1
|
Borghi R, Petrini S, Apollonio V, Trivisano M, Specchio N, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Altered cytoskeleton dynamics in patient-derived iPSC-based model of PCDH19 clustering epilepsy. Front Cell Dev Biol 2025; 12:1518533. [PMID: 39834389 PMCID: PMC11743388 DOI: 10.3389/fcell.2024.1518533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation. Here, we evaluate the consequences of altered PCDH19 function on microfilaments and microtubules organization, using a disease model obtained from patient-derived induced pluripotent stem cells. We show that iPSC-derived cortical neurons are characterized by altered cytoskeletal dynamics, suggesting that this protocadherin has a role in modulating stability of MFs and MTs. Consistently, the levels of acetylated-tubulin, which is related with stable MTs, are significantly increased in cortical neurons derived from the patient's iPSCs compared to control cells, supporting the idea that the altered dynamics of the MTs depends on their increased stability. Finally, performing live-imaging experiments using fluorescence recovery after photobleaching and by monitoring GFP-tagged end binding protein 3 (EB3) "comets," we observe an impairment of the plus-end polymerization speed in PCDH19-mutated cortical neurons, therefore confirming the impaired MT dynamics. In addition to altering the mitotic spindle formation, the present data unveil that PCDH19 dysfunction leads to altered cytoskeletal rearrangement, providing therapeutic targets and pharmacological options to treat this disorder.
Collapse
Affiliation(s)
- Rossella Borghi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Valentina Apollonio
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X. Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res 2024; 12:45. [PMID: 38685115 PMCID: PMC11059647 DOI: 10.1186/s40364-024-00593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Cell death is an important part of the life cycle, serving as a foundation for both the orderly development and the maintenance of physiological equilibrium within organisms. This process is fundamental, as it eliminates senescent, impaired, or aberrant cells while also promoting tissue regeneration and immunological responses. A novel paradigm of programmed cell death, known as disulfidptosis, has recently emerged in the scientific circle. Disulfidptosis is defined as the accumulation of cystine by cancer cells with high expression of the solute carrier family 7 member 11 (SLC7A11) during glucose starvation. This accumulation causes extensive disulfide linkages between F-actins, resulting in their contraction and subsequent detachment from the cellular membrane, triggering cellular death. The RAC1-WRC axis is involved in this phenomenon. Disulfidptosis sparked growing interest due to its potential applications in a variety of pathologies, particularly oncology, neurodegenerative disorders, and metabolic anomalies. Nonetheless, the complexities of its regulatory pathways remain elusive, and its precise molecular targets have yet to be definitively identified. This manuscript aims to meticulously dissect the historical evolution, molecular underpinnings, regulatory frameworks, and potential implications of disulfidptosis in various disease contexts, illuminating its promise as a groundbreaking therapeutic pathway and target.
Collapse
Affiliation(s)
- Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yubiao Yang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bitao Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
3
|
Noh MY, Kwon MS, Oh KW, Nahm M, Park J, Kim YE, Ki CS, Jin HK, Bae JS, Kim SH. Role of NCKAP1 in the Defective Phagocytic Function of Microglia-Like Cells Derived from Rapidly Progressing Sporadic ALS. Mol Neurobiol 2023; 60:4761-4777. [PMID: 37154887 PMCID: PMC10293423 DOI: 10.1007/s12035-023-03339-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15]. Despite an absence of significant differences in the expression of microglial homeostatic genes, ALS(R)-iMGs preferentially showed defective phagocytosis and an exaggerated pro-inflammatory response to LPS stimuli compared to ALS(S)-iMGs. Transcriptome analysis revealed that the perturbed phagocytosis seen in ALS(R)-iMGs was closely associated with decreased NCKAP1 (NCK-associated protein 1)-mediated abnormal actin polymerization. NCKAP1 overexpression was sufficient to rescue impaired phagocytosis in ALS(R)-iMGs. Post-hoc analysis indicated that decreased NCKAP1 expression in iMGs was correlated with the progression of ALS. Our data suggest that microglial NCKAP1 may be an alternative therapeutic target in rapidly progressive sporadic ALS.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute of Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Gyeonggi-Do 13488 Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Chang-Seok Ki
- GC Genome Corporation, Yongin, 16924 Republic of Korea
| | - Hee Kyung Jin
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jae-sung Bae
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Wangsimniro 222-1, Daegu, 41944 Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
- Cell Therapy Center, Hanyang University Hospital, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| |
Collapse
|
4
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
5
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
Guo H, Zhang Q, Dai R, Yu B, Hoekzema K, Tan J, Tan S, Jia X, Chung WK, Hernan R, Alkuraya FS, Alsulaiman A, Al-Muhaizea MA, Lesca G, Pons L, Labalme A, Laux L, Bryant E, Brown NJ, Savva E, Ayres S, Eratne D, Peeters H, Bilan F, Letienne-Cejudo L, Gilbert-Dussardier B, Ruiz-Arana IL, Merlini JM, Boizot A, Bartoloni L, Santoni F, Karlowicz D, McDonald M, Wu H, Hu Z, Chen G, Ou J, Brasch-Andersen C, Fagerberg CR, Dreyer I, Chun-Hui Tsai A, Slegesky V, McGee RB, Daniels B, Sellars EA, Carpenter LA, Schaefer B, Sacoto MJG, Begtrup A, Schnur RE, Punj S, Wentzensen IM, Rhodes L, Pan Q, Bernier RA, Chen C, Eichler EE, Xia K. NCKAP1 Disruptive Variants Lead to a Neurodevelopmental Disorder with Core Features of Autism. Am J Hum Genet 2020; 107:963-976. [PMID: 33157009 PMCID: PMC7674997 DOI: 10.1016/j.ajhg.2020.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.
Collapse
Affiliation(s)
- Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Qiumeng Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Rujia Dai
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bin Yu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Senwei Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiangbin Jia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10027, USA
| | - Rebecca Hernan
- Department of Pediatrics and Medicine, Columbia University, New York, NY 10027, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon 69000, France
| | - Linda Pons
- Department of Medical Genetics, Lyon University Hospital, Lyon 69000, France
| | - Audrey Labalme
- Department of Medical Genetics, Lyon University Hospital, Lyon 69000, France
| | - Linda Laux
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Emily Bryant
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Natasha J Brown
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3010, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Elena Savva
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3010, Australia
| | - Samantha Ayres
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Melbourne Genomics Health Alliance, Melbourne, VIC 3010, Australia
| | - Dhamidhu Eratne
- Melbourne Genomics Health Alliance, Melbourne, VIC 3010, Australia; Neuropsychiatry, Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven 3000, Belgium
| | - Frédéric Bilan
- Service de Génétique, CHU de Poitiers, Poitiers 86000, France
| | | | | | - Inge-Lore Ruiz-Arana
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jenny Meylan Merlini
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Alexia Boizot
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Lucia Bartoloni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Danielle Karlowicz
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Huidan Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Guodong Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jianjun Ou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | | | | | - Inken Dreyer
- Department of Pediatrics, Hospital Sønderjylland, Aabenraa 6200, Denmark
| | - Anne Chun-Hui Tsai
- Department of Pediatrics/Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73019, USA; Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Valerie Slegesky
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Rose B McGee
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brina Daniels
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Elizabeth A Sellars
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Lori A Carpenter
- Saint Francis Health System, Inc. St Francis Health Systems, Tulsa, OK 74101, USA
| | | | | | | | | | | | | | | | - Qian Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Raphael A Bernier
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Chao Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan 410078, China; CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200000, China.
| |
Collapse
|
8
|
Whitelaw JA, Swaminathan K, Kage F, Machesky LM. The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration. Cells 2020; 9:E1635. [PMID: 32646006 PMCID: PMC7407199 DOI: 10.3390/cells9071635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin.
