1
|
Cano LA, Albarracín AL, Farfán FD, Fernández E. Brain-hemispheric differences in the premotor area for motor planning: An approach based on corticomuscular connectivity during motor decision-making. Neuroimage 2025; 312:121230. [PMID: 40252879 PMCID: PMC12055607 DOI: 10.1016/j.neuroimage.2025.121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
This study investigates the role of the premotor area (PMA) in motor planning during decision-making, focusing on differences between brain hemispheres. A cross-sectional assessment was conducted involving seventeen right-handed participants who performed tasks requiring responses with either hand to visual stimuli. Motion capture, EEG and EMG signals were collected to analyze corticomuscular coherence (CMC) in the beta and gamma bands across four motor-related cortical areas. Findings revealed significant beta-band CMC between anterior deltoids and contralateral PMA before stimulus onset in simple reaction tasks. Moreover, significant beta-band CMC was observed between the left anterior deltoid and the right PMA during the motor planning phase, prior to the onset of muscle contraction, corresponding with shorter planning times. This connectivity pattern was consistent across both simple and complex reaction tasks, indicating that the PMA plays a crucial role during decision-making. Notably, motor planning for the right hand did not exhibit the same connectivity pattern, suggesting more complex cognitive processes. These results emphasize the distinct functional roles of the left and right hemispheres in motor planning and underscore the importance of CMC in understanding the neural mechanisms underlying motor control. This study contributes to the theoretical framework of motor decision-making and offers insights for future research on motor planning and rehabilitation strategies.
Collapse
Affiliation(s)
- Leonardo A Cano
- Neuroscience and Applied Technologies Laboratory (LINTEC), Instituto Superior de Investigaciones Biológicas (INSIBIO), National Scientific and Technical Research Council (CONICET), and Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman (UNT), San Miguel de Tucumán 4000, Argentina; Faculty of Physical Education (FACDEF), National University of Tucuman (UNT), San Miguel de Tucumán 4000, Argentina.
| | - Ana L Albarracín
- Neuroscience and Applied Technologies Laboratory (LINTEC), Instituto Superior de Investigaciones Biológicas (INSIBIO), National Scientific and Technical Research Council (CONICET), and Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman (UNT), San Miguel de Tucumán 4000, Argentina
| | - Fernando D Farfán
- Neuroscience and Applied Technologies Laboratory (LINTEC), Instituto Superior de Investigaciones Biológicas (INSIBIO), National Scientific and Technical Research Council (CONICET), and Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman (UNT), San Miguel de Tucumán 4000, Argentina; Institute of Bioengineering, Miguel Hernandez University (UMH), Elche 03202, Spain.
| | - Eduardo Fernández
- Institute of Bioengineering, Miguel Hernandez University (UMH), Elche 03202, Spain; Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| |
Collapse
|
2
|
Saitoh K. Stimulation of teleost pallium elicits an integrated feeding kinematic pattern important for prey capture. J Exp Biol 2025; 228:JEB249614. [PMID: 39911091 DOI: 10.1242/jeb.249614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The precise control of jaw movements during vertebrate predatory behaviour is crucial for successful prey capture. In mammals, the movement patterns associated with orofacial movements have been investigated via long-lasting intracortical microstimulation, and have revealed a cortical contribution of integrated jaw movements to prey capture. However, little is known regarding the role of the pallium, a homologue of the mammalian cortex, in the control of jaw movements in anamniotes, such as fish and amphibians. Here, I therefore investigated the pallial involvement in the orobranchial movements using Odontobutis obscura, a bottom-dwelling fish, as a case study. Electrical microstimulation of the pallial surface elicited an integrated feeding motor programme with a jaw opening-closure sequence combined with closure of the operculums (gills). Sustained jaw closure could also be evoked. Furthermore, the effective stimulation sites for the two kinematic patterns were found to be primarily distributed in the caudomedial part of the dorsal pallium. I also observed associations between opercular movements and the two kinematic patterns, and recorded prey capture composed of several distinct phases: approach, fixation, snapping and withdrawal backwards. In the snapping phase, jaw opening and closure were combined with gill movements. These findings suggest evolutionary continuity in the neural mechanisms underlying predatory behaviours across vertebrates, from teleosts to mammals.
Collapse
Affiliation(s)
- Kazuya Saitoh
- Faculty of Health and Nutrition, Yamagata Prefectural Yonezawa University of Nutrition Sciences, 15-1, Torimachi, Yonezawa City, Yamagata Prefecture 992-0025, Japan
| |
Collapse
|
3
|
Frank SM. Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms. Neuroscientist 2025; 31:98-114. [PMID: 38813891 PMCID: PMC11809113 DOI: 10.1177/10738584241256277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.
Collapse
Affiliation(s)
- Sebastian M. Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Butz MV, Mittenbühler M, Schwöbel S, Achimova A, Gumbsch C, Otte S, Kiebel S. Contextualizing predictive minds. Neurosci Biobehav Rev 2025; 168:105948. [PMID: 39580009 DOI: 10.1016/j.neubiorev.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The structure of human memory seems to be optimized for efficient prediction, planning, and behavior. We propose that these capacities rely on a tripartite structure of memory that includes concepts, events, and contexts-three layers that constitute the mental world model. We suggest that the mechanism that critically increases adaptivity and flexibility is the tendency to contextualize. This tendency promotes local, context-encoding abstractions, which focus event- and concept-based planning and inference processes on the task and situation at hand. As a result, cognitive contextualization offers a solution to the frame problem-the need to select relevant features of the environment from the rich stream of sensorimotor signals. We draw evidence for our proposal from developmental psychology and neuroscience. Adopting a computational stance, we present evidence from cognitive modeling research which suggests that context sensitivity is a feature that is critical for maximizing the efficiency of cognitive processes. Finally, we turn to recent deep-learning architectures which independently demonstrate how context-sensitive memory can emerge in a self-organized learning system constrained by cognitively-inspired inductive biases.
Collapse
Affiliation(s)
- Martin V Butz
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany.
| | - Maximilian Mittenbühler
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Sarah Schwöbel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| | - Asya Achimova
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Christian Gumbsch
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, TU Dresden, Dresden 01069, Germany
| | - Sebastian Otte
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Adaptive AI Lab, Institute of Robotics and Cognitive Systems, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Stefan Kiebel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| |
Collapse
|
5
|
Theofanopoulou C. Tapping into the vocal learning and rhythmic synchronization hypothesis. BMC Neurosci 2024; 25:63. [PMID: 39506690 PMCID: PMC11539701 DOI: 10.1186/s12868-024-00863-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 11/08/2024] Open
Abstract
In this article, I present three main points that could benefit the "vocal learning and rhythmic synchronization hypothesis", encompassing neurogenetic mechanisms of gene expression transmission and single motor neuron function, classification of different behavioral motor phenotypes (e.g., spontaneous vs. voluntary), and other evolutionary considerations (i.e., the involvement of reward mechanisms).
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Rockefeller University, New York, NY, USA.
- Center for Ballet and the Arts, New York University, New York, NY, USA.
- Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Ting LH, Gick B, Kesar TM, Xu J. Ethnokinesiology: towards a neuromechanical understanding of cultural differences in movement. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230485. [PMID: 39155720 PMCID: PMC11529631 DOI: 10.1098/rstb.2023.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 08/20/2024] Open
Abstract
Each individual's movements are sculpted by constant interactions between sensorimotor and sociocultural factors. A theoretical framework grounded in motor control mechanisms articulating how sociocultural and biological signals converge to shape movement is currently missing. Here, we propose a framework for the emerging field of ethnokinesiology aiming to provide a conceptual space and vocabulary to help bring together researchers at this intersection. We offer a first-level schema for generating and testing hypotheses about cultural differences in movement to bridge gaps between the rich observations of cross-cultural movement variations and neurophysiological and biomechanical accounts of movement. We explicitly dissociate two interacting feedback loops that determine culturally relevant movement: one governing sensorimotor tasks regulated by neural signals internal to the body, the other governing ecological tasks generated through actions in the environment producing ecological consequences. A key idea is the emergence of individual-specific and culturally influenced motor concepts in the nervous system, low-dimensional functional mappings between sensorimotor and ecological task spaces. Motor accents arise from perceived differences in motor concept topologies across cultural contexts. We apply the framework to three examples: speech, gait and grasp. Finally, we discuss how ethnokinesiological studies may inform personalized motor skill training and rehabilitation, and challenges moving forward.This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
- Lena H. Ting
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Georgia Institute of Technology, Atlanta, GA30332, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA30322, USA
| | - Bryan Gick
- Department of Linguistics, The University British Columbia, Vancouver, BCV6T 1Z4, Canada
- Haskins Laboratories, Yale University, New Haven, CT06520, USA
| | - Trisha M. Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA30322, USA
| | - Jing Xu
- Department of Kinesiology, The University of Georgia, Athens, GA30602, USA
| |
Collapse
|
7
|
Dima DC, Janarthanan S, Culham JC, Mohsenzadeh Y. Shared representations of human actions across vision and language. Neuropsychologia 2024; 202:108962. [PMID: 39047974 DOI: 10.1016/j.neuropsychologia.2024.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Humans can recognize and communicate about many actions performed by others. How are actions organized in the mind, and is this organization shared across vision and language? We collected similarity judgments of human actions depicted through naturalistic videos and sentences, and tested four models of action categorization, defining actions at different levels of abstraction ranging from specific (action verb) to broad (action target: whether an action is directed towards an object, another person, or the self). The similarity judgments reflected a shared organization of action representations across videos and sentences, determined mainly by the target of actions, even after accounting for other semantic features. Furthermore, language model embeddings predicted the behavioral similarity of action videos and sentences, and captured information about the target of actions alongside unique semantic information. Together, our results show that action concepts are similarly organized in the mind across vision and language, and that this organization reflects socially relevant goals.
