentiation (LTP) in the Schaffer collateral pathway of CA1 pyramidal neurons and in vitro blocked LTP-induced surface delivery of AMPA receptors and spine enlargement. In mature hippocampal neurons, we observed rapid translocation of a subpopulation of MAP2, present in dendritic shafts, to spines following LTP stimulation. Time-lapse confocal imaging showed that spine translocation of MAP2 was coupled with LTP-induced spine enlargement. Consistently, immunogold electron microscopy revealed that LTP stimulation of the Schaffer collateral pathway promoted MAP2 labeling in spine heads of CA1 neurons. This translocation depended on NMDA receptor activation and Ras-MAPK signaling. Furthermore, LTP stimulation led to an increase in surface-expressed AMPA receptors specifically in the neurons with MAP2 spine translocation. Altogether, this study indicates a novel role for MAP2 in LTP mechanisms and suggests that MAP2 participates in activity-dependent synaptic plasticity in mature hippocampal networks.
Collapse
Affiliation(s)
- Yoonju Kim
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - You-Na Jang
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Ji-Young Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Nari Kim
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Seulgi Noh
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyeyeon Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Bridget N Queenan
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan Bellmore
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ji Young Mun
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyungju Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Jong Cheol Rah
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea.,Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
15
|
Matsuda T, Namura A, Oinuma I. Dynamic spatiotemporal patterns of alternative splicing of an F-actin scaffold protein, afadin, during murine development. Gene 2019; 689:56-68. [PMID: 30572094 DOI: 10.1016/j.gene.2018.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
An F-actin scaffold protein, afadin, comprises two splice variants called l-afadin (a long isoform) and s-afadin (a short isoform). It is known that in adult tissues, l-afadin is ubiquitously expressed while s-afadin is restrictedly expressed in brain. In cultured cortical neurons, l-afadin potentiates axonal branching whereas s-afadin blocks axonal branching by functioning as a naturally occurring dominant-negative isoform that forms a heterodimer with l-afadin. However, the temporal and spatial expression pattern of s-afadin during development or across multiple tissues and organs has not been fully understood. In this study, using Western blotting and RT-qPCR techniques and the fluorescent splicing reporters, we examined the detailed expression patterns of l- and s-afadin isoforms across various tissues and cell types, including rat organs at developmental stages, primary cultured neuronal and non-neuronal cells prepared from the developing rat brain, and in neurons in vitro generated from P19 embryonal carcinoma (EC) cells. Both mRNA and protein of s-afadin were abundantly expressed in various regions of rat neuronal tissues, and their expression dynamically changed during development in vivo. The expression of s-afadin was also detected in primary rat cortical neurons, but not in astrocytes or fibroblasts, and the neuronal expression increased during neuronal maturation in vitro. The dynamic alternative splicing event of afadin during development was successfully visualized with the newly developed fluorescent splicing reporter plasmids at a single cell level. Moreover, s-afadin was undetectable in undifferentiated EC cells, and the expression was induced upon differentiation of the cells into neurons. These data suggest that spatiotemporal and dynamic alternative splicing produces differential expression patterns of afadin isoforms and that alternative splicing of afadin is controlled by the neuron-specific regulator(s) whose activity is triggered and dynamically altered during neuronal differentiation and maturation.
Collapse
Affiliation(s)
- Takahiko Matsuda
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Arisa Namura
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Izumi Oinuma
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Sellers KJ, Watson IA, Gresz RE, Raval P, Srivastava DP. Cyto-nuclear shuttling of afadin is required for rapid estradiol-mediated modifications of histone H3. Neuropharmacology 2018; 143:153-162. [PMID: 30268521 PMCID: PMC6277849 DOI: 10.1016/j.neuropharm.2018.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Estrogens have been shown to rapidly regulate local signalling at synapses and within the nucleus. The result of these signalling events is to rapidly modulate synapse structure and function, as well as epigenetic mechanisms including histone modifications. Ultimately these mechanisms are thought to contribute to long-lasting changes in neural circuitry, and thus influence cognitive functions such as learning and memory. However, the mechanisms by which estrogen-mediated local synaptic and nuclear signalling events are coordinated are not well understood. In this study we have found that the scaffold protein afadin, (also known as AF-6), undergoes a bi-directional trafficking to both synaptic and nuclear compartment in response to acute 17β-estradiol (estradiol) treatment, in mixed sex neuronal cultures derived from fetal cortex. Interestingly, nuclear accumulation of afadin was coincidental with an increase in the phosphorylation of histone H3 at serine 10 (H3S10p). This epigenetic modification is associated with the remodeling of chromatin into an open euchromatin state, allowing for transcriptional activation and related learning and memory processes. Critically, the cyto-nuclear trafficking of afadin was required for estradiol-dependent H3S10p. We further determined that nuclear accumulation of afadin is sufficient to induce phosphorylation of the mitogentic kinases ERK1/2 (pERK1/2) within the nucleus. Moreover, nuclear pERK1/2 was required for estradiol-dependent H3S10p. Taken together, we propose a model whereby estradiol induces the bi-directional trafficking of afadin to synaptic and nuclear sub-compartments. Within the nucleus, afadin is required for increased pERK1/2 which in turn is required for H3S10p. Therefore this represents a mechanism through which estrogens may be able to coordinate both synaptic and nucleosomal events within the same neuronal population. 