Collapse
Affiliation(s)
| | - Karthic Swaminathan
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1PD, UK
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755-3844, USA;
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Laura M. Machesky
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Mohan V, Sullivan CS, Guo J, Wade SD, Majumder S, Agarwal A, Anton ES, Temple BS, Maness PF. Temporal Regulation of Dendritic Spines Through NrCAM-Semaphorin3F Receptor Signaling in Developing Cortical Pyramidal Neurons. Cereb Cortex 2020; 29:963-977. [PMID: 29415226 DOI: 10.1093/cercor/bhy004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/06/2018] [Indexed: 01/03/2023] Open
Abstract
Neuron-glial related cell adhesion molecule NrCAM is a newly identified negative regulator of spine density that genetically interacts with Semaphorin3F (Sema3F), and is implicated in autism spectrum disorders (ASD). To investigate a role for NrCAM in spine pruning during the critical adolescent period when networks are established, we generated novel conditional, inducible NrCAM mutant mice (Nex1Cre-ERT2: NrCAMflox/flox). We demonstrate that NrCAM functions cell autonomously during adolescence in pyramidal neurons to restrict spine density in the visual (V1) and medial frontal cortex (MFC). Guided by molecular modeling, we found that NrCAM promoted clustering of the Sema3F holoreceptor complex by interfacing with Neuropilin-2 (Npn2) and PDZ scaffold protein SAP102. NrCAM-induced receptor clustering stimulated the Rap-GAP activity of PlexinA3 (PlexA3) within the holoreceptor complex, which in turn, inhibited Rap1-GTPase and inactivated adhesive β1 integrins, essential for Sema3F-induced spine pruning. These results define a developmental function for NrCAM in Sema3F receptor signaling that limits dendritic spine density on cortical pyramidal neurons during adolescence.
Collapse
Affiliation(s)
- Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chelsea S Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jiami Guo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sarah D Wade
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Samarpan Majumder
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amit Agarwal
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Eva S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brenda S Temple
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
11
|
Guo J, Otis JM, Suciu SK, Catalano C, Xing L, Constable S, Wachten D, Gupton S, Lee J, Lee A, Blackley KH, Ptacek T, Simon JM, Schurmans S, Stuber GD, Caspary T, Anton ES. Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models. Dev Cell 2019; 51:759-774.e5. [PMID: 31846650 PMCID: PMC6953258 DOI: 10.1016/j.devcel.2019.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/08/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022]
Abstract
Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.
Collapse
Affiliation(s)
- Jiami Guo
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Hotchkiss Brain Institute and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, USA.
| | - James M Otis
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah K Suciu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christy Catalano
- Hotchkiss Brain Institute and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, USA
| | - Lei Xing
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sandii Constable
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dagmar Wachten
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Stephanie Gupton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janice Lee
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Lee
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine H Blackley
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Travis Ptacek
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Stephane Schurmans
- Laboratory of Functional Genetics, GIGA Research Center, University of Liège, Liège, Belgium
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain and Emotion, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Nakagawa N, Plestant C, Yabuno-Nakagawa K, Li J, Lee J, Huang CW, Lee A, Krupa O, Adhikari A, Thompson S, Rhynes T, Arevalo V, Stein JL, Molnár Z, Badache A, Anton ES. Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development. Neuron 2019; 103:836-852.e5. [PMID: 31277925 PMCID: PMC6728225 DOI: 10.1016/j.neuron.2019.05.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/07/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Abstract
Polarized, non-overlapping, regularly spaced, tiled organization of radial glial cells (RGCs) serves as a framework to generate and organize cortical neuronal columns, layers, and circuitry. Here, we show that mediator of cell motility 1 (Memo1) is a critical determinant of radial glial tiling during neocortical development. Memo1 deletion or knockdown leads to hyperbranching of RGC basal processes and disrupted RGC tiling, resulting in aberrant radial unit assembly and neuronal layering. Memo1 regulates microtubule (MT) stability necessary for RGC tiling. Memo1 deficiency leads to disrupted MT minus-end CAMSAP2 distribution, initiation of aberrant MT branching, and altered polarized trafficking of key basal domain proteins such as GPR56, and thus aberrant RGC tiling. These findings identify Memo1 as a mediator of RGC scaffold tiling, necessary to generate and organize neurons into functional ensembles in the developing cerebral cortex.
Collapse
Affiliation(s)
- Naoki Nakagawa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Neurogenetics, National Institute of Genetics, Mishima 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.
| | - Charlotte Plestant
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Keiko Yabuno-Nakagawa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jingjun Li
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Janice Lee
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chu-Wei Huang
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Lee
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aditi Adhikari
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Suriya Thompson
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Tamille Rhynes
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Victoria Arevalo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, 13009 Marseille, France
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Trujillo-Gonzalez I, Wang Y, Friday WB, Vickers KC, Toth CL, Molina-Torres L, Surzenko N, Zeisel SH. MicroRNA-129-5p is regulated by choline availability and controls EGF receptor synthesis and neurogenesis in the cerebral cortex. FASEB J 2018; 33:3601-3612. [PMID: 30521373 DOI: 10.1096/fj.201801094rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Choline availability modulates neurogenesis and cerebral cortex development through the regulation of neural progenitor cell (NPC) proliferative and differentiation capacity. In this study, we demonstrated that cortical NPC self-renewal is controlled by choline via the expression of a microRNA (miR-129-5p), whose role in the developing brain has not been examined, and which, in turn, inhibits synthesis of the epidermal growth factor receptor (EGFR) protein. Specifically, we found that low choline (LC) availability led to the upregulation of miR-129-5p expression in cortical NPCs in vitro and in vivo, causing the downregulation of EGFR and thereby disrupting NPC self-renewal and cortical neurogenesis. Furthermore, in response to LC availability, methylation potential (the S-adenosylmethionine: S-adenosylhomocysteine ratio) in the developing brain was reduced. Restoring methylation potential in LC cortical NPCs led to the re-establishment of normal miR-129-5p expression. We concluded that inhibiting miR-129-5p function and restoring EGFR protein levels in vivo is sufficient to reverse LC-induced defects in cortical NPC self-renewal. For the first time, to our knowledge, we have identified the molecular links that explain how a change in the availability of the diet metabolite choline impacts the essential cellular processes underlying brain development.-Trujillo-Gonzalez, I., Wang, Y., Friday, W. B., Vickers, K. C., Toth, C. L., Molina-Torres, L., Surzenko, N., Zeisel, S. H. MicroRNA-129-5p is regulated by choline availability and controls EGF receptor synthesis and neurogenesis in the cerebral cortex.