Collapse
Affiliation(s)
- Diana C Dima
- Dept of Computer Science, Western University, London, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
| | | | - Jody C Culham
- Dept of Psychology, Western University, London, Ontario, Canada
| | - Yalda Mohsenzadeh
- Dept of Computer Science, Western University, London, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Lo YT, Jiang L, Woodington B, Middya S, Braendlein M, Lam JLW, Lim MJR, Ng VYP, Rao JP, Chan DWS, Ang BT. Recording of single-unit activities with flexible micro-electrocorticographic array in rats for decoding of whole-body navigation. J Neural Eng 2024; 21:046037. [PMID: 38986465 DOI: 10.1088/1741-2552/ad618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.Micro-electrocorticographic (μECoG) arrays are able to record neural activities from the cortical surface, without the need to penetrate the brain parenchyma. Owing in part to small electrode sizes, previous studies have demonstrated that single-unit spikes could be detected from the cortical surface, and likely from Layer I neurons of the neocortex. Here we tested the ability to useμECoG arrays to decode, in rats, body position during open field navigation, through isolated single-unit activities.Approach. μECoG arrays were chronically implanted onto primary motor cortex (M1) of Wistar rats, and neural recording was performed in awake, behaving rats in an open-field enclosure. The signals were band-pass filtered between 300-3000 Hz. Threshold-crossing spikes were identified and sorted into distinct units based on defined criteria including waveform morphology and refractory period. Body positions were derived from video recordings. We used gradient-boosting machine to predict body position based on previous 100 ms of spike data, and correlation analyses to elucidate the relationship between position and spike patterns.Main results.Single-unit spikes could be extracted during chronic recording fromμECoG, and spatial position could be decoded from these spikes with a mean absolute error of prediction of 0.135 and 0.090 in the x- and y- dimensions (of a normalized range from 0 to 1), and Pearson's r of 0.607 and 0.571, respectively.Significance. μECoG can detect single-unit activities that likely arise from superficial neurons in the cortex and is a promising alternative to intracortical arrays, with the added benefit of scalability to cover large cortical surface with minimal incremental risks. More studies should be performed in human related to its use as brain-machine interface.
Collapse
Affiliation(s)
- Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lei Jiang
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
| | | | | | | | | | - Mervyn Jun Rui Lim
- Department of Neurosurgery, National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vincent Yew Poh Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Jai Prashanth Rao
- Duke-NUS Medical School, Singapore, Singapore
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore
| | | | - Beng Ti Ang
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
9
|
MacLennan RJ, Hernandez-Sarabia JA, Reese SM, Shields JE, Smith CM, Stute K, Collyar J, Olmos AA, Danielson TL, MacLennan DL, Pagan JI, Girts RM, Harmon KK, Coker N, Carr JC, Ye X, Perry JW, Stock MS, DeFreitas JM. fNIRS is capable of distinguishing laterality of lower body contractions. Exp Brain Res 2024; 242:1115-1126. [PMID: 38483567 DOI: 10.1007/s00221-024-06798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 07/13/2024]
Abstract
The use of functional near-infrared spectroscopy (fNIRS) for brain imaging during human movement continues to increase. This technology measures brain activity non-invasively using near-infrared light, is highly portable, and robust to motion artifact. However, the spatial resolution of fNIRS is lower than that of other imaging modalities. It is unclear whether fNIRS has sufficient spatial resolution to differentiate nearby areas of the cortex, such as the leg areas of the motor cortex. Therefore, the purpose of this study was to determine fNIRS' ability to discern laterality of lower body contractions. Activity in the primary motor cortex was recorded in forty participants (mean = 23.4 years, SD = 4.5, female = 23, male = 17) while performing unilateral lower body contractions. Contractions were performed at 30% of maximal force against a handheld dynamometer. These contractions included knee extension, knee flexion, dorsiflexion, and plantar flexion of the left and right legs. fNIRS signals were recorded and stored for offline processing and analysis. Channels of fNIRS data were grouped into regions of interest, with five tolerance conditions ranging from strict to lenient. Four of five tolerance conditions resulted in significant differences in cortical activation between hemispheres. During right leg contractions, the left hemisphere was more active than the right hemisphere. Similarly, during left leg contractions, the right hemisphere was more active than the left hemisphere. These results suggest that fNIRS has sufficient spatial resolution to distinguish laterality of lower body contractions. This makes fNIRS an attractive technology in research and clinical applications in which laterality of brain activity is required during lower body activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xin Ye
- University of Hartford, West Hartford, USA
| | | | | | | |
Collapse
|
10
|
Brezovec BE, Berger AB, Hao YA, Chen F, Druckmann S, Clandinin TR. Mapping the neural dynamics of locomotion across the Drosophila brain. Curr Biol 2024; 34:710-726.e4. [PMID: 38242122 DOI: 10.1016/j.cub.2023.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Locomotion engages widely distributed networks of neurons. However, our understanding of the spatial architecture and temporal dynamics of the networks that underpin walking remains incomplete. We use volumetric two-photon imaging to map neural activity associated with walking across the entire brain of Drosophila. We define spatially clustered neural signals selectively associated with changes in either forward or angular velocity, demonstrating that neurons with similar behavioral selectivity are clustered. These signals reveal distinct topographic maps in diverse brain regions involved in navigation, memory, sensory processing, and motor control, as well as regions not previously linked to locomotion. We identify temporal trajectories of neural activity that sweep across these maps, including signals that anticipate future movement, representing the sequential engagement of clusters with different behavioral specificities. Finally, we register these maps to a connectome and identify neural networks that we propose underlie the observed signals, setting a foundation for subsequent circuit dissection. Overall, our work suggests a spatiotemporal framework for the emergence and execution of complex walking maneuvers and links this brain-wide neural activity to single neurons and local circuits.
Collapse
Affiliation(s)
- Bella E Brezovec
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Fairchild D200, 299 W. Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Cano LA, Albarracín AL, Pizá AG, García-Cena CE, Fernández-Jover E, Farfán FD. Assessing Cognitive Workload in Motor Decision-Making through Functional Connectivity Analysis: Towards Early Detection and Monitoring of Neurodegenerative Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:1089. [PMID: 38400247 PMCID: PMC10893317 DOI: 10.3390/s24041089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and frontotemporal dementia, among others, are increasingly prevalent in the global population. The clinical diagnosis of these NDs is based on the detection and characterization of motor and non-motor symptoms. However, when these diagnoses are made, the subjects are often in advanced stages where neuromuscular alterations are frequently irreversible. In this context, we propose a methodology to evaluate the cognitive workload (CWL) of motor tasks involving decision-making processes. CWL is a concept widely used to address the balance between task demand and the subject's available resources to complete that task. In this study, multiple models for motor planning during a motor decision-making task were developed by recording EEG and EMG signals in n=17 healthy volunteers (9 males, 8 females, age 28.66±8.8 years). In the proposed test, volunteers have to make decisions about which hand should be moved based on the onset of a visual stimulus. We computed functional connectivity between the cortex and muscles, as well as among muscles using both corticomuscular and intermuscular coherence. Despite three models being generated, just one of them had strong performance. The results showed two types of motor decision-making processes depending on the hand to move. Moreover, the central processing of decision-making for the left hand movement can be accurately estimated using behavioral measures such as planning time combined with peripheral recordings like EMG signals. The models provided in this study could be considered as a methodological foundation to detect neuromuscular alterations in asymptomatic patients, as well as to monitor the process of a degenerative disease.