17β-estradiol targets afadin to membrane and nuclear subcompartments. Histone H3 is rapidly phosphorylated by 17β-estradiol. Histone H3 phosphorylation by 17β-estradiol requires afadin nuclear accumulation. 17β-estradiol-mediated ERK1/2 activation is required for histone H3 phosphorylation.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Iain A Watson
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Rahel E Gresz
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
17
|
Differential regional and subcellular localization patterns of afadin splice variants in the mouse central nervous system. Brain Res 2018; 1692:74-86. [PMID: 29733813 DOI: 10.1016/j.brainres.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
AF6/afadin is an F-actin scaffold protein that plays essential roles in the organization of cell-cell junctions of polarized epithelia. Afadin comprises two major isoforms produced by alternative splicing - a longer isoform l-afadin, having the F-actin-binding domain, and a shorter isoform s-afadin, harboring the amino acid sequences unique to the isoform but lacking the F-actin-binding domain. We recently identified functional differences between l- and s-afadin isoforms in the regulation of axon branching in primary cultured cortical neurons; the former potentiates and the latter blocks axon branching. Previous biochemical reports indicate differences in tissue and cell-type distributions of isoforms, and it was shown that l-afadin is ubiquitously expressed in various tissues and cell-types, while s-afadin is predominantly expressed in neuronal tissues and cultured neurons. However, the spatial expression pattern of s-afadin across neuronal tissues or within neurons has not been revealed because no antibody specific for s-afadin is yet available. In this study, we report the generation and characterization of an antibody that specifically distinguishes s-afadin from l-afadin, and its application to investigate the expression profile of s-afadin in primary cultured neurons and tissue cryosections of adult mouse brain and retina. We describe differential regional and subcellular localization patterns of l- and s-afadin isoforms in the mouse central nervous system.
Collapse
|
18
|
Parker EM, Sweet RA. Stereological Assessments of Neuronal Pathology in Auditory Cortex in Schizophrenia. Front Neuroanat 2018; 11:131. [PMID: 29375326 PMCID: PMC5767177 DOI: 10.3389/fnana.2017.00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
It has long been known that auditory processing is disrupted in schizophrenia. More recently, postmortem studies have provided direct evidence that morphological alterations to neurons in auditory cortex are implicated in the pathophysiology of this illness, confirming previous predictions. Potential neural substrates for auditory impairment and gray matter loss in auditory cortex in schizophrenia have been identified, described, and are the focus of this review article. Pyramidal cell somal volume is reduced in auditory cortex, as are dendritic spine density and number in schizophrenia. Pyramidal cells are not lost in this region in schizophrenia, indicating that dendritic spine reductions reflect fewer spines per pyramidal cell, consistent with the reduced neuropil hypothesis of schizophrenia. Stereological methods have aided in the proper collection, reporting and interpretation of this data. Mechanistic studies exploring relationships between genetic risk for schizophrenia and altered dendrite morphology represent an important avenue for future research in order to further elucidate cellular pathology in auditory cortex in schizophrenia.
Collapse
Affiliation(s)
- Emily M Parker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
20
|
Cornelia Koeberle S, Tanaka S, Kuriu T, Iwasaki H, Koeberle A, Schulz A, Helbing DL, Yamagata Y, Morrison H, Okabe S. Developmental stage-dependent regulation of spine formation by calcium-calmodulin-dependent protein kinase IIα and Rap1. Sci Rep 2017; 7:13409. [PMID: 29042611 PMCID: PMC5645322 DOI: 10.1038/s41598-017-13728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
The roles of calcium-calmodulin-dependent protein kinase II-alpha (CaMKIIα) in the expression of long-term synaptic plasticity in the adult brain have been extensively studied. However, how increased CaMKIIα activity controls the maturation of neuronal circuits remains incompletely understood. Herein, we show that pyramidal neurons without CaMKIIα activity upregulate the rate of spine addition, resulting in elevated spine density. Genetic elimination of CaMKIIα activity specifically eliminated the observed maturation-dependent suppression of spine formation. Enhanced spine formation was associated with the stabilization of actin in the spine and could be reversed by increasing the activity of the small GTPase Rap1. CaMKIIα activity was critical in the phosphorylation of synaptic Ras GTPase-activating protein (synGAP), the dispersion of synGAP from postsynaptic sites, and the activation of postsynaptic Rap1. CaMKIIα is already known to be essential in learning and memory, but our findings suggest that CaMKIIα plays an important activity-dependent role in restricting spine density during postnatal development.