Collapse
Affiliation(s)
- Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Yanyan Wang
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.,Department of Medical Genetics, Third Military Medical University, Chongqing, China
| | - Walter B Friday
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Kasey C Vickers
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Cynthia L Toth
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Lorian Molina-Torres
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Natalia Surzenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Sci Rep 2018; 8:11202. [PMID: 30046127 PMCID: PMC6060140 DOI: 10.1038/s41598-018-29518-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/12/2018] [Indexed: 01/04/2023] Open
Abstract
Nucleosome assembly proteins (NAPs) are histone chaperones with an important role in chromatin structure and epigenetic regulation of gene expression. We find that high gene expression levels of mouse Nap1l3 are restricted to haematopoietic stem cells (HSCs) in mice. Importantly, with shRNA or CRISPR-Cas9 mediated loss of function of mouse Nap1l3 and with overexpression of the gene, the number of colony-forming cells and myeloid progenitor cells in vitro are reduced. This manifests as a striking decrease in the number of HSCs, which reduces their reconstituting activities in vivo. Downregulation of human NAP1L3 in umbilical cord blood (UCB) HSCs impairs the maintenance and proliferation of HSCs both in vitro and in vivo. NAP1L3 downregulation in UCB HSCs causes an arrest in the G0 phase of cell cycle progression and induces gene expression signatures that significantly correlate with downregulation of gene sets involved in cell cycle regulation, including E2F and MYC target genes. Moreover, we demonstrate that HOXA3 and HOXA5 genes are markedly upregulated when NAP1L3 is suppressed in UCB HSCs. Taken together, our findings establish an important role for NAP1L3 in HSC homeostasis and haematopoietic differentiation.
Collapse
|
15
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Govindan S, Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 2017; 591:3960-3977. [PMID: 28895133 DOI: 10.1002/1873-3468.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The adult neocortex is composed of several types of glutamatergic neurons, which are sequentially born from progenitors during development. The extent and nature of progenitor diversity, and how it relates to neuronal diversity, is still poorly understood. In this review, we discuss key features of neocortical progenitors across several species, including their morphological properties, cell cycling behaviour and molecular signatures, and how these features relate to the competence of these cells to generate distinct types of progenies.
Collapse
Affiliation(s)
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
17
|
The Arp2/3 Complex Is Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse Unsilencing. J Neurosci 2017; 36:9696-709. [PMID: 27629719 DOI: 10.1523/jneurosci.0876-16.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Dendritic filopodia are actin-rich structures that are thought to contribute to early spine synapse formation; however, the actin regulatory proteins important for early synaptogenesis are poorly defined. Using organotypic hippocampal slice cultures and primary neuron hippocampal cultures from Arp2/3 conditional knock-out mice, we analyze the roles of the Arp2/3 complex, an actin regulator that creates branched actin networks, and demonstrate it is essential for distinct stages of both structural and functional maturation of excitatory spine synapses. Our data show that initially the Arp2/3 complex inhibits the formation of dendritic filopodia but that later during development, the Arp2/3 complex drives the morphological maturation from filopodia to typical spine morphology. Furthermore, we demonstrate that although the Arp2/3 complex is not required for key spine maturation steps, such as presynaptic contact and recruitment of MAGUK (membrane-associated guanylate kinase) scaffolding proteins or NMDA receptors, it is necessary for the recruitment of AMPA receptors. This latter process, also known as synapse unsilencing, is a final and essential step in the neurodevelopment of excitatory postsynaptic synaptogenesis, setting the stage for neuronal interconnectivity. These findings provide the first evidence that the Arp2/3 complex is directly involved in functional maturation of dendritic spines during the developmental period of spinogenesis. SIGNIFICANCE STATEMENT Excitatory spine synapse formation (spinogenesis) is a poorly understood yet pivotal period of neurodevelopment that occurs within 2-3 weeks after birth. Neurodevelopmental disorders such as intellectual disability and autism are characterized by abnormal spine structure, which may arise from abnormal excitatory synaptogenesis. The initial stage of spinogenesis is thought to begin with the emergence of actin-rich dendritic filopodia that initiate contact with presynaptic axonal boutons. However, it remains enigmatic how actin cytoskeletal regulation directs dendritic filopodial emergence or their subsequent maturation into dendritic spines during development and on into adulthood. In this study, we provide the first evidence that the Arp2/3 complex, a key actin nucleator, is involved in distinct stages of spine formation and is required for synapse unsilencing.
Collapse
|
18
|
Raju HB, Tsinoremas NF, Capobianco E. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data. Front Neurol 2016; 7:168. [PMID: 27803687 PMCID: PMC5067702 DOI: 10.3389/fneur.2016.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022] Open
Abstract
Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein-protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches.
Collapse
Affiliation(s)
- Hemalatha B Raju
- Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL, USA; Human Genetics and Genomic Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicholas F Tsinoremas
- Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL, USA; Human Genetics and Genomic Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Enrico Capobianco
- Center for Computational Science, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
19
|
Cortical neurons gradually attain a post-mitotic state. Cell Res 2016; 26:1033-47. [PMID: 27325298 DOI: 10.1038/cr.2016.76] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/26/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022] Open
Abstract
Once generated, neurons are thought to permanently exit the cell cycle and become irreversibly differentiated. However, neither the precise point at which this post-mitotic state is attained nor the extent of its irreversibility is clearly defined. Here we report that newly born neurons from the upper layers of the mouse cortex, despite initiating axon and dendrite elongation, continue to drive gene expression from the neural progenitor tubulin α1 promoter (Tα1p). These observations suggest an ambiguous post-mitotic neuronal state. Whole transcriptome analysis of sorted upper cortical neurons further revealed that neurons continue to express genes related to cell cycle progression long after mitotic exit until at least post-natal day 3 (P3). These genes are however down-regulated thereafter, associated with a concomitant up-regulation of tumor suppressors at P5. Interestingly, newly born neurons located in the cortical plate (CP) at embryonic day 18-19 (E18-E19) and P3 challenged with calcium influx are found in S/G2/M phases of the cell cycle, and still able to undergo division at E18-E19 but not at P3. At P5 however, calcium influx becomes neurotoxic and leads instead to neuronal loss. Our data delineate an unexpected flexibility of cell cycle control in early born neurons, and describe how neurons transit to a post-mitotic state.
Collapse
|
20
|
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation. Genetics 2015; 202:123-39. [PMID: 26434722 DOI: 10.1534/genetics.115.183137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.