Collapse
Affiliation(s)
- Leonardo Ariel Cano
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
| | - Ana Lía Albarracín
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
| | - Alvaro Gabriel Pizá
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
| | - Cecilia Elisabet García-Cena
- ETSIDI-Center for Automation and Robotics, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Eduardo Fernández-Jover
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, 03202 Elche, Spain
- Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fernando Daniel Farfán
- Neuroscience and Applied Technologies Laboratory (LINTEC), Bioengineering Department, Faculty of Exact Sciences and Technology (FACET), National University of Tucuman, Superior Institute of Biological Research (INSIBIO), National Scientific and Technical Research Council (CONICET), Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina
- Institute of Bioengineering, Universidad Miguel Hernández of Elche, 03202 Elche, Spain
- Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
12
|
Tucciarelli R, Ejaz N, Wesselink DB, Kolli V, Hodgetts CJ, Diedrichsen J, Makin TR. Does Ipsilateral Remapping Following Hand Loss Impact Motor Control of the Intact Hand? J Neurosci 2024; 44:e0948232023. [PMID: 38050100 PMCID: PMC10860625 DOI: 10.1523/jneurosci.0948-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.
Collapse
Affiliation(s)
- Raffaele Tucciarelli
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Naveed Ejaz
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
| | - Daan B Wesselink
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vijay Kolli
- Queen Mary's Hospital, London SW15 5PN, United Kingdom
| | - Carl J Hodgetts
- CUBRIC, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Jörn Diedrichsen
- Departments of Statistical and Actuarial Sciences and Computer Science, Western University, London, Ontario N6A 5B7, Canada
- Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Tamar R Makin
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
13
|
Llobera J, Charbonnier C. Physics-based character animation and human motor control. Phys Life Rev 2023; 46:190-219. [PMID: 37480729 DOI: 10.1016/j.plrev.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/24/2023]
Abstract
Motor neuroscience and physics-based character animation (PBCA) approach human and humanoid control from different perspectives. The primary goal of PBCA is to control the movement of a ragdoll (humanoid or animal) applying forces and torques within a physical simulation. The primary goal of motor neuroscience is to understand the contribution of different parts of the nervous system to generate coordinated movements. We review the functional principles and the functional anatomy of human motor control and the main strategies used in PBCA. We then explore common research points by discussing the functional anatomy and ongoing debates in motor neuroscience from the perspective of PBCA. We also suggest there are several benefits to be found in studying sensorimotor integration and human-character coordination through closer collaboration between these two fields.
Collapse
Affiliation(s)
- Joan Llobera
- Artanim Foundation, 40, chemin du Grand-Puits, 1217 Meyrin - Geneva, Switzerland.
| | - Caecilia Charbonnier
- Artanim Foundation, 40, chemin du Grand-Puits, 1217 Meyrin - Geneva, Switzerland
| |
Collapse
|
14
|
Pelliccia V, Del Vecchio M, Avanzini P, Revay M, Sartori I, Caruana F. 70 Years of Human Cingulate Cortex Stimulation. Functions and Dysfunctions Through the Lens of Electrical Stimulation. J Clin Neurophysiol 2023; 40:491-500. [PMID: 36007014 DOI: 10.1097/wnp.0000000000000961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY In this review, we retrace the results of 70 years of human cingulate cortex (CC) intracerebral electrical stimulation and discuss its contribution to our understanding of the anatomofunctional and clinical aspects of this wide cortical region. The review is divided into three main sections. In the first section, we report the results obtained by the stimulation of the anterior, middle, and posterior CC, in 30 studies conducted on approximately 1,000 patients from the 1950s to the present day. These studies show that specific manifestations can be reliably associated with specific cingulate subfields, with autonomic, interoceptive, and emotional manifestations clustered in the anterior cingulate, goal-oriented motor behaviors elicited from the anterior midcingulate and a variety of sensory symptoms characterizing the posterior cingulate regions. In the second section, we compare the effect of CC intracerebral electrical stimulation with signs and manifestations characterizing cingulate epilepsy, showing that the stimulation mapping of CC subfields provides precious information for understanding cingulate epileptic manifestations. The last section tackles the issue of the discrepancy emerging when comparing the results of clinical (electrical stimulation, epilepsy) studies-revealing the quintessential affective and motor nature of the CC-with that reported by neuroimaging studies-which focus on high-level cognitive functions. Particular attention will be paid to the hypothesis that CC hosts a "Pain Matrix" specifically involved in pain perception, which we will discuss in the light of the fact that the stimulation of CC (as well as cingulate epileptic seizures) does not induce nociceptive effects.
Collapse
Affiliation(s)
- Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Martina Revay
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Ivana Sartori
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| |
Collapse
|
15
|
Torres FDF, Ramalho BL, Rodrigues MR, Schmaedeke AC, Moraes VH, Reilly KT, Carvalho RDP, Vargas CD. Plasticity of face-hand sensorimotor circuits after a traumatic brachial plexus injury. Front Neurosci 2023; 17:1221777. [PMID: 37609451 PMCID: PMC10440702 DOI: 10.3389/fnins.2023.1221777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Background Interactions between the somatosensory and motor cortices are of fundamental importance for motor control. Although physically distant, face and hand representations are side by side in the sensorimotor cortex and interact functionally. Traumatic brachial plexus injury (TBPI) interferes with upper limb sensorimotor function, causes bilateral cortical reorganization, and is associated with chronic pain. Thus, TBPI may affect sensorimotor interactions between face and hand representations. Objective The aim of this study was to investigate changes in hand-hand and face-hand sensorimotor integration in TBPI patients using an afferent inhibition (AI) paradigm. Method The experimental design consisted of electrical stimulation (ES) applied to the hand or face followed by transcranial magnetic stimulation (TMS) to the primary motor cortex to activate a hand muscle representation. In the AI paradigm, the motor evoked potential (MEP) in a target muscle is significantly reduced when preceded by an ES at short-latency (SAI) or long-latency (LAI) interstimulus intervals. We tested 18 healthy adults (control group, CG), evaluated on the dominant upper limb, and nine TBPI patients, evaluated on the injured or the uninjured limb. A detailed clinical evaluation complemented the physiological investigation. Results Although hand-hand SAI was present in both the CG and the TBPI groups, hand-hand LAI was present in the CG only. Moreover, less AI was observed in TBPI patients than the CG both for face-hand SAI and LAI. Conclusion Our results indicate that sensorimotor integration involving both hand and face sensorimotor representations is affected by TBPI.
Collapse
Affiliation(s)
- Fernanda de Figueiredo Torres
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia Lima Ramalho
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Marcelle Ribeiro Rodrigues
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Schmaedeke
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Moraes
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen T. Reilly
- Trajectoires Team, Lyon Neuroscience Research Center, Lyon, France
- University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Raquel de Paula Carvalho
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
- Laboratory of Child Development and Motricity, Department of Human Movement Science, Institute of Health and Society, Universidade Federal de São Paulo, Santos, Brazil
| | - Claudia D. Vargas
- Laboratory of Neurobiology of Movement, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Neuroscience and Rehabilitation, Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research, Innovation and Dissemination Center for Neuromathematics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Zahler SH, Taylor DE, Wright BS, Wong JY, Shvareva VA, Park YA, Feinberg EH. Hindbrain modules differentially transform activity of single collicular neurons to coordinate movements. Cell 2023; 186:3062-3078.e20. [PMID: 37343561 PMCID: PMC10424787 DOI: 10.1016/j.cell.2023.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Seemingly simple behaviors such as swatting a mosquito or glancing at a signpost involve the precise coordination of multiple body parts. Neural control of coordinated movements is widely thought to entail transforming a desired overall displacement into displacements for each body part. Here we reveal a different logic implemented in the mouse gaze system. Stimulating superior colliculus (SC) elicits head movements with stereotyped displacements but eye movements with stereotyped endpoints. This is achieved by individual SC neurons whose branched axons innervate modules in medulla and pons that drive head movements with stereotyped displacements and eye movements with stereotyped endpoints, respectively. Thus, single neurons specify a mixture of endpoints and displacements for different body parts, not overall displacement, with displacements for different body parts computed at distinct anatomical stages. Our study establishes an approach for unraveling motor hierarchies and identifies a logic for coordinating movements and the resulting pose.