Collapse
Affiliation(s)
- Solveigh Cornelia Koeberle
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Institute of Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, JST, Japan
| | - Toshihiko Kuriu
- Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, JST, Japan
| | - Andreas Koeberle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Alexander Schulz
- Institute of Age Research, Fritz Lipmann Institute, Jena, Germany
| | | | - Yoko Yamagata
- Division of Neural Signaling, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan.,SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Helen Morrison
- Institute of Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan. .,CREST, JST, Japan.
| |
Collapse
|
21
|
Laguesse S, Morisot N, Shin JH, Liu F, Adrover MF, Sakhai SA, Lopez MF, Phamluong K, Griffin WC, Becker HC, Bender KJ, Alvarez VA, Ron D. Prosapip1-Dependent Synaptic Adaptations in the Nucleus Accumbens Drive Alcohol Intake, Seeking, and Reward. Neuron 2017; 96:145-159.e8. [PMID: 28890345 PMCID: PMC6014831 DOI: 10.1016/j.neuron.2017.08.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/13/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1), a transducer of local dendritic translation, participates in learning and memory processes as well as in mechanisms underlying alcohol-drinking behaviors. Using an unbiased RNA-seq approach, we identified Prosapip1 as a novel downstream target of mTORC1 whose translation and consequent synaptic protein expression are increased in the nucleus accumbens (NAc) of mice excessively consuming alcohol. We demonstrate that alcohol-dependent increases in Prosapip1 levels promote the formation of actin filaments, leading to changes in dendritic spine morphology of NAc medium spiny neurons (MSNs). We further demonstrate that Prosapip1 is required for alcohol-dependent synaptic localization of GluA2 lacking AMPA receptors in NAc shell MSNs. Finally, we present data implicating Prosapip1 in mechanisms underlying alcohol self-administration and reward. Together, these data suggest that Prosapip1 in the NAc is a molecular transducer of structural and synaptic alterations that drive and/or maintain excessive alcohol use.
Collapse
Affiliation(s)
- Sophie Laguesse
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Nadege Morisot
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Jung Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute of Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, MD, USA
| | - Feng Liu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Martin F Adrover
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute of Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Sakhai
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute of Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, MD, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
22
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
23
|
Tadenev ALD, Tarchini B. The Spindle Orientation Machinery Beyond Mitosis: When Cell Specialization Demands Polarization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:209-225. [DOI: 10.1007/978-3-319-57127-0_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Liu A, Zhou Z, Dang R, Zhu Y, Qi J, He G, Leung C, Pak D, Jia Z, Xie W. Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization. J Cell Biol 2016; 212:449-63. [PMID: 26880202 PMCID: PMC4754719 DOI: 10.1083/jcb.201509023] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The C-terminal domain of NLG1 is sufficient to enhance spine and synapse number and to modulate synaptic plasticity, and it exerts these effects via its interaction with SPAR and the subsequent activation of LIMK1/cofilin-mediated actin reorganization. Neuroligin (NLG) 1 is important for synapse development and function, but the underlying mechanisms remain unclear. It is known that at least some aspects of NLG1 function are independent of the presynaptic neurexin, suggesting that the C-terminal domain (CTD) of NLG1 may be sufficient for synaptic regulation. In addition, NLG1 is subjected to activity-dependent proteolytic cleavage, generating a cytosolic CTD fragment, but the significance of this process remains unknown. In this study, we show that the CTD of NLG1 is sufficient to (a) enhance spine and synapse number, (b) modulate synaptic plasticity, and (c) exert these effects via its interaction with spine-associated Rap guanosine triphosphatase–activating protein and subsequent activation of LIM-domain protein kinase 1/cofilin–mediated actin reorganization. Our results provide a novel postsynaptic mechanism by which NLG1 regulates synapse development and function.