Collapse
|
21
|
Guo J, Higginbotham H, Li J, Nichols J, Hirt J, Ghukasyan V, Anton ES. Developmental disruptions underlying brain abnormalities in ciliopathies. Nat Commun 2015. [PMID: 26206566 PMCID: PMC4515781 DOI: 10.1038/ncomms8857] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are essential conveyors of signals underlying major cell functions. Cerebral cortical progenitors and neurons have a primary cilium. The significance of cilia function for brain development and function is evident in the plethora of developmental brain disorders associated with human ciliopathies. Nevertheless, the role of primary cilia function in corticogenesis remains largely unknown. Here we delineate the functions of primary cilia in the construction of cerebral cortex and their relevance to ciliopathies, using an shRNA library targeting ciliopathy genes known to cause brain disorders, but whose roles in brain development are unclear. We used the library to query how ciliopathy genes affect distinct stages of mouse cortical development, in particular neural progenitor development, neuronal migration, neuronal differentiation and early neuronal connectivity. Our results define the developmental functions of ciliopathy genes and delineate disrupted developmental events that are integrally related to the emergence of brain abnormalities in ciliopathies. Primary cilia are essential conveyors of signals underlying major cellular functions but their role in brain development is not completely understood. Here the authors compiled a shRNA library targeting ciliopathy genes known to cause brain disorders, and used it to query how ciliopathy genes affect distinct stages of mouse cortical development.
Collapse
Affiliation(s)
- Jiami Guo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Holden Higginbotham
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jingjun Li
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jackie Nichols
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Josua Hirt
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Vladimir Ghukasyan
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
22
|
Eom TY, Stanco A, Guo J, Wilkins G, Deslauriers D, Yan J, Monckton C, Blair J, Oon E, Perez A, Salas E, Oh A, Ghukasyan V, Snider WD, Rubenstein JLR, Anton ES. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration. Dev Cell 2015; 31:677-89. [PMID: 25535916 DOI: 10.1016/j.devcel.2014.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 09/14/2014] [Accepted: 11/13/2014] [Indexed: 01/15/2023]
Abstract
Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. The two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial versus tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT-severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Amelia Stanco
- Department of Psychiatry, Neuroscience Program, and Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Jiami Guo
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Gary Wilkins
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Danielle Deslauriers
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jessica Yan
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chase Monckton
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joshua Blair
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Eesim Oon
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Abby Perez
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Eduardo Salas
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Adrianna Oh
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vladimir Ghukasyan
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - William D Snider
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - E S Anton
- UNC Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Heng JIT, Qu Z, Ohtaka-Maruyama C, Okado H, Kasai M, Castro D, Guillemot F, Tan SS. The zinc finger transcription factor RP58 negatively regulates Rnd2 for the control of neuronal migration during cerebral cortical development. Cereb Cortex 2015; 25:806-16. [PMID: 24084125 DOI: 10.1093/cercor/bht277] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The zinc finger transcription factor RP58 (also known as ZNF238) regulates neurogenesis of the mouse neocortex and cerebellum (Okado et al. 2009; Xiang et al. 2011; Baubet et al. 2012; Ohtaka-Maruyama et al. 2013), but its mechanism of action remains unclear. In this study, we report a cell-autonomous function for RP58 during the differentiation of embryonic cortical projection neurons via its activities as a transcriptional repressor. Disruption of RP58 expression alters the differentiation of immature neurons and impairs their migration and positioning within the mouse cerebral cortex. Loss of RP58 within the embryonic cortex also leads to elevated mRNA for Rnd2, a member of the Rnd family of atypical RhoA-like GTPase proteins important for cortical neuron migration (Heng et al. 2008). Mechanistically, RP58 represses transcription of Rnd2 via binding to a 3'-regulatory enhancer in a sequence-specific fashion. Using reporter assays, we found that RP58 repression of Rnd2 is competed by proneural basic helix-loop-helix transcriptional activators. Finally, our rescue experiments revealed that negative regulation of Rnd2 by RP58 was important for cortical cell migration in vivo. Taken together, these studies demonstrate that RP58 is a key player in the transcriptional control of cell migration in the developing cerebral cortex.
Collapse
Affiliation(s)
- Julian Ik-Tsen Heng
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia Florey Institute of Neuroscience and Mental Health, Genetics Lane, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Zhengdong Qu
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia Florey Institute of Neuroscience and Mental Health, Genetics Lane, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Chiaki Ohtaka-Maruyama
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Haruo Okado
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masataka Kasai
- Center for Stem Cell and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan and
| | - Diogo Castro
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - François Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, Genetics Lane, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| |
Collapse
|
24
|
Hayashi S, Inoue Y, Kiyonari H, Abe T, Misaki K, Moriguchi H, Tanaka Y, Takeichi M. Protocadherin-17 mediates collective axon extension by recruiting actin regulator complexes to interaxonal contacts. Dev Cell 2014; 30:673-87. [PMID: 25199687 DOI: 10.1016/j.devcel.2014.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/07/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
In the process of neuronal wiring, axons derived from the same functional group typically extend together, resulting in fascicle formation. How these axons communicate with one another remains largely unknown. Here, we show that protocadherin-17 (Pcdh17) supports this group extension by recruiting actin polymerization regulators to interaxonal contact sites. Pcdh17 is expressed by a subset of amygdala neurons, and it accumulates at axon-axon boundaries because of homophilic binding. Pcdh17 knockout in mice suppressed the extension of these axons. Ectopically expressed Pcdh17 altered the pattern of axon extension. In in-vitro cultures, wild-type growth cones normally migrate along other axons, whereas Pcdh17 null growth cones do not. Pcdh17 recruits the WAVE complex, Lamellipodin, and Ena/VASP to cell-cell contacts, converting these sites into motile structures. We propose that, through these mechanisms, Pcdh17 maintains the migration of growth cones that are in contact with other axons, thereby supporting their collective extension.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yoko Inoue
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazuyo Misaki
- Laboratory for Electron Microscope, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroyuki Moriguchi
- Laboratory for Integrated Biodevice, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
25
|
Choi J, Park S, Sockanathan S. Activated retinoid receptors are required for the migration and fate maintenance of subsets of cortical neurons. Development 2014; 141:1151-60. [PMID: 24504337 DOI: 10.1242/dev.104505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Layer-specific cortical neurons are essential components of local, intracortical and subcortical circuits and are specified by complex signaling pathways acting on cortical progenitors. However, whether extrinsic signals contribute to postmitotic cortical neuronal development is unclear. Here we show in mice that retinoic acid (RA) receptors are activated in newly born migrating cortical neurons indicative of endogenous RA in the cortex. Disruption of RA signaling in postmitotic neurons by dominant-negative retinoid receptor RAR403 expression specifically delays late-born cortical neuron migration in vivo. Moreover, prospective layer V-III neurons that express RAR403 fail to maintain their fates and instead acquire characteristics of layer II neurons. This latter phenotype is rescued by active forms of β-catenin at central and caudal but not rostral cortical regions. Taken together, these observations suggest that RA signaling pathways operate postmitotically to regulate the onset of radial migration and to consolidate regional differences in cortical neuronal identity.