Collapse
Affiliation(s)
- Sebastian H Zahler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David E Taylor
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brennan S Wright
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joey Y Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Varvara A Shvareva
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yusol A Park
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan H Feinberg
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Doshi FR, Konkle T. Cortical topographic motifs emerge in a self-organized map of object space. SCIENCE ADVANCES 2023; 9:eade8187. [PMID: 37343093 PMCID: PMC10284546 DOI: 10.1126/sciadv.ade8187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
The human ventral visual stream has a highly systematic organization of object information, but the causal pressures driving these topographic motifs are highly debated. Here, we use self-organizing principles to learn a topographic representation of the data manifold of a deep neural network representational space. We find that a smooth mapping of this representational space showed many brain-like motifs, with a large-scale organization by animacy and real-world object size, supported by mid-level feature tuning, with naturally emerging face- and scene-selective regions. While some theories of the object-selective cortex posit that these differently tuned regions of the brain reflect a collection of distinctly specified functional modules, the present work provides computational support for an alternate hypothesis that the tuning and topography of the object-selective cortex reflect a smooth mapping of a unified representational space.
Collapse
Affiliation(s)
- Fenil R. Doshi
- Department of Psychology and Center for Brain Sciences, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
18
|
Sadnicka A, Wiestler T, Butler K, Altenmüller E, Edwards MJ, Ejaz N, Diedrichsen J. Intact finger representation within primary sensorimotor cortex of musician's dystonia. Brain 2023; 146:1511-1522. [PMID: 36170332 PMCID: PMC10115231 DOI: 10.1093/brain/awac356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Musician's dystonia presents with a persistent deterioration of motor control during musical performance. A predominant hypothesis has been that this is underpinned by maladaptive neural changes to the somatotopic organization of finger representations within primary somatosensory cortex. Here, we tested this hypothesis by investigating the finger-specific activity patterns in the primary somatosensory and motor cortex using functional MRI and multivariate pattern analysis in nine musicians with dystonia and nine healthy musicians. A purpose-built keyboard device allowed characterization of activity patterns elicited during passive extension and active finger presses of individual fingers. We analysed the data using both traditional spatial analysis and state-of-the art multivariate analyses. Our analysis reveals that digit representations in musicians were poorly captured by spatial analyses. An optimized spatial metric found clear somatotopy but no difference in the spatial geometry between fingers with dystonia. Representational similarity analysis was confirmed as a more reliable technique than all spatial metrics evaluated. Significantly, the dissimilarity architecture was equivalent for musicians with and without dystonia. No expansion or spatial shift of digit representation maps were found in the symptomatic group. Our results therefore indicate that the neural representation of generic finger maps in primary sensorimotor cortex is intact in musician's dystonia. These results speak against the idea that task-specific dystonia is associated with a distorted hand somatotopy and lend weight to an alternative hypothesis that task-specific dystonia is due to a higher-order disruption of skill encoding. Such a formulation can better explain the task-specific deficit and offers alternative inroads for therapeutic interventions.
Collapse
Affiliation(s)
- Anna Sadnicka
- Movement Disorders and Neuromodulation Group, St. George's University of London, London SW17 0RE, UK
- Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| | - Tobias Wiestler
- Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| | - Katherine Butler
- Faculty of Health, School of Health Professions, University of Plymouth, Plymouth PL4 4AA, UK
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
- London Hand Therapy, King Edward VII’s Hospital, London W1G 9QG, UK
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians’ Medicine, Hannover University of Music, Drama and Media, 30175 Hannover, Germany
| | - Mark J Edwards
- Movement Disorders and Neuromodulation Group, St. George's University of London, London SW17 0RE, UK
| | - Naveed Ejaz
- Western Institute of Neuroscience, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Jörn Diedrichsen
- Western Institute of Neuroscience, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
19
|
Generalization indicates asymmetric and interactive control networks for multi-finger dexterous movements. Cell Rep 2023; 42:112214. [PMID: 36924500 DOI: 10.1016/j.celrep.2023.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Finger dexterity is manifested by coordinated patterns of muscle activity and generalization of learning across contexts. Some fingers flex, others extend, and some are immobile. Whether or not the neural control processes of these direction-specific actions are independent remains unclear. We characterized behavioral principles underlying learning and generalization of dexterous flexion and extension movements, within and across hands, using an isometric dexterity task that precisely measured finger individuation, force accuracy, and temporal synchronization. Two cohorts of participants trained for 3 days in either the flexion or extension direction. All dexterity measures in both groups showed post-training improvement, although finger extension exhibited inferior dexterity. Surprisingly, learning of finger extension generalized to the untrained flexion direction, but not vice versa. This flexion bias was also evident in the untrained hand. Our study indicates direction-specific control circuits for learning of finger flexion and extension that interact by partially, but asymmetrically, transferring between directions.
Collapse
|
20
|
Mannella F, Tummolini L. Kick-starting concept formation with intrinsically motivated learning: the grounding by competence acquisition hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210370. [PMID: 36571135 PMCID: PMC9791488 DOI: 10.1098/rstb.2021.0370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although the spontaneous origins of concepts from interaction is often given for granted, how the process can start without a fully developed sensorimotor representation system has not been sufficiently explored. Here, we offer a new hypothesis for a mechanism supporting concept formation while learning to perceive and act intentionally. We specify an architecture in which multi-modal sensory patterns are mapped in the same lower-dimensional representation space. The motor repertoire is also represented in the same space via topological mapping. We posit that the acquisition of these mappings can be mutually constrained by maximizing the convergence between sensory and motor representations during online interaction. This learning signal reflects an intrinsic motivation of competence acquisition. We propose that topological alignment via competence acquisition eventually results in a sensorimotor representation system. To assess the consistency of this hypothesis, we develop a computational model and test it in an object manipulation task. Results show that such an intrinsically motivated learning process can create a cross-modal categorization system with semantic content, which supports perception and intentional action selection, which has the resources to re-enact its own multi-modal experiences, and, on this basis, to kick-start the formation of concepts grounded in the external environment. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Francesco Mannella
- Institute of Cognitive Sciences and Technologies, CNR, 00185, Rome, Italy
| | - Luca Tummolini
- Institute of Cognitive Sciences and Technologies, CNR, 00185, Rome, Italy,Institute for Future Studies, IFFS, Box 591, 101 31, Stockholm, Sweden
| |
Collapse
|
21
|
Bracci S, Op de Beeck HP. Understanding Human Object Vision: A Picture Is Worth a Thousand Representations. Annu Rev Psychol 2023; 74:113-135. [PMID: 36378917 DOI: 10.1146/annurev-psych-032720-041031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objects are the core meaningful elements in our visual environment. Classic theories of object vision focus upon object recognition and are elegant and simple. Some of their proposals still stand, yet the simplicity is gone. Recent evolutions in behavioral paradigms, neuroscientific methods, and computational modeling have allowed vision scientists to uncover the complexity of the multidimensional representational space that underlies object vision. We review these findings and propose that the key to understanding this complexity is to relate object vision to the full repertoire of behavioral goals that underlie human behavior, running far beyond object recognition. There might be no such thing as core object recognition, and if it exists, then its importance is more limited than traditionally thought.