Collapse
Affiliation(s)
- An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Zikai Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| | - Rui Dang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Yuehua Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Junxia Qi
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Guiqin He
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - Celeste Leung
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Daniel Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Zhengping Jia
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China Institute of Life Sciences, The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing 210096, China
| |
Collapse
|
25
|
Cahill ME, Bagot RC, Gancarz AM, Walker DM, Sun H, Wang ZJ, Heller EA, Feng J, Kennedy PJ, Koo JW, Cates HM, Neve RL, Shen L, Dietz DM, Nestler EJ. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling. Neuron 2016; 89:566-82. [PMID: 26844834 DOI: 10.1016/j.neuron.2016.01.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/25/2022]
Abstract
Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner.
Collapse
Affiliation(s)
- Michael E Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosemary C Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amy M Gancarz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - HaoSheng Sun
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Elizabeth A Heller
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela J Kennedy
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ja Wook Koo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hannah M Cates
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex. eNeuro 2016; 3:eN-NWR-0142-16. [PMID: 27390776 PMCID: PMC4917737 DOI: 10.1523/eneuro.0142-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells.
Collapse
|
27
|
Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases. Neural Plast 2016; 2016:3025948. [PMID: 26989514 PMCID: PMC4775798 DOI: 10.1155/2016/3025948] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders.
Collapse
|
28
|
Nagai T, Nakamuta S, Kuroda K, Nakauchi S, Nishioka T, Takano T, Zhang X, Tsuboi D, Funahashi Y, Nakano T, Yoshimoto J, Kobayashi K, Uchigashima M, Watanabe M, Miura M, Nishi A, Kobayashi K, Yamada K, Amano M, Kaibuchi K. Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo. Neuron 2016; 89:550-65. [DOI: 10.1016/j.neuron.2015.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/17/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
|
29
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
30
|
Medvedev N, Popov V, Henneberger C, Kraev I, Rusakov DA, Stewart MG. Glia selectively approach synapses on thin dendritic spines. Philos Trans R Soc Lond B Biol Sci 2015; 369:20140047. [PMID: 25225105 PMCID: PMC4173297 DOI: 10.1098/rstb.2014.0047] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper examines the relationship between the morphological modality of 189 dendritic spines and the surrounding astroglia using full three-dimensional reconstructions of neuropil fragments. An integrative measure of three-dimensional glial coverage confirms that thin spine postsynaptic densities are more tightly surrounded by glia. This distinction suggests that diffusion-dependent synapse-glia communication near 'learning' synapses (associated with thin spines) could be stronger than that near 'memory' synapses (associated with larger spines).
Collapse
Affiliation(s)
- Nikolai Medvedev
- Department of Life and Health Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Victor Popov
- Department of Life and Health Sciences, The Open University, Milton Keynes MK7 6AA, UK Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Christian Henneberger
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Igor Kraev
- Department of Life and Health Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Dmitri A Rusakov
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Michael G Stewart
- Department of Life and Health Sciences, The Open University, Milton Keynes MK7 6AA, UK
| |
Collapse
|
31
|
Deletion of Rapgef6, a candidate schizophrenia susceptibility gene, disrupts amygdala function in mice. Transl Psychiatry 2015; 5:e577. [PMID: 26057047 PMCID: PMC4490285 DOI: 10.1038/tp.2015.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/22/2015] [Accepted: 04/23/2015] [Indexed: 02/01/2023] Open
Abstract
In human genetic studies of schizophrenia, we uncovered copy-number variants in RAPGEF6 and RAPGEF2 genes. To discern the effects of RAPGEF6 deletion in humans, we investigated the behavior and neural functions of a mouse lacking Rapgef6. Rapgef6 deletion resulted in impaired amygdala function measured as reduced fear conditioning and anxiolysis. Hippocampal-dependent spatial memory and prefrontal cortex-dependent working memory tasks were intact. Neural activation measured by cFOS phosphorylation demonstrated a reduction in hippocampal and amygdala activation after fear conditioning, while neural morphology assessment uncovered reduced spine density and primary dendrite number in pyramidal neurons of the CA3 hippocampal region of knockout mice. Electrophysiological analysis showed enhanced long-term potentiation at cortico-amygdala synapses. Rapgef6 deletion mice were most impaired in hippocampal and amygdalar function, brain regions implicated in schizophrenia pathophysiology. The results provide a deeper understanding of the role of the amygdala in schizophrenia and suggest that RAPGEF6 may be a novel therapeutic target in schizophrenia.