Collapse
Affiliation(s)
- Jeonghoon Choi
- PCTB1004, the Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
26
|
Biswas S, Emond MR, Duy PQ, Hao LT, Beattie CE, Jontes JD. Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish. Mol Biol Cell 2013; 25:633-42. [PMID: 24371087 PMCID: PMC3937089 DOI: 10.1091/mbc.e13-08-0475] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interference with Pcdh18b function results in impaired arborization of motor axons in the developing zebrafish. Pcdh18b interacts with Nap1, a regulator of actin assembly. Time-lapse imaging indicates that both Pcdh18b and Nap1 may affect axon arborization by regulating the density of axonal filopodia. The proper assembly of neural circuits during development requires the precise control of axon outgrowth, guidance, and arborization. Although the protocadherin family of cell surface receptors is widely hypothesized to participate in neural circuit assembly, their specific roles in neuronal development remain largely unknown. Here we demonstrate that zebrafish pcdh18b is involved in regulating axon arborization in primary motoneurons. Although axon outgrowth and elongation appear normal, antisense morpholino knockdown of pcdh18b results in dose-dependent axon branching defects in caudal primary motoneurons. Cell transplantation experiments show that this effect is cell autonomous. Pcdh18b interacts with Nap1, a core component of the WAVE complex, through its intracellular domain, suggesting a role in the control of actin assembly. Like that of Pcdh18b, depletion of Nap1 results in reduced branching of motor axons. Time-lapse imaging and quantitative analysis of axon dynamics indicate that both Pcdh18b and Nap1 regulate axon arborization by affecting the density of filopodia along the shaft of the extending axon.
Collapse
Affiliation(s)
- Sayantanee Biswas
- Department of Neuroscience, Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University Medical Center, Columbus, OH 43210
| | | | | | | | | | | |
Collapse
|
27
|
Higginbotham H, Guo J, Yokota Y, Umberger NL, Su CY, Li J, Verma N, Hirt J, Caspary T, Anton ES. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 2013; 16:1000-7. [PMID: 23817546 PMCID: PMC3866024 DOI: 10.1038/nn.3451] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/29/2013] [Indexed: 12/14/2022]
Abstract
The construction of cerebral cortex begins with the formation of radial glia. Once formed, polarized radial glial cells divide either symmetrically or asymmetrically to balance appropriate production of progenitor cells and neurons. Following birth, neurons use the processes of radial glia as scaffolding for oriented migration. Radial glia therefore provide an instructive structural matrix to coordinate the generation and placement of distinct groups of cortical neurons in the developing cerebral cortex. We found that Arl13b, a cilia-enriched small GTPase that is mutated in Joubert syndrome, was critical for the initial formation of the polarized radial progenitor scaffold. Using developmental stage-specific deletion of Arl13b in mouse cortical progenitors, we found that early neuroepithelial deletion of ciliary Arl13b led to a reversal of the apical-basal polarity of radial progenitors and aberrant neuronal placement. Arl13b modulated ciliary signaling necessary for radial glial polarity. Our findings indicate that Arl13b signaling in primary cilia is crucial for the initial formation of a polarized radial glial scaffold and suggest that disruption of this process may contribute to aberrant neurodevelopment and brain abnormalities in Joubert syndrome-related ciliopathies.
Collapse
Affiliation(s)
- Holden Higginbotham
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Jiami Guo
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Yukako Yokota
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Nicole L. Umberger
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Chen-Ying Su
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jingjun Li
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Nisha Verma
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Joshua Hirt
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - E. S. Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
28
|
Kahr I, Vandepoele K, van Roy F. Delta-protocadherins in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:169-92. [PMID: 23481195 DOI: 10.1016/b978-0-12-394311-8.00008-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The protocadherin family comprises clustered and nonclustered protocadherin genes. The nonclustered genes encode mainly δ-protocadherins, which deviate markedly from classical cadherins. They can be subdivided phylogenetically into δ0-protocadherins (protocadherin-20), δ1-protocadherins (protocadherin-1, -7, -9, and -11X/Y), and δ2-protocadherins (protocadherin-8, -10, -17, -18, and -19). δ-Protocadherins share a similar gene structure and are expressed as multiple alternative splice forms differing mostly in their cytoplasmic domains (CDs). Some δ-protocadherins reportedly show cell-cell adhesion properties. Individual δ-protocadherins appear to be involved in specific signaling pathways, as they interact with proteins such as TAF1/Set, TAO2β, Nap1, and the Frizzled-7 receptor. The spatiotemporally restricted expression of δ-protocadherins in various tissues and species and their functional analysis suggest that they play multiple, tightly regulated roles in vertebrate development. Furthermore, several δ-protocadherins have been implicated in neurological disorders and in cancers, highlighting the importance of scrutinizing their properties and their dysregulation in various pathologies.
Collapse
Affiliation(s)
- Irene Kahr
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
29
|
Abstract
Nerve cells form elaborate, highly branched dendritic trees that are optimized for the receipt of synaptic signals. Recent work published in this issue of Genes & Development by Rosario and colleagues (pp. 1743-1757) shows that a Cdc42-specific GTPase-activating protein (NOMA-GAP) regulates the branching of dendrites by neurons in the top layers of the mouse cortex. The results raise interesting questions regarding the specification of arbors in different cortical layers and the mechanisms of dendrite branching.
Collapse
|
30
|
Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 2012; 139:1535-46. [PMID: 22492350 DOI: 10.1242/dev.069963] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
31
|
Xie MJ, Yagi H, Kuroda K, Wang CC, Komada M, Zhao H, Sakakibara A, Miyata T, Nagata KI, Oka Y, Iguchi T, Sato M. WAVE2–Abi2 Complex Controls Growth Cone Activity and Regulates the Multipolar–Bipolar Transition as well as the Initiation of Glia-Guided Migration. Cereb Cortex 2012; 23:1410-23. [DOI: 10.1093/cercor/bhs123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Zhu Z, Bhat KM. The Drosophila Hem/Kette/Nap1 protein regulates asymmetric division of neural precursor cells by regulating localization of Inscuteable and Numb. Mech Dev 2011; 128:483-95. [PMID: 21996673 DOI: 10.1016/j.mod.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 11/17/2022]
Abstract
The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells. We find that a well-studied Hem/Kette mutant allele produces at least two main, but possibly more, phenotypic classes of mutant embryos, and these phenotypes correlate with variable levels of maternal wild type Hem protein in the developing embryo. While the weaker class exhibits weak axon guidance defect and the mis-migration of neurons, the stronger class causes severe axon guidance defects, mis-migration of neurons and symmetric division of ganglion mother cells (GMC) of the RP2/sib lineage. We also show that the basis for the loss of asymmetric division is due to non-localization of Inscuteable and Numb in GMC-1. A non-asymmetric Numb segregates to both daughter cells of GMC-1, which then prevents Notch signaling from specifying a sib fate. This causes both cells to adopt an RP2 fate. Furthermore, loss of function for Abelson tyrosine kinase also causes loss of asymmetric localization of Inscuteable and Numb and symmetric division of GMC-1, the loss of function for WAVE has a very weakly penetrant loss of asymmetry defect. These results define another role for Hem/Kette/Nap1 in a neural precursor cell during neurogenesis.