Collapse
Affiliation(s)
- Stefania Bracci
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy;
| | - Hans P Op de Beeck
- Leuven Brain Institute, Research Unit Brain & Cognition, KU Leuven, Leuven, Belgium;
| |
Collapse
|
22
|
Wang Q, Stepniewska I, Liao CC, Kaas JH. Thalamocortical and corticothalamic connections of multiple functional domains in posterior parietal cortex of galagos. J Comp Neurol 2023; 531:25-47. [PMID: 36117273 PMCID: PMC9754705 DOI: 10.1002/cne.25410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/06/2022]
Abstract
In prosimian galagos, the posterior parietal cortex (PPC) is subdivided into a number of functional domains where long-train intracortical microstimulation evoked different types of complex movements. Here, we placed anatomical tracers in multiple locations of PPC to reveal the origins and targets of thalamic connections of four PPC domains for different types of hindlimb, forelimb, or face movements. Thalamic connections of all four domains included nuclei of the motor thalamus, ventral anterior and ventral lateral nuclei, as well as parts of the sensory thalamus, the anterior pulvinar, posterior and ventral posterior superior nuclei, consistent with the sensorimotor functions of PPC domains. PPC domains also projected to the thalamic reticular nucleus in a somatotopic pattern. Quantitative differences in the distributions of labeled neurons in thalamic nuclei suggested that connectional patterns of these domains differed from each other.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Pathak A, Menon SN, Sinha S. Mesoscopic architecture enhances communication across the macaque connectome revealing structure-function correspondence in the brain. Phys Rev E 2022; 106:054304. [PMID: 36559437 DOI: 10.1103/physreve.106.054304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Analyzing the brain in terms of organizational structures at intermediate scales provides an approach to unravel the complexity arising from interactions between its large number of components. Focusing on a wiring diagram that spans the cortex, basal ganglia, and thalamus of the macaque brain, we identify robust modules in the network that provide a mesoscopic-level description of its topological architecture. Surprisingly, we find that the modular architecture facilitates rapid communication across the network, instead of localizing activity as is typically expected in networks having community organization. By considering processes of diffusive spreading and coordination, we demonstrate that the specific pattern of inter- and intramodular connectivity in the network allows propagation to be even faster than equivalent randomized networks with or without modular structure. This pattern of connectivity is seen at different scales and is conserved across principal cortical divisions, as well as subcortical structures. Furthermore, we find that the physical proximity between areas is insufficient to explain the modular organization, as similar mesoscopic structures can be obtained even after factoring out the effect of distance constraints on the connectivity. By supplementing the topological information about the macaque connectome with physical locations, volumes, and functions of the constituent areas and analyzing this augmented dataset, we reveal a counterintuitive role played by the modular architecture of the brain in promoting global coordination of its activity. It suggests a possible explanation for the ubiquity of modularity in brain networks.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
25
|
Vaccari FE, Diomedi S, Filippini M, Hadjidimitrakis K, Fattori P. New insights on single-neuron selectivity in the era of population-level approaches. Front Integr Neurosci 2022; 16:929052. [PMID: 36249900 PMCID: PMC9554653 DOI: 10.3389/fnint.2022.929052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, neuroscience was focused on individual neurons seen as the functional units of the nervous system, but this approach fell short over time to account for new experimental evidence, especially for what concerns associative and motor cortices. For this reason and thanks to great technological advances, a part of modern research has shifted the focus from the responses of single neurons to the activity of neural ensembles, now considered the real functional units of the system. However, on a microscale, individual neurons remain the computational components of these networks, thus the study of population dynamics cannot prescind from studying also individual neurons which represent their natural substrate. In this new framework, ideas such as the capability of single cells to encode a specific stimulus (neural selectivity) may become obsolete and need to be profoundly revised. One step in this direction was made by introducing the concept of “mixed selectivity,” the capacity of single cells to integrate multiple variables in a flexible way, allowing individual neurons to participate in different networks. In this review, we outline the most important features of mixed selectivity and we also present recent works demonstrating its presence in the associative areas of the posterior parietal cortex. Finally, in discussing these findings, we present some open questions that could be addressed by future studies.
Collapse
Affiliation(s)
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- *Correspondence: Patrizia Fattori
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
- Matteo Filippini
| |
Collapse
|
26
|
Zhang M, Wei J, Wu X. Effects of whole-body vibration training on lower limb motor function and neural plasticity in patients with stroke: protocol for a randomised controlled clinical trial. BMJ Open 2022; 12:e060796. [PMID: 35768103 PMCID: PMC9240887 DOI: 10.1136/bmjopen-2022-060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Lower limb motor dysfunction is common in patients with stroke, and usually caused by brain neural connectivity disorder. Previous studies have shown that the whole-body vibration training (WBVT) significantly improves the lower limb motor function in patients with stroke and may promote nerve remodelling. The prior purpose of this study is to explore effects of WBVT on lower limb motor function and neuroplasticity in patients with stroke. METHODS A single-blind randomised controlled trial will be conducted. Sixty patients with stroke will be recruited and allocated randomly to WBVT, routine rehabilitation training (RRT) and control group (CG). The WBVT and RRT interventions will be implemented as five 25 min sessions weekly for continuous 12 weeks; the CG will remain daily habitual living styles and routine treatments, in community or hospital, and will also receive telephone follow-up and health-related lectures. Transcranial magnetic stimulation will be used to assess neural plasticity while lower limb motor function is assessed using indicators of strength, walking ability and joint activity. The assessments will be conducted at the period of baseline, week 6, week 12 as well as on 4 and 8 weeks, respectively, after intervention completion. ETHICS AND DISSEMINATION This study has been approved by the Shanghai University of Sport Research Ethics Committee (102772021RT067) and will provide data on the effects of WBVT relative to RRT in terms of the improvement of stroke patients' lower limb motor function and neural plasticity. The results of this study will be disseminated via publications in peer-reviewed journals and presentations at international conference. TRIAL REGISTRATION NUMBER ChiCTR2200055143.
Collapse
Affiliation(s)
| | - Jianing Wei
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xueping Wu
- Shanghai University of Sport, Shanghai, China
| |
Collapse
|
27
|
Andersen RA, Aflalo T. Preserved cortical somatotopic and motor representations in tetraplegic humans. Curr Opin Neurobiol 2022; 74:102547. [PMID: 35533644 PMCID: PMC9167753 DOI: 10.1016/j.conb.2022.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022]
Abstract
A rich literature has documented changes in cortical representations of the body in somatosensory and motor cortex. Recent clinical studies of brain-machine interfaces designed to assist paralyzed patients have afforded the opportunity to record from and stimulate human somatosensory, motor, and action-related areas of the posterior parietal cortex. These studies show considerable preserved structure in the cortical somato-motor system. Motor cortex can immediately control assistive devices, stimulation of somatosensory cortex produces sensations in an orderly somatotopic map, and the posterior parietal cortex shows a high-dimensional representation of cognitive action variables. These results are strikingly similar to what would be expected in a healthy subject, demonstrating considerable stability of adult cortex even after severe injury and despite potential plasticity-induced new activations within the same region of cortex. Clinically, these results emphasize the importance of targeting cortical areas for BMI control signals that are consistent with their normal functional role.
Collapse
Affiliation(s)
- Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, United States; Tianqiao and Chrissy Chen Brain-machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, United States.
| | - Tyson Aflalo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, United States; Tianqiao and Chrissy Chen Brain-machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena CA 91125, United States
| |
Collapse
|
28
|
De Stefani E, Barbot A, Zannoni C, Belluardo M, Bertolini C, Cosoli R, Bianchi B, Ferri A, Zito F, Bergonzani M, Schiano Lomoriello A, Sessa P, Ferrari PF. Post-surgery Rehabilitative Intervention Based on Imitation Therapy and Mouth-Hand Motor Synergies Provides Better Outcomes in Smile Production in Children and Adults With Long Term Facial Paralysis. Front Neurol 2022; 13:757523. [PMID: 35665048 PMCID: PMC9156860 DOI: 10.3389/fneur.2022.757523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rehabilitation after free gracilis muscle transfer (smile surgery, SS) is crucial for a functional recovery of the smiling skill, mitigating social and psychological problems resulting from facial paralysis. We compared two post-SS rehabilitation treatments: the traditional based on teeth clenching exercises and the FIT-SAT (facial imitation and synergistic activity treatment). FIT-SAT, based on observation/imitation therapy and on hand-mouth motor synergies would facilitate neuronal activity in the facial motor cortex avoiding unwanted contractions of the jaw, implementing muscle control. We measured the smile symmetry on 30 patients, half of whom after SS underwent traditional treatment (control group, CG meanage = 20 ± 9) while the other half FIT-SAT (experimental group, EG meanage= 21 ± 14). We compared pictures of participants while holding two postures: maximum and gentle smile. The former corresponds to the maximal muscle contraction, whereas the latter is strongly linked to the control of muscle strength during voluntary movements. No differences were observed between the two groups in the maximum smile, whereas in the gentle smile the EG obtained a better symmetry than the CG. These results support the efficacy of FIT-SAT in modulating the smile allowing patients to adapt their smile to the various social contexts, aspect which is crucial during reciprocal interactions.
Collapse
Affiliation(s)
- Elisa De Stefani
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Child and Adolescent Neuropsychiatry–NPIA District of Scandiano, AUSL of Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Elisa De Stefani
| | - Anna Barbot
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Cecilia Zannoni
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Mauro Belluardo
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Chiara Bertolini
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Rita Cosoli
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Bernardo Bianchi
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Andrea Ferri
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Francesca Zito
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Michela Bergonzani
- Operative Unit of Maxillo-Facial Surgery, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | | | - Paola Sessa
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | | |
Collapse
|
29
|
Liu Y, Caracoglia J, Sen S, Freud E, Striem-Amit E. Are reaching and grasping effector-independent? Similarities and differences in reaching and grasping kinematics between the hand and foot. Exp Brain Res 2022; 240:1833-1848. [PMID: 35426511 PMCID: PMC9142431 DOI: 10.1007/s00221-022-06359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
While reaching and grasping are highly prevalent manual actions, neuroimaging studies provide evidence that their neural representations may be shared between different body parts, i.e., effectors. If these actions are guided by effector-independent mechanisms, similar kinematics should be observed when the action is performed by the hand or by a cortically remote and less experienced effector, such as the foot. We tested this hypothesis with two characteristic components of action: the initial ballistic stage of reaching, and the preshaping of the digits during grasping based on object size. We examined if these kinematic features reflect effector-independent mechanisms by asking participants to reach toward and to grasp objects of different widths with their hand and foot. First, during both reaching and grasping, the velocity profile up to peak velocity matched between the hand and the foot, indicating a shared ballistic acceleration phase. Second, maximum grip aperture and time of maximum grip aperture of grasping increased with object size for both effectors, indicating encoding of object size during transport. Differences between the hand and foot were found in the deceleration phase and time of maximum grip aperture, likely due to biomechanical differences and the participants’ inexperience with foot actions. These findings provide evidence for effector-independent visuomotor mechanisms of reaching and grasping that generalize across body parts.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA.