Collapse
|
32
|
Plexin-B3 suppresses excitatory and promotes inhibitory synapse formation in rat hippocampal neurons. Exp Cell Res 2015; 335:269-78. [PMID: 25989221 DOI: 10.1016/j.yexcr.2015.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 11/21/2022]
Abstract
Molecular mechanisms underlying synaptogenesis and synaptic plasticity have become one of the main topics in neurobiology. Increasing evidence suggests that axon guidance molecules including semaphorins and plexins participate in synapse formation and elimination. Although class B plexins are widely expressed in the brain, their role in the nervous system remains poorly characterized. We previously identified that B-plexins modulate microtubule dynamics and through this impact dendrite growth in rat hippocampal neurons. Here, we demonstrate that Plexin-B2 and Plexin-B3 are present in dendrites, but do not localize in synapses. We find that overexpression of all B-plexins leads to decreased volume of excitatory synapses, and at the same time Plexin-B1 and Plexin-B3 promote inhibitory synapse assembly. Plexin-B3 mutants revealed that these processes use different downstream pathways. While elimination of excitatory synapses is the result of Plexin-B3 binding to microtubule end binding proteins EB1 and EB3, the increase in inhibitory synapses is mediated by regulation of Ras and Rho GTPases. Overall, our findings demonstrate that Plexin-B3 contributes to regulating synapse formation.
Collapse
|
33
|
Umeda K, Iwasawa N, Negishi M, Oinuma I. A short splicing isoform of afadin suppresses the cortical axon branching in a dominant-negative manner. Mol Biol Cell 2015; 26:1957-70. [PMID: 25808489 PMCID: PMC4436838 DOI: 10.1091/mbc.e15-01-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/18/2015] [Indexed: 01/11/2023] Open
Abstract
Suppression of surplus axon branching is crucial for formation of proper neuronal networks; however, the molecular mechanisms have been poorly understood. In a novel mechanism, s-afadin, a short splicing isoform of afadin lacking the F-actin–binding domain, acts as a dominant-negative suppressor of cortical axon branching. Precise wiring patterns of axons are among the remarkable features of neuronal circuit formation, and establishment of the proper neuronal network requires control of outgrowth, branching, and guidance of axons. R-Ras is a Ras-family small GTPase that has essential roles in multiple phases of axonal development. We recently identified afadin, an F-actin–binding protein, as an effector of R-Ras mediating axon branching through F-actin reorganization. Afadin comprises two isoforms—l-afadin, having the F-actin–binding domain, and s-afadin, lacking the F-actin–binding domain. Compared with l-afadin, s-afadin, the short splicing variant of l-afadin, contains RA domains but lacks the F-actin–binding domain. Neurons express both isoforms; however, the function of s-afadin in brain remains unknown. Here we identify s-afadin as an endogenous inhibitor of cortical axon branching. In contrast to the abundant and constant expression of l-afadin throughout neuronal development, the expression of s-afadin is relatively low when cortical axons branch actively. Ectopic expression and knockdown of s-afadin suppress and promote branching, respectively. s-Afadin blocks the R-Ras–mediated membrane translocation of l-afadin and axon branching by inhibiting the binding of l-afadin to R-Ras. Thus s-afadin acts as a dominant-negative isoform in R-Ras-afadin–regulated axon branching.
Collapse
Affiliation(s)
- Kentaro Umeda
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nariaki Iwasawa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Izumi Oinuma
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
34
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
35
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
36
|
Kobayashi R, Kurita S, Miyata M, Maruo T, Mandai K, Rikitake Y, Takai Y. s-Afadin binds more preferentially to the cell adhesion molecules nectins than l-afadin. Genes Cells 2014; 19:853-63. [DOI: 10.1111/gtc.12185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Reiko Kobayashi
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Souichi Kurita
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Muneaki Miyata
- Division of Signal Transduction; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Signal Transduction; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| |
Collapse
|
37
|
Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun 2014; 5:4826. [PMID: 25189171 PMCID: PMC4164783 DOI: 10.1038/ncomms5826] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex.
Collapse
|
38
|
Genomic and genetic aspects of autism spectrum disorder. Biochem Biophys Res Commun 2014; 452:244-53. [PMID: 25173933 DOI: 10.1016/j.bbrc.2014.08.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component. The past decade has witnessed tremendous progress in the genetic studies of ASD. In this article, we review the accumulating literatures on the monogenic forms of ASD and chromosomal abnormalities associated with ASD, the genome-wide linkage and association studies, the copy number variation (CNV) and the next generation sequencing (NGS) studies. With more than hundreds of mutations being implicated, the convergent biological pathways are emerging and the genetic landscape of ASD becomes clearer. The genetic studies provide a solid basis for future translational study for better diagnoses, intervention and treatment of ASD.