Collapse
Affiliation(s)
- Zengrong Zhu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77598, United States
| | | |
Collapse
|
33
|
Neukirchen D, Bradke F. Neuronal polarization and the cytoskeleton. Semin Cell Dev Biol 2011; 22:825-33. [DOI: 10.1016/j.semcdb.2011.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/29/2011] [Accepted: 08/16/2011] [Indexed: 12/26/2022]
|
34
|
NYAP: a phosphoprotein family that links PI3K to WAVE1 signalling in neurons. EMBO J 2011; 30:4739-54. [PMID: 21946561 DOI: 10.1038/emboj.2011.348] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway has been extensively studied in neuronal function and morphogenesis. However, the precise molecular mechanisms of PI3K activation and its downstream signalling in neurons remain elusive. Here, we report the identification of the Neuronal tYrosine-phosphorylated Adaptor for the PI 3-kinase (NYAP) family of phosphoproteins, which is composed of NYAP1, NYAP2, and Myosin16/NYAP3. The NYAPs are expressed predominantly in developing neurons. Upon stimulation with Contactin5, the NYAPs are tyrosine phosphorylated by Fyn. Phosphorylated NYAPs interact with PI3K p85 and activate PI3K, Akt, and Rac1. Moreover, the NYAPs interact with the WAVE1 complex which mediates remodelling of the actin cytoskeleton after activation by PI3K-produced PIP(3) and Rac1. By simultaneously interacting with PI3K and the WAVE1 complex, the NYAPs bridge a PI3K-WAVE1 association. Disruption of the NYAP genes in mice affects brain size and neurite elongation. In conclusion, the NYAPs activate PI3K and concomitantly recruit the downstream effector WAVE complex to the close vicinity of PI3K and regulate neuronal morphogenesis.
Collapse
|
35
|
Zhu Z, Bhat KM. The Hem protein mediates neuronal migration by inhibiting WAVE degradation and functions opposite of Abelson tyrosine kinase. Dev Biol 2011; 357:283-94. [PMID: 21726548 PMCID: PMC3218108 DOI: 10.1016/j.ydbio.2011.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron. In Hem or WAVE mutants, RP2 neuron either abnormally migrates, crossing the midline from one hemisegment to the contralateral hemisegment, or does not migrate at al and fail to send out its axon projection. We report that Hem regulates neuronal migration through stabilizing WAVE. Since Hem and WAVE normally form a complex, our data argues that in the absence of Hem, WAVE, which is presumably no longer in a complex, becomes susceptible to degradation. We also find that Abelson tyrosine kinase affects RP2 migration in a similar manner as Hem and WAVE, and appears to operate via WAVE. However, while Abl negatively regulates the levels of WAVE, it regulates migration via regulating the activity of WAVE. Our results also show that during the degradation of WAVE, Hem function is opposite to that of and downstream of Abl.
Collapse
Affiliation(s)
- Zengrong Zhu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, Texas 77598
| | - Krishna Moorthi Bhat
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, Texas 77598
| |
Collapse
|
36
|
|
37
|
Cytoplasmic linker proteins regulate neuronal polarization through microtubule and growth cone dynamics. J Neurosci 2011; 31:1528-38. [PMID: 21273437 DOI: 10.1523/jneurosci.3983-10.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Axon formation is a hallmark of initial neuronal polarization. This process is thought to be regulated by enhanced microtubule stability in the subsequent axon and changes in actin dynamics in the future axonal growth cone. Here, we show that the microtubule end-binding proteins cytoplasmic linker protein (CLIP)-115 and CLIP-170 were enriched in the axonal growth cone and extended into the actin-rich domain of the growth cone. CLIPs were necessary for axon formation and sufficient to induce an axon. The regulation of axonal microtubule stabilization by CLIPs enabled the protrusion of microtubules into the leading edge of the axonal growth cone. Moreover, CLIPs positively regulated growth cone dynamics and restrained actin arc formation, which was necessary for axon growth. In fact, in neurons without CLIP activity, axon formation was restored by actin destabilization or myosin II inhibition. Together, our data suggest that CLIPs enable neuronal polarization by controlling the stabilization of microtubules and growth cone dynamics.
Collapse
|
38
|
Bernstein BW, Maloney MT, Bamburg JR. Actin and Diseases of the Nervous System. ADVANCES IN NEUROBIOLOGY 2011; 5:201-234. [PMID: 35547659 PMCID: PMC9088176 DOI: 10.1007/978-1-4419-7368-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abnormal regulation of the actin cytoskeleton results in several pathological conditions affecting primarily the nervous system. Those of genetic origin arise during development, but others manifest later in life. Actin regulation is also affected profoundly by environmental factors that can have sustained consequences for the nervous system. Those consequences follow from the fact that the actin cytoskeleton is essential for a multitude of cell biological functions ranging from neuronal migration in cortical development and dendritic spine formation to NMDA receptor activity in learning and alcoholism. Improper regulation of actin, causing aggregation, can contribute to the neurodegeneration of amyloidopathies, such as Down's syndrome and Alzheimer's disease. Much progress has been made in understanding the molecular basis of these diseases.
Collapse
Affiliation(s)
- Barbara W Bernstein
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Michael T Maloney
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
39
|
Abl-interactor-1 (Abi1) has a role in cardiovascular and placental development and is a binding partner of the alpha4 integrin. Proc Natl Acad Sci U S A 2010; 108:149-54. [PMID: 21173240 DOI: 10.1073/pnas.1012316108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dynamic signals linking the actin cytoskeleton and cell adhesion receptors are essential for morphogenesis during development and normal tissue homeostasis. Abi1 is a central regulator of actin polymerization through interactions with multiple protein complexes. However, the in vivo role of Abi1 remains to be defined. The α4 integrin adhesion receptor is associated with enhanced protrusive activity and regulation of directional cell migration. Among integrin subunits, α4 exhibits unique properties in that it predominantly accumulates at the leading edge of migrating cells; however, the pathways that link the actin-regulatory machinery to α4 at the leading edge have remained elusive. We generated Abi1 KO mice and found that loss of Abi1 phenocopies KO of α4. Mice lacking Abi1 or α4 exhibit midgestational lethality with abnormalities in placental and cardiovascular development. Notably, purified Abi1 protein binds directly to the α4 cytoplasmic tail and endogenous Abi1 colocalizes with phosphorylated α4 at the leading edge of spreading cells. Moreover, Abi1-deficient cells expressing α4 have impaired cell spreading, which is rescued by WT Abi1 but not an Abi1 mutant lacking the α4-binding site. These data reveal a direct link between the α4 integrin and actin polymerization and uncover a role for Abi1 in the regulation of morphogenesis in vivo. The Abi1-α4 interaction establishes a mechanistic paradigm for signaling between adhesion events and enhanced actin polymerization at the earliest stages of protrusion.