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - James Caracoglia
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
- Division of Graduate Medical Sciences, Boston University Medical Center, Boston, MA, 02215, USA
| | - Sriparna Sen
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Erez Freud
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
30
|
Schellekens W, Bakker C, Ramsey NF, Petridou N. Moving in on human motor cortex. Characterizing the relationship between body parts with non-rigid population response fields. PLoS Comput Biol 2022; 18:e1009955. [PMID: 35377877 PMCID: PMC9009778 DOI: 10.1371/journal.pcbi.1009955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/14/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
For cortical motor activity, the relationships between different body part representations is unknown. Through reciprocal body part relationships, functionality of cortical motor areas with respect to whole body motor control can be characterized. In the current study, we investigate the relationship between body part representations within individual neuronal populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in combination with our newly developed non-rigid population Response Field (pRF) model and graph theory. The non-rigid pRF metrics reveal somatotopic structures in all included motor cortices covering frontal, parietal, medial and insular cortices and that neuronal populations in primary sensorimotor cortex respond to fewer body parts than secondary motor cortices. Reciprocal body part relationships are estimated in terms of uniqueness, clique-formation, and influence. We report unique response profiles for the knee, a clique of body parts surrounding the ring finger, and a central role for the shoulder and wrist. These results reveal associations among body parts from the perspective of the central nervous system, while being in agreement with intuitive notions of body part usage.
Collapse
Affiliation(s)
- Wouter Schellekens
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| | - Carlijn Bakker
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Nick F. Ramsey
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Natalia Petridou
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| |
Collapse
|
31
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
32
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
33
|
Kaas JH, Qi HX, Stepniewska I. Escaping the nocturnal bottleneck, and the evolution of the dorsal and ventral streams of visual processing in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210293. [PMID: 34957843 PMCID: PMC8710890 DOI: 10.1098/rstb.2021.0293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Early mammals were small and nocturnal. Their visual systems had regressed and they had poor vision. After the extinction of the dinosaurs 66 mya, some but not all escaped the 'nocturnal bottleneck' by recovering high-acuity vision. By contrast, early primates escaped the bottleneck within the age of dinosaurs by having large forward-facing eyes and acute vision while remaining nocturnal. We propose that these primates differed from other mammals by changing the balance between two sources of visual information to cortex. Thus, cortical processing became less dependent on a relay of information from the superior colliculus (SC) to temporal cortex and more dependent on information distributed from primary visual cortex (V1). In addition, the two major classes of visual information from the retina became highly segregated into magnocellular (M cell) projections from V1 to the primate-specific temporal visual area (MT), and parvocellular-dominated projections to the dorsolateral visual area (DL or V4). The greatly expanded P cell inputs from V1 informed the ventral stream of cortical processing involving temporal and frontal cortex. The M cell pathways from V1 and the SC informed the dorsal stream of cortical processing involving MT, surrounding temporal cortex, and parietal-frontal sensorimotor domains. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Jon H. Kaas
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Hui-Xin Qi
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Iwona Stepniewska
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| |
Collapse
|
34
|
Abstract
Traditional brain-machine interfaces decode cortical motor commands to control external devices. These commands are the product of higher-level cognitive processes, occurring across a network of brain areas, that integrate sensory information, plan upcoming motor actions, and monitor ongoing movements. We review cognitive signals recently discovered in the human posterior parietal cortex during neuroprosthetic clinical trials. These signals are consistent with small regions of cortex having a diverse role in cognitive aspects of movement control and body monitoring, including sensorimotor integration, planning, trajectory representation, somatosensation, action semantics, learning, and decision making. These variables are encoded within the same population of cells using structured representations that bind related sensory and motor variables, an architecture termed partially mixed selectivity. Diverse cognitive signals provide complementary information to traditional motor commands to enable more natural and intuitive control of external devices.
Collapse
Affiliation(s)
- Richard A Andersen
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125, USA;
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, California 90033, USA
| | - Tyson Aflalo
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125, USA;
| | - Luke Bashford
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125, USA;
| | - David Bjånes
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125, USA;
| | - Spencer Kellis
- Division of Biology and Biological Engineering and Tianqiao & Chrissy Chen Brain-Machine Interface Center, California Institute of Technology, Pasadena, California 91125, USA;
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, California 90033, USA
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California 90033, USA
| |
Collapse
|
35
|
Anodal tDCS accelerates on-line learning of dart throwing. Neurosci Lett 2021; 764:136211. [PMID: 34481881 DOI: 10.1016/j.neulet.2021.136211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to enhance or block online learning of motor skills, depending on the current direction. However, most research on the use of tDCS has been limited to the study of relatively simple motor tasks. The purpose of the present study was to examine the influence of anodal (a-tDCS) and cathodal (c-tDCS) direct current stimulation on the online learning during a single session of dart throwing. Fifty-eight young adults were randomized to a-tDCS, c-tDCS, or SHAM groups and completed a pre-test block of dart throws, a 20-minute practice block of throws while receiving their stimulation condition, and a post-test block of dart throws. The results showed that a-tDCS accelerated the skill learning of dart throwing more than SHAM and c-tDCS conditions. The SHAM and c-tDCS conditions were not different. We conclude that a-tDCS may have a positive effect in a single training session which would be ideal in a recreational game environment where repeated practice is not common.
Collapse
|
36
|
Viganò L, Howells H, Rossi M, Rabuffetti M, Puglisi G, Leonetti A, Bellacicca A, Conti Nibali M, Gay L, Sciortino T, Cerri G, Bello L, Fornia L. Stimulation of frontal pathways disrupts hand muscle control during object manipulation. Brain 2021; 145:1535-1550. [PMID: 34623420 PMCID: PMC9128819 DOI: 10.1093/brain/awab379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output and, despite extensively investigated in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in thirty-four patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tracts disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution in 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: 1) an arrest pattern, characterised by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local mid-U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. 2) a clumsy pattern, characterised by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (p = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and post-operative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.
Collapse
Affiliation(s)
- Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Henrietta Howells
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Marco Rabuffetti
- Biomedical Technology Department, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano.,MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Antonella Leonetti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Andrea Bellacicca
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Luca Fornia
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| |
Collapse
|
37
|
Wang Q, Liao C, Stepniewska I, Gabi M, Kaas JH. Cortical connections of the functional domain for climbing or running in posterior parietal cortex of galagos. J Comp Neurol 2021; 529:2789-2812. [PMID: 33550608 PMCID: PMC9885969 DOI: 10.1002/cne.25123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/01/2023]
Abstract
Previous studies in prosimian galagos (Otolemur garnetti) have demonstrated that posterior parietal cortex (PPC) is subdivided into several functionally distinct domains, each of which mediates a specific type of complex movements (e.g., reaching, grasping, hand-to-mouth) and has a different pattern of cortical connections. Here we identified a medially located domain in PPC where combined forelimb and hindlimb movements, as if climbing or running, were evoked by long-train intracortical microstimulation. We injected anatomical tracers in this climbing/running domain of PPC to reveal its cortical connections. Our results showed the PPC climbing domain had dense intrinsic connections within rostral PPC and reciprocal connections with forelimb and hindlimb region in primary motor cortex (M1) of the ipsilateral hemisphere. Fewer connections were with dorsal premotor cortex (PMd), supplementary motor (SMA), and cingulate motor (CMA) areas, as well as somatosensory cortex including areas 3a, 3b, and 1-2, secondary somatosensory (S2), parietal ventral (PV), and retroinsular (Ri) areas. The rostral portion of the climbing domain had more connections with primary somatosensory cortex than the caudal portion. Cortical projections were found in functionally matched domains in M1 and premotor cortex (PMC). Similar patterns of connections with fewer labeled neurons and terminals were seen in the contralateral hemisphere. These connection patterns are consistent with the proposed role of the climbing/running domain as part of a parietal-frontal network for combined use of the limbs in locomotion as in climbing and running. The cortical connections identify this action-specific domain in PPC as a more somatosensory driven domain.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Chia‐Chi Liao
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Iwona Stepniewska
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Mariana Gabi
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jon H. Kaas
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
38
|
Lavrov I, Latypov T, Mukhametova E, Lundstrom BN, Sandroni P, Lee K, Klassen B, Stead M. Pre-motor versus motor cerebral cortex neuromodulation for chronic neuropathic pain. Sci Rep 2021; 11:12688. [PMID: 34135363 PMCID: PMC8209192 DOI: 10.1038/s41598-021-91872-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Electrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.