Collapse
|
39
|
VanLeeuwen JE, Rafalovich I, Sellers K, Jones KA, Griffith TN, Huda R, Miller RJ, Srivastava DP, Penzes P. Coordinated nuclear and synaptic shuttling of afadin promotes spine plasticity and histone modifications. J Biol Chem 2014; 289:10831-10842. [PMID: 24567331 PMCID: PMC4036196 DOI: 10.1074/jbc.m113.536391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of a neuron to transduce extracellular signals into long lasting changes in neuronal morphology is central to its normal function. Increasing evidence shows that coordinated regulation of synaptic and nuclear signaling in response to NMDA receptor activation is crucial for long term memory, synaptic tagging, and epigenetic signaling. Although mechanisms have been proposed for synapse-to-nuclear communication, it is unclear how signaling is coordinated at both subcompartments. Here, we show that activation of NMDA receptors induces the bi-directional and concomitant shuttling of the scaffold protein afadin from the cytosol to the nucleus and synapses. Activity-dependent afadin nuclear translocation peaked 2 h post-stimulation, was independent of protein synthesis, and occurred concurrently with dendritic spine remodeling. Moreover, activity-dependent afadin nuclear translocation coincides with phosphorylation of histone H3 at serine 10 (H3S10p), a marker of epigenetic modification. Critically, blocking afadin nuclear accumulation attenuated activity-dependent dendritic spine remodeling and H3 phosphorylation. Collectively, these data support a novel model of neuronal nuclear signaling whereby dual-residency proteins undergo activity-dependent bi-directional shuttling from the cytosol to synapses and the nucleus, coordinately regulating dendritic spine remodeling and histone modifications.
Collapse
Affiliation(s)
- Jon-Eric VanLeeuwen
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Igor Rafalovich
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Katherine Sellers
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Kelly A Jones
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Theanne N Griffith
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Rafiq Huda
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Deepak P Srivastava
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom.
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.
| |
Collapse
|
40
|
PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc Natl Acad Sci U S A 2014; 111:6461-6. [PMID: 24706880 DOI: 10.1073/pnas.1321109111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug discovery in psychiatry has been limited to chemical modifications of compounds originally discovered serendipitously. Therefore, more mechanism-oriented strategies of drug discovery for mental disorders are awaited. Schizophrenia is a devastating mental disorder with synaptic disconnectivity involved in its pathophysiology. Reduction in the dendritic spine density is a major alteration that has been reproducibly reported in the cerebral cortex of patients with schizophrenia. Disrupted-in-Schizophrenia-1 (DISC1), a factor that influences endophenotypes underlying schizophrenia and several other neuropsychiatric disorders, has a regulatory role in the postsynaptic density in association with the NMDA-type glutamate receptor, Kalirin-7, and Rac1. Prolonged knockdown of DISC1 leads to synaptic deterioration, reminiscent of the synaptic pathology of schizophrenia. Thus, we tested the effects of novel inhibitors to p21-activated kinases (PAKs), major targets of Rac1, on synaptic deterioration elicited by knockdown expression of DISC1. These compounds not only significantly ameliorated the synaptic deterioration triggered by DISC1 knockdown but also partially reversed the size of deteriorated synapses in culture. One of these PAK inhibitors prevented progressive synaptic deterioration in adolescence as shown by in vivo two-photon imaging and ameliorated a behavioral deficit in prepulse inhibition in adulthood in a DISC1 knockdown mouse model. The efficacy of PAK inhibitors may have implications in drug discovery for schizophrenia and related neuropsychiatric disorders in general.
Collapse
|
41
|
Toyoshima D, Mandai K, Maruo T, Supriyanto I, Togashi H, Inoue T, Mori M, Takai Y. Afadin regulates puncta adherentia junction formation and presynaptic differentiation in hippocampal neurons. PLoS One 2014; 9:e89763. [PMID: 24587018 PMCID: PMC3937348 DOI: 10.1371/journal.pone.0089763] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 01/25/2014] [Indexed: 12/31/2022] Open
Abstract
The formation and remodeling of mossy fiber-CA3 pyramidal cell synapses in the stratum lucidum of the hippocampus are implicated in the cellular basis of learning and memory. Afadin and its binding cell adhesion molecules, nectin-1 and nectin-3, together with N-cadherin, are concentrated at puncta adherentia junctions (PAJs) in these synapses. Here, we investigated the roles of afadin in PAJ formation and presynaptic differentiation in mossy fiber-CA3 pyramidal cell synapses. At these synapses in the mice in which the afadin gene was conditionally inactivated before synaptogenesis by using nestin-Cre mice, the immunofluorescence signals for the PAJ components, nectin-1, nectin-3 and N-cadherin, disappeared almost completely, while those for the presynaptic components, VGLUT1 and bassoon, were markedly decreased. In addition, these signals were significantly decreased in cultured afadin-deficient hippocampal neurons. Furthermore, the interevent interval of miniature excitatory postsynaptic currents was prolonged in the cultured afadin-deficient hippocampal neurons compared with control neurons, indicating that presynaptic functions were suppressed or a number of synapse was reduced in the afadin-deficient neurons. Analyses of presynaptic vesicle recycling and paired recordings revealed that the cultured afadin-deficient neurons showed impaired presynaptic functions. These results indicate that afadin regulates both PAJ formation and presynaptic differentiation in most mossy fiber-CA3 pyramidal cell synapses, while in a considerable population of these neurons, afadin regulates only PAJ formation but not presynaptic differentiation.