Collapse
|
40
|
Park H, Chan MM, Iritani BM. Hem-1: putting the "WAVE" into actin polymerization during an immune response. FEBS Lett 2010; 584:4923-32. [PMID: 20969869 PMCID: PMC3363972 DOI: 10.1016/j.febslet.2010.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/28/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
Abstract
Most active processes by immune cells including adhesion, migration, and phagocytosis require the coordinated polymerization and depolymerization of filamentous actin (F-actin), which is an essential component of the actin cytoskeleton. This review focuses on a newly characterized hematopoietic cell-specific actin regulatory protein called hematopoietic protein-1 [Hem-1, also known as Nck-associated protein 1-like (Nckap1l or Nap1l)]. Hem-1 is a component of the "WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein]" complex, which signals downstream of activated Rac to stimulate F-actin polymerization in response to immuno-receptor signaling. Genetic studies in cell lines and in mice suggest that Hem-1 regulates F-actin polymerization in hematopoietic cells, and may be essential for most active processes dependent on reorganization of the actin cytoskeleton in immune cells.
Collapse
Affiliation(s)
- Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| | - Maia M. Chan
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| |
Collapse
|
41
|
Higginbotham H, Yokota Y, Anton ES. Strategies for analyzing neuronal progenitor development and neuronal migration in the developing cerebral cortex. ACTA ACUST UNITED AC 2010; 21:1465-74. [PMID: 21078821 DOI: 10.1093/cercor/bhq197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on 1) neural progenitor differentiation, which leads to the generation of appropriate number and types of neurons, and 2) neuronal migration, which enables the appropriate positioning of neurons so that the correct patterns of functional synaptic connectivity between neurons can emerge. In this review, we discuss 1) currently available methods to study neural progenitor development and differentiation in the developing cerebral cortex and emerging technologies in this regard, 2) assays to study the migration of descendents of progenitors (i.e., neurons) in vitro and in vivo, and 3) the use of these assays to probe the molecular control of these events in the developing brain and evaluation of gene functions disrupted in human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Holden Higginbotham
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
42
|
Escobar B, de Cárcer G, Fernández-Miranda G, Cascón A, Bravo-Cordero JJ, Montoya MC, Robledo M, Cañamero M, Malumbres M. Brick1 is an essential regulator of actin cytoskeleton required for embryonic development and cell transformation. Cancer Res 2010; 70:9349-59. [PMID: 20861187 DOI: 10.1158/0008-5472.can-09-4491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brick1 (Brk1) is the less-studied component of the Wave/Scar pathway involved in the branched nucleation of actin fibers. The clinical relevance of Brk1 is emphasized by correlative data showing that Von Hippel-Lindau (VHL) patients that also lose the BRK1 gene are protected against the development of tumors. This contrasts with recent evidence suggesting that the Wave complex may function as an invasion suppressor in epithelial cancers. Here, we show that the downregulation of Brk1 results in abnormal actin stress fiber formation and vinculin distribution and loss of Arp2/3 and Wave proteins at the cellular protrusions. Brk1 is required for cell proliferation and cell transformation by oncogenes. In addition, Brk1 downregulation results in defective directional migration and invasive growth in renal cell carcinoma cells as well as in other tumor cell types. Finally, genetic ablation of Brk1 results in dramatic defects in embryo compaction and development, suggesting an essential role for this protein in actin dynamics. Thus, genetic loss or inhibition of BRK1 is likely to be protective against tumor development due to proliferation and motility defects in affected cells.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/physiology
- Cell Proliferation
- Cell Transformation, Neoplastic
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Cytoskeletal Proteins/physiology
- Cytoskeleton/metabolism
- Down-Regulation
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryonic Development/genetics
- Embryonic Development/physiology
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Knockout
- Mice, SCID
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Beatriz Escobar
- Cell Division and Cancer Group, Confocal Microscopy and Cytometry Unit, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kessels MM, Schwintzer L, Schlobinski D, Qualmann B. Controlling actin cytoskeletal organization and dynamics during neuronal morphogenesis. Eur J Cell Biol 2010; 90:926-33. [PMID: 20965607 DOI: 10.1016/j.ejcb.2010.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 08/27/2010] [Accepted: 08/27/2010] [Indexed: 11/26/2022] Open
Abstract
Coordinated functions of the actin cytoskeleton and microtubules, which need to be carefully controlled in time and space, are required for the drastic alterations of neuronal morphology during neuromorphogenesis and neuronal network formation. A key process in neuronal actin dynamics is filament formation by actin nucleators, such as the Arp2/3 complex, formins and the brain-enriched, novel WH2 domain-based nucleators Spire and cordon-bleu (Cobl). We here discuss in detail the currently available data on the roles of these actin nucleators during neuromorphogenesis and highlight how their required control at the plasma membrane may be brought about. The Arp2/3 complex was found to be especially important for proper growth cone translocation and axon development. The underlying molecular mechanisms for Arp2/3 complex activation at the neuronal plasma membrane include a recruitment and an activation of N-WASP by lipid- and F-actin-binding adaptor proteins, Cdc42 and phosphatidyl-inositol-(4,5)-bisphosphate (PIP(2)). Together, these components upstream of N-WASP and the Arp2/3 complex ensure fine-control of N-WASP-mediated Arp2/3 complex activation and control distinct functions during axon development. They are counteracted by Arp2/3 complex inhibitors, such as PICK, which likewise play an important role in neuromorphogenesis. In contrast to the crucial role of the Arp2/3 complex in proper axon development, dendrite formation and dendritic arborization was revealed to critically involve the newly identified actin nucleator Cobl. Cobl is a brain-enriched protein and uses three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding and for promoting the formation of non-bundled, unbranched filaments. Thus, cells use different actin nucleators to steer the complex remodeling processes underlying cell morphogenesis, the formation of cellular networks and the development of complex body plans.
Collapse
Affiliation(s)
- Michael Manfred Kessels
- Institute for Biochemistry I, University Hospital Jena - Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
44
|
Abstract
The assembly of functional neuronal networks in the developing animal relies on the polarization of neurons, i.e., the formation of a single axon and multiple dendrites. Breaking the symmetry of neurons depends on cytoskeletal rearrangements. In particular, axon specification requires local dynamic instability of actin and stabilization of microtubules. The polarized cytoskeleton also provides the basis for selective trafficking and retention of cellular components in the future somatodendritic or axonal compartments. Hence, these mechanisms are not only essential to achieve neuronal polarization, but also to maintain it. Different extracellular and intracellular signals converge on the regulation of the cytoskeleton. Most notably, Rho GTPases, PI3K, Ena/VASP, cofilin and SAD kinases are major intracellular regulators of neuronal polarity. Analyzing polarity signals under physiological conditions will provide a better understanding of how neurons can be induced to repolarize under pathological conditions, i.e., to regenerate their axons after central nervous system (CNS) injury.