Collapse
Affiliation(s)
- Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Timur Latypov
- Division of Brain, Imaging, and Behaviour Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elvira Mukhametova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Paola Sandroni
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kendall Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bryan Klassen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Matt Stead
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Urgen BA, Orban GA. The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. Neuroimage 2021; 237:118220. [PMID: 34058335 PMCID: PMC8285591 DOI: 10.1016/j.neuroimage.2021.118220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Action observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal interactions, skin displacement, locomotion, and climbing. The goals of the current study consist of: 1) extending this work with new classes of actions that are communicative and specific to humans, 2) investigating how parietal cortex differs from the occipito-temporal and premotor cortex in representing action classes. Human subjects underwent fMRI scanning while observing three action classes: indirect communication, direct communication, and manipulation, plus two types of control stimuli, static controls which were static frames from the video clips, and dynamic controls consisting of temporally-scrambled optic flow information. Using univariate analysis, MVPA, and representational similarity analysis, our study presents several novel findings. First, we provide further evidence for the anatomical segregation in parietal cortex of different action classes: We have found a new site that is specific for representing human-specific indirect communicative actions in cytoarchitectonic parietal area PFt. Second, we found that the discriminability between action classes was higher in parietal cortex than the other two levels suggesting the coding of action identity information at this level. Finally, our results advocate the use of the control stimuli not just for univariate analysis of complex action videos but also when using multivariate techniques.
Collapse
Affiliation(s)
- Burcu A Urgen
- Department of Psychology, Bilkent University, 06800, Bilkent, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, 06800, Bilkent, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM) and Aysel Sabuncu Brain Research Center, Bilkent University, 06800, Bilkent, Ankara, Turkey.
| | - Guy A Orban
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy.
| |
Collapse
|
40
|
Abstract
Cognitive processes-from basic sensory analysis to language understanding-are typically contextualized. While the importance of considering context for understanding cognition has long been recognized in psychology and philosophy, it has not yet had much impact on cognitive neuroscience research, where cognition is often studied in decontextualized paradigms. Here, we present examples of recent studies showing that context changes the neural basis of diverse cognitive processes, including perception, attention, memory, and language. Within the domains of perception and language, we review neuroimaging results showing that context interacts with stimulus processing, changes activity in classical perception and language regions, and recruits additional brain regions that contribute crucially to naturalistic perception and language. We discuss how contextualized cognitive neuroscience will allow for discovering new principles of the mind and brain.
Collapse
Affiliation(s)
- Roel M Willems
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
41
|
Kieliba P, Clode D, Maimon-Mor RO, Makin TR. Robotic hand augmentation drives changes in neural body representation. Sci Robot 2021; 6:eabd7935. [PMID: 34043536 PMCID: PMC7612043 DOI: 10.1126/scirobotics.abd7935] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Humans have long been fascinated by the opportunities afforded through augmentation. This vision not only depends on technological innovations but also critically relies on our brain's ability to learn, adapt, and interface with augmentation devices. Here, we investigated whether successful motor augmentation with an extra robotic thumb can be achieved and what its implications are on the neural representation and function of the biological hand. Able-bodied participants were trained to use an extra robotic thumb (called the Third Thumb) over 5 days, including both lab-based and unstructured daily use. We challenged participants to complete normally bimanual tasks using only the augmented hand and examined their ability to develop hand-robot interactions. Participants were tested on a variety of behavioral and brain imaging tests, designed to interrogate the augmented hand's representation before and after the training. Training improved Third Thumb motor control, dexterity, and hand-robot coordination, even when cognitive load was increased or when vision was occluded. It also resulted in increased sense of embodiment over the Third Thumb. Consequently, augmentation influenced key aspects of hand representation and motor control. Third Thumb usage weakened natural kinematic synergies of the biological hand. Furthermore, brain decoding revealed a mild collapse of the augmented hand's motor representation after training, even while the Third Thumb was not worn. Together, our findings demonstrate that motor augmentation can be readily achieved, with potential for flexible use, reduced cognitive reliance, and increased sense of embodiment. Yet, augmentation may incur changes to the biological hand representation. Such neurocognitive consequences are crucial for successful implementation of future augmentation technologies.
Collapse
Affiliation(s)
- Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
- Dani Clode design, 40 Hillside Road, London SW2 3HW, UK
| | - Roni O Maimon-Mor
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
- WIN Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
42
|
Ogino Y, Kawamichi H, Takizawa D, Sugawara SK, Hamano YH, Fukunaga M, Toyoda K, Watanabe Y, Abe O, Sadato N, Saito S, Furui S. Enhanced structural connectivity within the motor loop in professional boxers prior to a match. Sci Rep 2021; 11:9015. [PMID: 33907206 PMCID: PMC8079439 DOI: 10.1038/s41598-021-88368-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/12/2021] [Indexed: 02/01/2023] Open
Abstract
Professional boxers train to reduce their body mass before a match to refine their body movements. To test the hypothesis that the well-defined movements of boxers are represented within the motor loop (cortico-striatal circuit), we first elucidated the brain structure and functional connectivity specific to boxers and then investigated plasticity in relation to boxing matches. We recruited 21 male boxers 1 month before a match (Time1) and compared them to 22 age-, sex-, and body mass index (BMI)-matched controls. Boxers were longitudinally followed up within 1 week prior to the match (Time2) and 1 month after the match (Time3). The BMIs of boxers significantly decreased at Time2 compared with those at Time1 and Time3. Compared to controls, boxers presented significantly higher gray matter volume in the left putamen, a critical region representing motor skill training. Boxers presented significantly higher functional connectivity than controls between the left primary motor cortex (M1) and left putamen, which is an essential region for establishing well-defined movements. Boxers also showed significantly higher structural connectivity in the same region within the motor loop from Time1 to Time2 than during other periods, which may represent the refined movements of their body induced by training for the match.
Collapse
Affiliation(s)
- Yuichi Ogino
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-15 Maebashi, Gunma, 371-8510, Japan.
| | - Hiroaki Kawamichi
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-15 Maebashi, Gunma, 371-8510, Japan
| | - Daisuke Takizawa
- Department of Anesthesiology, Japanese Red Cross Medical Center, 1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan
| | - Sho K Sugawara
- Neural Prosthesis Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Keiko Toyoda
- Department of Radiology, The Jikei University School of Medicine, 3-28-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-864, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-15 Maebashi, Gunma, 371-8510, Japan
| | - Shigeru Furui
- Department of Radiology, Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
43
|
A New Neurorehabilitative Postsurgery Intervention for Facial Palsy Based on Smile Observation and Hand-Mouth Motor Synergies. Neural Plast 2021; 2021:8890541. [PMID: 33833792 PMCID: PMC8016575 DOI: 10.1155/2021/8890541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To perform a preliminary test of a new rehabilitation treatment (FIT-SAT), based on mirror mechanisms, for gracile muscles after smile surgery. Method A pre- and postsurgery longitudinal design was adopted to study the efficacy of FIT-SAT. Four patients with bilateral facial nerve paralysis (Moebius syndrome) were included. They underwent two surgeries with free muscle transfers, one year apart from each other. The side of the face first operated on was rehabilitated with the traditional treatment, while the second side was rehabilitated with FIT-SAT. The FIT-SAT treatment includes video clips of an actor performing a unilateral or a bilateral smile to be imitated (FIT condition). In addition to this, while smiling, the participants close their hand in order to exploit the overlapped cortical motor representation of the hand and the mouth, which may facilitate the synergistic activity of the two effectors during the early phases of recruitment of the transplanted muscles (SAT). The treatment was also aimed at avoiding undesired movements such as teeth grinding. Discussion. Results support FIT-SAT as a viable alternative for smile rehabilitation after free muscle transfer. We propose that the treatment potentiates the effect of smile observation by activating the same neural structures responsible for the execution of the smile and therefore by facilitating its production. Closing of the hand induces cortical recruitment of hand motor neurons, recruiting the transplanted muscles, and reducing the risk of associating other unwanted movements such as teeth clenching to the smile movements.
Collapse
|
44
|
Orban GA, Lanzilotto M, Bonini L. From Observed Action Identity to Social Affordances. Trends Cogn Sci 2021; 25:493-505. [PMID: 33745819 DOI: 10.1016/j.tics.2021.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior.