Collapse
Affiliation(s)
- Daisaku Toyoshima
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Kenji Mandai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
- * E-mail: (YT), (KM)
| | - Tomohiko Maruo
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Irwan Supriyanto
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Hideru Togashi
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Takahito Inoue
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Masahiro Mori
- Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
- * E-mail: (YT), (KM)
| |
Collapse
|
42
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
43
|
Mori M, Rikitake Y, Mandai K, Takai Y. Roles of Nectins and Nectin-Like Molecules in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 8:91-116. [DOI: 10.1007/978-1-4614-8090-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Shi L. Dock protein family in brain development and neurological disease. Commun Integr Biol 2013; 6:e26839. [PMID: 24563715 PMCID: PMC3922786 DOI: 10.4161/cib.26839] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 02/04/2023] Open
Abstract
The family of dedicator of cytokinesis (Dock), a protein family that belongs to the atypical Rho guanine nucleotide exchange factors (GEFs) for Rac and/or Cdc42 GTPases, plays pivotal roles in various processes of brain development. To date, 11 members of Docks have been identified in the mammalian system. Emerging evidence has suggested that members of the Dock family are associated with several neurodegenerative and neuropsychiatric diseases, including Alzheimer disease and autism spectrum disorders. This review summarizes recent advances on the understanding of the roles of the Dock protein family in normal and diseased processes in the nervous system. Furthermore, interacting proteins and the molecular regulation of Docks are discussed.
Collapse
Affiliation(s)
- Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research; Jinan University; Guangdong, PR China ; Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong, PR China
| |
Collapse
|
45
|
Srivastava DP, Woolfrey KM, Penzes P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol Rev 2013; 65:1318-50. [PMID: 24076546 PMCID: PMC3799233 DOI: 10.1124/pr.111.005272] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders.
Collapse
Affiliation(s)
- Deepak P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, 125 Coldharbour Lane, The James Black Centre, Institute of Psychiatry, King's College London, London, SE5 9NU, UK.
| | | | | |
Collapse
|
46
|
Cahill ME, Remmers C, Jones KA, Xie Z, Sweet RA, Penzes P. Neuregulin1 signaling promotes dendritic spine growth through kalirin. J Neurochem 2013; 126:625-35. [PMID: 23742124 DOI: 10.1111/jnc.12330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/22/2013] [Accepted: 06/03/2013] [Indexed: 02/01/2023]
Abstract
The biological functions of the neuregulin 1 (NRG1) and ERBB4 genes have received much recent attention due to several studies showing associations between these genes and schizophrenia. Moreover, reduced forebrain dendritic spine density is a consistent feature of schizophrenia. It is thus important to understand the mechanisms whereby NRG1 and erbB4 modulate spine morphogenesis. Here, we show that long-term incubation with NRG1 increases both spine size and density in cortical pyramidal neurons. NRG1 also enhances the content of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in spines. Knockdown of ERBB4 expression prevented the effects of NRG1 on spine size, but not on spine density. The effects of NRG1 and erbB4 on spines were mediated by the RacGEF kalirin, a well-characterized regulator of dendritic spines. Finally, we show that environmental enrichment, known to promote spine growth, robustly enhances the levels of erbB4 protein in the forebrain. These findings provide a mechanistic link between NRG1 signaling and spine morphogenesis
Collapse
Affiliation(s)
- Michael E Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The small GTPase Rap1 contributes to fear learning and cortico-amygdala plasticity by inhibiting glutamate release from cortical neurons, but mechanisms of this inhibition remain unknown. Conversely, L-type calcium channels (LTCCs) become involved in glutamate release after fear learning and LTP induction. Here, we show that Rap1 deletion in mouse primary cortical neurons increases synaptic vesicle exocytosis without altering endocytosis or vesicle pool size in an LTCC-dependent manner. We identify Erk1/2 as the downstream effector of Rap1 and show that its inhibition increases plasma membrane expression of LTCCs near presynaptic terminals. We propose that the Rap1 signaling enables plasticity and fear learning by regulating LTCCs at cortico-amygdala synapses.