Collapse
Affiliation(s)
- Sabina Tahirovic
- Max Planck Institute of Neurobiology, Axonal Growth and Regeneration, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
45
|
Abstract
The mechanisms underlying the normal development of neuronal morphology remain a fundamental question in neurobiology. Studies in cultured neurons have suggested that the position of the centrosome and the Golgi may predict the site of axon outgrowth. During neuronal migration in the developing cortex, however, the centrosome and Golgi are oriented toward the cortical plate at a time when axons grow toward the ventricular zone. In the current work, we use in situ live imaging to demonstrate that the centrosome and the accompanying polarized cytoplasm exhibit apical translocation in newborn cortical neurons preceding initial axon outgrowth. Disruption of centrosomal activity or downregulation of the centriolar satellite protein PCM-1 affects axon formation. We further show that downregulation of the centrosomal protein Cep120 impairs microtubule organization, resulting in increased centrosome motility. Decreased centrosome motility resulting from microtubule stabilization causes an aberrant centrosomal localization, leading to misplaced axonal outgrowth. Our results reveal the dynamic nature of the centrosome in developing cortical neurons, and implicate centrosome translocation and microtubule organization during the multipolar stage as important determinants of axon formation.
Collapse
|
46
|
Singh KK, Ge X, Mao Y, Drane L, Meletis K, Samuels BA, Tsai LH. Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron 2010; 67:33-48. [PMID: 20624590 PMCID: PMC2938013 DOI: 10.1016/j.neuron.2010.06.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2010] [Indexed: 01/30/2023]
Abstract
The psychiatric illness risk gene Disrupted in Schizophrenia-1 (DISC1) plays an important role in brain development; however, it is unclear how DISC1 is regulated during cortical development. Here, we report that DISC1 is regulated during embryonic neural progenitor proliferation and neuronal migration through an interaction with DIX domain containing-1 (Dixdc1), the third mammalian gene discovered to contain a Disheveled-Axin (DIX) domain. We determined that Dixdc1 functionally interacts with DISC1 to regulate neural progenitor proliferation by co-modulating Wnt-GSK3beta/beta-catenin signaling. However, DISC1 and Dixdc1 do not regulate migration via this pathway. During neuronal migration, we discovered that phosphorylation of Dixdc1 by cyclin-dependent kinase 5 (Cdk5) facilitates its interaction with the DISC1-binding partner Ndel1. Furthermore, Dixdc1 phosphorylation and its interaction with DISC1/Ndel1 in vivo is required for neuronal migration. Together, these data reveal that Dixdc1 integrates DISC1 into Wnt-GSK3beta/beta-catenin-dependent and -independent signaling pathways during cortical development and further delineate how DISC1 contributes to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Karun K. Singh
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02139, USA
| | - Xuecai Ge
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yingwei Mao
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02139, USA
| | - Laurel Drane
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02139, USA
| | - Konstantinos Meletis
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02139, USA
| | - Benjamin A. Samuels
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02139, USA
| |
Collapse
|
47
|
Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, Stradal TE, Chrostek-Grashoff A, Brakebusch C, Bradke F. Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 2010; 30:6930-43. [PMID: 20484635 PMCID: PMC6632643 DOI: 10.1523/jneurosci.5395-09.2010] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/30/2010] [Accepted: 04/03/2010] [Indexed: 11/21/2022] Open
Abstract
Neuronal migration and axon growth, key events during neuronal development, require distinct changes in the cytoskeleton. Although many molecular regulators of polarity have been identified and characterized, relatively little is known about their physiological role in this process. To study the physiological function of Rac1 in neuronal development, we have generated a conditional knock-out mouse, in which Rac1 is ablated in the whole brain. Rac1-deficient cerebellar granule neurons, which do not express other Rac isoforms, showed impaired neuronal migration and axon formation both in vivo and in vitro. In addition, Rac1 ablation disrupts lamellipodia formation in growth cones. The analysis of Rac1 effectors revealed the absence of the Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth cones. Loss of WAVE function inhibited axon growth, whereas overexpression of a membrane-tethered WAVE mutant partially rescued axon growth in Rac1-knock-out neurons. In addition, pharmacological inhibition of the WAVE complex effector Arp2/3 also reduced axon growth. We propose that Rac1 recruits the WAVE complex to the plasma membrane to enable actin remodeling necessary for axon growth.
Collapse
Affiliation(s)
- Sabina Tahirovic
- Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Farida Hellal
- Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Dorothee Neukirchen
- Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Robert Hindges
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Boyan K. Garvalov
- Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Kevin C. Flynn
- Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Theresia E. Stradal
- Signalling and Motility Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Anna Chrostek-Grashoff
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, and
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, Biomedical Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frank Bradke
- Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
48
|
Valiente M, Marín O. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 2010; 20:68-78. [DOI: 10.1016/j.conb.2009.12.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 12/18/2022]
|
49
|
Yang Y, Kim AH, Bonni A. The dynamic ubiquitin ligase duo: Cdh1-APC and Cdc20-APC regulate neuronal morphogenesis and connectivity. Curr Opin Neurobiol 2010; 20:92-9. [PMID: 20060286 DOI: 10.1016/j.conb.2009.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/08/2009] [Accepted: 12/11/2009] [Indexed: 01/10/2023]
Abstract
The proper development and patterning of axons, dendrites, and synapses is essential for the establishment of accurate neuronal circuits in the brain. A major goal in neurobiology is to identify the mechanisms and principles that govern these fundamental developmental events of neuronal circuit formation. In recent years, exciting new studies have suggested that ubiquitin signaling pathways may play crucial roles in the control of neuronal connectivity. Among E3 ubiquitin ligases, Cdh1-anaphase promoting complex (Cdh1-APC) and Cdc20-APC have emerged as key regulators of diverse aspects of neuronal connectivity, from axon and dendrite morphogenesis to synapse differentiation and remodeling.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
50
|
Walter M, Bonin M, Pullman RS, Valente EM, Loi M, Gambarin M, Raymond D, Tinazzi M, Kamm C, Glöckle N, Poths S, Gasser T, Bressman SB, Klein C, Ozelius LJ, Riess O, Grundmann K. Expression profiling in peripheral blood reveals signature for penetrance in DYT1 dystonia. Neurobiol Dis 2010; 38:192-200. [PMID: 20053375 DOI: 10.1016/j.nbd.2009.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/14/2009] [Accepted: 12/20/2009] [Indexed: 11/27/2022] Open
Abstract
DYT1 dystonia is an autosomal-dominantly inherited movement disorder, which is usually caused by a GAG deletion in the TOR1A gene. Due to the reduced penetrance of approximately 30-40%, the determination of the mutation in a subject is of limited use with regard to actual manifestation of symptoms. In the present study, we used Affymetrix oligonucleotide microarrays to analyze global gene expression in blood samples of 15 manifesting and 15 non-manifesting mutation carriers in order to identify a susceptibility profile beyond the GAG deletion which is associated with the manifestation of symptoms in DYT1 dystonia. We identified a genetic signature which distinguished between asymptomatic mutation carriers and symptomatic DYT1 patients with 86.7% sensitivity and 100% specificity. This genetic signature could correctly predict the disease state in an independent test set with a sensitivity of 87.5% and a specificity of 85.7%. Conclusively, this genetic signature might provide a possibility to distinguish DYT1 patients from asymptomatic mutation carriers.
Collapse
Affiliation(s)
- M Walter
- Department of Medical Genetics, Institute of Human Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|