Collapse
Affiliation(s)
- G A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - M Lanzilotto
- Department of Psychology, University of Turin, Turin, Italy
| | - L Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
45
|
Seeliger K, Ambrogioni L, Güçlütürk Y, van den Bulk LM, Güçlü U, van Gerven MAJ. End-to-end neural system identification with neural information flow. PLoS Comput Biol 2021; 17:e1008558. [PMID: 33539366 PMCID: PMC7888598 DOI: 10.1371/journal.pcbi.1008558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2021] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
Neural information flow (NIF) provides a novel approach for system identification in neuroscience. It models the neural computations in multiple brain regions and can be trained end-to-end via stochastic gradient descent from noninvasive data. NIF models represent neural information processing via a network of coupled tensors, each encoding the representation of the sensory input contained in a brain region. The elements of these tensors can be interpreted as cortical columns whose activity encodes the presence of a specific feature in a spatiotemporal location. Each tensor is coupled to the measured data specific to a brain region via low-rank observation models that can be decomposed into the spatial, temporal and feature receptive fields of a localized neuronal population. Both these observation models and the convolutional weights defining the information processing within regions are learned end-to-end by predicting the neural signal during sensory stimulation. We trained a NIF model on the activity of early visual areas using a large-scale fMRI dataset recorded in a single participant. We show that we can recover plausible visual representations and population receptive fields that are consistent with empirical findings.
Collapse
Affiliation(s)
- K. Seeliger
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - L. Ambrogioni
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Y. Güçlütürk
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - L. M. van den Bulk
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - U. Güçlü
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - M. A. J. van Gerven
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Negative motor responses to direct electrical stimulation: Behavioral assessment hides different effects on muscles. Cortex 2021; 137:194-204. [PMID: 33640851 DOI: 10.1016/j.cortex.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022]
Abstract
A negative motor response (NMR) is defined as the inability to continue voluntary movements without losing consciousness when direct electrical stimulation (DES) is applied during awake neurosurgery. While visual inspection is most commonly used to define an NMR, the actual effect of stimulation on muscle activity has been neglected by recent neurosurgical literature. We show that behavioral assessment of NMRs hides different site-dependent effects on muscles as revealed by electromyography (EMG), describing ten cases of brain tumor patients undergoing awake neurosurgery while performing a hand-object manipulation task. DES-induced NMRs were assessed behaviorally and related to the underlying electromyographic recording. Quantitative analysis of motor unit recruitment and regularity between phasic muscle contractions was computed. We show that similar NMRs classified based on behavioral criteria can be associated with suppression, increased recruitment or mixed effects on ongoing hand muscles. In some cases, suppression of hand muscle activity is associated with involuntary recruitment of muscles not involved in the task. Interestingly, stimulation of behaviorally defined "negative areas" across the frontal and parietal lobes elicits different electromyographic patterns, depending on the stimulation site. This study provides novel preliminary background as to the heterogeneous profile of muscle activity during NMRs. In fact, EMG monitoring paired with behavioral assessment can distinguish between NMRs that, despite similarity on behavioral inspection, are different in their related EMG, possibly underlying different neural substrates. The identification of different circuits hidden in similar NMRs may become relevant when planning the extension of resection.
Collapse
|
47
|
Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension. J Neurosci 2020; 40:9210-9223. [PMID: 33087474 DOI: 10.1523/jneurosci.0999-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022] Open
Abstract
How is the primary motor cortex (M1) organized to control fine finger movements? We investigated the population activity in M1 for single finger flexion and extension, using 7T functional magnetic resonance imaging (fMRI) in female and male human participants and compared these results to the neural spiking patterns recorded in two male monkeys performing the identical task. fMRI activity patterns were distinct for movements of different fingers, but were quite similar for flexion and extension of the same finger. In contrast, spiking patterns in monkeys were quite distinct for both fingers and directions, which is similar to what was found for muscular activity patterns. The discrepancy between fMRI and electrophysiological measurements can be explained by two (non-mutually exclusive) characteristics of the organization of finger flexion and extension movements. Given that fMRI reflects predominantly input and recurrent activity, the results can be explained by an architecture in which neural populations that control flexion or extension of the same finger produce distinct outputs, but interact tightly with each other and receive similar inputs. Additionally, neurons tuned to different movement directions for the same finger (or combination of fingers) may cluster closely together, while neurons that control different finger combinations may be more spatially separated. When measuring this organization with fMRI at a coarse spatial scale, the activity patterns for flexion and extension of the same finger would appear very similar. Overall, we suggest that the discrepancy between fMRI and electrophysiological measurements provides new insights into the general organization of fine finger movements in M1.SIGNIFICANCE STATEMENT The primary motor cortex (M1) is important for producing individuated finger movements. Recent evidence shows that movements that commonly co-occur are associated with more similar activity patterns in M1. Flexion and extension of the same finger, which never co-occur, should therefore be associated with distinct representations. However, using carefully controlled experiments and multivariate analyses, we demonstrate that human fMRI activity patterns for flexion or extension of the same finger are highly similar. In contrast, spiking patterns measured in monkey M1 are clearly distinct. This suggests that populations controlling opposite movements of the same finger, while producing distinct outputs, may cluster together and share inputs and local processing. These results provide testable hypotheses about the organization of hand control in M1.
Collapse
|
48
|
Unno S, Shinoda M, Soma K, Kubo A, Sessle BJ, Matsui T, Ando M, Asaka J, Otsuki K, Yonemoto H, Onose H, Sakanashi K, Iwata K. Properties of heat-sensitive neurons in the premotor cortex of conscious monkeys. J Oral Sci 2020; 62:382-386. [PMID: 32741851 DOI: 10.2334/josnusd.19-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To investigate neuronal activity involved in responses to noxious stimuli in conscious monkeys, the animals were subjected to a task that required them to detect a small change in facial skin temperature or light (second temperature: T2, second light: V2) relative to an initial condition (T1 or V1), and to detect changes in V2 along with a heat task. Recordings were obtained from 57 neurons in the ventral premotor cortex (PMv) during the heat or light detection task. T1 neurons and T2 neurons showed increased activity only during T1 or T2, and T1/T2 neurons were activated by both T1 and T2 stimuli. T1/T2 neurons showed an increase in firing at higher T1 temperatures, whereas T1 neurons did not. About half of the non-light/heat-sensitive T1/T2 neurons showed increased firing at higher T2 temperatures, whereas T2 neurons showed no such increase. The heat responses of heat-sensitive PMv neurons were significantly suppressed when monkeys shifted their attention from heat to light. The present findings suggest that heat-sensitive PMv neurons may be involved in motor responses to noxious heat, whereas light/heat-PMv neurons may be involved in emotional and motivational aspects of pain and inappropriate motor responses to allow escape from noxious stimuli.
Collapse
Affiliation(s)
- Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University
| | | | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Barry J Sessle
- Faculty of Dentistry and Department of Physiology, Faculty of Medicine, University of Toronto
| | - Tomoyuki Matsui
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Masatoshi Ando
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | | | | | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | | | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
49
|
Dempsey-Jones H, Wesselink DB, Friedman J, Makin TR. Organized Toe Maps in Extreme Foot Users. Cell Rep 2020; 28:2748-2756.e4. [PMID: 31509738 PMCID: PMC6899508 DOI: 10.1016/j.celrep.2019.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/28/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Although the fine-grained features of topographic maps in the somatosensory cortex can be shaped by everyday experience, it is unknown whether behavior can support the expression of somatotopic maps where they do not typically occur. Unlike the fingers, represented in all primates, individuated toe maps have only been found in non-human primates. Using 1-mm resolution fMRI, we identify organized toe maps in two individuals born without either upper limb who use their feet to substitute missing hand function and even support their profession as foot artists. We demonstrate that the ordering and structure of the artists’ toe representation mimics typical hand representation. We further reveal “hand-like” features of activity patterns, not only in the foot area but also similarly in the missing hand area. We suggest humans may have an innate capacity for forming additional topographic maps that can be expressed with appropriate experience. We ask if extreme behavior can cause the (re)emergence of somatotopic maps We investigated two foot artists, born without arms 7T fMRI shows individuated maps of up to 5 toes in the artists but not controls Activity in artists’ foot and hand areas was more “hand-like” than in controls
Collapse
Affiliation(s)
| | - Daan B Wesselink
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK.
| | - Jason Friedman
- Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 699 7801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 699 7801, Israel
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| |
Collapse
|
50
|
Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage 2020; 218:116943. [PMID: 32428706 PMCID: PMC7422832 DOI: 10.1016/j.neuroimage.2020.116943] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.
Collapse
Affiliation(s)
- Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|