Collapse
|
48
|
Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell-cell adhesion. J Cell Sci 2013; 125:3713-22. [PMID: 23027581 DOI: 10.1242/jcs.099572] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammalian tissues and organs are composed of different types of cells that adhere to each other homotypically (i.e. interactions between cells of the same cell type) or heterotypically (i.e. interactions between different cell types), forming a variety of cellular patterns, including mosaic patterns. At least three types of cell-cell adhesion have been observed: symmetric homotypic, asymmetric homotypic and heterotypic cell adhesions. Cadherins and nectins, which are known cell-cell adhesion molecules, mediate these cell adhesions. Cadherins comprise a family of more than 100 members, but they are primarily involved in homophilic trans-interactions (i.e. interactions between the same cadherin members) between opposing cells. By contrast, the nectin family comprises only four members, and these proteins form both homophilic and heterophilic trans-interactions (i.e. interactions between the same and different nectin members on opposing cells). In addition, heterophilic trans-interactions between nectins are much stronger than homophilic trans-interactions. Because of these unique properties, nectins have crucial roles in asymmetric homotypic cell-cell adhesion at neuronal synapses and in various types of heterotypic cell-cell adhesions. We summarize recent progress in our understanding of the biology of nectins and discuss their roles in heterotypic cell-cell adhesions, whose formation cannot be solely explained by the action of cadherins.
Collapse
Affiliation(s)
- Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | |
Collapse
|
49
|
Haskin J, Szargel R, Shani V, Mekies LN, Rott R, Lim GGY, Lim KL, Bandopadhyay R, Wolosker H, Engelender S. AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease. Hum Mol Genet 2013; 22:2083-96. [PMID: 23393160 PMCID: PMC3803144 DOI: 10.1093/hmg/ddt058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Parkin E3 ubiquitin-ligase activity and its role in mitochondria homeostasis are thought to play a role in Parkinson's disease (PD). We now report that AF-6 is a novel parkin interacting protein that modulates parkin ubiquitin-ligase activity and mitochondrial roles. Parkin interacts with the AF-6 PDZ region through its C-terminus. This leads to ubiquitination of cytosolic AF-6 and its degradation by the proteasome. On the other hand, endogenous AF-6 robustly increases parkin translocation and ubiquitin-ligase activity at the mitochondria. Mitochondrial AF-6 is not a parkin substrate, but rather co-localizes with parkin and enhances mitochondria degradation through PINK1/parkin-mediated mitophagy. On the other hand, several parkin and PINK1 juvenile disease-mutants are insensitive to AF-6 effects. AF-6 is present in Lewy bodies and its soluble levels are strikingly decreased in the caudate/putamen and substantia nigra of sporadic PD patients, suggesting that decreased AF-6 levels may contribute to the accumulation of dysfunctional mitochondria in the disease. The identification of AF-6 as a positive modulator of parkin translocation to the mitochondria sheds light on the mechanisms involved in PD and underscores AF-6 as a novel target for future therapeutics.
Collapse
Affiliation(s)
- Joseph Haskin
- Department of Pharmacology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Baron J, Blex C, Rohrbeck A, Rachakonda SK, Birnbaumer L, Ahnert-Hilger G, Brunk I. The α-subunit of the trimeric GTPase Go2 regulates axonal growth. J Neurochem 2013; 124:782-94. [PMID: 23373526 DOI: 10.1111/jnc.12123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/23/2012] [Accepted: 12/09/2012] [Indexed: 11/30/2022]
Abstract
The Goα splice variants Go1α and Go2α are subunits of the most abundant G-proteins in brain, Go1 and Go2. Only a few interacting partners binding to Go1α have been described so far and splice variant-specific differences are not known. Using a yeast two-hybrid screen with constitutively active Go2α as bait, we identified Rap1GTPase activating protein (Rap1GAP) and Girdin as interacting partners of Go2α, which was confirmed by co-immunoprecipitation. Comparison of subcellular fractions from brains of wild type and Go2α-/- mice revealed no differences in the overall expression level of Girdin or Rap1GAP. However, we found higher amounts of active Rap1-GTP in brains of Go2α deficient mutants, indicating that Go2α may increase Rap1GAP activity, thereby effecting the Rap1 activation/deactivation cycle. Rap1 has been shown to be involved in neurite outgrowth and given a Rap1GAP-Go2α interaction, we found that the loss of Go2α affected axonal outgrowth. Axons of cultured cortical and hippocampal neurons prepared from embryonic Go2α-/- mice grew longer and developed more branches than those from wild-type mice. Taken together, we provide evidence that Go2α regulates axonal outgrowth and branching.
Collapse
Affiliation(s)
- Jens Baron
- Center for Anatomy, Institute for Integrative Neuroanatomy, Functional Cell Biology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|